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ON THE CALCULATION OF ACOUSTIC INTENSITY FLUCTUATIONS CAUSED BY OCEAN

CURRENTS
J.S. Robertsont, M.J. Jacobson*, and W.L. Siegmann*
*Department of Mathematics, U. S, Military Academy, West
Point, NY, USA 10996-1788
*Department of Mathematical Sciences, Rensselaer Polytechnic
Institute, Troy, NY, USA, 12180-3590

ABSTRACT

Ocean currents can cause significant and interesting effects on the
intensity of underwater sound transmissions. We study this phenomenon via
the parabolic approximation, beginning with conservation laws, and derive a
family of equations, each of which is valid for different magnitudes of cur-
rent speed, current gradient, and sound-speed variation. Numerical results
indicate that some current structures can cause large variations in received
intensity, and that substantial differences can occur in reciprocal trans-
missions. Current effects on intensity may be quite sensitive to the sound-
speed distribution.

INTRODUCTION

Ocean currents cause interesting and significant effects on underwater
sound. For example, in a time-independent ocean environment, currents cause
reciprocity relations to fail. Based on ray theory, work has been done by
the authors and others to model the influences of currents on acoustic
transmissions. It has been shown, for instance, that certain current struc-
tures can cause large fluctuations in total-field intensity and per ray
phase. These results are limited to high-frequency sound transmissions. To
estimate current-induced effects for lower frequencies, a full-wave model
should be used. One computational model is the parabolic approximation,
which has been implemented using several algorithms, and is a particularly
attractive method for efficiently generating transmission-loss calculations.

MODEL FORMULATION

In a complicated medium such as a moving ocean, it is not obvious how
known parabolic equations should be modified to include current effects.
For this reason, we systematically reformulated the governing time-dependent
wave equation, starting from the conservation laws and state relations
governing the ocean medium, and including medium motion (Robertson et al.,
1985). If the current is assumed steady but non-uniform, additional terms
occur in the wave equation. These terms depend on the current gradient and,
as will be discussed below, can be significant in subsequent approximations.



We then assume that the sound source is time-harmonic and that the propagat-
ing wave is outgoing, thereby obtaining a reduced wave equation. After
transforming coordinate systems, we invoke the far-field approximation, and
proceed to generate a family of parabolic equations. Each of these equa-
tions depends on the relative sizes of three dimensionless parameters: a
Mach number, the sound-speed deviation, and a shear number. The last pa-
rameter indicates the magnitude of current gradient, and also depends on
source frequency. For example, a parabolic approximation appropriate for

an isospeed sound channel, through which flows a steady depth-dependent
current, is d

. i 2 u 2 du =
erowr + wzz 2K0 (E;)w + (E;)(EE wz o, (1)

where Kk, is a wave number, u is current speed, and ¥ is an envelope of
acoustic pressure in the far field. The reference sound speed c; in this
isospeed case is equal to the sound speed c. Depth is indicated by z and
range by r. It can be shown that range-dependent sound-speed profiles can
be incorporated into these approximations in a straightforward way, provided
that the horizontal gradient of sound speed is not large, which is often the
case in many important ocean regions. For example, for a sound channel in
which the sound-speed deviation is of the same order of magnitude as the
Mach number, the appropriate equation is

. A2 50 o s 2 \fauly =
leowr + wzz + K5 (n€=1)y 2K0 (%z)w + (E;)(E%)wz o, (2)

where n(r,z) = co/c is the index of refraction.

In Bgs. (1) and (2), the term which depends on the first derivative of
current may or may not be retained, depending upon the size of the shear-
number parameter. In the event that it is kept, the parabolic approxima-
tions are not in a "standard form"™; that is, they cannot be solved directly
with existing numerical implementations., However, it is possible to trans-
form this family into related parabolic equations which are in a standard
form. The transformed version of Bg. (2) is, for exampig?-

2ikgh_+ 6+ .ci (n2-1)¢ - 2:2 (1:._)¢ - _‘._(9_2.‘21)¢ - _‘_(2‘1)2¢ =0, (3
0 CO dz

where
Viz,r) = esMu(2)¢(z,r). (4)

Note the appearance of two new terms in BEg. (3) which depend on the square
of the derivative of current and the second derivative of current. The
structure of By. (3) and other such equations suggests the use of an effec-
tive sound-speed profile (ESSP), which includes all sound-speed and current-
related effects, and is used as the "actual®™ sound speed for numerical solu-
tion of the equations. For example, the ESSP corresponding to Eg. (3) is

~ 2
C=c+u+.__1 EE) + _l_.(fiﬁ) e (5)
2x§ €o\dz 2x? \az?
R .

