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ASTiRACT

A discussion of sapling in two dimensions and its implications for

ii vision is presented. We show that aliasing in two dimensions will change

both the apparent frequency and orientation of a grating. Further. we

demonstrate that the Nyquist frequency depends on orientation and is higher

than the usual estimate of 60 o/deg.

Key words: retinal sampling, aliasing
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There Is a growing recognition that the characteristics Of the retina

considered as a rwe dinesstson8 Sampling System have significant

eonseluonces for vision-lllas and Collier, 1983; Tollott, 1982, 1983;

French, Snyder and Stravenga° 1977; Hirsch and Hylton, 1983; Miller and

Bernard, 1983). Although sampling in one dimension is generally

uderstood, the fudamental differences between sampling in one and two

dimensions have not been widely appreciated in the vision literature. In

this report we will briefly discuss the effects of retinal sampling In two

dimensions In order to clarify the fundamental notions related to visual

science. Matny of the following ideas ore well known in other areas of

Imaging s ,cience (Goodman, 1968; Ziman° 1979; Ripley, 1981).

4.

A common but mistaken notion is that if the retinal photoreosptor

spacing is 1/120 (i.e. that the retinal sampling frequency is 120/de8),

then a11asing due to smpling will cause a 100 a/do$ sinusoldal grating to

appear as a 20 O/deg grating (see for ozample Tellott, 1982, 1983). This

results from applying a one dimensional aser to a two dimensional problem .

without respecting the fundamental differences between one and two

dimensions. The moat fudamental difference is that in one dimension

spatial frequency is a scalar quantity whereas in two dimensions spatial

frequency is a vector quantity. Thus, alissing in two dimensions

generally Involves a vector subtraction in frequency, which almost always

changes the orientation of the grating and certainly cannot be considered

as a a%'traction in tb *masnitsdes of the frequencies. %

The second major difference between one and two dimensions is that

whereas a on* dimensional system Is fully characterized by a single

(scalar) aliasin8 frequency a twoy dimnsieonal system. which possesses two
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independent directions, is fully characterized by two linearly independent

(vector) aliasing frequencies. While the two alising frequencies may have

the same magnitude, they always have different directions. In the case of

a square lattice their directions differ by 900 while for a hexagonal

lattice their orientations can be chosen to differ by either 600 or 1200.

The two aliasing frequency vectors torm the basis of a lattice in the

spatial frequency domain known as the reciprocal lattice which contains all

possible aliasing frequencies. That is. the sampled values of a sinusoid

of frequency f are indistinguishable from the sampled values of a sinuoid

of frequency f + fL where fjL, is one of the points in the reciprocal

lattice (see appendix). The only case in which sliasing corresponds to

subtracting the magnitudes of the frequencies occurs when the orientation

of the grating lines up with the orientation of one of the aliasing basis

vectors, a very special case. These arguments are made more concrete

below:

The essence of the sampling problem is how well the original

continuous function can be recovered from a discrete set of sample points.

In one dimension the answer is contained in the well known sampling

theorem: If all the spatial frequency components of the continuous

function vanish outside the region in frequency -ft/2 to fe/2. where

fs i the sampling frequency, then the continuous function can be

recovered exactly from the sampled function (Bracewell, 1956). This result

is easily visualized in'terns of ahiasing (Bracewell, 1965). Alising

allows us to add to or subtract from the true frequency f any multiple of

to. If the total range of frequencies in the true Fourier spectrum

exceeds fe, then aliasing ean connect frequencies within the range,
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resulting in ambiguities that make recovery of the true Fourier spectrm

impossible. However, If the total range of frequencies is loss than or

equal to fs (as for -fs/2 to fs/2), then aliasing cannot connect two

frequencies within the region and ambiguities do not occur. Note that the

Nyquist criterion, which is usually thought of as the frequency fs/2 . is

actually the boundary of the region -f8/2 to fs/2. The boundary of a

one dimensional region is. of course, just the end points. The Nyquist

interval is conventionally chosen to include the origin, other choices are

possible.

The result for sampling in two dimensions is similar to the

result in one dimension with the differences previously noted. To avoid

ambiguities due to aliasing all two-dimensional spatial frequency

components must vanish outside a region in the frequency plane. This

region Is determined by the requirement that no two frequencies within it

*. can be connected by any combination of multiples of the two aliasing

frequency basis vectors. This region turns out to be a polygon in the

frequency plane (a square for a square spatial lattice and a hexagon for a

hexagonal spatial lattice, If the region is chosen to include the origin).

The perpendicular distance from the origin to the aides of the polygon is

1/(2d) for the square lattice and 1/(d SQRT(3)) for the hexagonal lattice,

where d Is the center-to-center spacing of the spatial lattice points.

These frequency polygons have the sase orientation as the space lattice for

the two cases given. )ligure 1 shows the basis vectors for the sampling

(apsee) lattice and the reciprocal lattice for the eases of a square

lattice and a hexagonal lattice. Figure 2 illustrates the construction of
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the polygon (known as the first Brillouin zone or primitive s1 in the

reciprocal lattice) which gives the conditions to avoid aliasing. The

polygon is constructed by drawing lines from the origin to the points in

the reciprocal lattice and then drawing the perpendicular bisectors of

these lines. The ration inside the perpendicular bisectors is

characterized by the property that no two points can be connected by an

aliasing vector. Note that the Nyquist criterion is the boundary of the

polygon, and the magnitude of the Nyquist frequency depends on the

orientation of the presented frequency relative to the sampling lattice.

