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1. Introduction

Queues, stacks (pushdown stores), and tapes are storage models which have direct appli-
cations in compiler design and the general design of algorithms. Whereas stacks (push-
down store or last-in-first-out storage) have been thoroughly investigated and are well

understood, this is much less the case for queues (first-in-first-out storage). In this paper
we present a comprehensive study comparing queues to stacks and tapes. We address

off-line machines with a one-way input. In particular, 1 queue and 1 tape (or stack) are

not comparable:

(1) Simulating 1 stack (and hence 1 tape) by I queue requires 2(n 413/logn ) time in

both the deterministic and the nondeterministic cases.

(2) Simulating 1 queue by 1 tape requires Q(n 2) time in the deterministic case, and

ft(n 4/ 3 /logn ) in the nondeterministic case;

We further compare the relative power between different numbers of queues:

(3) Nondeterministically simulating 2 queues (or 2 tapes) by 1 queue requires

£2(n 2/(log 2 n loglogn)) time and deterministically simulating 2 queues (or 2 tapes)

by 1 queue requires 2(n 2 ) time. The second bound is tight. The first is almost

tight.

(4) We also obtain the simulation results for queues: 2 nondeterministic queues (or 3

pushdown stores) can simulate k queues in linear time. One queue can simulate k

queues in quadratic time.

It has been known for over twenty years that all multitape Turing machines can be

simulated on-line by 2-tape Turing machines in time 0(n logn) [HS21, and by 1-tape

Turing machines in time 0(n 2) [HU]. Since then, many other models of computation

have been introduced and compared. (See [Aa, DGPR, HS1, HS2, HU, LS, PSS, Pa,

Vi2[.) In addition to different storage mechanisms, real-time, on-line and off-line

machines have been studied. An on-line machine is expected to give an answer after

reading each prefix of the input. In this paper, we consider the off-line machines, where

an answer is given only once the whole input has been read. We also use the one-way

input conventi,.,in, where the machine has a one-way input, a finite control and access to

some storage.

The relative power of stacks and tapes is more or less well known. For example,

for the nondeterministic case, we know that I stack < 1 tape < 2 stacks < 3 stacks

k stacks = k tapes, where A <B means that B can simulate A in linear time, while A

cannot simulate B in linear time. In most of the cases, close lower and upper bounds

MrT known for the simulation [Ma, Lil, Vii. LV, Li2j.

In this paper, we give a complete characterization of (off-line) queue machines. The

main theorems show that one queue machines are not comparable to one stack or one

tape machines, both deterministically and nondeterministically. We also compare the

irelative power of machines having different number of queues. We use Kolmogorov com-

plexity techniques [Ko, Ch, So] to prove the theorems, together with some new tech-

niques to enable us to deal with queues. The Kolmogorov complexity of a string x,

K (X). is the length of the shortest program printing the string x. By a simple counting

j%
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argument, we know that there are strings x of each length such that K(z)> Ix
These strings are called incompressible or K-random.

In section 2, we introduce the jamming lemma which is used in further proofs. In
section 3, we show that deterministically simulating a queue by a tape takes quadratic
time (infinitely often). (For the lower bound on the simulation time of 1 queue by 1 tape
in the nondeterministic case, see [Li3, LV].) In section 4, we have a lower bound for non-
deterministically simulating a stack by a queue. In section 5, we present lower and
upper bounds for simulating k queues by 2 queues or 2 queues by one queue.

2. The Jamming Lemma

In this section, we are concerned with one-tape and one-queue off-ine TM's where
the Turing machine has one 1-way input tape in addition to one work tape or one queue,
each with one head. We will call the input tape head h 1 and work tape head or queue
head h 2. We say that a poll occurs hen the head h, moves one cell. At any time t,
hi (t) denotes the position of head hi on its tape.

In the following lower bound proofs, the input will be separated into blocks. We
will observe the behavior of the machine as the head polls the successive cells in a block.
Although the definitions and the Jamming Lemma are stated with respect to one-tape
TM's for simplicity, they also apply to one-queue machines where the work tape is
replaced by a queue.

Definition 2.1: Let zi be a block of input, and R be a tape segment on the
storage tape. We say that M maps xi into R if h 2 never leaves tape segment R while
h 1 is reading xi . We say M maps xi onto R if h2 traverses the entire tape segment R
without leaving R while h I reads zi.

Definition 2.2: A crossing sequence (c.s.) associated with the boundary between
two contiguous work tape cells is a sequence of ID's of the form (M(t),hl(t)), where
M(t) is the state of the machine at time t, for each time t when the machine crosses
that boundary.

We prove an intuitively straightforward lemma for one-tape machines with one-way
input. The lemma states that M cannot poll too many input symbols, with h 2 located
on a given small tape segment bordered by short c.s.'s, without losing some information.
Formally:

Jamming Lemma. Let the input string start with z# z 1 z 2 . . . Z #, with the
xi 's blocks of equal length C. Let R be a segment of M 's storage tape and let I be an
integer such that M maps each block zi ,, . .. , zit (of the xi 'a) into tape segment R. The

contents of the storage tape of M, at time t# when hl(t#) Ix# I and
h 1(t# -1) = I x , can be reconstructed by using only the blocks zi, ... x. which

remain from xI ... zk after deleting blocks xi,, . .• , xit, the final contents of R, the two
final c.s. 's on the left and right boundaries of R, a description of M and a description of
this discuss.ion.



