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SUMMARY

—__33 This paper discusses the two-sample test of location
based on the comparison of two distribution free one-sample
confidence intervals derived from sign statistics. This
test procedure, first introduced by Hettmansperger (1986),
rejects the null hypothesis of equal population medians
when the two intervals are disjoint. He presents three dif-
ferent ways to select the two one-sample intervals and one
choice leads to Mood's test. All solutions have the same
Pitman efficiency. This paper shows that the choices can
be distinguished on the basis of Bahadur's efficiency. We
formulate the problem in terms of (asymptotically) fixed-
width confidence intervals. In this context various median
tests (including Mood's test) arise as special cases and
they yield different performance. The solution that spe-
cifies equal asymptotic lengths for the one-sample inter-

vals (which is different from Mood's test) is recommended.

Some key words: Bahadur efficiency; Fixed-width confidence
interval; Pitman efficiency; Probability

of large deviations; Sign statistic; Two-

sample location problem.
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1. INTRODUCTION

The two-sample test of location discussed in this X

paper is based on the comparison of two distribution
free one-sample confidence intervals. The test rejects
the null hypothesis of equal population medians if the

intervals fail to overlap.

n

. re-
i=1

More precisely, let {xi}?¥l and {Yi}
present independent random samples from the respective

populations Fex(-) = F(--08,) and Fey(-) = F(--ey) ‘

with unique medians ex and ey . Let gp denote the

pth quantile of F , 0 < p < 1 . We assume that for

all p

F(*) 1is twice differentiable at Ep ’

(1.1)
ith F' = f >0 .
w (Ep) (Ep)
Let the sign-interval on the X-sample be given by
| (L ,0,] = [X X ] (1.2)
x'"x (d,) "™ (u,)

: th

where the endpoints are the dx and uih observa-

tions of the ordered sample

X SX(Z)S...SX

(1) (m)
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with u, =m - dx + 1 . The depth dx , which specifies
how deep into the ordered sample the endpoints lie, is

defined by

1/

4, =m/2+.5-zm 2,5 (1.3)

X

where z, is such that @(-zx) =a, and ¢ is the

2 standard normal c.d.f.. We refer to this interval as a
sign-interval since it can be derived by inverting the
acceptance region of a size 2ax two-sided sign test.
Similarly define the sign-interval [Ly'Uy] on the
Y-sample. Let A = ey - ex . To test Ho t: A=0

versus HA : A # 0 , reject Ho if the sign-intervals

q are disjoint. That is,
if U, < Ly or U_ <L . (1.4)
A two-sample confidence interval for A 1is given by

[Ly = U, Uy - Lx] . (1.5)

This procedure has been introduced by Hettmans-
perger (1984) who derives the following two main limit-
ing results: Suppose m,n - » such that m/(m+n) -+ A ,

0 < A < l .

.
'
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Then under H_: A = 0 ,

[o]
a = P{Ux < Ly} + P{Uy < Lx} + 20(=-2) (1.6)
where z = (1-x)1/2zx + xl/zzy i (1.7)

(ii) Let A denote the length of the two-sample

confidence interval (1.5). 1If z, and

zy satisfy the condition (1.7), then with

probability 1

/2 1/2

(men) Y%A+ z7 ((a(1-20) %8000 (1.8)

We note that the two one-sample intervals (for ex and

ey) have respective approximate coverage probabiliities

Y = l - 2ax and Yy =] - 2ay . This follows from

(1.3) and the normal approximation to the binomial

distribution.

Now let o and A , 0 < A <1 , be given and de-

fine 2z by a = 2¢(-2z) . Select z, and zy so that

they satisfy (1.7). By (1.3) this determines the one-
sample sign-intervals (that is, the depths). The re-
sulting two-sample test is of approximate size a .

Clearly there are infinitely many choices for z, and

zy. Hettmansperger (1984) discusses three different

choices. He recommends to select equal confidence coef-

ficients Y = Yy , Or equivalently z, = zy ., because



o

these 2z values are essentially constant with respect

to reasonable ratios of sample sizes. More precisely,

& ¥

by (1.7)'

2, =z =20 21— /22

X Y

PRI

Another choice leads to Mood's (1950) median test.
(For a discussion see Pratt (1964) and Gastwirth (1968)).
Let, for simplicity, m+ n=2r , m 3 n . The Mood-in-

terval for A is defined as follows:

Yia) = X((mn)/2-a+1) * Y(n-a+1) = X((men)/2+q) ! -

This interval is obtained by inverting the 2 .ceptance

region of a two-sided test based on the Mood statistic

which follows a hypergeometric distribution under
Ho : 4 =0 . From the normal approximation d is cho-

sen so that an approximate size o test is achieved.

