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DISSERTATION ABSTRACT
MODELING CO&TIN&OUS—TIHE RANDOH PROCESSES
IN DIGITAL COMPUTER SIMULATIONS
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Doctor of Philosophy, August 27, 1986
({M.E.E., Auburn University, 1977)
(B.E.E., Auburn University, 1976)

111 Typed Pages

Directed by Charles L. Phillips

This dissertation addresses the problem of determining
the correct relationship between the statistics of a con-
tinuous random process and the statistics of a discrete
random process used to simulate the continuous random pro-
cess. The findings of this research are directly applica-
ble to the general field of digiéal simulation of physical
systems described by ordinary differential equations.

It is shown that to ensure a faithful digital simula-
tion of a continuous random process, the noise statistics
of the random number generator must be set to 351ues dras-

tically different from the noise statistics of the contin-~

uous random process. Further, it is established that the
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relationship between the continuous and discrete statistics
; is a function of the integration method used in the digital
f simulation.
The proper functional relationship between the dis- -,
crete and continuous noise statistics is derived for
, “1._ the class of Runge-Kutta integrators,
2. the 4th order Adams-Bashforth integrator, and
ﬁ 3. the Adams-Moulton corrector formula.
; The derived relationships are applied to a specific problem
and are demonstrated by simulation. The simulation results
are compared to exact solutions. Additionally, the require-
ment for proper operation of a variable-step-size algorithm

is developed.
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relationship between the continuous and discrete statistics
is a function of the integration method used in the digital
simulation.

The proper functional relationship between the dis-
crete and continuous noise statistics is derived for

1. the class of Runge-Kutta integrators,

2. the 4th order Adams-Bashforth integrator, and

3. the Adams-Moulton corrector formula.
The derived relationships are applied to a specific problem
and are demonstrated by simulation. The simulation results
are compared to exact solutions. Additionally, the require-
ment for proper operation of a variable-step-size algorithm

is developed.
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I. JINTRODUCTION

The design of modern technological systems is a well
defined logical process involving many phases beginning
with a statement of need and culminating in hardware. The
success of the final product is critically dependent on the
successful completion of each design phase. In each of the
phases, analysis plays a fundamental role, whether the goal
of the analysis is to test the potential payoff of a feasi-
ble solution, or simply to further the engineer's under-

standing of the problem. The importance of an accurate

analysis, regardless of the design phase for which it is

per formed, can not be overemphasized.

To perform an accurate analysis, the analyst has a
number of useful and time-proven tools. One of the most
useful tools for analysis is based on the modern engineer's
ability to describe a physical process using mathematical
equations. The implementation of those equations forms a
basis for a simulation of the physical system. That simu-
lation allows the engineer to exercise the model of the
physical system in a controlled manner. Of course, the
accuracy of an analysis performed by simulation is directly
dependent on the accuracy of the assumed mathematical model

of the physical system.
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Until recently, simulation was performed primarily on
analog computers. Anélog computers consist of a number of
specialized electronic devices that respond to electrical
inputs in a manner analogous to the response of physical
devices to physical inputs. The interconnection of the
analog computer devices in a way that represents the
physical process leads to an analog simulation of the
physical system. Once completed there will be a one-to-one
correspondence between the variables describing the physi-
cal process and the variables of the analog simulation.
This direct correspondence makes the analog simulation an
excellent tool for studying the physical system without
physically realizing that system. However, the initial
cost, the cost of maintenance, the cost of operation and an
inherent dAifficulty in reprogramming make analog computers
unattractive.

As an alternative, modern digital computers offer easy
reprogramming at relatively low costs. Additionally, digi-
tal computers effectively solve multiple problems simulta-
neously, do not have to be dedicated to simulation and pro-~
vide the ability to store vast amounts of data. The com-
bination of computational speed, programming flexibility,
and sophisticated numerical algorithms for the solution of
complex mathematical equations has made simulation via
digital computers a common practice over the last fifteen

years.

!

ey W 8 “w\ % . Y et et AR O A S S R I R e I R L IR DR TR TR TR E SRR TR G R U
dm&aﬂﬂulaisﬂﬂﬂQUQﬂﬂd}LfuﬂkiutAfalgl;f;xitQd&ﬂ.{_{lﬂtﬁlﬂ&ﬂﬁt_d;iﬁiﬁf?i&ﬁﬂktﬂLtL:J}EfQ}Jdckdkﬂhauaxxhnﬁhfﬁiaﬂi



........

3

Many physical processes occur in the environment that
can not be precisely modeled in a deterministic manner.
Examples of such processes are wind gusts, electronic sen-
sor noise, future target maneuvers, the weather and the
economy. Although such processes can not be modeled deter-
ministically, they can be modeled as continuous random
processes based on statistical data. To model a physical
process as a random process, one only needs an adequate
statistical representation of the physical process. This
representation can be derived from previous observation
data or simply defined based on knowledge of the physical
limits of the process. Although such a derived or defined
model can not precisely predict the behavior of the physi-
cal system, it can predict the statistical behavior of the
system or, in other words, how the system will behave "on
the average". Modeling the non-deterministic system in
this manner will provide useful information, much more so
than simply ignoring the noisy process. Including such
random models in a simulation will certainly enhance its

accuracy by making it more faithful to the physical system.

Review of Random Variables
Before proceeding further, it will be useful to define

and show a number of useful mathematical properties related
to random variables. To do this, let x be an n-dimensional
vector of random variables. All of the information known

about x will be embodied in its probability density func-
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tion (pdf) or, if the pdf is not available, in its proba-
bility distribution fﬁnction.(ll For convenience, assume
the pdf of x is available and let it be denoted by fl(')‘

f‘(-) can be used to compute the "expected value" of
some function of x, where the "expected value” is a numeri-
cal value obtained by averaging the outcomes of an experi-
ment over an ensemble of trials. Specifically, if the
m—-dimensional vector function zZ(+) is a function of x such
that

z(*) = 8[x(+)]

wvhere 8(+) is continuous, then the expectation of gz,

denoted as ElZ), is
Elz] & rg(x) f‘(s)d_{

Since by definition, the expectation is an integral,
it is a linear operation. Therefore, if
w(*) = Agz(+) = AB[x(+)]
vhere A is a constant matrix, then

E(w) = E(AZ) = Fg(:)fx(x)di = AI.Q(I)E‘(I)dI = AE(z] (1)

-y -

Additionally, if
i) = 29(°) + Zo(e) = 8(x(*)] + 85(x(+)])
then

Ely) = Elz3+z3) = F!l(.{) + 8p(¥) Ifx(D)AX

= I;_l(i)f;(x)dx + J‘Qz(,{)fx_(i)d_{

LA -.‘. Do e '.{ . v, el R .'.-"l"";'{';l‘.(s'. FIP N, I.'-"'-' f.' - !'."'-_f~!‘ f & ‘u e
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= E(Z;) + ElZ3) (2)

Particular functions of x are used to characterize
f‘(-). The expected value of these particular functions
are called the moments, or statistics, of x. Generally, an
infinite number of moments are needed to completely charac-
terize f‘(-). Of special interest in stochastic analyses
are the first two moments of . The first moment is called
the mean of x and the second moment is called the autocorre-
lation matrix of x.

To generate the first moment of x, or the mean of g,
let 8(x) = x. The mean of x, denoted as p, will be compu-
ted by

n = Elx) = ‘l‘,{f‘_(;)d;

-

Note that m is not a random variable, but rather a deter-
ministic quantity. This fact is true for all the statis-
tics of a random variable.(1]

To generate the autocorrelation matrix of x, let
a(x) = xx?. where the superscript-T denotes a vector trans-
pose operation. The autocorrelation matrix of g, denoted

as ¥, will be computed by

¢ = E(xx] = ‘ranx(:)d:
-

A statistic closely related to the autocorrelation

matrix is the covariance matrix, denoted as P. Like the

autocorrelation matrix, the covariance matrix is a second
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moment. P is the second central moment of x. The covari-

ance matrix 1s defined as

)
P 2 E[(xrn)(;-n)T] = I (T -m(x - m)Tf‘ﬁz)dx

Using the facts that E(°*) is a linear operation and m
is a deterministic quantity, the relationship between ¥ and
P can be derived in a straight forward manner. Consider,

P = El(x-p)(x-0)T) = ElzxT - znT - mxT + mu™)

From equation (2) it is seen that

ElzxT-znT-nxT+oaT) = E(zxT) - EizmT) - EipxT] + ElpnT)

Since g is a deterministic vector, from equation (1) it is

seen that

EtznT) = E(xiaT = pnT;

EipxT) = pE(xT) = ppT:
and E(pnT) = pal.
Using these relationships, then
P = E(xxT) - pmT = ¢ ~ E(gI1E(xT)
Note that if m = @ then P = ¢ .
A useful relation is statistical independence. Two
random variables are defined to be statistically indepen-
dent if their joint probability density functisn is equal

to the product of their individual density functions.
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Refinition of Independence
Given two random variables, u and v, then u and v are
statistically independent if (2]
fyv(u,v) = £,(u)f,(v)
where
fyv(u,v) & joint pdf of u and v;
fy(u) & pdf of u;

and f,(v) & pdf of v.

Uncorrelated and Orthogonal Random Variables
Two random variables, u and v, are uncorrelated if (2]
Efuv) = E(u)E{v].
They are orthogonal if (2]

Eluv] = 8.

Ibeorem 1
If two random variables, u and v, are independent,
they are also uncorrelated.(1)

Proof:

E(uv) = I“ uvf,y(u,v)dudv = J.ufu(u)du I.va(v)dv
-oY ~o - -

= E(ulE(v])

Iheorem 2
If two n-dimensional random variable vectors, x and y,
are uncorrelated, then the covariance of their sum equals

the sum of their covariances.(1]

.......



Proof:
EL((x-By) + (¥-my)) ((x-py) + (x-my)T) =
EC(Z-my) (X-Bx) 7] + EL(X-By) (x-my)T) + EC(y-my) (x-mg)T)
+ E[(zrny)(zrmy)Tl
but
El(Z-By) (Z-By)T) = Py;
)Ty = p

E[(xrmy)(zrmy y?

)T1 = EtzyT) - ngE(yT] - E(xln] + menf = 9:

El(x-my) (L-Ry
and

E((y-my) (x-my)T) = E(yxT) - myE(xT) - ElyInd + nynd = 0:
Therefore,

ELC(Z-my) + (L-my)) ((Z-mg) + (L-my))T) = Py + Py

Theorem 2 can easily be extended to provide the relation-

ship that if the random vector,

= ES uj

i=}
then

n
Pe(x) = E Pyy (4)

Likewise, from equation (1) and Theorem 2, if

L= 1‘21‘*‘“

then
Py(x) = élwuxn? (5)

Refinition of a Stochastic Process

A process that contains an element of chance is for-
mally called a stochastic process. A stochastic process

will be described by some function that contains one or

S T, o 2 A L2 A AN Tt g Sh e g T o p TR g e L e - S
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more random variables. The statistics of the stochastic
process will be a function of not only the statistics of
its random variables but also the describing function it-
self. Some examples of stochastic processes are

X(t) = A sin(et) where @ is a random variable with a

known pdf.
Y(t) = some noiselike signal with no deterministic
structure.
x(t) = w(t) where w(t) is a random varible with a

uniform distribution.

Inaredjents of Stochastic Simulation
Analog Simulation

In order to include a random process in an analog sim-
ulation, one needs, in addition to the mathematical model
of the process, an electronic device that will generate
wide-bandwidth noise. Wide-bandwidth noise is noise that
contains power components over a very large range of fre-
quencies. Ideally, the noise generator should produce
noise that has a frequency spectrum of constant amplitude
over an infinite range of frequencies. Such noise is said
to have an infinite bandwidth with a constant spectral
density function and is termed "white noise",

The desire to produce white noise comes from the fact
that the mathematics involved with analyzing systems con-
taining white noise is greatly simplified. For instance,

the autocorrelation function, ¥#(1), for a white noise

''''''''
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vector is of the form [3)

#(T) = Q §(T)

where
8§(T) 2 Dirac delta function
and Q is the spectral density matrix of the

noise
The Dirac delta function is a defined mathematical function
that has infinite amplitude, zero width, and occurs at
T =0.

As seen from its autocorrelation function, white noise
is not correlated in time. In other words, knowing the
value of the noise at any time provides no information
concerning the value of the noise at any other time. This
uncorrelatedness-in-time property as well as the constant
spectral amplitude property, vastly simplifies the mathema-
tics involved with processing the noise statistics. Thus,
from a mathematical sense, a white noise model is a very
attractive model. However, white noise is physically not
possible. If this isn't obvious from the fact that it
contains power components at an infinite number of frequen-
cies, consider the argument that white noise changes it's
value by an infinite amount in zero time. One might ask
how such a noise model could be justifiably used in a
simulation of a real system. There are two justifications.