-4-

Remark 2.3: If we want to give a description of a sequence of different strings of
variable length, we use self-delimiting strings, adding 0 (logn ) bits for each string of

length n.

Remark 2.4: Roughly speaking, if the number of missing bits y] =I xi I is

greater than the number of added description bits then the Jamming Lemma implies
that either x=x I ... zk is not incompressible or some information about x has been

lost.

Proof of the Jamming Lemma. Let the two positions at the left boundary Ad
the right boundary of R be lR and rRt, respectively. We now simulate M. Pil the

blocks xj of . .• -_ in their correct positions on the input tape (as indicated by the

hI values in the left and right c.s.'s). Run M with h 2 staying to the left of R. When-
ever h, reaches point IR, the left boundary of R, we interrupt M and check whether

the current ID matches the next ID, say IDi, in the c.s. at lR . Subsequently. using
[Di ,, we skip the input up to and including h1(tijl), adjust the state of M to M (!i I),
and continue running M. After we have finished left of R , we do the same thing right
of R. At the end we have determined the appropriate contents of M's tape, apart from

the contents of R , at t# (i.e., the time when h1 reaches # ). Inscribing R with its final
contents from the reconstruction description gives us M's storage tape contents at time
# t. Notice that although there are many unknown x i 's, they are never polled since hI

skips over them because h 2 never goes into R.

Remark 2.5: If M is nondeterministic, then we need to rephrase "contents of
storage tape" by "legal contents of storage tape", which simply means that some compu-
tation path for the same input would create this storage tape contents.

3. Lower bound for simulating one queue by one tape

We present a tight lower time bound for deterministic simulation of one queue by
one off-line tape with one-way input. (For a lower bound for the nondeterministic case,

see LVI or jLi3}.)

Remark. Only in this section 3, g (n )EQ(f (n)) means "there is a positive con-
stant 6 such that g(n) 6f (n) infinit,-'., often". Everywhere else the results hold for
the stronger variant of f2: "there exist a positive constant 6 and a positive integer no
such that g (n )>_6f (n) for all n >no".

Let <-pref i mean 'is a prefix of.' LeL E - {0,1}x{0,1 , I,E}, where r denotes the
empty string, and consider the words over v of the form

(a 1,b j)(a2 b 2,) . (a,, ,b.) (3.1)

-)Uch that for all i, 1< 2 <n

aiE{0,1} and biE{0,1,O,T,(}
b11'2"'" bi :5 prefix a1b a b " i

wlh,,r for any pair (a ,b )EL we define b by



a = a if b = t

a =T if b 34

Remark. Words of this form constitute the witnes, lapguage Lq below, which is
real-time acceptable by a queue but which requires fl(n2) time for acceptance by a tape.
Think of the sequence aia 2 ' • a. as the n-length sequence of bits to be stored con-
secutively in the queue, and the sequence b b 2 .. , b. , of length m (m <n), as the
sequence of bits which are consecutively unstored from the queue. (Note, that while
ai = e for all i, it is possible that bi =e for some i (1<i <n ). That is, (ai ,bi ) specifies
that e be unstored.) For technical reasons in the proof below, we have to complicate this
scheme. All of the prefix of a a 2 . . .a. which has been stored in the queue previously,
needs to remain stored in the queue forever. Nonetheless, to force the queue to operate
correctly we need to be able to unstore it. To combine both requirements, each pair
(ai ,bi ) causes the queue not only to store ai and to unstore bi (possibly E), but also to
store bi anew. Below we show that the scheme of barred and unbarred ai 's, related to
whether or not the associated 'unstore' bi 's are e or not, makes it possible to retrieve the
complete sequence of ai 's, in the order they have been stored originally, from the queue
contents at each instant.

4 The witness language Lq consists of all words satisfying (31). To aid intuition, we
can view Lq as the language accepted by a queue Q as follows:

* Initially, Q is empty.

* For all i>1, input command '(a,,bi)' to Q is interpreted by Q as 'if bi = then
append ai to the rear else append 3; to the rear; delete bi up front; append bi to
the rear.' (Here 'actionl;action2;action3' denotes the sequential execution of actionl,
action2 and action3.)

* A word (a, 1 b 1) . . . (a. ,b. ) is accepted if the sequence of successive front items
deleted in the actual computation by Q on thi! input is the sequence b ... b,

w All other words are rejected.

The properties of words of form (3.1) we need in the sequel are expressed in the following
three lemmas.

Lemma 3.1: For a word of the form (8.1), jdb2b2 ... • • bi

- Ib 1b2 . bi I = i foralli, I<i<n.

Proof: Obvious.

Lemma 3.2: For a word of the form (3.1) we can reconstruct a1a2  an from the
n -length suffix of bibl 2 b2 . . .&. b,.