That is, K
1/2 X
d =n/2 + .5 - z(mn/ (4 (m+n-1))) (1.9)
where 2z is such that ¢(-z) = a/2 . We can consider

this interval as being constructed from two sign-inter-

vals with depths dy = d and dx = (m=-n)/2 + dy .
Statement (1.9) is (asymptotically) equivalent to (1.3)
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if

z_ = z\ .oz, = 2(1-0) 2

and the condition (1.7) is clearly satisfied.

The starting point for this paper is the obser-
vation that, according to (1.8), all choices of the
z, and zy lead to the same Pitman efficiency, as
long as (1.7) is satisfied. The choices can be distin-
guished, however, by an alternative notion which is
Bahadur's efficiency. The analysis of this efficiency
leads to a formulation of the problem in terms of
(asymptotically) fixed-width confidence intervals. We
compare the rates at which the Type I error probabili-
ties tend to zero while the lengths remain fixed at
(or tend to) a positive constant. In this context the
various special choices (including Mood's test) yield
different performance. On the basis of this efficiency
criterion, we then recommend the solution that speci-
fies equal asymptotic lengths for the one-sample in-
tervals which is (except in the case of equal sample
sizes) different from both the Mood solution and the

equal confidence coefficients recommendation.

In Section 2 the exact size of the two-sample test




-

)

is derived. In Section 3 the two-sample test procedure
(1.4) is represented in terms of a sum statistic, and
the probability distribution function (under Ho ) of
this statistic is derived using an urn model argument.
A large deviations result is obtained and Bahadur effi-
ciency is discussed in Section 4. Numerical evaluations
and recommendations for the practitioner are given in

the final section.

...........
.....

T 0 A AT " T e To Ta v e a®ar. T a, g AN e e e e e ey S
pa e S NN s YA TR N T ey - To"a SRROADYRIT I S, AT SR

R

"..

.7 v



2. TYPE I ERROR PROBABILITY

}m

n J
i'i=1 d

Under H_: A =0, the (X i=1 "

o and (Y

i
are independent random samples from the same popula- ,
tion Fe(x) = F(x-0) , where F(x) 1is a continuous ¢

cumulative distribution function with unique median

0 . Without loss of generality, we take 6 = 0 . The

exact size of the two-sample two-sided test (1.4) is

obtained at once from the following theorem.

th

Theorem 2.1. Let X denote the a ordered ob-

(a)

m th
servation from {xi}i=1 and let Y(b) denote the b

ordered observation from {Yi}x;_____l . Then

t 3

mo,_ ) Do Daennobee)
(7

P( T T
t=a (b) " (n-b+l) (n+m+1)

Xia) “¥p)) = (2.1)

Proof. We note that

P(X(a)<Y(b)=P(F(X ) <F(Y )) = P(

(a) (b) Us(a) “Y2(py’

where U ~ Beta (a,m-a+l) ~ Beta (b,n-b+l) , K

1(a)  U2(b)
and they are independent. Thus,

.....
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P(U )

1) < Y2(p)

ly r - r
Iy - ;nwl) x? 1, _,ma - ;n+l) (l-y)
(a) (m-a+l) (b) (n-b+1)

r
O y* 1y)™) + ¥ L1y " bs

by T (n-b+1)

o o)) Tore) Cmemerobet)
t

m
L
t=a © T(b)f (n-b+1) T (men+l)

(1-y) dy °

. T (men+L) el bt
o

T iort) T (néme1=b-t)

The integrand is a beta probability density function with
parameters ¢ =b + t and B=n+m-b -t + 1 . Hence,

the integral is 1 . [ |

Corollary 2.1. The exact size of the two-sample two-sided

test (l1.4), ao , is given by

a= P(Ux< Ly) + P(Uy< Lx)

n n, .
n D) a n Wig) d

b L. L, L X . X
ema sl (T G0 T g (@_+t)

) ( ) X
dy+t Yy dx+t




apply (2.1), and some algebraic manipulation yields the

Proof. For P(Ux<<Ly) , let a

. first term in (2.2).

