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I. INTRODUCTION
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Throughout history, ;he application of materials in engineering design has
posed ;1 variety of probléms. In the nineteenth century, the industrial age ush-
ered in a vast increase in the use of metals. It was soon discovered that structures
made out of such materials were not perfect. Tragic accidents such as train wrecks
and bridge collapses soon brought about widespread concern over the design of such
structures. In many cases, the blame was correctly attributed to a poor basic de-
sign. Yet it was gradually discovered that metals had deficiencies in the form of
pre-existing flaws, and such flaws could initiate cracks and fractures, thus bringing
about failure of the structure.

The discovery of these flaws brought about an interest in studying metallic
materials, for it was felt that prevention of such flaws would improve structural
performance. Over the next several decades, the increase in the understanding of
metallic behavior, combined with improved production methods, brought about a
marked reduction in the number of structural failures.

In the second World War, a renewed interest in the study of materials came
about as a result of the failure of several Liberty ships. Investigations into these
failures revealed that flaws and stress concentrations were responsible for the brittle
fractures. In the next several years, high strength materials were developed in the
interest of weight savings. As many of these materials have low fracture toughness,
it was discovered thzt they would fail at stresses below the service stress they were
designed for in the presence of small cracks. This occurence of low stress fracture in

high strength mate-ials has brought about the development of fracture mechanics.

[1].




Although the majority of fracture mechanics has been developed in the last
few decades, its beginnings can be traced back to the research of A.A.Griffith (2]
in 1921. Griffith argued that in the case of uniaxial tensile loading of a material
containing a crack perpendicular to the load, the crack would propagate and bring
about catastrophic failure at a stress below its tensile strength. By analyzing the
region surrounding the crack tip with respect to a global energy balance, Griffith
developed the concept that a pre-existing crack can only extend catastrophically
when the amount of elastic strain energy released on growth of the crack equals or
exceeds the surface energy of the newly formed crack surfaces. The Griffith equation

for the strength of a solid in plane stress containing a crack of length 2¢ was given

oy = \/E—;E-? : (1)

where E is Young’s modulus, and « is the surface energy [2-4].

as:

Although Griffith’s theory works well for purely brittle materials, it does not
accurately describe the fracture situation in ductile materials. Griffith assumed
that all of the work done during the fracture process goes into the creation of new
surfaces; this does not allow for any dissipation of energy by plastic deformation
and other energy dissipation mechanisms. As a result, the original Griffith criterion
was extended by Irwin and Orowan [5,6] to include the case of ductile fracture of
metals.

Irwin and Orowan noted that the energy required for a crack to extend in
a metal is much greater than the surface energy of the new free surfaces. They
proposed that a plastic work term ~, should be added to the Griffith surface energy
4. Furthermore, they argued that v, is much greater than 4. Thus, 4, replaced ~

in Griffith’s original equation, Eq. 1, as follows [5-7]:

op = i @)
/ e = me
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Irwin later introduced the terms G and Gj. for the plastic work associated

with a spontaneously growing crack {3]. When G, the energy release rate or crack

extension force, becomes equal to the critical value, G, the crack extension would
then take place. This became known as the critical energy relase rate criterion [1,7)].

By substituting G, for the surface energy term 2, Eq. 1 becomes:

EGy.
o=y =2 (3)

The validity of Eq. 3 is limited to only linear elastic behavior of the specimen

having a crack with practically no crack tip plasticity. However, if there exists a
significant amount of plasticity, i.e., the crack tip plastic zone is large compared to
the crack size, linear elastic fracture mechanics no longer applies. In 1961, A.A.
Wells [8] introduced the critical crack opening displacement (COD) as a fracture
criterion. This was originally developed as a criterion to treat those materials that
exhibit a high ductility. Wells stated that crack extension is assumed to occur when
the COD exceeds a critical value. One of the criterion’s major drawbacks is the fact
that it does not permit the direct calculation of a fracture stress [1,7]. The COD is

found from:

4(1 - Vz)K?c

oD =
cob TEoay,

(4)

where v is Poisson’s ratio, oy, is the yield strength, E is Young’s modulus, and K.

is the mode I plane strain fracture toughness.