First, if a physical noise generator has a fairly fla*

spectral density over a range of frequencies that is much




.ol ... - .'.....'. '. A e AT A -'.'n‘_} ‘b‘.‘c ‘-‘.‘- '-)\'. N -‘.~ . ..:. N3 \‘,q’ RS AL

11
greater than the bandwidth of the system that is driven by
the noise source, theﬁ the effect of the bandlimited noise
on the system is approximately the same as if it vwere driv-
en by white noise. Figure 1 demonstrates this point graph-
ically.{1] Second, virtually any spectral density function
can be shaped from a white noise spectral density function

by processing the white noise through a shaping filter.(1])

NAGNITUDE

FREQUENCY
Figure 1. Frequency Spectrums of Interest

Therefore, the model of the true noise source can be simu-
lated by a white noise source driving a shaping filter.

The white noise source would in reality be a wide-bandwidth
noise generator that has a bandwidth much greater than the
bandwidth of the shaping filter. Since an analog simula-
tion uses continuous analog devices and models to simulate
the continuous noise process, there is a one-to-one corre-
spondence between the statistics of the simulated noise

process and the statistics of the actual noise process.

..... o .\-\..-;. R :‘_';‘\‘-‘,‘--\. '-'.\‘,'-.;\'; .
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This one-to-one correspondence is indeed a nice relation-
ship because it precisely defines the required noise sta-
tistics to be used in the “imulation in order to accurately
model the assumed physical noise process. Obviously, it
would be equally attractive if this one-to-one correspon-
dence held for a digital simulation. Unfortunately, it

does not.

Rigital Simulation

To simulate a continuous random process in a digital
simulation, one needs the same functional ingredients as is
required in an analog simulation; that is, a noise genera-
tor, a shaping filter, and knowledge of the relationship
between the statistics of the continuous noise process and
the statistics of the digital simulation model. Unlike an
analog computer, a digital computer is a device that is
only capable of producing a finite number of conditions or
states. Because a digital computer is a finite state
machine, it is not possible to generate a truly continuous
random process. The best that can be achieved is the
generation of a repeatable sequence of numbers that within
the finite window of a sample space appears to be random.
However, if the sample is large enough, this "random"

sequence of numbers is usually adequate for simulating

continuous noise.
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Methods for generating random sequences on a digital
computer (commonly cailed random number generators) are
bountiful. Many of these random number generators provide
excellent and predictable statistical properties. The most
commonly used random number generators produce a random
sequence that has a uniform distribution over some range of
nunbers. This uniform distribution can be shaped into most
desired noise distributions through the use of shaping
filter algorithms in much the same way as is done in analog
computers.

The final ingredient needed to simulate continuous
noise in a digital simulation is the knowledge of the rela-
tionship between the statistics of continuous noise process
and the digital or discrete noise process. Unlike in ana-
log simulation, there is not a one-to-one correspondence
between these statistical properties. In fact, this dis-
sertation will show that the relationship is complex and a
factor of not only the continuous noise statistics and the
dynamics of the system, but also of the numerical algor-
ithms used to solve the equations of motion.

The simplest situation in which a relationship would
be required is the case when one is attempting to simulate
a continuously available measurement of a state that is
corrupted by additive white noise. This situation is
described mathematically by

Zo(t) = x(t) + vo(t)




zc(ti = continuous measurement as a

function of time, t:
x(t) = a deterministic function or state;
and Ve(t) = a continuous white noise function.
The discrete measurement equation for this case is

zg(ty) = x(t5) + vg(ty)

vhere
zg(t;) = discrete measurement taken at
time equal to ty:
x(ty) = the value of x(t) at t = ty;
and vg(ty) = a discrete noise term applied at

t = ty.

In a simulation that contains this type of model, it
is necessary that the statistics of z4(t;) equal the
statistics of z2,(t) evaluated at t = t;, for all t;. Since
x(t) is deterministic and the noise is additive} this re-
quirement will be met if the statistics of vy(ty) equal the
statistics of v (t) evaluated at t = t;, for all t;.
Maybeck (1) develops the relationship to meet this require-
ment. A summary of Maybeck's development is given below.

Assume the vo(t) is a zero-mean Gaussian noise with

E(vg(t)ve(t+T)] = R 8(T)
vhere
E(*] denotes the statistical expectation:;

Re = spectral density of v, (t);

LIS ST R I TN R R . W e e N ot
R L) n LIRS vt ( 'f.'."
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and 8(T) denotes the Dirac delta function.
If vg(ty) is a zero-mean Gaussian sequence with
Elvg2(ty)] = Rq(ty) = Ro/Aty (6)
vhere aty & tj4) -ty
and Elvg(tjlvg(ty)] = @ for { # j
then, in the limit as Aty -+ @, equation (6) will reach the
‘ strength of Rc8(@). Hence, the desired relationship
3 between the covariance of the random number generator and

the spectral density of the continuous noise process is

given by equation (6). Note that even in this simple case
that includes no dynamics, there is is not a one-to-one
statistical correspondence. Discretization has introduced
a functional relationship between the statistics of the
simulated noise process and the noise process of the sima-~
lator. The relationship given by equation (6) is the sim-
plest relationship that will be developed in this study.
When the process equations contain dynamics, the functional
relationships will become more complex and, without simpli-
fying assumptions, will also be explicit functions of the

dynamics.

Rissertation Brief
Specifically, the class of problems that will be ad-

dressed in this dissertation are linear first-order differ-
ential systems that are driven by Gaussian white noise.
Relationships will be derived for the accurate solution of

this class of problems in digital simulations that use a
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number of popular integration methods. It will be shown
that each 1ntegration-method yields a different relation-
ship for the noise statistics. It will further be shown
that a number of popular integration methods that are often
preferred in deterministic simulations are impractical for
simulations of stochastic systems.

The general problem will be described and analytically
developed in Chapter II. The necessary functional relation-
ships between the continuous noise process statistics and
the discrete noise statistics for the integrators of
interest will be derived in Chapter III. An error analysis
for the results obtained in Chapter I1III will be developed
in Chapter IV. The results from this analysis will define
the limits of validity for a simplifying assumption made in
Chapter II. The analytical findings of this research will
be demonstrated through simulation, comparing the numerical
results to known analytical solutions. The simulation
results will be given in Chapter V. The research f£indings
will be summarized and recommendations will be made in

Chapter VI.




II. PROBLEM DESCRIPTION

This research is applied to the analysis of problems
belonging to the class of linear time-invariant stochastic
. differential systems. Mathematically, this class of prob-
lems is described by
x(t) = Ax(t) + B,u(t) + By u(t) (7)

where

x(t) n-dimensional state vector:;

ax(t)
dt

x(t)

.
1 4

alt) p-dimensional deterministic input vector;

>

wit) m-dimensional random input vector;

A nxn system matrix of constant elements;

By nxp input matrix of constant elements:;
and B, £ nxm input matrix of constant elements.

For problems in the form of equation (7), the state vector

can be described by the summation of two n-dimensional vec-

tors, one purely deterministic and the other purely

stochastic. Thus,

. X(t) = xu(t) + x,(t) (8)
where
Xy(t) = deterministic state vector
and Zy(t) = stochastic state vector.

17
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Substituting equation (8) into equation (7) yields

X (t) + x,(t) = [Ax,(t) + Byu(t)] + [Ax,(t) + Buuw(t)] (9)
Clearly from equation (9) the problem of analyzing the sys-
tem can be separated into a deterministic analysis problem
and a stochastic analysis problem. Since the stochastic
analysis problem is the one of interest, it will be
assumed, without loss of generality, that y(t) = @ and
X,(0) = @. By making these simplifying assumptions and
dropping the subscripts, one £inds the stochastic system
to be described by

x(t) = Ax(t) + Bu(t) (19)
Since w(t) is a non-deterministic function, equation

(19) can not be solved explicitly. The best that one can
do is solve for the statistics of g(t), which are determin-
istic quantities. If w(t) is Gaussian, the first-order and
second-order statistics, mean and covariance, fully
describe the statistical properties of w(t).[1,2) Further,
since the system is linear, the statistics of x(t) will
also be Gaussian.[(1l] Thus, one only needs to determine the
mean and covariance of x(t) to determine the complete sta-
tistics of g(t). If w(t) is non-Gaussian then higher order
statistics will be needed for a complete statistical de-
scription.(2] However, even for non-Gaussian distributions,

the system analyst is often only interested in determining

the first two statistical orders due to the physical




19

meaning of those statistics. For convenience, it will be

assumed that w(t) has a Gaussian distribution.

Retermination of the Statistics of the State Vector
Since equation (1@) is a stochastic differential equa-

tion, normal solution techniques can not be used to deter-
mine x(t). Another approach will be used in order to find
the form of x(t) that will allow the determination of the

statistics of g(t). To this end, define a random variable

vector, g(t), such that

t
g(t) = I w(¥) art
2

where w(1T) is a zero-mean Gaussian white noise vector with
a spectral density matrix equal to Q. B(t) is called a
Weiner or Brownian-motion process.(1,2,3] The statistics
of B(t) can easily be determined. The mean or average of

Brownian-motion is

t t
Elg(t)] = E[ I w(l) at ] = I Elw(T)] 4 = 0
a "]
The autocorrelation matrix of B(t) is
t t
E(g(t)gT(t)] = E[ I w(T) at I wT(e) de ]
] ")

t ot
= I I Elw(Vul(e)] dtde
@0
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As presented in Chapter I, the E[g(t)!?(v)] = Q8(T-v) , there-

fore

tot t
E(g(t)gT(t)] = I I Q8(t—o) dide = I Q de = Qt
ada )

Using this defined function, B(t), equation (10) can be
rewritten in another form that can be solved for the statis-
tics of x(t). Since equation (10) is a linear differential
eguation in time, it can be rewritten as (1]

dx(t) = Ag(t)dt + Bdag(t)

This equation can be integrated to yield

t t
E(t) = x(tg) + I AZ(Y) 4T + I BAB(T)
tg tg

The problem at hand is to determine a stochastic process
X(+) that satisfies this integral equation. 1In section 4.8
of Maybeck [1], it is shown that the following equation is

such a process.

t
Z(t) = B(t, tg)xlty) + I B(t,V)BAB(T) (11)
tg

where 3(t,tg) is the state transition matrix that satisfies
8(t,tg) = AF(t,tg) and B(tg,tg) = I, where I is the ident-
ity matrix and A is the system matrix in equation (18).
Note that x(t) is a stochastic process, thﬁs, its solution
is non-deterministic; however, using the knowledge of the

statistics of B(t), the statistics of x(t) can be deter-

mined.
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Mean of the State Vector

The mean of x(t), denoted E(x(t)], is described by

t

E(x(t)] = a(t, tglE(x(tg)] + E[ I g(t,V)BA(T) ]
tg

eA(t—tg)

where 3(t,tg)

I + A*(t-tg) + A2*(t-tg)2 + ... (12)
2!

and t and tg denote arbitrary values of time. In equation
(12), I is an nxn identity matrix. Since E(B(t)] = @, the
stochastic integral is also zero-mean and

Elx(t)] = 3(t,tg)Elx(tg)] (13)

Second Moment

The autocorrelation matrix of x(t) can be determined
using equation (11) and equation (2) to write E[x(t)xT(t)]
as the sum of four separate expectations. Using the defi-
nition of B(t), x(tg) is independent of B(t). From Theorem
1 and the fact that the mean of the stochastic integral is
zero, the expected value of two cross terms is zero. For

example,

t t
E[ I :(t,t)sdg(t)x?(tg)] = E[ I §(t.t)Bdg(t)]Et;?(tg)1 =g
tg tg

Therefore, the autocorrelation matrix of x(t) will be

E(x(t)xT(t)) = 3t tg)Elx(tg)xTty) 13T (t, tg)

t
+ I 3ct,vBa()BTaT(t, 1)ar
tg




PRI N R WE WL A P P I P SRR USRI I ¥ I RO S AP R N WL ST u

22

The covariance of x(t), denoted as P(t), can be de-
rived directly from tﬁe autocorrelation matrix of x(t) by
the relationship given in equation (3). Specifically.

Elx(t)xT(t)) = P(t) + EIx(t)IEIgT(t)]

and Elx(tg)xT(tg)) = P(tg) + Elx(tg)1EIxT(tg)]
Evaluating the autocorrelation matrix of x(t) using these
relationships and equation (13), yields

P(t) = B(t,tg)P(tg)BT(t, ty)

t :
+ J act,v)BQ(v)BTaT (¢, 1) ar (14) Y
tg

Notice that equation (14) is a deterministic equation as is

equation (13).

Analysis Approach

A stochastic analysis of this system involves solving
for the statistics of x(t); specifically, for the mean and ]
covariance of x(t). For low-order linear systems, equation
(13) and equation (14) can be solved analytically; but for
large-order linear systems and of course nonlinear systems,
simulations aie norma.’y used to find the statistics of
X(t). In a digital simulation, a random number generator
is used to generate a random sequence, W, that will simu-
late w(t). By repetitively running the simulation using a
large number of sample sequences from the random number
generator and statistically averaging the results, an

approximation of E(x(t)] and P(t) can be generated. This

analysis method is commonly called a Monte Carlo analysis.
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In a digital simulation, gx(t) will be represented by a

discrete state vector xp and the propagation of x(t) will

be approximated by the propagation of xp using discrete
difference equations. In order to insure a faithful simu-
lation, the statistics of xp(ty) must be approximately
equal to the statistics of x(t) evaluated at t = t, for all
t over the range of time of interest. This can be accom-
plished on an incremental basis assuming that the statis-
tics of xp(tg) equal the statistics of x(tg) where tg is
some arbitrary initial time. By insuring that the propaga-
tion of the statistics of xp approximates the propagation
of the statistics of x from one update time to the next and
assuming that accumulated errors remain small, then the re-
quirement for a faithful simulation will be realized.