For P(Uv<<Lx) , first interchange m with n in
(2.1), then let a =n - dy + 1 , b= dx and (2.1) will,

after some algebra, vield the second term of (2.2). B

We emphasize that the size of the test depends on
the depths dx and dy . A change in either one of the
values alters the size. Once dx and dy have been se-

lected, the corollary enables us to compute the exact

probability of committing a Type I error. In the next

section we show that P(Ux'<Ly) = P(Uy~<Lx) . Hence,

each equals a/2 . We need only compute the first or se-

cond term of (2.2) and multiply by 2 to obtain o . :
In the one-sided situation, we reject HO : A=0 in

favor of HA : A >0 (A<0Q) if Ux < L (Uy'<L ) . ‘

Y X

) Thus, the exact size of the one-sided test is agiven by b
either term. For a table which provides values for
(dx,dy) for various low sample sizes (m,n) that yield
useful one-sample confience coefficients (yx,yv) cor-
responding to a desirable confidence coefficient y=1-aqa .

for the two-sample interval, see Tableman (1984, Table 1). :

For sample sizes (m,n) not found in the table, one !

can use the normal approximation (1.6). To approximate
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the size, compute

/

1/2 1/2
Vo = (dx-m/Z-.S)/(m /2) , vy = (dy-n/Z-.S)/n /2)

and evaluate ¢(-) at

/2 /Zv

b 4

v = (n/(n+m))}

v + (m/(n+m))1

Multiply by 2 for the two-sided test. For a second-order
approximation of the size, which improves the normal ap-

proximation, see Tableman (1984, p. 28).
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3. A SUM STATISTIC

In this section we present an equivalent formulation
of the test procedure (1.4) in terms of a sum statistic,
and obtain this statistic's null distribution. As will be
seen in the next section, this form enables us to con-
sider the problem of large deviations for use in stocha-
stic comparisons (in the Bahadur sense), and facilitates

the task of obtaining Bahadur slopes.

We first consider the one-sided situation. To test

Ho : A =0 versus HA : A >0, we reject Ho if
Ux < Ly . Now,

x(m—dx+l) < Y(dy) if and only if

m

121 I{xi < Y(dy)} >2m- dx +1

where I{A} 1is the indicator function of the event A .

Let

m
S (d = I{X
x(dy) = I I

i< Y(d )} . (3.1)
Y

Then, we reject Ho if Sx(dy) >2m- dx + 1 . The next

theorem gives the null distribution of Sx(dy) .
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Theorem 3.1. Under Ho : 4 = 0, the probability distri-

bution function of Sx(dy) is given by

m n
©G,)
P(S,(d ) =¢) = o ey t = Ol,...m .
d +t
Y (3.2)

Proof. Under Ho we may represent the probability space
by a simple urn model with m x's and n y's . We
draw the x's and y's out of the urn one at a time
without replacement. Theg the P(Sx(dy)==t) is the pro-
bability that after dy -1+ t draws we have t «x's

and (dy-l) y's and on the next draw we obtain a vy .

Hence

m, ,n
(t)(dy-l). n-q,+1
m+n m+n-dy-t+l

)
d +t-1
y

P(sx(dy) =t) = (

After some algebraic manipulation, expression (3.2) is

obtained. [ |

This probability distribution function previously appeared

in (2.2).

We note that this distribution is not symmetric. If

A ASATASY

A
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Y(d ) were replaced by the median of the Y sample, the
Y

j statistic defined in (3.1) would be Mathisen's (1943) j
m
test statistic I I(X., < med Y.} . When n =
i . j
igl J=l'o.o'n

2k - 1 , the distribution of Sx(dy) is symmetric if
and only if 4 =k . When n = 2k , there is no integer

! dy for which Sx(dy) has a symmetric distribution.

Our final observation is stated as a corollary to

Theorem 3.1.

Corollary 3.1.

P(Ux<Ly) = P(Uy<Lx) . (3.3) .