In 1968, J.R.Rice [9] introduced the application of a path-independent contour
integral to analyze elastic-plastic crack problems. Similar in principle to the critical

energy release rate criterion discussed above, Rice’s J-Integral provides a fracture

L 4

| criterion for cases where plasticity effects are not negligible, and it is given as {7]

AR kil
X




M e CL e e Te T, . M eTAm, e N W
r.-».- R A R A A A ARG S A AR A ot gy - AES o0 01 o

....... et Ak dedi e & o)

ou;
7= [ (way- @3yes) (5)
r
€5
where W = /o,-j de;; ()

0
where the contour I is traversed in a counterclockwise direction from one crack face

to the other, W is the strain energy density, T; is the traction vector directed at a
point on the contour I', u; are the displacement components, and s is a measure of
arc length along I'. The crack is located in the zy — plane such that the crack lies
parallel to the local z — az1s.

The J-Integral has been widely used in non-linear fracture mechanics. It can be
extended to critical values which will characterize the crack tip fleld at conditions
of imminent fracture initiation. In the linear elastic case, the crack growth occurs
if J exceeds a critical value Jy. which is analogous to G;.. However, J-Integral is
regarded as a more general criterion in that it is capable of handling both elastic
and elastic-plastic fracture situations [1,10].

The independence of J on the contour path I' chosen has been the subject
of a great deal of research. Many results have indicated that J tends to decrease
as the crack tip contour shrinks to the crack tip. In the elastic case of true path
independency, however, J remains constant as the contour shrinks. In addition,
J can be applied to only stationary cracks. Another limitation is that the plastic

region around the crack tip must be small with respect to the size of the region

in which J controls the stress field [1]. In the opinion of G.C.Sih, “There are
too meny fundamentally unresolved difficulties concerning the assocation of J with

ductile fracture.” (7]

At roughly the same time as Rice’s J-/ntegral was introduced, another fracture

)y
V.
>
.\
)
i

criterion was developed using the crack resistance force R [7]. The criterion was

based on comparing R to the energy release rate G. It was stated that:

N 4
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a) for G < R, no crack growth

b) for G = R, stable crack growth

c) for G > R, fracture instability occurs
An evaluation of this fracture criterion is possible upon analysis of the R-curve, a
plot of G and R versus the crack length. At this stage, however, the theory for the
R-curve has not been firmly established [1]. )

In 1973, G.C. Sih developed a new criterion based on the strain energy in the
material, and termed it the Strain Energy Density Criterion {11,12]. The strain

energy density in a solid can be calculated from either the area under the true

stress-true strain diagram, or from [13]:

dav 1 T:
o ap |ttt wle o)+ )

where o;, oy, 0, are the normal stresses, 7z, is the normal shearing stress, E is
Young’s Modulus, G is the shear modulus, and v is Poisson’s ratio. From this
expression, Sih’s strain energy density factor S can be analytically derived, and is

given as:
' dw

S =1‘(F‘7) (8)

The Strain Energy Density Criterion is given in two parts:
a. Crack initiation takes place in a direction 6y determined by the relative

minimum of the strain energy density factor S:
S — Snmin at 0 =4y (9)

b. Rapid crack growth occurs when the minimum strain energy density factor

Smin reaches a critical value:
Smin — S, (10)

The general expression for S., the critical strain energy density factor, is derivable

from experiments only, and is given as:

-------
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dw

Se=r(Gy

). (11)

where (%‘,’-)c is the experimentally determined value of % at fracture, and r. is
some critical radius of a core region surrounding the crack tip. Within the limits
of linear elastic fracture mechanics, S, can be related to the mode I plane strain

fracture toughness K. as follows:

_ 1+ -2)

2 .

Se

The ultimate goal in our research was to find a suitable fracture mechanics
criterion that could be extended into a fracture mechanics theory for composite
materials. In composites, it is most likely that a crack will not propagate ir. a self-
similar manner. All fracture mechanics theories except that of Sih’s assume directly
or indirectly that the crack must propagate in a self-similar manner. This is the
main reason why we were attracted to Sih’s Strain Energy Density Criterion in our
research.

The main criticism of Sih’s criterion lies in the fact that although the definition
of S is a purely analytical expression, the definition of S, is not purely analytical.
Although r can be substantiated analytically, r. cannot be; furthermore, r. has no
physical significance. Likewise, although % is well founded analytically, (% . can
be determined only from experimental true stress strain curves.