Proof: Let the n-length suffix be xIx 2 '.' , with xiE{O,1,OT} (l<i<n). By
(3.1) one of the following two cases must hold (note that the combination XnE{0,1}
and x. E{?.T} is impossible):

(a) Assume x,,x,_z4 {O,1}. Then a.=x, and b.--c by (3.1). Consequently,
ZIx 2 ... x._ 1 is the (n-l)-Iength suffix of albld2b2 . .4_b._I by (3.1).
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(b) Assume X,,_ 1E{O,i"}. Then 'N,=x,_1  and b.=x. by (3.1). Consequently.
xn x x 2 ". xn__ is the (n-1)-length suffix of dlbld2b2 ... _1b,,_1 by (3.1).
(Because bn is the last unstored symbol which has been appended to the rear of the
queue, it is the last symbol to have been unstored from the front of the queue.
Therefore, to restore the queue contents just before (a, ,b n ) is processed, we delete
suffix an bn from xlx 2 • x and prefix the remaining string with b,, .)

Iterating this reasoning n times we recover all of a a 2 ..a,,. This proves the lemma.

Lemma 3.3: For a word of the form (3.1) with I b b, = m, we can recon-

struct a a 2 * , . am/2 from bI . . . bn .

Proof: Let

b~b2 .. , bn = X "IX 2 Xm, xE{0,,,T} (1<i<m).

By (3.1) we have I = x 1.

(a) If xlE{0,1} then al=xl and bl=c. Consequently, X2 ... Xpn is the (m-1)-Iength

prefix of a 2 b2 . . ,, bn by (3.1).

(b) If X'E{GT} then Nl=xl and bl=X2 . Consequently, Z3  xm is the (m-2)-length
prefix of a 2b 2 . .a. b,, by (3.1).

Iterating this reasoning m/2 times we recover all of a 1 a 2 ''am/2. This proves the

lemma.

Theorem 3.2. It requires l(n 2) time to deterministically simulate one queue by
one off-line tape with one-way input.

Proof. (I). Assume, by way of contradiction, that an off-line deterministic 1-tape
machine M with one-way input accepts Lq in time T(n )*Q(n 2). We derive a contradic-

tion by showing that then some incompressible string has too short a description.
Without loss of generality, it can be assumed that M has a semi-infinite storage tape
0,oo) on which it writes only O's and l's, The positions at time t are denoted by h.(t)

and h2(t). By ti we denote the time when the 'th input command is polled, i.e.,
h(t i )=i and h 1(ti-1)=i-1. Fix a constant C and the word length n as large as

needed to derive the desired contradictions below and such that the formulas in the
sequel are meaningful. Below we show that T(m)>m 2/C 4 , for some m,

VT C <m <n , which contradicts the assumption and proves the theorem.

First, choose an incompressible string X E{0,1}* of length n. We consider the
behavior of M on a fixed input prcfix. This can be any string z such that
r X=lx2 .'Xn, Y=-YlY2"'" y. and z=(x ,y 1)(x2,y 2) ... (X ,y,), for some y such
that z satisfies (3.1). Therefore, ZELq. If many polls occur while the head h2 is in some
small area, then we can show that x is not incompressible (Case 1). Otherwise, we
choose particular yi 's, among the possibilities which remain under this constraint, so as

to suit the argument in Case 2 below.

Case 1 (Jammed). Fix an integer n such that V/ / C <m <n (any such integer
in will do) and consider the m -length prefix z (m ) of z. By (3.1), if z is in Lq then so
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is each prefix of z, so in particular z (m )ELq. Assume, by way of contradiction, that in
the accepting computation on z(m ) at least 2m /C polls occur, with h 2 on a particular
(..,/C)-Iength tape segment R [a, a +m /C). Consider the two tape segments R,

6%. and R. of' length I R 1/4 left and right of R. Choose positions p, in R, and p. in R,

with the shortest c.s.'s in their respective tape segments. These c.s.'s must both be
* shorter than m -C 2 , for if the shortest c.s. in either tape segment is longer than m/C-

then M uses T(m ) >m 2/4C 3 time, which is a contradiction. (If O< a <m /4C then set

R I =a, so that R, RRr C [O,oo). Choose p,-=O and note that the length of the associ-
ated c.s. can be set to 0.) We show that a short program can be constructed which
accepts only x. Let the bits of x1 - zm polled with h 2 outside -tape segment (PI, P,]
concatenated in the order in which they occur in x, form a string u.

As explained below, we can construct a program to check if a string x' E{0,1}*
equals x, using as a description the values of n, m, C, a, the locations of P, and pr,
the two c.s.'s at pt and pr, the self-delimiting version of u, the bits xm+1 • . X- , the
final contents of [PI, Pr at time tm +l, the state of M at time tin+ 1 and h2(tm.i).