- 0

Proof. Now, U < Ly iff Sx(dy) 2m-d, + 1. Further, .
m .

U, < L, 1iff iilI{xi > Y(n-dy+1)} 2m-d + 1. an ar- ;

gument similar to that given in the proof of (3.2) to-

gether with P{X, = Y(n-dy+l)} = 0 gives

m, ,n
m (t)(dy) éx
p{fr{xi>y(n_d +l)}=t} = = I :
i=1 y (d +t) Y N
y .
|6
The result follows. | ;
K
"
.
. I
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4. A LARGE DEVIATIONS RESULT AND BAHADUR EFFICIENCY

Briefly, Bahadur (1967) efficiency is a comparison
of the rates (called Bahadur slopes) at which the Type I
error probabilities of two test procedures tend to zero
while the Type II error probabilities remain fixed at (or tend
to) a B(A) , 0 < B(A) <1 , for fixed A . An alternative
formulation is in terms of (asymptotically) fixed-width
confidence intervals. That is, we compare the rates at
which the Type I error probabilities tend to zero while
the lengths remain fixed at (or tend to) a positive con-
stant L = 2a not depending on A . Such a formulation
was first considered by Serfling and Wackerly (1976) for
use in the construction and analysis of sequential con-

fidence interval procedures.

Remark 1. The equivalence between the two formulations
is seen in the following example: In the one-sample set-

ting, consider the interval centered at the sample mean

for the location parameter 6 , i.e. I = [ﬁm::a] ra >0 .
For the sequence of intervals {Im} , define the associated
sequence of tests of Ho : 8 = 0 versus HA : 8 = a

(or =a) by the rejection rule, reject H, if 0 ¢ I, -
Jt is easily seen that the Type I error probability,
2a = P{o ¢ Im} , tends to zero. In addition, note that

the probability of a Type II error (covering O when a

q PR ILY I P 3 R LWL

N t
e m w Cat

y v 0 _3_°
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or =-a attains) tends to 1/2 , which suffices to make
the stochastic comparison. In general, let Bm represent
the sequence of Type II error probabilities. As long as
Bm tends to some quantity B8 , 0 < 8 < 1 , then if

-log am/m converges, it converges to 1/2 of the Baha-

dur slope. (See Serfling, 1980, § 10.4.2.)

Since the length of the two-sample interval (1.5)
is simply the sum of the lengths of the two one-sample
intervals, the strategy we take is to first build a fixed-
width two-sample interval from two fixed-width one-sample
intervals, then use the sum statistic formulation of the
test (3.1) to obtain the rate at which the Type I error
(or equivalently the noncoverage) probability tends to
zero. For ease of discussion we assume F is symmetric
about zero. We also assume that F satisfies assumption

(1.1) with Ep =b or a ,b >0 and a >0 .

Consider the confidence interval (1.2) for ex . De=-

fine the depths as follows:
d(m) = m(1/2 - ?y) u(m) = m - d(m) + 1 (4.1)

where P = %x(ex+b) -1/2 , b >0 (see Figure 1). By

symmetry then,

TR TR TR AL G LR <o NS LN e % e R S 1Y
R N .'.,\l'.:‘ p | T} \ k1 -' a ." >

Lot Jaalniste-gla s o b g £ F By

BRI

I3 % % v v o

»
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1/2 + Py = Fex(ex+b) = F(b) and
(4.2)
y
i 1/2 - Py = Fe (ex-b) = F(-b) .
X
4 Therefore, by construction, ex - b and ex + b cor-
2
3 respond to lower and upper (1/2--qax)th quantiles, re-
P

spectively, of the distribution F, (x) . Similarly define

%

the depths for the endpoints of the confidence interval

for GY , with

d(n)

n(l/2-9.) , u(n) =n -d(n) +1 (4.3)

where ¢ = F, (6 +a) - 1/2 = F(a) - 1/2 , a > 0 .
y 0, Y
With the depths so defined we can appeal to Bahadur's
almost sure representation of the central order statistic.
(See Serfling, 1980, p. 93.) We state this representation
for the endvoints

X@m) * Xum) *

With probability 1 ,

/2

-1
X@am) =% ~b+* ((1/2-9,) = F (8 ~b)]/£(b) + olm ")

(4.4)

/2

-1
X(am) = 8x * b+ [(V/2+9) = F (8,4D))/£(D) + o(m %)

where Fm iz the empirical distribution function. Let

TS IO PR T A I T ST A F N (RO A
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Figure 1, Description of the (1/2-q>x)th

quantiles: ¢y = Fg (ex+b)-1/2 , b>0.
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Am ' An , and Am denote the lengths of the intervals
14

(1.2), [LY ,Uy] , (1.5) respectively with depths defined

as in (4.1, 4.3). Then it immediately follows that as

m,n -+ » , with probability 1

Am + 2b , An + 2a , and Am n” 2a + 2b .