Finite element analysis was chosen as the tool through which our research was
performed. One of the objectives in our research was to determine how the strain
energy density % behaves in the presence of a crack on a local level. This local %%’-
is distinguished from a global -‘%— in that the latter is determined from calculating
the area under an experimental true stress-true strain diagram. Finite element

analysis was chosen to conduct a local energy analysis, as it is obviously impossible

to conduct such an analysis experimentally.
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Acceptance for employing the finite element method in non-linear situations
is dependent on several factors. To begin with, considerable computing power is
required to solve problems with this degree of complexity. Yet improvements in
digital computers over the last decade of so have increased computing power while
lowering the computing costs. Secondly, the accuracy of any proposed solution

technique must be proven before non-linear finite element analysis can be applied

to design.

In the present study, an elastic-plastic stress analysis was performed on A-517
steel plates in order to observe the local behavior of the strain energy density in
the vicinity of the crack. A-517 is a low carbon, quenched and tempered alloy steel
intended primarily for use in welded bridges and other structures. Compared to
other high-strength steels, A-517 exhibits a very high yield strength as well as good

low temperature toughness [14,15].
Thus, the objectives of the present investigation were as follows:

1. Develop a suitable finite element analysis program to perform a non-linear

stress analysis of cracked solids.

2. Use this finite element program to study local 2% in cracked A-517 steel
av

plates.
The finite element method is a numerical analysis technique utilized for ob-
taining solutions to an extensive variety of engineering problems. Any continuous

quantity, such as stress, strain, pressure, or temperature, can be approximated by

models constructed of a set of piecewise continuous functions defined over a finite

number of elements. Using the concept that any continuous function can be rep-

resented by linear combinatio.»s of algebraic polynomials, approximation functions
are derived for each of these elements. Elements are connected at common nodal
points and collectively approximate the shape of the domain. The assemblage of

elements is based on the concept that the solution is continuous at the boundaries




common to the elements [16-20]. ::
There are generally six steps followed by the computer in the finite element ';:
method: o
o
1. Read in input data (including the idealization) 2 -;.’;
2. Select interpolation or approximation function l.
3. Compute the properties desired for each element ) ,:
4. Assemble the element properties :;
5. Obtain the system of equations ::'
6. Solve the system of equations )
The first step in preparing the input data is setting up an idealization to rep- -'
resent the structure (or, more generally, the domain). The resulting solutions for
the program will obviously depend on the idealization created; it is here where ',"
experience in using finite element analysis is evidenced. Once certain guidelines .'-‘:{
are established, however, even a beginner can develop effective idealizations. These W
guidelines are as follows: [21] "f
1. Lay out the structure to scale, preferably on linear graph paper EE ?
a. If the structure is symmetrical, situate the structure so that one of the e
coordinate axes corresponds to the axis of symmetry. ':.:‘
b. Use enlargements or blowup areas where necessary k’;
2. Divide the structure into a suitable number of elements; concentrate the ele- £
ments in areas of high stress ' ~
3. Sketch in intermediate nodes along the element edges E
4. Number the nodes using a suitable technique ol
5. Number the elements using a suitable technique ‘:"‘
6. Compute nodal coordinates Al
A word on various types of elements is due at this point. The long-used it
constant-stress triangular element is now felt to be both obsolete, inefficient, and ::
"
8 oS




surprisingly inaccurate [22]. This is readily evidenced upon comparison to to-
day’s higher order elements such as the 12-node isoparametric quadrilateral element
(Quad-12 elemslt). See Table 1 and Figure 1. The use of higher-order elements pro-
duces more accurate results in those areas where the gradient cannot be accurately
approximated by sets of constant values. As opposed to the constant stress trian-
gular elements, the Quad-12 element has a continuously varying stress .ﬁeld across
its face. The displacement varies cubically within the Quad-12 element, as opposed

to linearly in the constant-stress element. As a result, one Quad-12 element can

replace as many as 200 triangular elements, thus reducing data preparation time

and computer CPU time. In addition, the use of the Quad-12 element increases the

accuracy of the solution.
The advantages of the Quad-12 element are thus:

. Displacements vary cubically over the element. The element approximates the

true displacement function with a third-degree polynomial degree fit.

. The geometry of the element edges may vary cubically; thus, curved edges may

be used to more closely approximate the structure.

