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ON  THE CALCULATION OF  ACOUSTIC   INTENSITY   FLUCTUATIONS   CAUSED  BY  OCEAN 

CURRENTS 

J.S.   Robertson*,   M.J.   Jacobson*,   and W.L.   Siegmann* 

+Departinent of  Mathematics,   U.   S.  Military Academy,  West 
Point,   NY,   USA   10996-1788 

♦Department of  Mathematical   Sciences,   Rensselaer  Polytechnic 
Institute,   Troy,   NY,   USA,   12180-3590 

ABSTRACT 

Ocean currents can cause significant emd interesting effects on the 
intensity of underwater sound transmissions. We study this phenomenon via 
the parabolic approximation, beginning with conservation laws, and derive a 
family of equations, each of which is valid for different magnitudes of cur- 
rent speed, current gradient, eind sound-speed variation. Numerical results 
indicate that some current structures can cause large variations in received 
intensity, and that substantial differences can occur in reciprocal trans- 
missions.  Current effects on intensity may be quite sensitive to the sound- 
speed distribution. 

INTRODUCTION 

Ocean currents cause interesting and  significant effects on underwater 
sound.  For exeunple, in a time-independent ocean environment, currents cause 
reciprocity relations to fail.  Based on ray theory, work has been done by 
the authors amd others to model the influences of currents on acoustic 
transmissions.  It has been shown, for instance, that certain current struc- 
tures can cause large fluctuations in total-field intensity and per ray 
phase.  TJiese results are limited to high-frequency sound transmissions. To 
estimate current-induced effects for lower frequencies, a full-wave model 
should be used.  One computational model is the parabolic approximation, 
which has been implemented using several algorithms, and is a particularly 
attractive method for efficiently generating transmission-loss calculations. 

MODEL FORMULATION 

In a complicated medium such as a moving ocean, it is not obvious how 
known parabolic equations should be modified to include current effects. 
For this reason, we systematically reformulated the governing time-dependent 
wave equation, starting from the conservation laws and state relations 
governing the ocean medium, auid including medium motion (Robertson et al., 
1985).  If the current is assumed steady but non-uniform, additional terms 
occur in the wave equation.  These terms depend on the current gradient emd, 
as will be discussed below, can be significant in subsequent approximations. 



We then assuae that the sound source is tiae-haraonic and that the propagat- 
ing wave is outgoing, thereby obtaining a reduced wave equation. After 
tremsforaing coordinate systems, we invoke the far-field approximation, amd 
proceed to generate a feusily of parabolic equations. Each of these equa- 
tions depends on the relative sizes of three dimensionless parameters: a 
Mach number, the sound-speed deviation, and a shear number.  The last pa- 
rameter indicates the magnitude of current gradient, and also depends on 
source frequency. For exzunple, a par«Q}olic approximation appropriate for 
an isospeed sound channel, through which flows a steady depth-dependent 
current, is 

2iK„i(', + *„„ - 2KJ /2L_U + j^\[4li|i|', = 0, (1) 

where KQ is a wave number, u is current speed, emd ^ is im envelope of 
acoustic pressure in the far field.  I^e reference sound speed CQ in this 
isospeed case is equal to the sound speed c.  Depth is indicated by z and 
reinge by r.  It can be shown that range-dependent sound-speed profiles can 
be incorporated into these approximations in a straightforward way, provided 
that the horizontal gradient of sound speed is not large, which is often the 
case in many important ocean regions.  For example, for a sound channel in 
which the sound-speed deviation is of the scune order of magnitude as the 
Mach number, the appropriate equation is 

(^V^felfe) 2i^*r * *zz *  ^l   <"'-^)'^ - 2<? f- * + f- fehz = °' ^2) 

where n(r,z) = c /c is the index of refraction. 

In Bjs. (1) eind (2), the term which depends on the first derivative of 
current may or may not be retained, depending upon the size of the shear- 
number parameter.  In the event that it is kept, the parabolic approxima- 
tions are not in a "standard form"; that is, they cannot be solved directly 
with existing numerical implementations.  However, it is possible to trans- 
form this family into related parabolic equations which are in a standard 
form.  The transformed version of Bq. (2) is, for exeunple: 

"^   *^    0 0 \cj Co\dz2/   c2\dz/ 

where 

*{z,r) = e-**u(z)^(z,r). (4) 

Note the appearance of two new terms in Bq. (3) %*hich depend on the square 
of the derivative of current euid the second derivative of current.  The 
structure of Bq. (3) and other such equations suggests the use of «m effec- 
tive sound-speed profile (ESSP), which includes all sound-speed emd current- 
related effects, £md is used as the "actual" sound speed for numerical solu- 
tion of the equations.  For example, the ESSP corresponding to Bq. (3) is 

c = c + u+__L_ 5}ir+ -2_ 13 • (5) 