’

The Type I error probability of the two-sample test
(1.4) is given by

* Pl um)y < Yamn?t * Pol¥umy) < ¥amn!

= 225Xy (m)) < Y(an))?

where the last equality follows from the symmetry estab-
lished in Corollary 3.1. It follows from the sum sta-

tistic formulation of the test (3.1) that

m,n P {s,(d(n)) 2 m - d(m) + 1}

where the null distribution of Sx(d(n)) is given in
Theorem 3.1. Suppose that m,n + ® so that m/(m+n) +- A ,

0 < XA <1 . Then (by a straightforward argument) under

’

Sx(d(n))/(m+n) + AF(-a) in probability




* and from (4.1)

(m=d(m)+1)/(m+n) + AF(b) > AF(-a)
since both a and b are positive. Therefore
X a + 0 as m,n + o ,

The following lemma establishes the probability of large
deviations for the sum statistic Sx(d(n)) . The proof is

given in the appendix.

Lemma 4.1. Assume m/N+» A ,0<A<l,N=m+n,as n,m - ,
Without loss of generality, take m 3 n . Then for 1

such that A/2 < 1 < X , with o=1- 1,
lim N'llogpo{sx(d(n)) 3 Nt} |
n,m-»o ‘
= tlogfl-p)/t)+(l=p=-1)1log((l=-p)/(l=-p=-1))
+ plogZ-—(o(l-zwy)/Z)log(l-2¢y)-(p(1+2¢y)/2)log(l+2¢y) '

-log2 + ((21+o(1-2¢y))/2)109(0(1-2¢y)+2f)

+ ((2-21-0(1-2¢y))/2)109(2-21-0(1-2¢y)) '

where is given in (4.3). E

Py
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The theorem that follows establishes that the Type I
error probability of the two-sample test based on the com-
parison of two fixed-width one-sample sign-intervals con-
verges to zero at an exponential rate. We refer to this
rate as the index of exponential convergence and denote
it by e(a,b) as it depends on the choices of a and b

as well as the distribution F .

Theorem 4.1. Under the same assumptions as those given

in Lemma 4.1, for the sequence of intervals (1.5) with

depths defined by(4.1) and (4.3), the index of exponen-

tial convergence of o (4.6) 1is

'n

-e(a,b) = 1im N llog a
’

n,mre

n

= =(1-p)F(b) logF (b) ~ (1-p) (1-F (b)) log(1~F (b))

+ plog2 - log2

-p(1-F(a))log(2(1-F(a)))-pF (a) log2F (a) (4.7)

+((1=p)F(b) + p(1-F(a)))1log(2(1-p)F (b)+20 (1-F(a)))

+(1-(1-p)F(b) - p(1-F(a)))log(2-2(1-p)F(b)-2p (1-F(a)))
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f Proof. From (4.1) and (4.2), we have
m-d(m) + 1 = N(AF(b) +0(1)) , b >0 .

Let Ty denote AF(b) + o(l) , and Tt denote AF (b)

) Then

TN + T as n,m -+ o , and
A/2 < AF(b) < A .

¥

\ From (4.3),

(l-k)(l-ZQy)/Z = (1-A)F(-a) = pF(-a) .

; Hence, Lemma 4.1 applies with 1 replaced by AF(b)

After some algebraic manipulation, the expression (4.7)

is obtained. B

Remark 2. Four interesting cases are the following:

(a) If

n
1

= b , the index is symmetric in o and

l-p; (i.e. in 1 - X and i) .

 a SR

(b) If a=Db and m=n , the index reduces to the in-

RIS

e e s,

dex of Mood's test. (See Woodworth, 1970.)
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(¢) If a and b are related via the relationship

AF (b) + (l-A)F(-a) = 1/2 , (4.8)

then the index is again the index of Mood's test.