. As the stresses are given by appropriate first derivatives of the displacement

functions, they vary quadratically over the element.

In numbering the nodes and elements, a technique is used in order to maximize
the efficiency of the computer program. As a major part of the solution procedure
in finite element analysis is the mathematical manipulation of matrices, the compu-
tation time is directly related to the size of these matrices. The set of equations that
arise have a large number of coefficients which are zero. Upon analysis of a typical
system matrix, it is seen th.t all non-zero coefficients will fall -.thin two imaginary
lines which can be constructed parallel to the main diagonal. The distance from the
diagonal to this imaginary line is commonly referred to as the bandwidth. Reducing

the bandwidth reduces the storage requirements for the program, thus reducing the

9
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total computation time.

formulation.

for a cantilever beam problem

Table 1. Tabular comparison of triangular and Quad-12 elements

The most effective way to minimize the bandwidth is to number the nodes in the
structural idealization in such a fashion as to keep the difference between numbers
of adjacent nodes to a minimum. Similarly, the elements in the idealization should
be numbered in the same fashion so as to minimize the difference between the

numbers of adjacent elements {19,21]. The following section deals with the problem

Factor Triangular Quad-12
Number of Nodes 400 243
Number of Elements 686 3
Semibandwidth of Stiffness Matrix 20 24
Order of Stiffness Matrix 800 56
Required Computer Time on CDC 6400, sec. 53 6
Average Displacement Error, percent -9 ~0
Average Stress Error, percent -20 ~ 0
Manhours to prepare data 2 0.2
Turnaround Time overnight 5 minutes
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II. PROBLEM FORMULATION

The first objective in the project was to develop a suitable finite element anal-
ysis program in order to study fhe local behavior of % in cracked steel plates.
PAPST, a two-dimensional elastic-plastic finite element program, was selected as
a starting software package. PAPST, an acronymn for Plastic Azisymmetric and

Planar STructures, has been developed by the Navy over the last several years for

the analysis of elastic-plastic crack problems [21-23].

The features of PAPST are numerous. The program incorporates the 12-node
quadrilateral isoparametric element adapted to plane stress, plane strain, and ax-
isymmetric conditions of structural behavior. The displacements and :geometry vary
cubically in the Quad-12 element, thus allowing the accurate modeling of curved
structural boundaries. By the nature of the Quad-12 element, relatively few ele-
ments are needed to effectively model most simple structures. PAPST uses three
basic elements in all: the standard Quad-12 element, the small circular core element
which completely encloses a crack tip, and the enriched 12-node isoparametric ele-

ment which has a corner node corresponding to a crack tip [22].

The outstanding feature of PAPST is its non-linear stress and fracture mechan-
ics analysis. It has the ability to treat cracks in fracture mechanics applications by
two different methods, both of which will produce a direct calculation of the Mode I
and Mode II stress intensity factors. Rice’s J-Integral can be evaluated on up to ten
different paths surrounding the crack tip. The J-Integral for elastic-plastic crack

problems is given by Egq. 5.

PAPST incorporates the incremental flow theory of plasticity and the Von
Mises yield criterion with isotropic or kinematic hardening laws, or a combination

of the two. The incremental plasticity theory is given as [23]:




. 14+v , 3
bj=—fF itz [ (0c) sty ot (for 0l =0ydyrene and 0, >0) (13)
éij = }%s}j (otherwise) (14)
where:

é;;= deviatoric strain rate components (é;; = é;; — 3;1’5”5:':')
si;= current deviatoric stress components (s;; = 0y; — L0506
J ] 7~ 3%pY%;
s{;= deviatoric stress components measured from center of current yield
R
surface (s}; = sij — aij)

ai; = coordinates in stress space of center of yield surface

0. = von Mises effective stress = / %s.-,-s.-,-

ol = %s:-js:-j

Oyq = yield stress
In modeling the material in PAPST, an experimentally determined true stress-
strain curve can be approximated using either a Ramberg-Osgood power-hardening

model or a multilinear model. These models are graphically depicted in Fig. 2 [22]

The mathematical form of the power-hardening model is given as: [23]

for o<oy, €= % (15)
=2 (o1 _ %
for a>ay, e—E+a[E(oy) E] (16)

where n, a, and oy (the yield stress) are chosen to best model the observed behavior.