NUMERICAL RESULTS

To solve any of our parabolic equations numerically, we elect to use
the IFD model developed by lLee and Botseas (1982). In the discussion below,
we consider several sound-speed profiles, together with current profiles, as
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Fig. 1. Profiles of (a) range-independent sound speed, (b) current,
and (¢) range-dependent sound speed.

shown in Fig. 1. The zero-gradient and negative-gradient sound-speed pro-
files are sometimes range-independent as in Fig. 1(a), as are the current
profiles in Fig. 1(b). The surface current may be either plus or minus 1
m/s. At other times, we employ a simple range-dependent sound-speed pro-
file, ‘Fig. 1(c), for which the horizontal gradient is both constant and
small. Here, isopleths are vertical lines. We consider first the result
of one calculation done in the isospeed channel, with surface current of
magnitude 1 m/s. The source frequency is 200 Hz, for which it can be shown
that current-gradient effects are negligible. The source and receiver
depths are 25 m. In Figs. 2-6, the bottom acoustical properties are the
same as in Robertson et al. (1985). Figure 2 shows a relative intensity in
decibels versus range for three cases: no current present, a positive cur-
rent in the source-receiver direction, and a negative current in the oppo-
site direction. Several important current-related effects can be seen in
the figure. When compared to the solid curve, representing intensity in
the absence of any current, we see that a current with either direction can
induce substantial variations in intensity. For example, with a positive
current present, variations can exceed 10 dB over certain range intervals,
such as those between 13 and 14 km. Similar behavior is seen for negative

current. Current effects in both cases tend to increase with increasing
range.

Intensity variations are highlighted in Fig. 3, which illustrates dif-
ference in relative intensity versus range for three cases: no current and
positive current, no current and negative current, and positive and negative
currents. Because source and receiver are at the same depth, this figure
also illustrates one type of effect which may be seen in reciprocal trans-
missions (RTs). The intensity difference between positive and negative cur-
rents, indicated in Fig. 3 by the long-dashed curve, suggests that measure-
ments of intensity variation between reciprocal source-receiver pairs may be
very large. Near ranges 14 and 19 km, this difference attains a magnitude
of nearly 20 dB. At other range intervals the difference is smaller, but
significant, For example, between 10 and 12 km, the intensity difference
is seen to generally be well over 4 dB. RT differences can also be sig-
nificant in range-dependent channels. Using the sound-speed profile in
Fig. 1{(c), and the same source frequency, source-receiver depths, and
current structure as above, the computed intensity difference between a
source-receiver pair is shown in Fig. 4. Note that one effect of the range
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Oppositely-signed current effects are readily compared (long-
dashed curve).



Al

3 —— —~ POS - WES

1) ' '\ l\ ll

} { I\

A

N
)

Aa
4!
] QVP-
|

-10

DIFF. IN REL. INTENSITY (d¢B)

-20

-30 r
1 1 4 § [} 10 1 14 1" 1% 20

RANGE (KN)

Fig. 4. Difference in relative intensity versus range, for current
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a range-dependent sound-speed profile.

variation in sound speed is to cause the relative intensity curve to shift
toward the source, when compared to the analogous curve in Fig. 3. Maximum
intensity values have been altered, also. For example, at a range 14 knm,
the peak difference is over 30 d4B.