Using equation (13), the equation that describes the
propagation of the mean of x(t) from t = t; to t = tj,
where tj,q = t; + h will be

E(x(ti41)] = 8(h,B)E(Z(t;)] (15)
Likewise, from equation (14), the covariance of x(t) will
be propagated from t = t; to t = t;,, by

P(tjeq) = &(h,@)P(t;)ET(h,0)

. h
+ I a(h,v)BEBTaT(h,T) ax (16)
g

Revelooment of the Discrete Svstem Model

In the digital simulation, the discrete state xp would
N
)

g be propagated from t; to tj,; = (t; + h) by [1]
N
.-‘

(%4
,.
.
'
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Xp(tijsy1) = plh,@)xp(t;) + Bpup(ty) (17)
where
3p(+,+) is a discrete state transition matrix
and Bp is a discrete input matrix.

8p(*,*) will not only be a function of the A matrix in
equation (1¢) and Bp will not only be a function of the A
and B matrices in equation (10), but these two functions
will also be dependent on the integration method used in

the simulation.

Determination of the Discrete State Statistics
Mean of the Discrete State Vector

If the mean of wp is defined to be zero for all t;,
then, from equation (17), it is seen that the mean of xp
will be propagated from t; to t;,; by

Elxp(tijs1)) = Sp(h, IElgp(ty)) (18)

Second Moment of the Discrete State Vector

The autocorrelation matrix of Xp can be derived direct-
ly from equation (17) by determining Ello‘ti+1)55(ti+l)]'
Since the discrete state xp(t;j) can not be influenced by the
input wp(t;) (present state conditions can only be influ-
enced by past inputs and initial state conditions), xp(t;)
is independent of wp(t;). Therefore, by Theorem 1 and the

fact that E(wp(t;)] = @, the expected value of the two

cross terms will be zero. Thus,

Elxp(t;)ud(t;)) = Elup(tIxd(t;)) = @
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and
Elxp(ty,1)EB(ti41)] = Sp(h, @IE(Ep(t;)xg(t;) 15g(h, )
+ BDQDBB
vhere Qp = Etgo(ti)gS(ti)] for all t;.

The discrete covariance matrix, Pp(+), can be deter-
mined from the autocorrelation matrix of gp by using the
following relationships

ElZp(t;41)ZB(ti41)] = Pplti,y) + Elxplty 1) JEIXT(t 1))
Elxp(t;)xf(t;)) = Pp(t;) + Elgp(ty)IELxT(t;)]
and Elxp(t;43)) = 8p(h,B)El(xp(ti)] = E(Zp(h,B)xp(t;)].
Using these relationships,

Pp(tjs+1) = 3pth,@)Pp(ty)BR(h,8) + BpQpBj (19)

Revelopment of Condjtions for a Fajthful Simulation

By direct comparison of eguation (18) to equation
(15), it is clear that in order for the propagation of the
mean of the discrete state vector to approximate the propa-
gation of the mean of the continuous state vector, 3p(h,@)
must be approximately equal to &(h,@). This is the same
requirement needed to insure digital simulations of deter-—
ministic systems are faithful. Thus, it will be assumed
that the numerical integrator used in the digital simula-
tion will insure that

8p(h,@) = &(h,0)
Making this assumption, a comparison of equation (19) to
equation (16) yields that the propagation of the discrete

covariance will be approximately equal to the propagation
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of the continuous covariance if

h
BpQpBg = I 3(h, 1)BEBTET(h, 1) at (20)
)

Selection of an integration method that will satisfy

8p(h,@8) = &(h,0) will insure that E[xp(t;)] approximates
E(x(t)] evaluated at t = t;. However, additional require-
ments are needed to ensure that the second-order statistics
are faithfully simulated. Thus, equation (20) describes
the essence of the problem. If 3(¢,*) is known then the
right side of equation (20) can be solved either in closed
form or numerically. However, in general &(+,-) will not
be known. Of course, the general case is the one of inter-
est. What is known, in general, is that as h approaches
zero, 3(h,@) approaches the identity matrix. In previous
works of this type, this fact was used routinely to approx-
imate the state transition matrix with the identity matrix
in order to evaluate the right side of equation (280).
[{1,3,5] At the outset, the analyses developed in this work
will also use this relationship. However, because of the
practical significance of this convenient assumption, later
in the error analyses section, Chapter IV, this assumption
will be fully investigated.

If h is selected reasonably small such that

B* [Apax| € 1

where Ikmaxl is the magnitude of the largest eigenvalue of

A, then
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%(h,0) = I (21)
Using equation (21), ;valuation of equation (20) yields
BpQpBf = hBQBT (22)

In a digital simulation used to perform a Monte Carlo
analysis of this type system, it is necessary to select an
h that will satisfy equation (21) and it is necessary to
adjust the covariance of the random number generator such
that equation (22) is satified. It will be shown in Chap-
ter IV of this dissertation that the need for an exception-
ally small h imposed by equation (21) can be relaxed for
certain integration methods.

One additional problem is that Bp, the discrete input
matrix, is not known. Bp will be a function of the inte-
gration method used in the simulation. For each integrator
of 1nterésf, Bp will be determined in order to derive the
necessary conditions that will satisfy eguation (22).
Griffith (4] showed that if an Euler integrator, which will
be defined in Chapter III, is used in the simulation, then

Bp = hB (23)
He then concluded using equations (22) and (23) that for a
simulation employing an Euler integrator

Qp = Q/h (24)
Griffith then applied his analytical findings to a problem
that used an Adams-Bashforth integrator (also to be defined

in Chapter III). Griffith's numerical results seemed to

show that equation (24) was also a valid relationship for
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the Adams-Bashforth method. It will be shown analytically
in this work that Griéfith's numerical findings are valid
only under very restricted conditions. Further, it will be
shown that each for integration method there exists a

unigque function relating the continuous input noise statis-

tics to the random number generator's noise statistics.
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III. INTEGRATOR ANALYSES

The numerical algorithms that will be considered in
this study are designed to approximate the solution to or-
dinary differential equations and can be divided into two
major categories; fixed-step methods and multistep methods.
Fixed-step methods utilize derivative information that is
computed or approximated within the current integration
step interval, whereas multistep methods utilize derivative
information accumulated over a number of steps. There are
advantages and disadvantages to each type of integration
method. The type of algorithm that an analyst chooses to
use in a given situation is usually the one that he feels
will provide accurate and timely solutions. Many integra-
tion techniques have been studied in detail to assist the
analyst in making an intelligent choice. However, most of
these studies have been performed with application to de-
terministic systems and not to stochastic systems. This
dissertation shows that when applied to solving stochastic
differential equations, each integration method will affect
the relationship of the noise generator statistics to the
continuous noise process statistics. 1In this chapter, that
relationship between the statistics will be developed for a
number of widely used integration algorithms.

29
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Eixed-Step (Rupnge-Kutta) Methods
Given a differential system of the form
x = £(x,¢t) (25)
a general Runge-Kutta method approximates the solution x

at time t = (i+l)h, denoted as x;.;. by (5]

Eisl = X5 + (oqky + opko + ... + opky) (26)
where
ki = h*£(x; . ih) (27)
and
kj = h*£(x; + ajkj-1.ih + bjh) for j = 2,n (28)

vhere o, o5, aj. by are dependent on the particular Runge-

Kutta method and £(+,+) is defined in equation (25).

Euler Intearator
An Euler integrator can be classified as a Runge-Kutta
integrator of order one. For the system of interest,
£(x5;.ih) = Ax; + Bw; (29)
Applying equation (29) to equations (26) - (28) with n =1,
the Euler integrator will approximate the solution of x(t)
by
Zi+l = (I + oqhA)X; + oy hBupy
where wWpy is a discrete noise input vector at the evalua-
tion of £(+,*). Note that for o« =1,
(I + oqhA) = (I + hA) = Fp(h,d)
vhere 3p(h,@) is a first-order truncation of @(h,@) given

by equation (12). Therefore, the update equation for the
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Euler integrator can be written as
Xi+l =.§D(h.ﬂ);1 + oy hBupg (39)
The discrete autocorrelation matrix for an Euler
integrator can be determined directly from equation (30).
E(X;4+1%1+1) = 3p(h,@)Elx;2}188(h, @) + oyhBE(wp X} 138(h,0)
+ 8p(h,@)ElX ;481 10hBT + (oyh)2BElyp uf, 187
Using the relationship that the statistics of the states at
present time are independent of the statistics of the pres-
ent inputs, and the fact that Elgp;] = @ for all i, results

in

Elyp JE(x]]
E(x;1Elydq)

E[!DI‘I]
and E[;iggll

Therefore,

E[X;41%1+1) = Sp(h, @) Elx;xT138(h,8) + (oyh)2BE(wpuf; )BT
From the autocorrelation matrix, the covariance matrix can
be determined using the relationships

E(Zi+1X1+1) = Pp(tis1) - Elxg41)Elx]4g)

= Pp(tis;) - 3p(h,B)E(Z;IE(X]188(h, @)
and Elz;xI] = Pp(ty) - E(x;IE(x]]

Doing so results in

Ppltis1) = Zp(h,B)Pp(t;)3H(h,8) + ofh2BopBT (31)
vhere Qp = 3[101!61]- Recognizing that equation (31) is in
the form of equation (19), provides the relationship

BpQpBp = ofh2BpBT (32)

Equating equation (32) to equation (22) yields the statis-
tical relationship

............
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Qp = Q/(ofh) (33)
For «; = 1, eguation i33) is the same result that Griffith
derived. (4] Note that equation (33) is independent of the
system dynamics. This is a nice relationship because it
means that equation (33) can be applied to any digital simu-

lation that uses an Euler integrator.

2nd Order Runge-Kutta Integrator
A second-order Runge-Kutta integrator approximates the
solution to g(t) at t = (i+1l)h by the folowing algorithm.
Ziel = X3 + (k) + opk)) (34)
vhere
k; = hf(xj.ih) = h(Ax; + Bupy) (35)
and
ko = hf(xj+ak;.(i+bj)h) = h(A(x;+ajk;) + Bupy)
= (bA + aj(hA)2]x; + a;h2AByp; + hBupj (36)
where wp; and wp, are the discrete noise inputs from the
random number generator at the respective evaluations of
£(+,+). Evaluating equation (34) using (35) and (36) and
combining terms yields
Zi+s1 = I + (oq+op)hA + ajon(hA) 21
+ h(oyI + ajophd)Bupy + ozhBups (37)
The most commonly used 2nd order Runge-Kutta method defines
o = otp = @.5 and a; = by = 1. With these defined constants
note that
[I + (ay+az)hA + ajo(hA)2] = (I + hA + @.5(hA)2] = Bp(h, @)

vhere ¥p(h,8) is a second-order truncation of @(h,@) given
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by equation (12). Therefore, equation (37) can be rewrit-
ten as _
Zj+1 = 8p(h.0)x; + Bpy¥py + Bpaup2 (38)
where

h(oyI + ajoxhA)B

2]
O
fwry

{

Bpz = ophB
Since wpj represents a zero-mean white noise sequence,
E[!Di!Sj] = E[!DilE[!Sj] = @ for all i = j. Further, since
the present state, x;., can not be a function of present or
future inputs, x; is independent of wp; and wps;. By the
same procedure used to develop the discrete covariance
equation given by equation (19), equation (38) will be used
to derive the discrete covariance equation for the 2nd
order Runge-Kutta algorithm. That procedure results in

Pp(tisy) = Fp(h,@)Pp(t;)B4(h,d)

+ Bp10p1Bf1 + Bp2Qp2BY2 (39)

where

Qp; = Elwpiud;)

and
Opz = Elwpaufs)
Note that there are two BDQDBS terms in equation (39).
This is due to the sampling of the noise generator twice
per update, once per derivative-function evaluation. If it
is assumed that Qp is constant over the update interval,

then Qp; = Qp2 = Qp.
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Using the relationship given by equation (5), it is

possible to define
BpQpB§ = Bp1QpBR1 + BpzOpBfa

From the definition of Bp; and Bpy; given in equation (38),

Bp1QpBh1 = o¢h2BOpBT + oyonajh3(BopBTAT + aBQRBT)

+ ofnh?(aBQpBTAT)

and Bp,QpBA, = o8hZBQpBT
Therefore, for the 2nd order Runge-Kutta integrator,

BpQpBf = (of + of)h2BOpBT + o apa;h3(BQpBTAT + aBQRBT)

+ ofh?(aBQpBTAT) (48)
Notice that BDQDBS is a function of the system dynamics,
represented by the A matrix. Since the relationship be-
twveen Qp and Q will be derived using BDQDBS in equation
(22), it is desirable to make BDQDBS independent of the
dynamics so the relationship between Qp and Q will be
independent of the dynamics. To accomplish this, the same
assumption that was made in arriving at the expression on
the right side of equation (22) will be made again to
obtain an approximation to equation (4@¢) that is indepen-
dent of the dynamics. Specifically, assume that h is
selected reasonably small, such that
BpQpBf = (of + of)h2BQpBT

For o = oy = 0.5,

BpQpBg = thQDBTfél(ai)z = 8.5h2BQpBT (41)

From equations (41) and (22), it is seen that for the 2nd



order Runge-Kutta integrator

Qp = 2Q/h (42)
A comparison of equation (42) to equation (33) indicates
that the relationship between Qp and Q is dependent on the

integration method.