(d) Suppose that the asymptotic length of one interval
vanishes, e.g. a = 0 . Then the index reduces to

that of Mathisen's statistic (Killeen, et al., 1972).

(e) If m=n then for a + b =c¢c , the index is
maximized by a = b = ¢/2 which yields Mood's
statistic. On the other hand, the index is a minimum .
for a + b=c¢c just when a or b is 0 which
yields Mathisen's statistic. Hence, for equal sample
sizes Mood's test is best and Mathisen's test is worst.
However, for more extreme sample size ratios, Mathisen's
test has a larger index than Mood's test; (see Killeen,

et al., 1972).

These remarks are crucial in that they show the intricate
relationship of the special Mood and Mathisen-intervals to

that of the general two-sample interval constructed from two

arbitrarily chosen (asymptotically) fixed-width sign-intervals. .




5. NUMERICAL COMPARISONS AND DISCUSSION

Thus, various median tests arise as special cases
as a result of formulating the problem in terms of ’
(asymptotically) fixed-width intervals. In this context
we are able to distinguish between the two-sample test
¥ based on the Mood-interval and any other solution to the

condition (1.7).

In order to make efficiency comparisons we specify
a constant ¢ > 0 and then consider values a and b
such that a + b = ¢ with specified ratio a/b . For the
Mood-interval, however, we are not free to do this. The
relationship (4.8) in terms of c is
AF(b) + (1-A)F(b=-c) = 1/2 . Once ¢ 1is specified, b
and hence a are determined by this additional constraint.
The (Bahadur) asymptotic efficiency as m,n + » (with
m/ (m+n) + A) of Procedure A relative to Procedure B

is then

eff(A,B) = index(A)/index(B) . N

B & A 3 s

Table 1 provides numerical evaluation of the indices of
exponential convergence. We select values of 1/2 , 1/4 ,

1/8 for p =1 - X ; and values of 1 , 2/3 , and 3/2

for the ratio a/b . Without loss of generality, we take

........
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e o F a Apnie e 20a yom s . 3 . . s N " br . 1

- 24 -

(a,p) to correspond to the interval formed on the Y-sample.
Evaluation of the indices is done at the standard normal
distribution. For tables with indices evaluated at the
logistic and Laplace distributions see Tableman (1984).
These tables reveal similar information and thus are omit-
ted. Figure 2 supplies a graphical display of the effi-
ciencies of the equal asymptotic lengths (a = b) solution

relative to the Mood-interval.

Based on the information displayed in the table and
figure, and with economic considerations in mind, we re-
commend taking a = b for a specified c¢ . For if obser-
vations from each population are equal in cost, selecting
equal sample sizes yields the more efficient procedure (as
always). (From Remark 2 (b), this solution is asymptotically
equal to the Mood procedure.) On the other hand, if one po-
pulation is more expensive to sample from than the other,
then taking two sign-intervals with equal asymptotic lengths
will provide the more efficient procedure for more extreme
values of o ; and, as was noted in Remark 2 (a), the index
is symmetric in o and (l1-p) . Therefore, an experimenter
can adjust the ratio of sample sizes to meet cost con-
straints (for example), pick a = b , and obtain a more

(Bahadur) efficient procedure than if he had chosen the

Mood-interval procedure.

RN Y
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Table 1. Index of exponential convergence x10° :

Standard normal c.d.f.

¢

: 0 a/b .01 1 1 2 4
; Mood 1/1 .008 .795  75.2 256 585
: 1/2 2/3 .008 .795  74.9 252 562
: 3/2  .008 .795  74.9 252 562
Mood .006 .596 53,9 155 215
‘ (b=)* .0025 .025 .234  .383  .431
) 1/4 1/1 .006 .597  56.8 196 466
'_ 2/3 .006 .597 57.1 199 465
3/2 .006 .596 56.0 188 430
Mood .0035 .348  29.9 76.1 95.5
§ (b=) .00125 .0125  .1122 .168 .18
‘ 1/8 1/1 .0035 .348 33.4 118 300
f 2/3 .0035 .348 33.8 122 309
‘ 3/2 .0035 .348 32.8 111 267

* b determined by AF(b) + (1=\)F(b-c) =1/2 .