Another way to visualize the effects of reversing current direction is
shown in Fig. 5. Here, differences in the two intensity functions are plot-
ted as level curves in a portion of the depth-range plane. The difference
is intensity for a positive current (in the source-receiver direction) minus
intensity for a negative current, as in Fig. 1(b). The source frequency and
source depth are again 200 Hz and 25 m, respectively. Contour intervals
are 5 dB, with negative differences denoted by dotted curves. This figure
illustrates the intensity differences that might be observed in a channel
with tidal effects. At ranges larger than about 7 km, bottom attenuation
has stripped away most higher modes, leaving a well-defined pattern of
alternating intensity differences. Regions of large positive difference
occur in finger-like patterns which alternately emanate from the channel
surface and bottom. Similar structures are also seen for negative differ-
ences. In this example, a zone of very small differences extends in range
across most of the channel at roughly mid-depth. Regions of maximum differ-
ence occur regularly above and below this zone. In contrast, the intensity-

difference pattern in a negative gradient
Figure 6 shows the analogous level curves
of Fig. 1(a). The finger-like structures
cases blended together in Fig. 6, leaving
ence located at many mid-depth points.

channel is noticeably different.
for the negative gradient profile
apparent in Fig. 5 have in some
regions of high intensity differ-

The overall pattern is more compli-
cated than the one present in the isospeed channel.

Consequently, the

intensity-difference pattern resulting from oppositely-signed currents
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appears to be very sensitive to these types of changes in the sound-speed
profile,

For some current structures and lower source frequencies, the appropri-
ate transformed parabolic equation will include new terms which depend on
current concavity and (possibly) the square of current gradient. One type
of current structure which may require additional terms is shown in Fig.
7(a). At the surface, the current speed is 1 m/s, and it decays to zero at
the bottom. Note the appearance of several strong shear layers, particular-
ly those at depths 35 and 60 m. The vertical shear structure seen here can
be acoustically significant for sufficiently low source frequencies. For
example, when the source frequency is 30 Hz, the ESSP is similiar to that
given by By. (5) and is depicted in Fig. 7(b). 1In this example, concavity
effects are significant, but shear effects can be neglected. Note that
current concavity dominates the behavior of the ESSP. The current shear
structure has introduced large rapid variations, one of which, at the depth
60 m, approaches 20 m/s in Fig. 7(b). For higher source frequencies, the
magnitude of the variations decreases, yet may still be significant. We
anticipate that this current structure can cause interesting acoustical
effects, -

In Fig. 8, we see one result of computations done with the current
structure shown in Fig. 7(a). 1In order to observe concavity (or second
derivative) effects, we solved the relevant parabolic equation, first with
concavity included and then with concavity omitted. The root-mean-square
difference of the intensities in the two cases, called J, was then calcu-
lated with a range averaging. Source and receiver depths are 25 m, and the
source frequency is 100 Hz. The results for three different bottom types
are shown. The rigid bottom is perfectly reflecting, while beneath the
water column for the hard and soft bottoms is a second fluid layer with dif-
ferent sound speed and density. The hard bottom has larger discontinuities
in these quantities than the soft bottom. For both hard and soft bottoms,
a small amount of volume attenuation was introduced. As the bottom changes
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Fig. 7. Profiles of (a) a current with high shear, and (b) the
effective sound speed.
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from rigid to hard to soft, note that the overall values of J tend to de-
crease. However, the peak values may actually increase substantially. For
example, at 45 km the soft bottom has a peak which is about 4 4B larger than
its overall value. Furthermore, the curves are smoother for both the hard
and soft bottoms, since they attenuate higher modes more rapidly than the
rigid bottom. These observations illustrate the strong dependence of con-
cavity effects on bottom influences in underwater sound transmissions.

SUMMARY

We discuss a family of parabolic approximations, valid for depth- and
range~dependent sound-speed profiles, which include effects caused by steady
depth-dependent currents. These approximations permit examination of inten-
sity effects caused by currents for frequencies and environments where other
models may not be valid or convenient. Using a standard numerical implemen-
tation, we present the results of computations for several current and sound-
speed structures. They suggest that currents can cause significant intensi-
ty variations, principally by altering the effective sound-speed profile.
Intensity differences arising from reciprocal transmissions are shown to be
especially large. Also, current effects on intensity can be very sensitive
to small changes in sound speed. Finally, the presence of current fine
structure can introduce additional fluctuations in intensity predictions.

lee, D., and Botseas, G., 1982, IFD: An implicit finite difference com-
puter model for solving the parabolic equation, New London lab.,
NUSC, New London, CT, TR 6659.

Robertson, J.S., Siegmann, W.L., and Jacobson, M.J., 1985, Current and
current shear effects in the parabolic approximation for under-
water sound channels, J. Acoust. Soc. Am., 77:1768.
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