4th Order Runge-Kutta Intearator
A 4th order Runge-Kutta integrator is in the form of
i+l = X3 + (kg + ogky + ogky + ogky) (43)
where
ki = hf(x;.ih);
ko = hf(xy + ajk;.(i + by)h);
k3 = hf(xy + azks.(i + bp)h);
and k4 = hf(x; + azkj.(i + b3z)h)
Evaluating the k;'s in equation (43) for the system given
by equation (29) ylields
ki = hlAx; + Byp,) (44)
ko = h{(I + ajhA)Ag; + a;hABup; + Bwpsl (45)
k3 = h{(I + ajhA + aja;h2A2)ax; + aja;h2A2Byp,
+ ashABwpy + Bypj] (46)
kg = h{(I + azhA + ajagh2a2 + ajajza;h3ad)ag;
+ azajza;h3adByp; + ajayh2aZByp,
+ ajhABup3 + Bupg! (47)
vhere the yp;'s are inputs from the random number generator
at the respective evaluations of £(+,+*). Substituting

equations (44) - (47) into equation (43) results in
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i+l = 01 + (o + oy + o3 + oq)bA
+ (alaé + azag + aaoq)hzhz
+ (azajog + agazeg)h3Ad + (agazajoqniatay
+ [yl + ajophA + ajzajazh2al
+ aaazalagh3h318101
+ [opl + agoghd + ajasoqh2A21Byg,

+

Lol + azoqhA)Bupg + Loyl lByp, (48)
A popular 4th order Runge-Kutta integrator uses oy =
g = 1/6; op = o3 = 1/3; a3 = az = by =Dby =1/2; and a3 =
b3 = 1. Using these constants to evaluate the state tran-
sition part of equation (48) results in
I +hbA+ @.5(ha)2 + (hA)3/6 + (ha)4/24 = Bp(h. @) (49)
Note that equation (49) is a fourth-order truncation of
$(h,9) given by equation (12). Using equation (49), egua-
tion (48) can be rewritten as
Zi+1 = Sp(h.@)x; + Bpywpy + Bpo¥pz + Bp3¥p3 + Bpgspg (58)
wvhere
Bpy = [oyI + ajophA + azalaahzhz + a3a2a1a4h3A3]B;
Bpz = [opl + ajzoghA + a3azaqh2A2]B;
Bpz = (o3I + ajo4qhAlB;
and Bpg = [oqI]B
Equation (5@) can be used to determine the second
moment function for this algorithm. A number of statisti-
cal independence relationships will simplify the math.
Since the input noise is a zero-mean white noise sequence,

E(goigsjl = @ for all i » j. Further, the present state is
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independent of present and future inputs, therefore,
E[;igakl =@ for k = i to 4. Using these statistical rela-
tionships, the discrete covariance matrix for the 4th order
Runge-Kutta algorithm can be derived from equation (50) by
the same process used to derive equation (19) from equation
(17). The result is
3p(h,@)Pp(t;)3F(h,8) + Bp1Qp1Bh;

+ BpaQp2Bl2 + Bp3Qp3Bls + BpaQpaBfs (51)

where Qpk = E[!Dk!SRJ for k = 1 to 4.

Pp(tis+1)

Note that Pp(t;,y) has four BDiQDiBSi terms, one from each
sample of the noise generator at the four evaluations of
£(e,).

To rewrite eguation (51) in the form of equation (19),
the BDiQDiBSi terms will be manipulated into one equivalent
BDQDBB term. To do this, first assume that Qp is constant
over the update interval, leading to Qpj = Qp2 = Qp3 = Qpg
= Qp. Now, using this assumption and the general relation-
ship given by equation (5), define

BpOpB = Bp1QpBdi + Bp20pB2 + Bp3dpBs + BpaQpBha
From the Bp; definitions given in equation (50),

Bp10pBR1 = ofh2(BQOpBT1 + ajoqaph3(ABQpBT + BopBTAT)
+ agodn?(aBopBTAT)
+ aza;oqazhdra2eopBT + BopBT(AT)2)
+ ajajzajoyoqhSca3BopBT + BOBT(AT)3)
+ afajayagn51a2BapBTaT + aBopBT(aT)?)
+ (aza;oy)2n6(a2papBT(AT)2)
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+ afajajoyoaqh®ia3BgpBTAT + aBQEBT(AT)3)
+ afa§a3§3agh7[A3BoDBT(AT)2 + a2ppBT(aT)3)
+ (ajaja;oaq)2n8(adBopeT(AT)3)
Bp20pBa2 = o4h2(BQpBT1 + ajmyash3(aBopBT + BopBTAT)
+ agofnd(aBopBTAT)
+ ajajopoaqh?raZBopBT + BORBT(AT)2)
+ afaja304h5122BQpBTAT + ABQRBT(AT)2)
+ (ajazoy)2n6(a2popBT(aT)2)

Bp3QpBR3 = o4h2(BapBT1 + ajagagh3raBopBT + BopBTAT)
+ afogn?(aBQpBTAT)
Bp4QpBBg = ofhZ(BopBT)
and BpOpBA = Bp;QpBf; + BpaQpBdz + Bp3QpBh3 + BpaQpBhge (52)
Notice that BDQDBB is a function of the system dynamics as
it was with the 2nd order Runge-Kutta algorithm. As with
the 2nd order algorithm, it is desireable to make BDQDBS
independent of the dynamics so the relationship between Qp
and Q will be independent of the dynamics. To accomplish
this, the same assumption that was made in arriving at the
expression on the right side of equation (22) will be made
again to obtain an approximation to equation (52) that is
independent of the dynamics. Specifically, assume that h
is selected reasonably small, such that
BpOpBl = (of + of + of + of ) h2(BQpBT)
For o = o4 = 1/6 and o = a3 = 1/3

BpQpBgd = hznoosTféiai)z = h2BQpBT/3.6
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With this approximation to BDQDBS and equation (22), the
relationship between 60 and Q for this 4th order Runge-
Kutta integrator is

Qp = 3.6Q/h (53)

nth Order Runge-Kutta

The trend established in the above analyses can be
used to extend the results to an nth order Runge-Kutta in-
tegrator. Consider that the coefficients used in an nth
order Runge-Kutta integrator are selected to ensure an
nth order truncation of a Taylor series expansion of the
state transition matrix.(6] Therefore, the integrator will
always provide a 3p(h,8) that approximates the state tran-
sition matrix, @(h,0), over some interval h. Based on this
fact, the state update equation for the system will be in

the form of

Xi+1 = &pth,@)gg + fngok!on (54)

where

- n }il j—k]
Bpk [?Eko5lp=1apl(hh) B

1 q
vhere T ap & {ap q
p m al.alli-l'..aq q

viA

m
m
m
and ¥p(h,0) is an nth order truncation of equation (12).
The expression in equation (54) for determining Bpy was

derived by noticing the sequence of coefficients in the Bp

terms in equation (56), equation (38) and equation (30).

.....
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The discrete covariance equation for a system solved

by an nth order Runge-Kutta will be

n
Ppltisy) = Bp(h,B)Pp(ty)FF(h,B) + fngDkQDkBBk (55)

vhere Qpy = Elupkwdy). Assuming Qpx = Qp for all k from 1
to n and assuming that h is small, as assumed in equation

(21), then, for an nth order Runge-Kutta integrator

BpQpBj = n2BOpBTE («;)2 = nZBopBT/T (56)
n
vhere r = ll(filaf)

From equation (56) and equation (22), the relationship
between Qp and Q will be

Qp = rQ/h (57)
The correction factor, I, for commonly used Runge-Kutta

methods is given in Table 1.

Table 1.

Runge-Kutta Correction Factors

Order o; coefficients Corr. Factor
2 o = .5, op = .5 r=2
3 o = a3 = 1/6, oy = 2/3 r=2
4 o« =1/6 , oy = 1/3
o3 = 1/3 , og = 1/6 r=3.6
4 (GIl)| o = 1/6 ,_oy = (2 -¥/2)/6
o = (2 +/2)76 , oy = 1/6 r = 18/7
= 2.57
o3 = 32/98 , o = 12/98
o = 32/98 , g = 7/90 r = 3.54
I PR DN AL R O L L ) SRR ST R T I AR Y RO AR K
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Alterpate Analvsis Method
b The analysis app;oach taken with Runge-Kutta methods
becomes difficult to manage when applied to other integra- §
tion methods. Jury (7) offers an alternative approach that
is based on z-transforms and yields a steady-state value of N
the autocorrelation matrix. Although this new approach is !
! more manageable in some cases, it is practically., though
not mathematically, restricted to scalar equations. To
develop and understand this alternative approach, Elx2) for
a 2nd order Runge-Kutta integrator will be determined by
the Jury method.

Jury shows that if a discrete scalar system driven by
discrete white noise can be described by

M(z)

X(z) = Wp(z) = G(z)Wp(z) (58)

L(z)

v v v

where
z~l is the discrete delay operator;

X(z) is the z-transform of the state x;:

Wp(z) is the z-transform of the input random
sequence with variance Qp:

and M(z) and L(z) are polynomials in z.

then

2 9 ([ -1,,-1
E(x2) = G(z)G(z 1)z~ laz (59)
205 J-w

wvhere § = V-1

In reference (7], Table III of the Appendix, Jury

| PRI

provides an algorithm for evaluating the contour integral

in eguation (59). A summary of the algorithm follows.

.
“
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Given equation (58) such that
M(z) mgz® + mz07l 4 L. o+ omy
G(z) = = (60)
L(z) 1gzP + 12071 + ... + 1,

then equation (59) can be evaluated to yield the steady-

state value

{

E(x$) = oo—l——L—- (61)
lglﬁl

where |-| denotes the matrix determinant operation. The

matrices Q and Q; are square, have dimension n+l (n is the

order of L(z)), and have elements formed from the coeffi-

cients of L(z) and M(z). Specifically,

o L

1g 14 1, 15 1

1, lgtla 11+13 1a+14 ... b el
1

[+ I 12 13 1¢+14 11+15 eee lpoo (62)

Lln a a ’ L) 1'

and Q; is formed by replacing the first column of Q with

the vector

[ 2
22 (nymy 41)
223 (mymy 4 2)

2mgmy,
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To apply Jury's algorithm to analyzing the 2nd order
Runge-Kutta 1ntegrato}, consider a scalar linear differen-
tial equation of the form
x(t) = Ax(t) + Bw(t) = £(x,t) (63)
Applying equation (63) to the Runge-Kutta routine given by
equations (35) - (37) yields a difference equation in the
form of
X = Xp_o + 9.5y + 0.5y,_2 (64)
where

Xg-2 = X(ih);

X x((i+1)h);
Yk-2 = hiAx(ih) + Bwp;);
and  yk-1 = hiA(yx_3 + xx_3) + Bwpjy]
vhere wp) and wpy are defined as in equation (35). Note
that k increments two for one increment in ih. This is
done in order to handle the two sequential inputs, wp; and
vp2. Taking the z-transform of equation (64) yields
(0.5z + #.5 + @.5hA)hB¥(z)

X(z) = (65)
zz-!D

vhere Ip is defined above equation (38). Note that equa-
tion (65) is in the form of equation (58); hence, the Jury
algorithm can be applied directly. For this case mg = §;
m; = @.5; mp = 0.5(1 + hA); 1g = 1; 1} = @; and 1, = -¥p.

Evaluating the matrices Q and R; using these coefficients

.........................................
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provides
[ g -3p 1
Q= e 1-3, @
| % o 1
and
[ (8.5)24(8.5)2(1+hA) 2 @ ~3p |
9 = 2(8.5)2(1+hA)2 1-3p @
¢ ] 1
L

Evaluating the determinates of R and ; results in
18] = (1 - 3pQ - FF)

and 1] = (8.5)211 + (1 + BAI21(1 ~ Fp)

Therefore, from equation (61)

(6.5 + @.5(hA) + (8.5hA)21n2B2Q
E(x$] = (66)

1 - 38

Manipulating equation (66) yields

Etx$] = 3§E(x$] + (0.5 + 8.5hA + (@.5hA)21n2B2Q
Comparing this result to the steady-state value of the
scalar form of equation (19) provides

B4Op = (8.5 + 0.5hA + (@.5hA)21n2B2Q,
which agrees with the scalar form equation (44) evaluated

with o = oy = 8.5 and a; = 1.

Adams-Bashforth Methods
Adams-Bashforth methods belong to a class of integra-
tion algorithms called multistep methods. Multistep
methods have the form (8)

................
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=1

i+l = Xy *-j,'°3+1£(11_j.(1-j)h) (67)

vhere the oy's are coefficients dependent on the particular
algorithm and £(-,°) is given in equation (29) evaluated at
t = (i-3)h. Because of the nature of multistep methods,
the analysis approach proposed by Jury will be used in
determining BBQD.