The mathematical form of the multilinear model is given as: (23]

o «a a o
e=E—-i-'fl(al""y)'i-‘Ez(Uz—01)+"'+'§(U—“N-1) (17)

where oy ) < 0 < on, 0y is the yield stress, and

_ EACN - AO'N

aN

Aon ' (18)




...........

For this material model, the plastic strain rate is given by:

QN&¢

. aN
€plastic = E and f(o'e) =

Eo,

(19)

PAPST includes several other features: [21,23] -

1.

The crack tip elements include the plastic mode I singularity developed by

Hutchinson, as opposed to the classical linear elastic singularity.

. The Newton-Raphson iterative procedure is used to solve the non-linear

equations under the restrictions of user-specified convergence criteria.

. PAPST uses 4x4 numerical integration (Gaussian quadrature) to evaluate

the conventional Quad-12 element’s tangent stiffness matrices.

. Loading, unloading, and reloading cycles can be used to simulate mechan-

ically and/or thermally induced residual stresses and strains.

. The first load increment is automatically calculated to correspond to the

first yield in the specimen; the following load incrementation is user-

specified.

. Simulation of quasi-static crack growth.

. A treatment of finite strain effects through the use of an updated La-

grangian formulation.

. The capability to compute the applied tearing modulus T.

. Large strain and large displacement formulation.

As an outgrowth of the non-linear stress 1nalysis from PAPST, the strain en-

argy %%" was calculated from Eq. 7. It should be pointed out that this equation

is only valid in the elastic region of the material. PAPST also has the capability

to list those nodes that have undergone yielding. From this information, it can be

determined where the formula for ‘i—‘g— can and cannot be applied. To overcome

14

]

. s ® - .

"y s [
LI S
S ,

s .
o

| ZROL AL

)
I

poen

",.l‘
B

RN

‘b‘ _‘.‘.'.‘,s‘. .

‘!\l
ALY



this restriction, %—v“,i can also be calculated from the area under the analytically
generated true stress-strain diagram. This approach is valid for both the elastic
and plastic regions. The non-linear stress analysis output from PAPST can be used
to analytically draw the true stress-strain diagram; the area under this curve was

. . dW
computed and said to be equivalent to local 3.
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Figure 2. Graphical depiction of the material modeling available in PAPST
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III. SOFTWARE DEVELOPMENT

A major portion of the research was devoted to the development of a suitable
program to analyze the behavior of local %‘,’— in cracked steel plates. PAPST, a two-

dimensional elastic-plastic finite element program described extensively in section II,

Balh e i ot e

was selected as a starting software package. As PAPST was used mainly for its non-

linear stress analysis capabilities, several modifications and additions were made to
the program to better serve the needs of the present research. The major addition
was a subprogram which performed a complete energy solution and analysis. The
modified version of the original program is henceforth referred to as ARLPAPST

in the rest of this manuscript.
There were three major areas in which PAPST was modified:
1. Data preparation and pre-processing
2. Modifications to the running of the PAPST stress analysis program

3. Several post-processors added which perform complete energy analyses
including both analytical and graphical interpretation of output from the

PAPST stress analysis program
The data input for the main PAPST program is quite extensive. It includes
nodal connectivity and coordinates (both Cartesian and polar), a variety of loading
options, graphical and data output options, angled and un-angled crack analysis,
. many fracture mechanics analysis options including calculation of the J-Integral
on up to ten user-specified paths, and user-specified non-linear material modeling.
To aid the user in entering this vc'uminous amount of data, an interactive pre-

processor was added to the original package. This has significantly reduced the

data preparation time.

LA NN

The second major area of modification concerned the convergencecriteria used
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by PAPST in the non-linear stress analysis. The program’s original convergence
scheme was replaced by a more intelligent and versatile one. The new criteria
reads in initial convergence parameters specified by the user in the data input. As
the program runs through each load increment, these parameters are optimized
for the most efficient convergence possible. In addition, these continuously variable
convergence parameters are automatically tested to determine whether the resulting
criteria is within acceptable limits.