7 P00 QST oy P RN 04
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Figure 2. Bahadur efficiencies of equal asymptotic lengths
(a=b) solution with respect to Mood-interval

evaluated at the standard normal. K




APPENDIX

Proof of Lemma 4.1. We show that conditions of Theorem

2.2 of Killeen, et al. (1972) are satisfied. Let [x]

denote the greatest integer < x . From Theorem 3.1,

lim u’llogpo{sx(d(n)) = (Nt]}
m, oo

N

- -1 m =1 n . _ -1
lim N 1og([m])+1j.mN 109(3(n)? = 1M N "10g(s 1y N’

+ lim N Ylog(d(n)/ (d(n)+(Nt])) .
(1) wWith d(n) defined by (4.3) ,

d(n)/ (@(n)+[(N1]) + ((1-}) (1-2<py)/2)/((l-k) (1-2‘q>y)/2+-r) .

Therefore, lim N1

log(d(n)/(d(n)+[NT])) = 0 .
(2) In the next three steps, we use the following:

If lima/n=a , limb/n=8, 0 < B < a<« where
n-oo n->o

a,b are integers, then it follows from Sterling's

formula that

lim n.l

n—+o

1og(§) = Blog(a/B) + (a-B8)log(a/(a=B)) .

(3) m/N » A, (Nt] /N+T1; and by assumption, 0 < T < A .

Therefore, by (2)
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Lim u‘llog(m";l) = tlog(A\/1) + (A=1) 1og(A/ (A=T)) .

(4) n/N » (1-1) ; by (4.3),

AN > (1-)) (1-29,)/2 < (11 .

Therefore, by (2)

-1 n
lim N log(d(n)) = plog2 - (p(l—2q>y)/2)log(1—2¢y)
- (a(1+2¢y)/2)1og(1+2¢y)

where p =1 - )\ .

~ g g~ -

(5) N/N=1; (d(n) + [NT])/N » (1-x)(1-2¢y)/2 + 1T <1,

Therefore, by (2) and after some algebra

o g o

-1 N
~lim N 10943 (n)+ (e )
= ~log2 + ((2t+(1-2¢,)) /2) 10g(p (1~29,)+21)
+ ((2-21-0(1-2¢Y))/2)log(2-21-o(l-29y)) .

Summing up (1), (3), (4), and (5), we obtain

1

lim N~
n, meeo

logP {s (d(n)) = (Nt}




= the expression stated in Lemma.

This along with the fact that

lim N7t

logPo{Sx(d(n)) 2 exle/z} = -o jimplies Condition

2.2 (of Theorem 2.2) is satisfied. Now,

Po{Sx(d(n)) = [Nt] + 1}/P°{Sx(d(n)) = [Nt]}

= ((m=[Nt])/(INt]+1)) ((@(n)+(Nt})/ (N-d(n)-[N1]))

+ ((A=1)/71) ((1=A) (1-2¢y)/2+r)/(1-(1-2<py) (1-N/2-1))as m,n+

which is positive and finite.
Therefore,

N"Llog(® (5, (@n) = (N1 + 1}/B (S, (@m) = (Ne]}) + 0 as mpnoe .
Condition 2.1 is satisfied.

To check the non-increasing property: Let x > °N = Nt .
Since A/2 < t < X , we only need to check for x such

that

NT < x < NX .




Lo TR T bt

s E [y oy b (e n g 2 Atk w2 et mti ats kS e ) - TR AT
g 2 o oK ol 0% Y ¢ N TR X AT AT R LY Sab ML L T RCR

Now,

P{Sx(d(n)) = [xli-l}/P{Sx(d(n)) = [x]}

= ((m=(x])/[x+1]) ((d(n)+[x])/(N-d(n)~[x])) .
Need to show that for sufficiently large N , this ratio
is less than 1 . This follows immediately from the fact
that

A(l-Zvy)/z < A/2

and that A/2 < t < A . Therefore, by Theorem 2.2 of

Killeen, et. al.,

Lin N loge (S, (d@)) 28} = Lim N 1logp_{S,_d(n)) = [N<]} .
n,moe Mo
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