The fourth-order Adams-Bashforth algorithm for the
system given by equation (10) is (6]

isl = X3 + hlog(AZy + Bu;) + op(Ax;_q + Byj_q)

+ og(Axj_o + Byj_3) + oq(Ax;_3 + Byj_3)) (68)
where oy = 55/24 ; oy = -59/24 ; o3 = 37/24 ; g = -9/24 .
Limiting equation (68) to the scalar case, transforming it
to the z-domain and writing it in the form of equation (58)
yields
hB[a123 + azzz + o3z + oglW(z)

X(z) = (69)
z% - (1 + oqhAa)z3 - aybAz2 - oghAz - oyhA

where X, W, A, and B are scalars. The application of equa- )
tion (69) to the algorithm given by equations (68) - (62)

is straight forward, but quite tedious, because it requires

solving two polynomial matrices. A procedure was developed

and a computer program was written to help facilitate the

the computations. That procedure and program are provided

in Appendix A. The results of the Jury Analysis for this

problenm is

.......
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n2B20p[1 - 6.34hA + 18.9(hA)2 - 60.8(hA)3 + ...]
1 - 38

Etxfl =

leading to

BAQp = h2B%Qpl[1 - 6.34hA + 18.9(hA)2 - 6@.8(hA)3 + ...]

BBQD is actually a polynomial in hA of infinite order.

The first few significant terms are provided above. It
will be assumed that |hA| ¢{ 1, thereby making it possible
to approximate the BBQD by a finite polynomial. For con-
venience, let

BQp = h2B2Qp[1 - 6.34hA + 18.9(hA)2 - 6@.8(hA)3)  (7@)
Using equation (70) to evaluate the left side of the scalar
form of eqation (22) leads to the relationship

Qp = Q/Ch(1 - 6.34(hA) + 18.9(hA)2 - 68.8(hA)3)] (71)
Notice that equation (71) has a strong dependence on the
system dynamics. However, equation (71) will reduce to

equation (24) as hA approaches zero.




IV. ERROR ANALYSES

One is always concerned with errors in performing
analyses of continuous systems via simulation. Digital

simulation introduces a number of unique error sources.

- The effects of those errors are usually categorized into

two areas; one pertaining to round-off errors (finite word-
length errors) and one pertaining to truncation errors due
to representing the system models by truncated infinite
series. With respect to digital simulations of physical
systems, round-off errors normally begin to influence the
accuracy of the results when the integration step size, h,
is decreased to the point that the changes in the system
dynamics become smaller than the numerical accuracy of the
digital computations. On the other hand, truncation errors
typically increase as the step size becomes larger. Unac-
ceptable truncation errors occur when Zp(h,@) no longer
accurately approximates 3(h,8). Usually, there is a region
of possible values of h in which neither type error is
significant. For efficiency reasons, the system analyst
will normally select the largest value of h that will not
introduce significant truncation errors and use a machine

that provides adegquate numerical accuracy.

47
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In deterministic analyses, the order of the integra-

tion method is usually selected to minimize truncation
errors. The type of nth order integration method is
selected to maximize efficiency of solution. For instance,
it is generally accepted that a 4th order Adams-Bashforth
algorithm is more efficient than a 4th order Runge-Kutta
algorithm.(6] In stochastic analyses, these same problems
exist and hence, the same decisions must be made, but an
additional error source is introduced due to the need to
insure statistical accuracy. In Chapter 1I, it was shown
that the first-order statistics of the noise corrupted
states will be processed in the same way as deterministic
states but higher order statistics will be processed in a
unique manner. The second-order statistics will be proces-
sed by a solution to equation (14) and higher order statis-
tics will likewise be processed by unique integral equa-
tions. For linear systems forced by Gaussian distributed
noise, the first and second-order statistics fully describe
the statistical behavior of the system.{1l] However, if the
noise is non-Gaussian or if the system is nonlinear, higher
order statistics will have to be calculated.

Thus far, all of the analyses presented in this paper
with regards to the processing of the second-order statis-
tics have been based on the assumption that h would be
selected small enough to allow one to approximate the state

transition matrix by the identity matrix. 1In practical
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terms, this means that the step size required to accurately
compute the second-oréer statistics must be much smaller
than is required to compute the first-order statistics as
well as the deterministic states. This step size require-
ment will translate into much more costly analyses. Fur-
ther, it could lead to the introduction of round-off er-
rors. Since the step size assumption fhat allowed the use
of equation (21) was made for convenience, it will be use-
ful to see if the step size requirement imposed by that
assumption can be relaxed. To perform this investigation,

a more useful form of equation (20) will be needed.

Analvsis Approach

If one restricts the problem to linear systems or to
well behaved (analytic) nonlinear systems that can be ac-
curately modeled through some linearization process, then
8(+,*) can be represented by the infinite series given in
equation (12). Likewise, the integral expression in egqua-
tion (20) can be represented by an infinite series. To

develop the series representation of equation (20), let

BqBT = A (73)
The series form of equation (12) is
i i
@ A*(h-T)
h,T = 5 — 7
-1 ) =0 T (74)

Using equations (73) and (74) yields
w o AlaAT)I(h-v)it]
h, VBEBTET(h, ) == = 7
a( QB*3 ) =0 T-0 1191 (7%)

Equation (75) is a polynomial of infinite order with the

independent variable T. Since A and A are independent of
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T, Equation (75) can easily be integrated with respect to

and evaluated over the limits @ to h as in equation (28) to

yield
h iaaTyd (P
g i=0 j=0 it o

i T J i+43
= h = s AAR) (W) (76)
128 3=8 (1+3+1)it3¢!

Equation (76) is a quadratic polynomial in hA of in-
finite order. If h is selected reasonably small such that
h*|Apax] € 1. where |Agay| is the magnitude of the largest
eigenvalue of A, then equation (76) can be reasonably ap-
proximated by a finite series of order n. A truncated
expression of equation (76) can be used to determine the
order of magnitude of the local error in the discrete co-
variance computations. The appropriate order of truncation
will be a function of the integration method and its selec-
tion will be based on the order of the BDQDBS expression
determined for the integration method. Thus, at this

point, the analysis becomes integration method dependent.

integrator Analvses
In the analyses to follow, equation (76) will be

truncated at various orders in h. For notational
brevity, an nth order truncation of equation (76)
means that i will step from @ to n and j will step
from @ to n, however all terms resulting from the

condition ((i+j) > n] will be neglected.
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Euler Integrator

For the Euler 1nfegrator, from equation (32),
BpQpBg = h2BQpBT (77)
Equating the right side of equation (77) to a first-order
truncation of equation (76), yields
n2opBT = n(BOBT + @.5n(aBEBT + BOBTAT)) (78)

If Qp = Q/h, as proposed by Griffith(4], then equation
(78) will be valid if the first-order terms in h on the
right side of equation (78) are much smaller than the
zeroth—-order term. However, if it is assumed (as Griffith
did) that the state transition matrix can be approximated
by the identity matrix (a zeroth-order truncation of equa-
tion (12)) then equation (24) will be a valid relationship
that can be used to satisfy equation (78). Making that
assumption translates into a smaller step size requirement.
Therefore, it is concluded that the local error that
results in using equation (24) to relate Qp to Q for the
Euler integrator is of order h as compared to a local

integration error of order h2.16]

4nd Order Runge-Kutta
With oy = o = 8.5, equation (40) evaluates to
BpOpBf = @.5h2(BapBT + @.5h(ABapBT + BQpBTAT)
+ n2(aBopBTaT/2)) (79)
The right side of equation (76) truncated at 2nd order is
n(BQBT + 9.5n(aBOBT + BOBTAT) + n2(aBoBTAT/3
+ (a2B0BT + BaBT(AT)2)/6)) (80)



L e T

S rrdird

.
o,
-

52

By direct inspection, it is seen that the right side of
equation (79) will apéroximate expression (80) with local
error on the order of h2, if Qp = 2Q/h. This compares to a

local integration error on the order of n3.(6)

4th Order Runge-Kutta
For notational convenience let
A = BgBT
and Ap = BQDBT
For the most commonly used 4th order Runge-Kutta integrator
with oy = o = 1/6; oy = o9 = 1/3; a3 = a3 = 08.5; and a3 =
1, equation (52) yields |

he 1
BpQpBp = ETE[AD + .5[AAp + ApATIn + 6‘667[A2AD + Ag(aT)23n2

+ (AnpATInZ 4+ z%—[A3AD + Ap(aT)3n3

3.333

1
+ 5 ZAgAT + anpg(aTrZ1n3 4 E%—[AZAD(AT)Zth

1
+ g A3AT + Ang(AT)31nd

1
+ o Ap(AT)2 + aZpg(aT) 35

1
3a.(aT)31p6
+_—
Teg A3 (AT 31n ] (81)

The right side of equation (76) truncated at sixth-order is

1
h[ A+ .SIAA + ATIn + —E—[A2A + AAT)23n2

1 1
+ 5~ mTing + A + AT 313
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1

1
S tA2AnT + aA(aT)23n3 + F[AZA(AT)ZJh“

1 1
3 T T3 4 4 T4 q
 — + A + ——([A + A
‘[A M ACA*)?]h 2 A*A N( )*1h

1 1
+ ;’-2—¢[A5A + AAT)5InS5 & 7—2-—-[A3A(AT)2 + A2AAT)31n5

1 1
— A% T Ty4qp5 —a3 Ty31,6
+ + AA(A + A A h
1‘4[3 A A(A*)*]h 252[ N(A*)°]

1
+ AG + AT 6 hG + —_— 4 AT 2 + A2 AT 4 hG
5“'.[ A+ AaTHE) 375 PAIART) A(AT) 4]
1 ,
+ ——tASAAT + AA(AT 5Jh5] 82
“'[ AA A(AT) | (82)

A comparison of the right side of equation (81) to expres-
sion (82) reveals that equation (81) will approximate ex-

pression (82), with local error on the order of h2, if
3.6Q
h
Note that a 4th order Runge-Kutta has an error of the

Qp =

same order in h as a 2nd order Runge-Kutta. Based on this
observation, one may ask if this means that a 2nd order
Runge-Kutta should be preferred over a 4th order Runge-
Kutta for efficiency versus accuracy reasons. Certainly
not, for two reasons. PFirst, the 4th order Runge-Kutta is
still preferred for the deterministic state equations and
for the first-order statistics of the non-deterministic
states. Second, although the two integrators have covari-
ance errors on the same order in h, the absolute error of
the 4th order Runge-Kutta will be smaller than that of the
2nd order Runge-Kutta. To see this, consider that the abso-

lute error in the 4th order integrator is a term by term
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difference between equation (81) and equation (76). Like-
wise, the absolute erfor in the 2nd order integrator is a
term by term difference between equation (79) and equation
(76). For comparison purposes, expression (81) contains
all the useful information of equation (76) because both
methods are equally in error above order six. Since the
second-order integrator contains no information above order
two and the 4th order integrator only deviates by a frac-
tional amount in each common term through order six, it is
concluded that the 4th order method has a smaller absolute

error.

4th Order Adams-Bashforth Integrator
From equation (780), the scalar case of the 4th order
Adams-Bashforth integrator provides
BfQp = h2B2Qp[1 - 6.34hA + 18.9(hA)2 - 68.9(hAa)3] (83)
A third-order truncation of the right side of equation (76)
for the scalar case yields
hB2Q[1 + hA + 2(hA)2/3 + (hA)3/3] (84)
Since equation (83) and expression (84) are scalar func-
tions, the relationship between Qp and Q can be determined

directly. Doing so, yields

0 Q[1 + hA + 2(bA)2/3 + (hA)3/3] (85)
DS
hCl - 6.34hA + 18.9(hA)2 - 68.9(hA)3]

Casual inspection of equation (85) shows that equation (24)
is only valid for hA € 1 when applied to the Adams-

Bashforth integrator.
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Scalar Apalvges

It will be beneficial to examine the above results for
the scalar case. Restricting the equations to scalar sys-
tems will allow the results to be demonstrated graphically
by defining an error equation and plotting it as a function
of the parameter, hA. The parameter, hA, is the product of
the step size, h, with the dynamic coefficient, A. For the
scalar case, A is the reciprocal of the system time-con-
stant. The step size is selected such that the ratio of h
to the system time-constant is less than one, typically
one-tenth. Therefore, hA is typically 8.1 or less.

A scalar case of egquation (20) shows that, ideally,
for each integrator considered, the normalization function

should result in the equality

h
BRQp = I 32(h, T)B2Qat
]

h
= B2Q I €2A(h-T) 4«
g

= B2g(e2hA _ 1)/2a (86)
In each of the cases presented in this chapter,
B§ = h2B2£(hA)/T
where £(hA) was a polynomial in hA, and I' was a constant
used to make the zeroth coefficient of £(hA) equal to 1.
Further, in order to make the relatiounship between Qp and Q
independent of the system dynamics, it was proposed that

for each of the cases, with the possible exception of the
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Adams-Bashforth integrator,
Qp = ra/n
Therefore,
BfQp = B2Qh£(nA) (87)
Substituting equation (87) into equation (86), provides the
ideal relationship
2hA£(hA) = €2bA _ 3
In reality, this relationship will not be exact because
£¢hA) = (€2bA _ 1)/2na
Based on this realization, an error function can be

defined and evaluated for each integrator. Let

V(hA) = 2hAf(hA) - €2PA 4 3 (88)
vhere V(hA) is the error function. Note that V(hA) = @ for
hA = @§. This function can be plotted versus hA for each of
the £(hA) functions derived in these analyses. A number of
practical assumptions will be made in plotting V(hA) for
each of the integrators. First, it will be assumed that
the dynamic system being simulated is stable; thus, A ¢ @.
Next, the range of hA will be restricted to values that
would likely be considered for use in a simulation; specif-

ically, 8 < |hA| = @.2.