The orientation dependence of the Nyquist frequency can be regarded as due

. to an effective one dimensional sampling frequency which depends on

* orientation. For the square lattice, aliasing sets in at a frequency

between 1 and SQRT(2) times 1/2d), depending on orientation, while for the

hexagonal lattice aliasing sets in at frequencies between 2/SQRT(3) and 4/3

times 1/(2d). Snyder and Miller (1977) have also noted that the effective

sampling frequency of a hexagonal lattice is higher than the one

*dimensional estimate of the Nyquist limit. Thus since the retinal

" photoreceptors are hexagonelly packed with center-to-center spacing of

approximately 1/1200. aliasing sets in at frequencies ranging from 69 to 80

c/deg, depending on orientation, not 60 o/des as is usually assumed. Thus

an optical cutoff frequency of 60 o/deg is well within the sampling limit

for the foves.

Axetomical results have shown that the photoreceptor lattice is

hexagonally packed (e.g. Miller, 1979). Sampling with a hexagonal lattice

is preferable to sampling with a square lattice for several reasons.

First, hexagonal packing has a greater nber of samples per unit area than

• . .• .1 . -* - ~'-*- * - -~.-- ~*I
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square packing, leading to a higher average Nyquist frequency (greater area

in the Brillouln zone). Second. the hexagonal Brillouin zone is more

nearly circular than the square zone resulting in loss severe dependence on

orientation. A third reason is somewhat speculative. We have recently

suggested that hyperacuity involves short range interpolation between

photoreceptors, possibly quadratic interpolation (Hirsch and Hylton,

1982). Since a two-dimensional quadratic has six parameters, such a

mechanism requires at least six inputs. Then for a hexagonally packed

lattice, a photoreceptor plus its six neighbors forms a natural grouping

for short ranse interpolation, but a square lattice would require both the

nearest and the more distant second nearest neighbors as input for

quadratic interpolation.
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APPENDIX

Mathematical Details

Ve present here a brief mathematical derivation for aliasing in two

dimensions. The derivation is closely related to a basic result in solid

state physics, where Fourier expansion of periodic systems (crystals) are

quite important. (See, for example, Kittel, 1971, for a discussion of

periodic systems, the reciprocal lattice, and Brillouin zones.)

The analysis starts from the definition of a lattice. An N

dimensional lattice is fully described by the position of one lattice point

(which we take to be the origin) and a set of N vectors, called the basis

vectors of the lattice, which essentially give the magnitude and direction

of the steps necessary to move from one lattice point to the next. An N

dimensional lattice has N linearly independent such steps, and every

lattice point has a position given by

N

|i-i

M

where the I are Integers and the di are the basis vectors of the

*lattice. If we present a frequency fo we measure the values of the

sinusoid only at the set of points given by P above. AMissing occurs when

a4
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the values measured at the lattice points for a frequencyf are the same as

for a frequency f + fa for all lattice points. Thus aliasing requires:

e 1 e a or e a

for all lattice points1. (The i appearing in front of 2x is the

SQRT(-l).) This leads to sets of simultaneous linear equations of the form

ap

where 1 is the set of points given above and Kp is an integer which

varies from point to point. Substituting the form for given above leads

to the equations

la i i

where i takes on the values 1 to N and Ki is an integer which can be

different for each di. Although we do not prove it here, there are an

infinite number of frequencies fa which satisfy these conditions. In

fact, the solutions form a lattice in the spatial frequency domain known as

the reciprocal lattice, and all the l a are given by
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"la al. '
i-i%

where the ji &re intexers and the 1i are the N basis vectors for the

reciprocal lattice. we will solve for the tai for the two dimensional

case.

The aliasing conditions for two dimensions can be written as •
71 • * I  I ]11 ;2 - 0 ,

al 1 a

a2 1 -2 2

Thus we require that fal be perpendicular to d2 and have a

projection of l/d 1 onto thedi direction. and similarly forfa2.

These vectors can easily be found by using the cross productdl z d2.

This Is a vector perpendicular to both 41 and *2 (is. it is

perpendicular to the plane of the lattice). Then d2 I (dl x d2) is a

vector in the lattice plane perpendicular to d2 but not dl. and its
4e

length can be chosen to have the correct projection on dl. Similarly.

d1  (d1 z d2) is perpendicular to di but can be chosen to have p

the correct proJectioR on 12. Thus we have found the basis for the

reciprocal lattice in two dimensions, and all aliasing frequencies have the

form

e &Q1QQ
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, " . 1 + n M2 * 1.2

where the NJ are integers. The value due to one of the allsing

frequencies at one of the sample points is then

a*al I2 *I a2) (N1 1 +  2 2)

- 12%i(M I N+M2 N2) 1

for all sample points. (Ni and Mj are integers). Thus the aliasing

condition Is met.

4:

ii.
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FIGURE CATIXONS

Figure 1: Sampling and reciprocal lattices. The left hand figures show

the basis for the sampling (space domain) lattice for square and hexagonal

symetries. The dots represent the points in space at which measurements

are taken. The right hand figures show the corresponding reciprocal

4(spatial frequency domain) lattices. The points in the reciprocal lattice

are aliasing frequencies which have the property that two spatial

frequencies differing by any multiple of an aliasing frequency give rise to

identical values at all the sample points and hence are indistinguishable.

Figure 2: Construction of the first Brillouin Zone. In order to avoid

aliasing spatial frequencies must be restricted to a region in the

reciprocal lattice, the first Brillouin zone, such that no two points in

this region differ by one of the aliasing vectors. The boundary of this

region is the equivalent of the Nyquist criterion in one dimension. The

zone can be constructed by taking the region around the origin bounded by

the perpendicular bisectors of lines drawn from the origin to the aliasing

points. (See littel, 1971).

.. k
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