This description of x requires no more than n - 4C bits, for sufficiently large C

and n. However, this contradicts the incompressibility of x since K(x) >n and

To check whether a string x' equals x, check I' I =n and
m+l n =xm+1 Xn . By the Jamming Lemma (using the above information

as related to M's processing of the input) reconstruct the contents of M's storage tape
at time tm+I, after processing z(m )=(x 1 ,y 1) ... (x,y). Simulate M from time tin+ 1

onwards on an input suffix

(0,Ym+1)(0,Y.+2) ... (0,Y2,) (3.2)

with IYjm+ Ym+2"' Y2m I =m, and such that M accepts for the chosen y's
(m +1<i <2m). It is easy to see from (3.1), that there is such a suffix (3.2) for which
Mt accepts if x. 1 2 ' m=TX2 * m* In that case x =x, and by (3.1) and
Lemma 3.1, Yn+1Ym+2 "'Y!2m equals the m-length suffix of iy 1 ' ''.rn i. By
Lemma 3.2, we can retrieve xIx 2  Xm from this suffix. Suppose, there is a x, = x
such that

Z' (M) = (Wr 1,Y' OW(
Z  

2,Y/' 2) .. W .
x  

,Y' m) (3.3)

matches the description above, and zI (m) drives M into the same configuration at
time V m+1 of M's (m+l)th poll in its computation, as the configuration into which

z(m) drives M at time tim+ 1. Consequently, the concatenation of (3.3) and (3.2) is also
accepted by M. Note, that x' differs from x only in the first m bits, in particular in

those bits polled with h 2 positioned in tape segment [PI,Pr]. We can cut and paste the
computations based on z' (m) inside [pl,prl.and based on z(m) outside [pj,pj, and

still have M accept. The 'cut and paste' computation is accepting up to the (m+l)th
poll because both computations satisfy the description abovc, and afterwards because
the two computations are identical from the (m +l)st poll onwards. Let the resulting

4..
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string composed in the obvious way from x, . , and x'

\(m)-\ . : r with iE{.xi,x' i} (1'<im). Above we saw that we can retriev(

x I x,,, from Yn+ " Y2m , by Lemma 3.1 and Lemma 3.2. However, th1 con-

tradicts the acceptance by M of the cut, and paste computation based on z(it and
z' (m), because that entails the retrieval of x(rn )# =, I2 . .. z from Ym ,I Y 2,n

* . by (3.1), Lemma 3.1 and Lemma 3.2.

Case 2 (Not jammed). Let n' be any integer such that \/ T /C n ' <n. Let

z(nn ' ) be the n' -length prefix of an n-length input z. By (3.1), if zELq !.'ien

z (n ' )ELq. Assume, by way of contradiction, that in the accepting compnti-on of 11

* on z (ni ' ) at most 2n' / C polls occur with h 2 on any particular (n' /C)-leng'i ' tape
segment R = a,a+ n' /C).

We now define the particular input z we need. Let x =x--- , z,, be as in Case 1.

Determine the yi's (1 <i <n ) in input z = (xl,yl) .. (x, ,y, ) as follows.

(1) Let ,If start its computation with yi=c. So first (xl,yl) is polled.

(2) Let Al continue its computation and suppose we have determined

x (I,y1) .. .(xi-lyi-1) and M polls for the ith time. Let ti be the time at which

SM polls (z-i,yi ). If h2 (ti )E[O,n /4) then y- --, else y, c. In the latter case yi is

be determined uniquely from (x ,yl) . (xi_ 1,yi_1 ) by using the relation

. Y2 Yi ,Ixprefiz i "y " i"-lYi-1, that is, using (3.1) and the fact that y1 ='

by (1).

We now fix a particular value m as determined by M's computation on z.

(a) By contradictory assumption (with n' =n), we have that <n /2 polls occur on
O,n /4) and >n /2 polls occur on In /2,oo).

(b) Since T(n)O(n2 ), we have h0 (ti )EO,n /4), for all i (I<i <vn').

Let /(t) and r(t) be the number of polls for (xi,yi)'s. with h 2(ti)EiO,n/4) and

I .2(ti )En i-.o) (1< ti t ). respectively. By (a) and (b) there is an integer m such that
I(t)>r(t), for l<t <t,. l(tm)--r(t.) and \/'n'/C<m<n. This m is the break

cieli length where the number of polls left 2,nd right of position n /4 on the tape is equal
for the first time.

Claim I. As a consequence of this definition of m and (1) and (2), it follows that

r (,i . . Y,, I =in /2 for input prefix

z (in , r 1Yl) ..(x m ym)

qinc'e each prefix of z satisfies (3.1), we can retrieve x. ... Xm/4 from prefix y, ''' y,,

y .. y.r,,, q,, by Lemma. 3.3.

(,lim 2. By definition, all Yi s in yi - , which are different from (. are polled

1 U .t~oo). Sine I (t, /4) >. r (tin /), at most in /8 of the xi's in x "- . are polled
Ln t, .,00).

II the computation ,n the i1 -length prefix z (m ) of z . choose the point p with the
-horte-st c s. in !n/4 - in /(, n/4). This c.s. is shorter than M /C'2; otherwise, the

-..i A~/ r-~~-



running time T(m )>m 2 /C 3 , which is a contradiction.

As explained below, we can construct a program to check if a string x' E(0,1}*

equals x, using as a description the values of n, m, the position of p, the c.s. at p, the
string u of concatenated bits of x, .. .Xm/4, polled with h 2 on [p, oo) and the string

X(?n /4)+1 • Xn

This description of x requires no more than n - 1"6 bits, for sufficiently large C
16

and n. However, this contradicts the incompressibility of z since K(x) n and

? >vn7 /C.