Euler Integrator

From equation (77), for the Euler integrator, it is seen
that £(hA) = 1. Figure 2 provides a plot of equation (88)
evaluated with £(hA) = 1. Note, that using equation (24)

to set the random number generator's covariance would
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result in less than a 10% error in the computed discrete

covariance.
0.90000; ————_
E -0.02500 \ﬁ\“*-
r
0
R
-.. .5... dacaesaascanersesiasetercecsanntstoneceesrrrranand
-0.87500
6.8500 8.1666 8.1568 8.28::

Figure 2. Error Function For Eyler Integrator using Q0 = Q/h

2nd.and 4th Order Runge-Kutta Integrators

For the 2nd order Runge-Kutta integrator, equation
(79) provides

£(hA) = 1.8 + hA + 8.5(hA)2

Likewise, for the 4th order Runge-Kutta integrator, equa-
tion (81) provides

£(hA) = 1.8 + hA + (3/5)(hA)2 + (1/4)(hA)3

+ (1/718)(hA)? + (1/48)(hA)5 + (1/160)(hA)6

Figure 3 provides a comparison plot of V(hA) evaluated with
these two £(hA) functions. Note that, as predicted in the

error analyses, the order of magnitude of the error is the
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same for the two methods and the absolute error of the 4th
order Runge-Kutta 1nt;grator is smaller than that of the
2nd order Runge-Kutta integrator. However, both integra-
tors provide accurate results for the second-order statis-

tics when the proper statistical relationship is used.

Adams-Bashforth Intearator

There are several choices for the Qp to Q normalizing
function. Consider two choices. First, consider the one
proposed by Griffith where Qp = Q/h. The advantage of this
choice is that the normalizing function is independent of
the system dynamics. With this normalizing function,

£(hA) = 1.9 - 6.34hA + 18.9(hA)2 - 60.9(hA)3

The second choice would be to use

Qp = Q/(h(1.@ - 6.34hA + 18.9(hA)2 - 68.9(hA)3))
and

£(hA) = 1.0

The obvious disadvantage of this choice is that the Qp to Q
normalizing function is dependent on the system dynamics.
However, for analysis purposes, this choice must be consi-
dered. A comparison plot for these two f(hA) functions is
given in Figure 4. Note from Figure 4, that the use of
Qp = Q/h for the Adams-Bashforth integrator could result in
errors on the order of 100 percent. Further, note that
even vhen using the complex normalizing function, the er-
rors are the same as would be obtained from using an Euler

integrator. Besides this sensitivity to step size, there
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are other problems with the use of the Adams-Bashforth
integrator for stochastic analyses. These other problems

will be demonstrated in Chapter V.

O = 2nd Order 1A = 4th Order

6.00200

0.00158

0.00100

0.0300 8. 1000 8.13500 0.20=:

Figure 3. Error Functions for 2nd & 4Lh Order Runge-Kutta Int.

Qo by )

-0.25000

-0.75000

9.0500 9.1000 9.1500 o.zo:’g

Figure 4. Error Function For Adans-Bashforth Integrator




V. NUMERICAL AND FURTHER ANALYSES

To demonstrate the significance of the f£indings in
Chapters III and IV, a first-order linear differential sto-
chastic equation will be analyzed numerically. Limiting
the example to a linear scalar system will allow the covar-
iance to be conveniently expressed analytically and the
numerical results compared directly. For the example, the
continuous system is described by

x(t) = -2x(t) + w(t) (89)
where w(t) is a normally distributed white random process
with a spectral density equal to ¢2, For the example let
2 = .01 .

Equation (14) will be used to analytically determine
P(t). At the outset, assume that tg = @ and P(tg) = 0.
With these assumptions, the scalar form of equation (14)

applied to this systenm is

t
P(t) = I 82(t,T)B2Q(1)dT
]

where F(t,T) = €2(t-T) ; B = 1; and Q(T) = ¢2. Evaluating
the right side of the covariance equation provides
P(t) = ¢2(1 - €74t)/q (99)
To numerically analyze this system, a Monte Carlo
simulation was written in FORTRAN 77 and executed using
60
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single precision arithmetic on a VAX 780 computer. One
thousand executions were made per Monte Carlo simulation.
The simulation was written so the integrator would be a
module interfaced with the rest of the simulation through
parameter 1/0. Each integrator of interest was then coded
as a module and incorporated in the simulation as needed.
Thus, the only variable from one simulation program to
another was the explicit integrator under investigation.
A random number generator proposed by Marse and Roberts (9]
was used to generate a uniform distributed random sequence.
The uniformly distributed sequence was then shaped into an
approximate Gaussian distributed sequence by direct appli-
cation of the Central Limit Theorem involving the summation
of twelve samples from the random number generator.[1,2])

The random number generator routine is given in Appendix B.

Fixed-Jtep Method Results
Figures 5 through 10 show the results from the Monte
Carlo analyses for various fixed-step integrators. The
integrators were selected to exercise and test the analyti-
cal result given by equation (57) for a number of fregquent-
ly used Runge-Kutta algorithms. Table 2 provides a summary
of the methods tested as well as the step size and normali-

zation function used in each test.
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Table 2

Summary of Figures Providing Fixed-Step Results
FIGURE INTEGRATOR STEP SIZE NORMALIZING
NUMBER METHOD (seconds) FUNCTION

5 EULER @.00% Qp = Q/h

6 2nd Ord R-K 9.005% Qp = 2Q/h

7 4th Ord R-K @.8e5% Qp = 3.6Q/h

8 4th Ord R-K 0.100 Qp = 3.6Q/h

9 4th Order

R-K-Gil @.050 Qp = 18Q/7h
10 R-X (5,6) @.050 Qp = 3.54Q/h

The step size used to generate the data in Figures 5,
6, and 7 was selected to enforce the original assumption
that the state transition matrix would approximate the
identity matrix. At a step size of 0.005 seconds, the
state transition matrix for the system described by equa-
tion (89) is approximately equal to @.99 over one step. The
plots clearly demonstrate the validity of equation (57).
The results also show that the use of Qp = Q/h for any
Runge-Kutta method higher than first-order will introduce
significant, and unnecessary errors into the simulation.

The error analyses in Chapter IV predicted that the
normalization function for the Runge-Kutta methods would be
fairly insensitive to a relaxation of the step size re-
strictions imposed by the assumption that the state trans-
ition matrix approximate the identity matrix. To test that
prediction, the 4th order Runge-Kutta integrator-based

simulation was re-run at a large step size of @.1 seconds.

Figure 8 shows the results from this test. It should be
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noted, that although this seems to be a large step size,
for this example, _
|Ep(9.1.0) - 3(8.1,8)| < 3*1876
vhere 3(+,*) is given by equation (12) and 3p(°,*) is given
by equation (49). As seen by the plot, the normalization
function still provides accurate numerical results.

Figure 9 shows the results for a Runge-Kutta-Gil meth-
0d.[5] The Runge-Kutta-Gil method is a 4th order method
that uses a non-conventional algorithm for calculating the
intermediate update vectors. Gil derived his procedure to
minimize finite word-length errors. The algorithm was
tested to insure that equation (57) would hold for this
nonconventional method. Clearly it does.

Figure 1@ shows the results for another non-conven-
tional method. This method is called a Runge-Kutta (5,6).
[5]) It is a sixth-order method and thus makes six evalua-
tions of the derivative functions during each update. How-
ever, it only explicitly uses five of the intermediate up-
date vectors to propagate the states over the interval.
This algorithm, as well as the Runge-Kutta (7,8) method, is
often used in situations needing high accuracy, such as the
solution to orbital equations of motion. The correction
factor, I, for the Runge-Kutta (5,6) integrator is given in

Chapter III, Table 1. Figure 18 shows, once again, that

equation (57) is a valid general solution to the problem.
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Adams-Bashforth Method

The Adams-Bashfoéth integrator selected for evaluation
is a fourth-order method and is given by equation (68).

The integrator was first tested at an integration step of
@.005 seconds. Equation (71) was used to determine the
correct value of the discrete covariance. The results of
this numerical analysis are provided in Figure 11. Figure
11 shows a comparison between the calculated state covari-
ance when equation (71) was used, the calculated state co-
variance when equation (24) was used, as suggested by
Griffith, and the analytical solution to the state covari-
ance given by equation (99). Figure 11 demonstrates that
equation (71) provides greater accuracy over eqguation (24).
Examination of equation (71) shows that as the step size
approaches zero, equation (71) will approach equation (24).
Figure 12 demonstrates this relationship and provides val-
idity to Griffith's numerical findings. For the case pre-
sented in Figure 11, the step size was selected to be 0.001
seconds.

An interesting problem occurred with the Adams-Bash-
forth integrator. This problem occurs only in stochastic
analyses. Recall that the Adams-Bashforth method, as well
as all multistep methods, are not self-starting. To get an
nth order multistep integrator started, computation of the

derivative function over the first (n-1) steps must be

accomplished independent of the multistep integrator.
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Often a 4th order Runge-Kutta method is used to start a 4th
order Adans-Bashforth-integrator. The order of the two
methods is chosen to be the same so that the nuwmerical ac-
curacy is of the same order of magnitude. The problem that
occurs in stochastic analyses using the Adams-Bashforth
method is due to the starting procedure.

In order for the starting integrator to provide accu-
rate statistics over the starting interval, the covariance
of the random number generator must be set with respect to
the starting integrator. For instance, if a 4th order
Runge-Kutta algorithm is used to start the multistep inte-
grator, Qp must be related to Q by Qp = 3.6Q/h over the
starting interval. Once the four evaluations have occur-
red, control is turned over the Adams-Bashforth integrator
and Qp is then set in accordance with equation (71). The
problem occurs during the first four updates made by the
Adams—-Bashforth integrator. The noise terms used in the
evaluation of the derivative functions during the starting
interval are mismatched to the noise terms needed by the
Adams-Bashforth for accurate propagation of the states.
This mismatch causes a large transient spike and introduces
an error in the state calculation that propagates in time.
Figure 13 illustrates this phenomenon. This problem

appears only in the calculation of the stochastic states.
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To remedy the problem, a number of potential solutions
was tried resulting iﬁ varying degrees of success. The
necessary requirements for an adequate solution were found
to be that the starting procedure must provide accurate
updates at the selected step size and the noise normaliza-
tion function used by the starting integrator must be ap-
proximately the same as the one used by the Adams-Bashforth.
The method that finally provided good results was a method
involving the use of a number of different integration
methods. At the first update an Euler method was used,
followed by a 2nd order Adams-Bashforth integrator at the
second update, followed by a 3rd order Adams-Bashforth
integrator at the third update and £inally the 4th order
Adams-Bashforth integrator at the 4th and subsequent up-
dates. The data used to construct Figures 11 and 12 were
determined with the 4th order Adams-Bashforth integrator
started by this method.

The error analyses in Chapter IV predicted that the
Adams—-Bashforth integrator would be sensitive to a viola-
tion of the assumption that the state transition matrix
would approximate the identity matrix over the integration
interval. To test this prediction, the Adams-Bashforth
simulation was run at a step size of @.025 seconds. At
this step size ¥(h,0) = #.95 . This step size was chosen
because the total execution time realized for the simula-

tion was 138 seconds which is slightly longer than that
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realized running the 4th order Runge-Kutta simulation (126
seconds) with a step éize of 0.1 seconds. Figure 14 shows
the results from this test and verifies the prediction. A
Comparison of Figure 14 to Figure 8 and considering equiva-
lent execution times, indicates that there is no benefit in
using an Adams-Bashforth integrator for stochastic

simulations.

8.00300
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Figure 13. 4th Order Adams-Bashforth with Runge-Kutta Starter
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Figure 14, HAdaas-Bashforth Analysis (h = 8.025 seconds)

Qther Integrators of Interest

Thus far, all of the analyses have dealt with conven-
tional integrators. A number of more complex integration
methods are frequently used in special situations. These
more complex methods are usually selected in order to
obtain highly accurate solutions at moderate computational
costs. Two types of "advanced" algorithms that are of in-
terest to this study are variable-step-size methods and

predictor-corrector methods.

VYariable-step-gize Methods
Variable-step-size methods are useful for simulating

systems that contain time-varying dynamics. In any
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simulation, the step size should be selected to handle the
fastest dynamics in tﬁe system. However, if the dynamics
are fast over one interval and then slow over another
interval, a step size selected for the fast interval will
cause wasted computations during the slow interval. Varia-
ble-step-size methods address this problem by computing
some function that senses the accuracy of solution and
adaptively adjusts the step size so the errors remain
bounded below some defined tolerance level. Application of
variable-step-size methods to stochastic systems presents
some unique problems not encountered with deterministic
systems.