The main program was also modified to read in raw data output options spec-
ified by the user, thereby printing out only selected parts of the output for each
tncrement. These included:

a. Strains and stresses for each element
b. Normal strains at each node
c. Normal stresses at each node

d. Location and value of highest Von Mises stress

e. Original (user and computer generated) nodal coordinates

f. Nodal displacements

The third and most extensive area of modifications to the main PAPST pro-
gram was the post-processing. This post-processing, now an integral part of ARL-
PAPST, includes a complete analytical and graphical energy analysis of the speci-
men. The present capabilities include:

a. Calculation of area under the true stress-strain diagram for any load in-
crement and any user-specified node in the mesh. This provides a direct
means of calculating local %, and is valid for nodes in both the elastic
and plastic regions. A graph is produced of the true stress strain diagram
in addition to a history of thé incremental areas under the curve.

b. Calculation of local éd%'- using Eq. 7 for any node in the elastic region at

any load increment.
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Plots of local %—v“,i (formula or direct) versus distance of corresponding node

from crack tip.

. Plots of local %%’— (formula or direct) versus §, the angle of the correspond-

ing node from crack plane.

Plots of the specimen idealization during loading, indicating the regions

where yielding has taken place.

Thus, the original PAPST non-linear stress solver has been extensively modified
and improved upon. The new package, ARLPAPST, is a much more versatile and

capable program. Its advantages are summed as follows:

More user-friendly.
An extensive list of raw data output and graphical output options are now

available.

. A more versatile and efficient convergence criterion for the nen-linear stress

analysis.

. A complete energy analysis of the specimen, including two methods to

calculate local ‘%}—’ at a user-specified node and at a user-specified load

increment.

. Several options available to graphically and analytically interpret the en-

ergy analysis.
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IV. FINITE ELEMENT MODELING

The behavior of the local energy in the immediate vicinity of the crack tip

was analyzed using ARLPAPST. All of the computer analysis was performed on
a Digital VAX 11/782 super minicomputer. The original specimen ;nalyzed is
pictured in Fig. 3. As it is symmetric about the crack axis, only an idealized
upper symmetric half of the specimen was modeled. The idealization shown uses
the 12-node isoparametric quadrilateral elements discussed previously. Note how
the elements are concentrated closer to the crack tip. A fine mesh is required for
an accurate stress analysis close to the crack tip, as this is where the non-linear
material behavior and plasticity is most evident. But as the dist;nce from the
crack tip increases, the density of the mesh can decrease. A detailed mesh far from
the crack tip is both unnecessary and costly.

An experimental true stress-true strain diagram for A-517 steel was taken from
the literature [14] and is shown in Fig. 4. This curve was modeled in a bi-linear

fashion; the two points chosen from the curve are represented by:

1=107,400 psi €,=0.00358 (yield)

02=108,570 psi €2=0.006 (post-yield)

The other material properties used in the program were a Young’s Modulus of 30
million psi and Poisson’s ratio v of 0.3. A load of 6000 1b. was used as a reference
to which load increments were computed for data input in each of the computer
runs.

Several different specimen geometries were analyzed, and are tabulated in table

2. For each of these geometries, several runs were made to vary the incremental

loading of the specimen. When a new specimen geometry is first analyzed, a wide
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(Dinmensions in
inches =
Thickness = 1,0)

0.51 2.0
.
(a)
Y
LCAD
2.0 1.2
he————— 1.537 ——-—-i
CRACX TIP ——l
Rz
(b)
Loed Distnbyted 128 Nodes
Along Element 20 Elements
Edge {12-Node isoper.)

Crack l‘io—/
(c)