NUMERICAL RESULTS 

To solve emy of our parabolic equations numerically, %*e elect to use 
the IFD model developed by Lee and Botseas (1982).  In the discussion below, 
we consider several sound-speed profiles, together with current profiles, as 
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Fig. 1.  Profiles of (a) range-independent sound speed, (b) ciirrent, 
and (c) range-dependent sound speed. 

shovm in Fig. 1.  "Hie zero-gradient and negative-gradient sound-speed pro- 
files are sometimes range-independent as in Fig. 1(a), as are the current 
profiles in Fig. 1(b).  llie surface current may be either plus or minus 1 
m/s.  At other times, we employ a simple range-dependent sound-speed pro- 
file. Fig. 1(c), for which the horizontal gradient is both constant euid 
small.  Here, isopleths are vertical lines. We consider first the result 
of one calculation done in the isospeed channel, with surface current of 
magnitude 1 m/s.  "Hie source frequency is 200 Hz, for \rtiich it can be shown 
that current-gradient effects are negligible.  Ttie source and receiver 
depths are 25 m.  In Figs. 2-6, the bottom acoustical properties are the 
same as in Robertson et al. (1985).  Figure 2 shows a relative intensity in 
decibels versus reuige for three cases:  no current present, a positive cur- 
rent in the source-receiver direction, emd a negative current in the oppo- 
site direction.  Several important current-related effects can be seen in 
the figxire. When compared to the solid curve, representing intensity in 
the absence of any current, we see that a current with either direction can 
induce substantial variations in intensity.  For example, with a positive 
current present, variations can exceed 10 dB over certain range intervals, 
such as those between 13 and 14 km.  Similar behavior is seen for negative 
current.  Current effects in both cases tend to increase with increasing 
remge. 

Intensity variations are highlighted in Fig. 3, which illustrates dif- 
ference in relative intensity versus range for three cases:  no current euid 
positive current, no current and negative current, and positive emd negative 
currents.  Because source cind receiver are at the same depth, this figure 
also illustrates one type of effect which may be seen in reciprocal trans- 
missions (RTs). Ihe intensity difference between positive eind negative cur- 
rents, indicated in Fig. 3 by the long-dashed curve, suggests that measure- 
ments of intensity variation between reciprocal source-receiver pairs may be 
very large.  Near ranges 14 and 19 )cm, this difference attains a magnitude 
of nearly 20 dB.  At other range intervals the difference is smaller, but 
significant.  For example, between 10 emd 12 )an, the intensity difference 
is seen to generally be wall over 4 dB.  RT differences cem also be sig- 
nificant in range-dependent channels.  Using the sound-speed profile in 
Fig. 1(c), and the same source frequency, source-receiver depths, and 
current structure as aUaove, the computed intensity difference between a 
source-receiver pair is shown in Fig. 4.  Note that one effect of the range 
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Fig. 2.  Relative intensity versus remge for three currents in an 
isospeed channel. 
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Fig. 3.  Difference in relative intensity versvis remge, from Fig. 2. 
Oppositely-signed current effects are  readily compared (long- 
dashed curve). 
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Fig. 4. Difference in relative intensity versus range, for cxirrent 
reversal. Reciprcxral-transHiission difference is shovm for 
a range-dependent sound-speed profile. 

variation in sound speed is to cause the relative intensity curve to shift 
toward the source, when compared to the analogous curve in Fig. 3.  Maximum 
intensity values have been altered, also.  For excunple, at a range 14 km, 
the peak difference is over 30 dB. 

Another way to visualize the effects of reversing current direction is 
shown in Fig. 5.  Here, differences in the two intensity functions are plot- 
ted as level curves in a portion of the depth-range pleme.  "Hie difference 
is intensity for a positive current (in the source-receiver direction) minus 
intensity for a negative current, as in Fig. Kb).  Ihe source frequency and 
source depth are again 200 Hz and 25 m, respectively.  Contour intervals 
are 5 dB, with negative differences denoted by dotted curves.  Itiis figure 
illustrates the intensity differences that might be observed in a channel 
with tidal effects.  At ranges larger than about 7 )cm, bottom attenuation 
has stripped away most higher modes, leaving a well-defined pattern of 
alternating intensity differences.  Regions of large positive difference 
occur in finger-like patterns which alternately emanate from the channel 
surface and bottom.  Similar structures are also seen for negative differ- 
ences.  In this example, a zone of very small differences extends in range 
across most of the channel at roughly mid-depth.  Regions of mcucimum differ- 
ence occur regularly eibove eind below this zone.  In contrast, the intensity- 
difference pattern in a negative gradient channel is noticeably different. 
Figure 6 shows the analogous level curves for the negative gradient profile 
of Fig. 1(a).  Ihe finger-like structures apparent in Fig. 5 have in some 
cases blended together in Fig. 6, leaving regions of high intensity differ- 
ence located at many mid-depth points. The  overall pattern is more compli- 
cated than the one present in the isospeed channel.  Consequently, the 
intensity-difference pattern resulting from oppositely-signed currents 
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Fig. 5. Level curves of intensity difference in an isospeed channel, 
with current reversal. 
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Fig. 6.  Level curves of intensity difference for a negative gradient 
channel (see Fig. 1(a)), with current reversal. 