As established in this dissertation, the magnitude of
the noise added to the system states is a function of the
step size. This fact translates into effectively discount-
ing all variable-step-size methods based on multistep in-
tegration methods because a step size adjustment would
require a total restart of the integrator using new noise
terms. Therefore, at the outset, the search for candidate
variable-step-size methods for this analysis will be re-
stricted to Runge-Kutta methods. As seen in the analyses
presented in Chapter III, each fixed-step integrator has a
unique normalizing function for setting the random number
generator's covariance. This fact makes the application of
methods similar to the Runge-Kutta-Fehlburg integrator d4dif-

ficult to manage.
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The Runge-Kutta-Fehlburg integrator is an efficient
algorithm that calculétes the state update by solving a
fourth-order Runge-Kutta integrator and a fifth-order
Runge~Kutta integrator in parallel. The fourth-order solu-
tion is used to propagate the states and the fifth-order
solution is used to predict the error of the fourth-order
solution. The efficiency of the Fehlburg method is found
in the intermediate derivative evaluations. A fourth-order
Runge-Kutta method requires four function evaluations and a
fifth-order Runge-Kutta method requires six function evalu-
ations. Therefore, a brute force implementation o- a
fourth and a fifth-order method would require ten function
evaluations. Fehlburg derived a set of coefficients that
would allow the fourth-order update formula to use the same
derivative function evaluations as the fifth-order update;
thus the entire process only requires six function evalua-
tions as compared to ten by the brute force method. (6]

The difficulty with applying Fehlburg's algorithm to
stochastic systems is due to the need to use one noise
covariance for the fourth-order update and another for the
fifth-order update. This means that the two update formu-
las can no longer share the derivative function evalua-
tions. The requirement of ten function evaluations per
step makes the computational costs prohibitively large.

Any variable-step-size method that uses two update methods
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of different order to calculate the error function would
introduce this same péoblem.

A variable-step-size method that does not have any of
the above problems is one presented in reference 5. This
method was developed by Colatz and is based entirely on a
4th order Runge-Kutta integrator. The error formula that
Colatz derived is a function of the intermediate function
evaluations. Specifically, the error function, €, is

K2 - K3

< (91)
K; - K2

wh-re the K;'s are given in equation (43). Colatz showed
that the error function given by equation (91) should be
less than a few hundredths in order to insure an accurate
solution. The only difficulty in applying Colatz's formula
was the situation where all the K;'s are nearly zero. This
situation occurs in steady-state. Explicit implementation
of equation (91) in computer code will cause numerical er-
rors in this situation due to a division by small numbers.
To circumvent that problem, equation (91) was implemented
in the following form.

|[K2 - K3| - €|k, - Kp| < @ (92)
vhere € wvas set to .01 . When equation (92) was used to
predict the maximum step size for a deterministic system
with the same dynamics as in equation (92), it predicted
that h ¢ @.1 seconds. This is certainly a reasonable fin-

ding. However, when equation (92) was applied to the sto-
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chastic system given by equation (89), the results were
clearly erroneous. Figure 15 is a plot of the left side of
equation (92) versus time for the stochastic system solved
at a step size of 0.005 seconds. As seen from equation
(92), the evaluated expression must be less than or equal
to zero in order to meet the accuracy condition. Figure 15
shows that this condition is never met indicating a need to
reduce the step size. Although other analyses have shown
that this step size is well within acceptable limits, the
step size was reduced an order of magnitude to an
h = 0.09005 seconds. Figure 16 shows the computed error
function at this step size. Clearly, from Figures 15 and
16, the addition of noise to the system makes Colatz's
algorithm useless. This is really not surprising when one
considers that equation (91) is a function of stochastic
state information, therefore equation (91) is stochastic.
To gain useful information from this stochastic equation, a
stochastic analysis would have to be performed. However,
note that equation (91) is nonlinear making its statistics
non-Gaussian and its analysis difficult. An alternative is
to use deterministic state information in equation (91) or
to use another approach to estimating the required step
size. Regardless, this study strongly suggests that any
error function used to make decisions with regards to step
size adjustment must only be based on deterministic infor-

mation.
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Addams-Moulton Method (6,8]

The Adans-ﬂoultoh method is a corrector formula for
use in a predictor-corrector integration algorithm. It is
probably the most widely used corrector method. Predictor-
corrector formulas are iterative methods used to increase
the accuracy of solution at relatively low computational
costs. The Adams-Moulton formula requires derivative in-
formation at the next update increment in order to compute
the state at that same increment. The predictor formula is
used to provide that derivative information. The predic-
tor-corrector pair can iterate on the solution for as many
times as necessary. The iteration process can be termina-
ted abruptly after some predetermined number of iterations
or it can be terminated intelligently after reaching some
defined convergence criterion. The equation that describes
the Adams-Moulton corrector formula belongs to the class of
multistep integration methods. Thus, it only requires one
additional function evaluation per iteration. The specific ;
equation is

x{%] = x; + hCog£(xf%T1), (1+41)h) + opf(x;.1h)
+ ogf(Xj-1,(i-1)h) + ogf(x;_5,(1-2)h)] (93)

W s e,

vhere o1 = 9/24; oy = 19/24; o3 = -5/24 ; o4 = 1/24 ; and
k is the number of predictor-corrector iterations. Note
that equation (93) is independent of the method used to ob- r
tain the prediction term, xl%fl). Therefore, to analyze

equation (93) on a per iteration basis, k can be set to 1.
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Next, note that the noise properties of the corrector for-
mula will only be an éxplicit function of four independent
noise terms derived at the evaluation of £(-,*).

To analyze this system, the Jury method presented in
Chapter III will be used. For this analysis, a difference
equation will be required. A change of variable will be
used to account for the iterations in equation (93).

Let =1 +k=1+1. Using a scalar form of equa-
tion (10) to evaluate £(¢,*) in equation (94), then
equation (93) will become

X441 = X451 + hloxy(Axgy + Bwj) + op(Axy_3 + Bwj_3)

+ a3(Axgy_5 + Bwy_3) + o(Axgy_3 + Bwy_3)] (94)
Taking the z-transform of equation (94), assuming xg = @,
yields

zX(z) = z71X(z) + hloy (AX(2) + BW(Z))

+ op(AX(z) + BW(z))z~l + oy(AX(z) + BW(z))z~2

+ oq(AX(z) + BW(z))z~3] (95)
Multiplying through by 23, collecting terms, and rearrang-
ing equation (95), results in

(23 + 0pz2 + oyz + og)hBW(2)

X(z) = (96)
z% - oyhAz3 - (1 + oyhA)z2 - oyhAz - oghA

Applying equation (96) to the Jury analysis procedure given
in Chapter III, in the same manner as eguation (65), yields
the steady-state expression

8.5556(1 - .@67hA + .B812(hA)2)n2B2q

E(x2] = 97
. ] V(ha) ¢ )

where

B TG 5 Tt S R T T RS 10 R TR E T Tt T L R ST R
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V(hA) = ~1.333hA - 0.6111(hA)2 + @.8376(ha)3 + 8.8869(hA)%

Unrezolved Inconsistency

V(hA) in equation (97) should equal (1 - !ﬁ). It does
not. When equation (97) was first developed, the numerator
function was used to determine the Qp to Q normalizing func-
tion without considering the inconsistency in the denomina-
tor function. To compound matters, the normalizing func-
tion worked well in the simulations. However, there is
clearly an analytical error in this derivation. Oblivious
to this error, the numerical analysis will be presented in
order to show a number of important points regarding the
application of the Adams-Moulton formula to stochastic

analyses.

Numerical Findings
The numerator of equation (97) should equal BSQD.

Assuming it does, equating it to the scalar form of equa-
tion (20), and evaluating for small hA, leads to the rela-
tionship
Qp = 1.8Q/h (98)

Figure 17 shows the results of applying equation (98)
to a Adams-Moulton based simulation that uses a 4th order
Adams-Bashforth predictor. To demonstrate that equation
(98) is valid, independent of the predictor, Figure 18
shows the results of the Adams-Moulton simulation that uses

a 4th order Runge-Kutta predictor. For the cases shown in

™ ¥ v v ¢
‘.IA'J

B a2 o i LK

RIS i mae m  «

v e
A

e e e

'.{‘

S, VAR

e S Ao



,,,,

81
Figures 17 and 18, the algorithm was corrected once per up-
date. Figure 19 showé the results of the simulation using
the Adams-Bashforth predictor with 4 predictor-corrector .

iterations per update.

O = ANALYTICAL [A = @D by (98) [¥ = QD

8.00300

8.00250

0.062001

8.081580;

MO EBED=V D CO

0.80100

0.008501#

0.5000 1.0608 1.560
TINE (seconds)

Figure 17, ARdams-Moulton Corrector w/ Rdams-Bashforth Predictor
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Figure 18. RAdams-Moulton Corrector w/ Runge-Kutta Predictor
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Figure 19. Rdaass-Noulton/Adams-Bashforth (4 Iterations)
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VI. SUMMARY AND CONCLUSIONS

This dissertation addresses the problem of determining
the correct relationship between the statistics of a con-
tinuous random process and the statistics of a discrete
random process used to simulate the continuous random pro-
cess. The findings of this research are directly applica-
ble to the general field of digital simulation of physical
systens described by ordinary differential equations.

It is shown that to ensure a faithful digital simula-
tion of a continuous random process, the noise statistics
of the random number generator must be set to values dras-
tically different from the noise statistics of the contin-
uous random process. Further, it is established that the
relationship between the continuous and discrete statistics
will be a function of the integration method used in the
digital simulation.

The proper functional relationship between the dis-
crete and continuous noise statistics was derived for

1. the class of Runge-Kutta integrators,

2. the 4th order Adams-Bashforth integrator, and

3. the Adams-Moulton corrector formula.
Additionally, the rejuirement for proper operation of a

variable-step-size algorithm was developed.

83

—




P P, T SO E T i S A Il I L L R TG RN X 2R 9 228 ST T R R N P T IOV Y

84

The derived functional relationship between the dis-
crete and continuous ﬁoise statistics for the class of
Runge-Kutta integrators results in a unique normalizing
factor for each Runge-Kutta method. The derivation pro-
vides a useful formula for calculating that factor. The
use of the factor in the statistical relationship function
will provide the proper setting of the random number gener-
ator's statistical parameters. The function is demonstrated
to be accurate for five specific Runge-Kutta integrators.

It is shown, in the error analyses chapter, that all
the integration methods considered yield normalization
functions that, without simplifying assumptions, are
dependent on the system dynamics. This dependency does,
however, decrease with the integration step size. The rate
of decrease varies for each integration method. It is
shown that the derived normalization functions for the
Runge-Kutta integrators are less sensitive to the system
dynamics than the other examined methods.

In contrast to the Runge-Kutta methods, the derived
function for the Adams-Bashforth integrator is the most
sensitive to the system dynamics. The influence of the
dynamics can be minimized by reducing the integration step
size to a value much smaller than that required for deter-
ministic analyses. However, the required step size for
realizing an effective independence of the system dynamics

is on the order of step size requirements for Euler inte-
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grators applied to deterministic systems. This extremely
small step size requiiement makes the Adams-Bashforth
integrator impractical for stochastic simulations.

The Adams-Moulton formula's normalization function is
derived independent of the predictor algorithm. It is
shown that the derived function is valid when the Adams-
Moulton corrector formula is used with a Runge-Kutta pre-
dictor as well as an Adams-Bashforth predictor. There is
an analytical inconsistency in the Adams-Mouton derivation
that has not been resolved. However, the numerical results
show a number of useful findings for stochastic applica-
tions of this often used corrector formula.

Error functions needed to implement variable step size
integration methods are discussed in detail. It is shown
that when applied to a stochastic system, the error func-
tion for the method considered will be a stochastic func-
tion making its usefulness extremely limited. Numerical
examples are presented to substantiate this finding.

Though this research investigated integration methods
most commonly used in practice, it is certainly not exhaus-
tive. However, the analysis procedures used in this dis-
sertation are applicable to other integration methods that
may be of interest. Without a doubt, the findings of this
research establish the fact that the proper relationship

between the statistics of the continuous random process and

the statistics needed in the simulation for accurate
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modeling is explicitly dependent on the integration method
used in the simulation. To ensure a faithful simulation,

it is mandatory that the proper function be derived and

validated for the specific integration method used in the -
simulation. Failure to do so will likely invalidate the i

simulation results.
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APPENDIX A

IMPLEMENTATION PROCEDURE AND CODE FOR
JURY ANALYSIS METHOD
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Application of the Jury method for analyzing discrete
integration algorithné of order three and higher is Aiffi-
cult without the aid of computational tools. The difficul-
ty is due to the fact that the coefficients of the transfer
functions that describe the integration processes are in
variable form. For instance, consider the transfer func-
tion for the Adams-Bashforth integrator given by equation
(69). The coefficients for the numerator polynomial, M(z),

and the denominator polynomial, L(z), are

mg =8 lg =1

my = oqhB 11 = =(1 + oqhA)
my = ozhB 12 = —opxhA

m3 = oazhB 13 = -ozhA

mg = oghB 14 = -oghA

In the Jury algorithm given by equations (60) - (62), these
coefficients will be used to form the matrices Q and R; as
in equation (62).