Figure 2. The original model analyzed, crack length = 1.537 inches
a. Actual specimen geometry
b. Idealized geometry (symmetric half)
c. Structural idealization
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A
range of load increments is usually chosen in order to gain a rough idea of how AN,
~
the specimen responds to the loading. In subsequent runs, the load increments are
concentrated over a certain range to more closely study the fracture behavior of the 3{.
specimen. The choice of load incrementation must be chosen in such a manner that PN
the increments are close enough to permit efficient convergence and an accurate o
stress analysis. Yet there is a tradeoff, for as the number of increments is increased,
,‘J‘
so is the cost of the individual computer run. Analytical results are presented and N2
4
discussed in the next section. 28
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B
V. ANALYTICAL RESULTS AND DISCUSSION Es;-
§ -
The objective in our research has centered on studying the behavior of the Jf;:
local strain energy density % in the vicinity of the crack tip. From the litera- .
ture it is found that 2% monotonically decays as the distance from the crack tip '.';’;
increases. From the non-linear stress analysis output from ARLPAPST, several X ::
energy analyses were performed in order to check this expected behavior. ::-w.
A global analysis of the energy field around the crack tip is given in Fig. 5. This ’,
is a global analysis in the sense that the data represents practically all the nodes -‘:
generated in the finite element mesh. In general, it can be seen that the energy &
steadily decreases with an increase in distance from the crack tip, as predicted in :-_:
the literature. As Fig. 5 indicates, however, there are some energy values that :
do not follow this predicted behavior. This anomalous behavior of an increase in | .:’«-
energy away from the crack tip was confirmed to be correct.
To study this anomalous behavior more closely, the analysis then narrowed to :‘:,
those nodes lying at a particular angle 4 from the crack axis. As Fig. 6 shows, the &
curves at 30° and 50° exhibit the expected behavior of a decrease in energy with an --
increase in distance from the crack tip. However, the curve at § = 0°, representing "_
those nodes lying directly in front of the crack, exhibits a minimum energy point e
followed by an increase in energy. This unexpected behavior of an increase in energy ‘I_
with an increase in distance only occurs in those curves corresponding to ¢ = 0°, \
irrespective of the crack lengths and specimen dimensions. N
From Fig. 3, it is seen that the crack axis is perpendicular to the direction of ?_
the loading. Secondly, a homogeneous material (A-317 steel) was used throughout
the research. Thirdly, in all the specimens analyzed, plane strain conditions were : :
maintained, thus eliminating the effects of plane stress. As a result, it is safe to \
N
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assume that the crack will propagate in a self-similar manner at § = 0°. It was
felt that there was a possible link between this anomalous behavior of %‘;’- in the
0 = 0° direction and the anticipated direction of crack growth at § = 0° which is

coincidently in the same direction.

The next step in the research was to study the effects of load in further detail
on the variation of the local strain energy density. This is graphically &epicted in
Fig. 7. As the distance from the crack tip is increased, the energy initially decreases
rather sharply. The curve then reaches a minimum point at roughly a radius of 0.22
inches from the crack tip. From this point to the right edge of the specimen (at 0.5
inches from the crack tip), an increase in energy occurs. At the lower loads, this
increase is rather subtle. Yet, at the higher loads, the energy increases sharply and

then appears to level off.

The minimum energy point that exists in each of the curves was referred to as
(%)mgn and occurs at a location ry;n. As the load is increased on the specimen,
this value of (%)m;n becomes more sharply defined, i.e., the curve develops a more
sharply defined cusp at the bottom. In addition, as the load is increased from 1200
Ib. to 4800 Ib., (%)m;n increases. However, (%‘/")min for the curve at 5400 Ib.
is significantly lower, and it signifies that (%)m“n attains a maximum value at a
load between 4800 1b. and 5400 |b. Furthermore, at larger distances from the crack
tip, it is seen that after an increase in energy, the curves tend to reach a constant
energy value, a region in which the energy gradient is zero. This constant value of
energy was referred to as (%)w"; the region of constant energy starts occuring at

a location r..» in front of the crack tip.

In order to deterr:ine the load at which (%)m;n attains a maximum value,
ARLPAPST was run with different load increments chosen so as to yield several
energy values between the loads of 4800 Ib. and 5400 Ib. After plotting curves

similar to those in Fig. 7, plots were produced of the minimum energy versus the
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. load. This is seen in Fig. 8. This figure shows more clearly how (‘—f‘—"“,i)m,-n steadily

increases with an increase in load up to a2 maximum value around 4980 Ib., and then
sharply decreases with further increase in the load. The peak value of (%“—y—)m;n was

referred to as (ﬁ—":):m-n; the load at which ($%)% . occured was referred to as a

special critical load, P,.q;.

Our attention then turned to studying (%”—g—)co,.. From Fig. 7, it wa; seen that
this parameter was near constant at some load. It was found that the value of
(‘i—v‘,‘.’—)cm was almost constant, i.e., the energy gradient was closest to zero, at the
critical load of 4980 Ib. To isolate this behavior, Fig. 9 gives the energy curve at
this critical load taken from a family of curves similar to those in Fig. 7. This curve

clearly exhibits the very constant nature of energy far from the crack tip (r > reon),

con”®

and is designated by (i—v“,’)'

In order to assess the significance of (45)%,;, and (%), it was imperative
to study the effects of different crack lengths on the behavior of the energy fields.
The specimen geometry remained the same as mentioned in figure 3 (width=2 in.,
height=2.4 in., thickness=1 in.). In addition to the original crack length of 1.537
inches, specimens with crack lengths of 1.0, 1.643, and 1.7685 inches were analyzed.