To check whether a string x' equals x, check IX I =n and

X (m/4)+1 " * * -n X(m/4)+1 * * Xn. Let u' be the result of deleting the bits in

X' in the same positions as the ones used to obtain u from x. These positions are
determined by the crossing sequence at p. Check u' =u. If the test is negative then

X = x, else x' can only differ from x on positions where x1 .. .X,/4 ' s bits are polled
with h2 on [0, p). Run M on zI (m), that is, the input constructed according to (1),

(2), using the m-length prefix x' Ix' 2"'' x' . of a candidate x1 . Whenever h 2

crosses p we interrupt M and check if the current ID in the computation is consistent
with the corresponding ID in the c.s. at p.

By construction everything matches up to the end of processing input z' (m), and
M accepts, if Z' =x. Assume that x I = x matches the description as well. There-
fore, XI 

1 2 * * /4 7 X 2  X./ 4 and x' -x for all i (m/4 +1<i<n).
Let the input z' (m), based on Z JXZ 2 . . . m and constructed according to (1),(2),

be

z' (M)- (x' ,Y' )(' 2,Y' 2)' (. ' m,Y m)

Let the input based on XIX2 x •• , constructed according to (1), (2), be

z(m) = (Xl,Y1)( 2,y2) . . . (X.,Ym) .

By assumption, xI and z differ only on the first m /4 bits, and then only on the bits
that are polled left of p. Let the final accepting position of h 2 for M's computation on

z (m) be right of p. (If it is left of p interchange z and zI below.) Cut and paste the

computations on z(m) and z' (m) such that M runs on input z' (m) with h2 left of

position p, and M runs on input z (m) with h 2 right of position p. Let (m) be the
input composed in this way from zI (m) and z(m). By construction, the computation

on (m) is also an accepting computation of M. Consequently, (m) satisfies (3.1).

Then,

(m ) (a 1,b )(a 2,b 2) .. "" (a m, b m )

with (ai ,bi ) is either (xi,yi) or (x' j,y' i) (I<i <m). Because both z (m ) and z' ("I

match the description, (z' i,y' i) is polled right of position p if and only if (xi ,y,) is
polled right of position p for all i, 1< i <im. Therefore, y =c if and only if y' i =( if

and only if (xi,yi ) is polled left of position p if and only if (x' ,,y' i) is polled left of

position p for all i, 1<i<m. Consequently, the sequences of 'unstored' symbols
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inequal 6 in the computations on z (in), z' (in) and (m ) are equal, that is,
bib2 " "bm - Y1Y2 * " Ym (3.4)

By assumption, (xi ,yi ) and (x' I,yi) are polled left of p and xi 7 xi ' for some I.

I <i < in /4. Therefore, since ai =x i if the i th poll occurs left of p , and ai =x i if the
ith poll occurs right of p (1<i<m /4), in M's computation on (m), we have

a a.,. ..am/4 XIZ2' * ' Xm/4. Because xIx 2 ' * Xm /4 is retrieved from Y" I " Ym by
Claim 1, we retrieve xlx 2 ' m/4 from blb2 .. .b. as well, by (3.4), using Lemma

3.3. However, for (ni) to satisfy (3.1), we have to retrieve ala 2 ''am/4 from

bIb.2, b, , by virtue of the construction of (n ) and Claim 1. Consequently,

b 1b2. bm is not a prefix of albld 2b 2 "'' a.b. as required by (3.1). Hence, (m)
does not satisfy (3.1), which is a contradiction.

Since ?n > \/n"/C, Cases 1 and 2 complete the proof of T(n )Ef2(n 2).

(II). With the description of Lq we have already indicated how a queue recognizes

this language in real-time.

The theorem follows from (I) and (II).

4. Lower bound for simulating one pushdown by one queue.

In this section, we show that it takes at least Ol(n4/ 3/logn) time for a one-way

input one queue nondeterministic machine to recognize the language
? w1'R :tv E0,1}* }.

Because this language can be recognized in linear time by a deterministic pushdown
automaton, we can conclude that it takes at least Q(n/ 3 /logn) time for a one queue
nondeterministic machine to simulate a deterministic pushdown automaton.

The intuition behind the proof is that while the queue machine reads w, it has to
store all the information in some sequential way on the queue. To compare this informa-
tion with w R , the machine will have to go through the queue too many times.

Let h 1 be the read-only head on the one-way input tape. We can view the queue as
a tape with two heads h 2 and h3. The head h 2 is a read-only, one-way head on the

queuo. The head h 3 is a write-only, one-way head on the queue. Each time something is
put on the queue, h3 writes and each time something is read from the queue, h 2 reads.

Theorem 4.1: A one-way input one queue nondeterministic machine takes time in

Q(n 1 1' 3 /logn ) to accept the language {tw#wR :wE(0,1}* }.
Proof: Leading to a contradiction, we suppose that there is an algorithm to accept.

. iM time T(it ) which is not in Ql(n4/ 3 /logn ).

Let hi (t ) denote the position of head i at time t on its respective tape. At time t,
the length of the queue is h 3(t)-h 2(t), and the content of the tape between h 2(t) and

h :(t ) is called the actual queue.