appears to be very aenaitive to these types of changes In the sound-speed 

profile. 

For some current structures and lower source frequencies, the appropri- 
ate transformed parabolic equation will include new terms which depend on 
current concavity and (possibly) the square of current gradient. One  type 
of current structure which may require additional terms is shown in Fig. 
7(a). At the surface, the current speed is 1 m/s, and it decays to zero at 
the bottom. Kote the appearance of several strong shear layers, particular- 
ly those at depths 35 and 60 m.  The vertical shear structure seen here can 
be acoustically significant for sufficiently low source frequencies.  For 
example, when the source frequency is 30 Hz, the ESSP is similiar to that 
given by Bq. (5) and is depicted in Fig. 7(b).  In this example, concavity 
effects are significant, but shear effects can be neglected. Note that 
current concavity dominates the behavior of the ESSP.  Ihe current shear 
structure has introduced large rapid variations, one of which, at the depth 
60 m, approaches 20 m/s in Fig. 7(b).  For higher source frequencies, the 
magnitude of the variations decreases, yet may still be significant. We 
anticipate that this current structure can cause interesting acoustical 

effects. 

In Fig. 8, we see one result of computations done with the current 
structure shown in Fig. 7(a).  In order to observe concavity (or second 
derivative) effects, we solved the relevant parabolic equation, first with 
concavity included and then with concavity omitted.  Ihe root-mean-square 
difference of the intensities in the two cases, called J, was then calcu- 
lated with a range averaging.  Source and receiver depths are 25 m, and the 
source frequency is 100 Hz.  Ihe results for three different bottom types 
are shown. The  rigid bottom is perfectly reflecting, while beneath the 
water column for the hard and soft bottoms is a second fluid layer with dif- 
ferent sound speed and density.  Ihe hard bottom has larger discontinuities 
in these quantities than the soft bottom.  For both hard eund soft bottoms, 
a small amount of volume attenuation was introduced.  As the bottom changes 
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UBO     1500     1520 
•- U •- C 

CONCAVITY 
INCLUDED 

Fig. 7.  Profiles of (a) a current with high shear, and (b) the 
effective sound speed. 
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Fig. 8.  RMS difference in intensity versus range for the current of 
Fig. 7(a) and for three bottom types. 

from rigid to hard to soft, note that the overall values of J tend to de- 
crease.  However, the peak values may actually increase substantially.  For 
example, at 45 km the soft bottom has a peak which is about 4 dB larger than 
its overall value.  Furthermore, the curves are smoother for both the hard 
and soft bottoms, since they attenuate higher modes more rapidly than the 
rigid bottom.  These observations illustrate the strong dependence of con- 
cavity effects on bottom influences in underwater sound transmissions. 

SUMMARY 

We discuss a family of parabolic approximations, valid for depth- amd 
range-dependent sound-speed profiles, which include effects caused by steady 
depth-dependent currents.  These approximations permit examination of inten- 
sity effects caused by currents for frequencies and environments where other 
models may not be valid or convenient.  Using a standard numerical implemen- 
tation, we present the results of computations for several current eind sound- 
speed structures.  T^ey suggest that currents can cause significant intensi- 
ty variations, principally by altering the effective sound-speed profile. 
Intensity differences arising from reciprocal transmissions are shown to be 
especially large.  Also, current effects on intensity can be very sensitive 
to small changes in sound speed.  Finally, the presence of current fine 
structure can introduce additional fluctuations m intensity predictions. 

Lee, D., and Botseas, G., 1982, IFD: An implicit finite difference com- 
puter model for solving the parabolic equation, New London Lab., 
NUSC, New London, CT, TR 6659. 

Robertson, J.S., Siegmann, W.L., and Jacobson, M.J., 1985, Current emd 
current shear effects in the parabolic approximation for under- 
water sound channels, J. Acoust. Soc. Am., 77:1768. 
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