It was found that a global energy analysis of these specimens revealed the same

anomalous behavior in energy in the direction ¢ = 0° as discussed above.

Similar to the curve in Fig. 8, three different curves were drawn in Fig. 10 to
further analyze the behavior of ($%),nin versus load for specimens with different
crack lengths. The first observation is that the peak energy value (%‘—,’-);nin for
these curves are roughly the same and are approximately equal to 52 Ib — in/inS.
Secondly, beyond the end of each curve, it was. found that plastic collapse occured
in the specimen. It is safe to assume that the ends of these curves can be linearly
extrapolated to cross over the load axis. At these points, (d—":,’)m;,, = 0; this would

correspond to a condition where all of the energy stored in the specimens has been

26
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released and, as such, the condition corresponding to the failure of the specimens.
Thus, the fracture load can be analytically predicted for specimens with different
crack lengths. This fracture load can be directly compared with and verified by
experimental data. Furthermore, from Fig. 10 it was found that for all three curves,
the critical load corresponding to ( Y Yenin is approximately 83% of the fracture
load. Thus, (%)%, signifies a pre-failure condition which may be characteristic
of the material.

As regards the criticality of (£%)%,,, Fig. 11 and 12 represent the strain energy
density versus radial distance from the crack tip for a wide range of external loads;
the crack lengths used in these figures are 1.0 in. and 1.643 in., respectively. It can
be seen from Fig. 11 and 12 that at a certain critical load which is dependent on
the crack length, ( ) con Temains constant over the distance r > r..;:. However,

it should be noted that the values of ($¥)?,, in Fig. 11 and 12 are the same and

aw

is equal to about 280 /b — in/in?, as can be clearly seen in Fig. 13, Thus, (%)%,

is independent of the crack length. It is also found that ( % )ion is independent of
the specimen dimensions, as can be clearly seen in Fig. 14. Recalling that both
(2% )in and (9%)2, . are exhibited at a fixed percentage (83%) of the predicted
fracture loads of various specimens having different crack length and geometry, it
is observed that both these energy quantities refer to some “pre-fracture events”
which are the charcteristic of the material. It is assumed that (§%)?,;, and () 2on
correspond to the local and global instability, respectively, prior to the final frac-
ture of the specimens. (Note: the ratio of (dw)cm to (%—":,i);mn is 5.4) The local
instability can be further interpreted as signifying the crack initiation at r = T in
requiring a relatively smaller level of energy. Likewise, the global instability can
be further interpreted as signifying a much higher level of energy for possible slow

crack growth, (up to r = rc.¢) which is expected in the A-517 steel used in the

present investigation.
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Figure 5. Global analysis of strain energy density versus radius (distance) from
crack tip ~t a load of 4800 Ib.
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Figure 6. Comparison of strain energy density versus radjus for nodes at 3 different
angles from crack tip at a load of 4200 Ib.
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VI. CONCLUSIONS

2%

i

A computer program ARLPAPST has been developed to carry out two-dimen-

sional non-linear finite element stress analysis in the neighborhood of a crack in A-

517 steel compact tension specimens. A probable direction of crack propagation and

L4

’
fp-ty 4

r
’

* o

loads corresponding to either catastrophic fracture or plastic collapse of specimens
having different crack lengths have been predicted. In a.ddition, two critical energy
quantities, (5% )5, and (£%)%n have been established. These quantities are in-
dependent of the crack length and the specimen geometry, and always correspond
to a fixed percentage (83%) of the predicted fracture loads for different specimens.
For A-517 steel, (%VVK);,,-“ and (§¥):,, are 52 Ib — in/in® and 280 Ib — in/in®, re-
spectively. It is observed that ( ‘%‘,—’- min Signifies a local instability leading to crack
initiation at a fixed distance ahead of the crack; and (%);on signifies a global

instability just before the slow crack growth, followed by the final failure of the

specimen.
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