Let x be an incompressible string. We separate x into blocks: X,-7=X12*2 . . . X.

Each block xi for I<i <in is separated into p subblocks: ;i=XilXi 2Xi3 "''Xi. For
the proof of the theorem, we take m = n 1/3 and p -- n 2/3/kllogn, where k, is an
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appropriately chosen constant. Let I x=n and 0 I =n/2. Each subblock will
have the same length, c logn. We look at any computation of the machine on inputR .

Claim 4.2: If n /2 <h (t )_ 3n /2, then the length of the queue at time t is at least
n /2-logn.

Proof: We know that K(xo) !n/2-k2 for some constant k 2. The result follows
because z 0 can be described by the content of the queue, the state of the machine and
h I(t).

Claim 4.3: Let tj be the time step when the input head enters the block xj. For
at least half of the blocks zi, we have that h (tj+)<h(tJ).

Proof: Otherwise the algorithm takes time f(n/ 3/logn).

The machine needs to remember what it reads on the input and code it in some
way on the queue. This notion will be captured by the influence relation defined below.
What is written on the queue can be a coding of the input and of the rear of the queue.

If h 2(tj+l)<h3(tj), then we have the nice property that a whole block from the input
has to be coded sequentially on the queue, since the reading head on the queue doesn't
reach where the coding has started. Let's call the blocks which satisfy this last claim the
valid blocks.

Now, we define the influence relation. Let c ,c 2, C. be the cells on the input
tape. Let dl,d 2, ... d. be the cells on the queue. We say that a cell dj is directly
influenced by a cell ci if h ( )=i at the time t when h3 writes on di. Similarly, a cell

dj is directly influenced by a cell d, if h 2(t)==i at the time t when hA writes on di.

The influence relation is the transitive closure of the direct influence relation. We
say that ci (or di) influences dj if there is a chain of direct influences from ci to dj. A
block of cells influences a cell if and only if at least oie of the cells in the block
influences it.

The influence relation will allow us to talk about where the information can be
stored on the queue. Notice that during the computation, the content of a cell may still
be dependent on some other input cell even if that input cell has no influence on it, due
to the finite control of the machine. This minor problem will not cause any trouble.

Claim 4.4: For any block zj such that h2 (tj+)<h3(tj), we have that each cell in
xi influences a disjoint set of cells on the queue. Moreover, the regions influenced by
these cells form an ordered sequence of regions on the actual queue at any later time.

Now we look at what happens when the input head h 1 reads the second part of the
input. Let tj' denote the time when the head h1 enters the block x R corresponding

to xi .

Claim 4.5: There is at least one valid block z i such that h2(ti-l' )<h 3(t j ' ).
(Remember that xhi'1 R follows Z/I R.)

&AVf YI
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Proof: Otherwise the algorithm takes time Q(n 4/3/logn ).

In the following two claims, we mention cycles and crossing sequences. A cycle is
any span of time from time t to time t ' such that h 2(t ' )=h3(t). The crossing

sequence associated with the border between cell di and cell dj+ 1 is the list of states of

the machine when any head goes from cell di to cell di+1 . Because the tape is in fact a
queue, the crossing sequence will have length 2.

Each block influences a series of regions on the tape, one for each cycle of the

queue. The crossing sequence around a list of regions is the concatenation of the cross-
ing sequences under the border of each region.

Claim 4.6: Throughout r cycles, starting at time to' , the actual queue always has

length at least n 213 -(r +k 4)logn, for some constant k 4.

Proof: Let xi be the block provided by claim 4.5. Let z be the string z where

.xr has been deleted. Because the regions influenced by the xij are ordered on the actual

queue, and the regions influenced by the xi R are in reverse order, there is only one con-
tiguous region which can be influenced by both a subblock xij and its corresponding
subblock rjR We call this region the overlapping region.

At any time after t0' , the string x can be totally described by 21 , the index of
xi, the actual queue, the crossing sequences around the overlapping region and the con-

tent of the regions that were overlapping at each cycle.

Claim 4.7: The machine makes fl(n 2 / 3 /logn) cycles after to'

Proof: The string z can be described by z' , the index of zj, the crossing sequence
around the overlapping region and the content of the regions that were overlapping at
each cycle. At each cycle, this information is of length 0 (logn), so it takes n2 /3 /logn
cycles to gather enough information. (At the end, we don't need the actual queue, so r

has to be large to compensate.)

By the last two claims, the machine takes time in f(n4/ 3 /logn).

5. Simulating more queues by less queues

In this section we study the powe- of queue machines with different number of
clueues. We first show that 2 queues are as good as k queues in the nondeterministic

case. This motivates our research concerning a small number of queues. We also show
that 1 clueue can simulate k queues in quadratic time, deterministically or nondetermin-
istically. We will provide tight, and almost tight, lower bounds for our simulations men-
tioned above.

5.1. Upper bounds

Theorem 5.1: Two pushdown stores can simulate one queue in linear time, both
for deterministic and nondeterministic machines.