Recall from equation (61) that the steady-state value
of the autocorrelation function will be determined by

1%1)
E(x§) = QD—I;TET__

Thus, to solve the problem for the 4th order Adams-
Bashforth integrator, the determinant operation must be
accomplished for two £ifth order square matrices. From

equation (62), it is seen that the elements of Q will be a

linear combination of the coefficients 1lg through 14.
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Since the coefficients lg through 1, are first-order poly-
nomials in hA, the elements of R will also be first-order
polynomials in hA. The determinant of Q will, therefore.
be a polynomial in hA of order five or less.

The matrix Q; will be the same as Q except for the
first column. The elewments in the first column of Q; will
be a combination of the square of the coefficients mg ~ m4.
Since all the coefficients of M(z) contain the common term
hB, hB can be conveniently factored out. Therfore, 9; will
be a fifth-order square matrix with constants in the first
column and first-order polynomials in hA in columns 2 - 5.
Hence, the determinant of Q; will be a polynomial in hA of
order four or less.

Based on the above observations, it is expected that
the steady-state covariance for the Adams-Bashforth inte-

grator will have the following form

23 U(hA)
Eix§) = hznzoo—!——l— = h2p2Qp—— (99)
1|8 V(hA)

vhere U(hA) is a polynomial in hA of order four or less and
V(hA) is a polynomial in hA of order five or less.

The calculation of a determinant for a £ifth order
matrix of constants is tedious, but for a matrix of polyno-
mials it is grueling task. However, Jury provides a set of
equations that perform the determinant operation for the

matrix given by equation (62). Though these equations ease

the task, they only reduce the complexity slightly. The
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equations are lengthy and notationally involved. Because
of the notational conblexity in the equations, they were
re-derived and validated to ensure there were no typograph-
ical errors. There were not. For brevity, Jury's equa-
tions will not be reproduced in this document. However,
for those who are really interested, the computer code
included in this appendix contains a direct implementation
of Jury's equations (see Listing 1).

To determine U(hA) and V(hA), Jury's equations were
coded in a computer program written in Pascal. The coef-
ficients for L(z) and M(z) were coded as a function of the
program variable hA. The program prompts the user for a
value of hA, calculates the coefficients of L(z) and M(z),
evaluates Jury's equations, and outputs the numerical value
of U(hA) and V(hA). Evaluation of U(hA) and V(hA) at six ;
distinct values of hA will provide enough data to uniquely
determine the coefficients of U(hA) and V(hA). To provide

a little extra confidence that the procedure was sound, .

-y ¥

seven points were actually used knowing that if the numer- -

ical data wvas valid, equivalent results would be obtained.

W W W e .

For the Adams-Bashforth integrator, the results were
UChA) = 1 - 5.6736hA + 9.5833(hA)2 - 6.25(hA)3 (100)
V(bA) = -2.0bA - 3.333(hA)2 + 7.6736(hA)3
-9.5833(hA)4 + 6.25(hA)5 (101)

The question that now arises is how do these results

relate to the function needed to complete the analysis;
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that is, BBQD. Consider, that in steady-state, the state
covarliance equation 15 of the form

E(x$1(1 - 8§) = BRQp
wvhich can be rewritten as

Bfop
E(x$) = ————— (102)
(1 - 3f)

A comparison of equation (162) to equation (99) leads to
the plausible relationships

B§ = h2B2N(hA)U(hA) (1@3)

and (1 - 8§) = N(hA)V(hA) (164)

wvhere N(hA) is a polynomial in hA that is common to both BB
and (1 - !6). To determine N(hA) additional information is

required, such as 3.

Rerivation of 3n for the Adams-Bashforth Integrator
The discrete state transition matrix maps the states
Xy into the states x;,;. Mathematically this is expressed
as
Xi+1 = Sp(h,0)x4 (105)
vhere x; = x(t;) and x4,1 = X(tj+h). In this derivation,
all that is known about the specific problem will be used.
Consider the general 4th order Adams-Bashforth for-
mula, where
Xisl = Xy + DloqL(x;.ty) + opf(xi-1.t5-)
+ o3f(xi-2-t5-2) + oqf(x5-3.t5-3)1 (106)
vhere oy = 55/24; oy = -59/24; o3 = 37/24; and o4 = -9/24.
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To develop the specific problem, consider
1. Restricting the problem to linear time-invariant
differential systems given by
x(t) = Ax(t) + By(t) = £(x, t) (187)
2. The state transition matrix is independent of the
inputs, y(t). Therefore, let g(t) = @ for all t.
3. The continuous state transition matrix is given by
F(ty, tg) = €Altz - ) (108)
The derivation of the Adams-Bashforth formula makes
the assumption that the present and past derivatives are
known and are exact. The same assumption will be made in
this derivation. With this assumption, equations (1867) and
(198) yield
£<(xj-t;) = Ax;
£(xi-1.t3-1) = Axj-y = A€TAbgy
£(xi-2-ti-3) = Agj-p = A€~2Ahg,
£(xy-3.t5-3) = Axj_3 = A€ 3Ahg,
Evaluating equation (106) with these derivative functions,
results in
Xi+1 = [I + oyAh + opAhe~Ab
+ azAh€~2AD 4 o ane~3Ah3x, (109)
Noting that equation (109) has the same structure as equa-
tion (105), it is concluded that
3p(h,@) = I + oyAh + opAh€ AR 4 oaAh€-2Ah | o ane~3Ah (119)
Notice that unlike the Runge-Kutta methods, the dis-

crete state transition matrix for the Adams-Bashforth inte-



'.V.I ‘7.';-\:' ey '.-.- ‘C\‘
A ‘,'-}.s‘.*'w‘"u“.*-f‘\'.*

95

grator is an infinite series. The question arises, does
this state transltion.natrlx approximate the Taylor series
form of 8(h,8)? To answer this question, expand equation
(110) in a series form ,collect terms and compare it to
U(h,0) = €hA

=1 +Ab + (AD)2/2 + (AD)3/6 + (AB)%/24

e WA TR

+ (AR)53/120 + ... (111)
Expanding the exponentials in equation (110) provides
€bhA =1 - pA + (BA)2/2 - (DA)3/6 + (hA)4/24 + ...

W TR

€2bA = 1 - 2mA + 2(hA)2 - 4(WA)3/3 + 2(DMY4/3 + ...

€3bA = 1 - 3nA + 9(hAI2/2 - 9(hA)3/2 + 27(hR)4/8 + ...
Evaluating equation (110) using these expansions and the
oy's givenhin equation (146), results in

Zpth,8) = I + Ah + (AR)2/2 + (AR)3/6 + (AN)4/24

- 49(An)5/120 + ... (112)

A comparison of equation (112) to equation (111) shows that
Zp(h,9) = F(h,@) with error on the order of hS. With ¥ in

hand, the Jury analysis can be completed.

Determipation of N(bA) and B

The general form of N(hA) is assumed to be

N(hA) = % + % hA + %(hA)2 + %h)3 + ... (113)
The ¥; coefficients in equation (113) can be computed di-
rectly from equation (184). Consider that
1 - 8§ = -2hA - 2(0A)2 - a(bA)I/3 - 2(0M)4/3 + ... (114)
Taking the product of equation (113) with equation (181)

.
.
.
L]

L)
4
A

and equating the resulting coefficients to the coefficients

»

ks
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in equation (114) results in the following constraint equa-
tions
-2%g = -2
=-3.3333% -~ 2% = -2
7.6736%g ~ 3.3333%; - 2%; = -4/3
-9.5833%g + 7.6736%; - 3.3333%, - 2%y = -2/3
and so on. Solving for ¥g through ¥3 results in
N(hA) = 1 - 2(hA)/3 + 5.61(hA)2 - 16.379(bA)3 + ... (115)
Solving for Bﬁ in eqgquation (193) results in

B§ = h2B2(1 - 6.34bA + 18.98(hA)2 - 68.84(hA)3 +...) (116)
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Listing 1.

PASCAL Program Uied to Evaluate Jury's Equations

Program Jury_Determinant;
{ Calculates U(hA) and V(hA) for the Adams-Bashforth

integrator. The coefficients 18 through 14 have been

replaced by a@ through a4 to enhance readability )

var

hA,af,al.,a2,a3,ad,el,e2,e3,e4,e5,
alfal,alfa2,alfa3l,alfa4,
nf.ml,m2,m3,04,B6,B1,B2,B3,B4 : real;
Q6.01,02,Q3,04,BQ,AQ : real:;

begin

alfal
alfa2
alfal
al fa4

t= 55.0/24.0;
= -59.0/24.0;
¢t= 37.0/24.0;
= -9.0/24.6;
{ Prompt User for input and Get It )

write('Input hA *); readln(hA);

nd
ml
=2
n3
md
a@
al
a2
a3
ad

el
e2
el
el
1.3

=
=
=
L

{ Define Coefficlents )

6.a9;
alfal:;
alfa2;
alfa3;
alfaq;
1.0;
-(1.6 + alfal*hd);
~-alfa2*hA;
-alfa3d*hi;
-al fa4d*hA;

{ Jury's Equations )
az;
aj;
aq;
a4;
a2 + a4;

ad
al
a2
ad
a@

+re e+

mI*m@ + ml*ml + m2*m2 + m3*m3 + mid*m4;
2.0*(m@*ml + ml1*m2 + m2*m3 + m3*m4);
2.0*(m@*m2 + ml*m3d + m2*md);
2.0*(m@*m3 + ml*md);

2.9*n0*m4;

af*(el*ed - ald*e2) + ad*(al*e2 - e3*ed);
agd*(al*ed - a2*al) + ad4*(al*a2 - alred);
af*(al*e2 - a2%el) + aq4*(a2%eld - ai*re2);
al*(al*e2 - e3%eqd) - a2*(al*el - a3*eld)

+ a3*(el*eq4 - al*e2);

Q4

afd*(e2*(al*taq - ad*al) + eS5*(af@*ag - aqd*ad4))

+ (e2*e2 - e5%e5)*(al*al - al*a3d + (af - ad)*(ed - a2));

x5 .‘- 3 Al LN L
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Continuation of Listing 1.

{ BQ is U(hA) and AQ is V(hA) )}
BQ := ad*BOo*QF - ad*Bl*Ql + a@*B2*Q2 - a@*B3*Q3 + B4A*Q4;
AQ := agd*((ad*ad-ad4*ag)*Q@ - (ad*al - a3*aqg)=*Ql
+ (ag*a2 - a2*a4)*Q2 - (a@*a3 - al*aq)*Q3);

{ Output to terminal )
writeln('For hA = ',hA);
writeln('Qg = ',Q0,"* Q1 = *,Q1);
writeln('Q2 = *,02,' Q3 = *,Q3,' Q4 = ',Q4);
writeln('AQ = ',AQ,' BQ = ',BQ);

{ Output to Printer }
writeln(lst):
writeln(lst,'For hA = ',hA);
writeln(lst,'Q@ = *,Q6,' Q1 = ¢,Q1);
writeln(lst,'Q02 = ',02,' Q3 = ',Q3,* Q4 = ',Q4);
writeln(lst,'AQ = ',AQ,' BQ = ',BQ):;
writeln(lst):
writeln(lst);

end.
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CODE FOR RANDOM NUMBER GENERATOR
USED IN SIMULATION
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Listing 2.
FORTRAN Code of Random Number Generator

with Gaussian Shaping Algorithm

REAL FUNCTION GAUSSN(SIG, SEED)

C
Crxsxxs2* FOR GOOD RESULTS USE AN INITIAL SEED = 824064364
- C :
INTEGER*4 SEED
GNOIZ=0.
DO 16 I=1,12

GNOIZ = GNOIZ + URAND(SEED)
10  CONTINUE
GAUSSN=SIG*(GNOIZ-6.9)
RETURN !
END i

A REAL FUNCTION URAND(SEED)
: INTEGER*4 B2E15,B2E16,MODLUS,HIGH15,HIGH31,LOW15, LOWPRD,
& MULT1,MULT2,O0VFLOW, SEED
DATA MULT1,MULT2/24112,26143/
DATA B2E15,B2E16,MODLUS/32768,65536,2147483647/

VT e e -

HIGH15 = SEED/B2E1l6 '
LOWPRD = (SEED - HIGH15*B2E16)*MULT1 ]
LOW15 = LOWPRD/B2E16

HIGH31 = HIGH1S*MULT1 + LOW15

OVFLOW = HIGH31/B2E1S

SEED = (((LOWPRD - LOW15*B2E16) - MODLUS) +
& (HIGH31 - OVFLOW*B2E15)*B2E16) + OVFLOW

IF (SEED.LT.@) SEED = SEED + MODLUS

| gy —e

HIGH15 = SEED/B2E16
LOWPRD = (SEED - HIGH15*B2E16) *MULT2

LOW15 = LOWPRD/B2El6 P
HIGH31 = HIGH15*MULT2 + LOW1S5 }
OVFLOW = HIGH31/B2E1l5 E

t

SEED = (((LOWPRD - LOW15*B2E16) - MODLUS) +
& (HIGH31 - OVFLOW*B2E15)*B2E16) + OVFLOW
IF (SEED.LT.@) SEED = SEED + MODLUS

URAND = FLOAT(2*(SEED/256) + 1)/16777216.0
RETURN
END -

A AT T 1% 7% ) ">
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