Proof: Let P be a two pushdown store machine with 2 pushdown stores pd 1, pd2.
To simulate a queue, every time the a symbol is pushed into the queue, P pushes the
same symbol into pd 1. If a symbol is taken from the queue, then P pops a (the same)

W_ lm
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symbol from pd 2 if pd2 is not empty. If pd2 is empty then P first unloads the entire
contents of pd I into pd2 and then pops the top symbol from pd2. At the end of the
input, P accepts if" the 1 queue machine accepts.

Theorem 5.2: Two queues can nondeterministically simulate k queues for any
fixed k in linear time.

Proof: This is actually the same technique Book and Greibach [BGJ used to prove
the same theorem for tapes. The 2 queue machine guesses the computation of the k-
queue machine computation and put this guess on 1 queue. Then use the other queue to
simulate the computation of each of the k queues of the simulated machine and check
its correctness against the guess on the first queue. We refer the reader to jBGj for the
details, (This simulation takes 0 (kn) time. But it can be improved to real time using
the methods developed in [BGI.)

Theorem 5.3: 3 pushdown stores can nondeterministically simulate k queues in
linear time.

Proof: Combine ideas from the above 2 theorems. I.e., guess the computation of
the k queue machine, and put the guess into one pushdown store. Save this guess also to
another pushdown store (but put a marker on the top). Then simulate a queue and
check the correctness of the guess. (The simulation needs 2 pushdowns, one of the push-
downs has the guessed computation saved on the bottom.) After simulating one queue,
retrieve the guessed content and again put it into 2 pushdowns. Repeat this process for
each queue.

Notice that a strange phenomenon occurs here. When we have 1 queue and 1 push-
A down store, 1 queue is better in the sense that 1 queue can accept all the r.e. languages

but 1 pushdown cannot. However, when we have more pushdown stores, more pushdown
stores seems to be better than queues because they are more efficient.

Theorem 5.4: One queue can simulate k queues in quadratic time, both determin-
istically and nondeterministically.

Proof: Here, use some basic simulation schemes.

This also relates to a interesting problem of whether "2 heads (on one tape) are
better than 2 tapes (each with one single head)". Vitafiyi [Vi3] showed that 2 tapes can-
not simulate a queue in real time if one of the tape has only o (n) cells to use. Our result
here shows that 2 pushdowns can simulate a queue in linear time. It would be interesting
to know whether this can be done in real time. The question of how to simulate k
deterministic queues by 2 queues (like the Hennie Stearns simulation in the tape case
-HS2]) remains open.

5.2. Lower bounds

We now prove optimal lower bounds for above simul:%tions. We define the language
L:

L {- a % bb 1 
. . . b

bo2bo3b 2b'b3b ' b 2 . 2+ k2 r s 2



--- t

bo4b( 3 +1/b4 b 4 b 3 +3/b4 b4 mo (k .~ 3 b. b 4_lb3b4

0 k(2i mod (k +1) i (2i +1)mod (k +1) k

n& a

i b,'-b, 2 -b 3=b, 4 for i 0,...,k for any odd k}

The length of each bij is a fixed constant C. The superscripts of bi 's are used only
to facilitate later discussions. L can be considered as a modified version of a language

used in [Ma]. We have added a string a on the both ends. The purpose of a is to

prevent the queue from shrinking since if we choose a to be a long random string then

before the second a is read the size of the queue has to be larger than I a I . We have to

prevent the queue from shrinking because otherwise the crossing sequence argument

would not work. In order to prove the lower bounds for queues new techniques, in addi-

tion to those used in [Ma,LV], are required.

Theorem 5.5: Simulating two deterministic queues by one nondeterministic queue

requires £(n 2 /log 2 n loglogn) time.

Proof: We will show that L defined above requires f2(n 2/log 2n ]oglogn ) time on a

one-queue nondeterministic machine (always with an extra 1-way input tape). Since L

can obviously be accepted by a two-queue deterministic machine in linear time, the

theorem will follow.

Now, aiming at a contradiction, assume that a one-queue machine M accepts L in

o (n 2 /log2 n loglogn) time. Only for the notational convenience, we think the queue of

M as a circular tape with just one queue head, which combines the push head and the

pop head. The head moves clockwise uniformly. The circular tape can augment (insert a

tape square) or shrink (delete a tape square) at constant cost in order to mimic a queue.

We call it Queue and write I Queue (t) I to denote its length at time t. Name the

input head h 1 and the queue head h 2 . Initially the Queue is a point, a degenerated

ring.

Choose a large n and a C >10 I M +10 so that all the subsequent formulas make

sense. Choose an incompressible string XE{0,1}2 " . Let X=X X' " where

I-7  I= IX ' I. Equally divide X' ' into k+1=n/Cloglogn parts,

V I --XoX * * . X, each Cloglogn long. Consider a word wEL where a =X V  and

biJ =xi for l<j <5 and 0<i <k. Fix a shortest accepting path, P, of M on w.

Consider only the path P. Let fl be the time when h reaches the first &, e' & be

the time h I reaches the second 8. and t# be the time when hI reaches #.

Claim 1. I Queue(t&)I >n/2.

Proof. If not, we can conclude that K(X)< I X I as follows. For every Y such

that I Y I =IX I, let Y=a' yo" .. Yk. Replace the last a after the & sign in w by

a' . Using the (short) description of the queue, start to simulate M from time t&. By a

standard argument, Y=X iff M accepts. Therefore K(X)< X 1, a contradiction.

By a similar argument as in Claim 1, we derive Claim 2.

.OMNI'
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Claim 2. 1 Queue (t) 1 2n /2 for every te <t <V e .

Claim 3. The crossing sequence from time t& to e . is shorter than
n

C 10log2n loglog n

Proof. Follows directly from Claim 2.

If the Queue cells which are scanned or created by h 2, while h I is scanning b/, are
in Q {q1 , ,q. }, then we say that b/ is mapped into Q. Notice that b' is at first
mapped into a set, Q, of consecutive sequence of cells. But, different from a regular Tur-
ing machine tape, Q may become disconnected because other queue squares can be
inserted later. We say that bi is sequentially mapped if, while hl scans be', h 2 did not
scan any Queue cell twice (leave and re-enter), that is, h 2 did not make a round trip on
Queue. We say that b,) is majorly mapped into Q if b' is sequentially mapped, and there
are two substrings, u and v, of b? which are mapped into Q and

Ib,' I

2 1

Remark. According to above definition, a bi can be majorly mapped into two dis-
joint sets.

Claim 4. At time t#, Queue can be cut into two segments, S1 and S2, such that

(1) SinS2=0 and SlUS2=Queue;

(2) k/4 bi 's, say bil , "..,bil 4 , are majorly mapped into S1, and k/4 bills, say

bj,, • , bi/4, are majorly mapped into S2.

{bil , " ,bi, }n{bj,, " ,bil } .

(3) IStl, I IS21 >n/C ,

Proof. In our proof only properties (1) and (2) are used, (3) is stated for the sake
of completeness. We will only give proofs of (1) and (2). The proof of (3) is very similar
to the last part of this proof and we leave the proof of (3) to the interested readers.

99k
First we show that - bil are sequentially mapped. By Claim 2, for ts <t <V e ,

100'
we always have I Queue (t) I n /2. Therefore, if after time ts more than k /100 bills
are not sequentially mapped, then on each of them M must spend at least n /2 time to
go around the Queue. Altogether M would be spending fl(n 2/loglog n) time, a contrad-
iction. Hence at least 99k /100 bil's are sequentially mapped.

Now we can easily choose two points p ,q on Queue to cut Queue into two parts
S, and S2 such that (1) and (2) in the claim are true.

>From now on, we will always consider the Queue to be partitioned as S, and S 2.
The sizes of S, and S2 may increase or decrease. If anything is inserted in the intersec-
tion point of S, and S2 then it does not matter in which set we place the inserted

Queue cell.

The next claim is a simple generalization of a theorem proved by Maass in iM'
(Theorem 3.1). The proof of this claim is a simple reworking of the proof in tM].
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Claim 5. Let S be a sequence of numbers from {0, ... k-1}, where k=21 for
some I. Assume that every number b E {0, . . . , k-1} is somewhere in S adjacent to
the number 2b (mod k) and 2b(mod k)+1. Then for every partition of {0 ..... k-1}
into two sets G and R such that S=GUR and I G IIR I > k/4 there are at. least
k /(c log k) (for some fixed c ) elements of G that occur somewhere in S adjacent to a
number from R.

A k /v'iTk upper bound corresponding to the lower bound in this lemma is con-
tained in [Li]. A more general, but weaker, upper bound can be found in [K1]. Notice
that any sequence S in L satisfies the requirements in Claim 5.

Claim 6. At time e . , the bi's between # and the second 8 are mapped into
Queue in the following way: either

(1) a set, S1, of k/c logk bj's, which belong to {bi . }, are mapped into Sl"' 3/4

or

(2) a set, '2, of k/c logk bi 's, which belong to{b4 , bi b 4 }, are mapped into S 2.

Where c < < C is a small constant as used in Claim 5.

Proof. By Claim 3 we can assume that from time t# to time e ., h 2 made less
k

than round trips on Queue. Therefore by the nature of the queue, only
C 2log k

2k bJ's can be mapped into both S, and S 2. Also since h 2 can alternate between
C 2log k

2k
S, and S 2 less than 2 k times, we complete the proof by applying Claim 5.C21og k

Without loss of generality, assume that (1) of Claim 6 is true.

Claim 7. Let te,d be the time M ends. Either

(a) There exists a time t Y <__tO<_tend such that IQueue (to) 1 _ n and the
C llogn

crossing sequence from 1' g to t o is shorter than n ; orC lolog n loglog n

(b) >From time t & to time tend the length of the crossing sequence is shorter than
n

Clologn loglogn

Proof. If (a) and (b) are both false, then M spends Q ( log 2n oglog time, a con-

t radiction.

By Claim 3 the crossing sequence is shorter than n before time
C 1log2n loglogn

I' e Record this crossing sequence. For every j,k, if b Egi, then b, is majorly mapped
into S,,. Let uj, vi be the substrings of b, such that

I> Ib'[ -1 and

(ii) u,.vj are mapped into S 2.
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Let S,,={uj ,v, I b-'E for some k >1}. Notice that
lui I +l I > nj I.

StJES.. (i 3 cIogn

Now we describe a program which reconstructs X with less than IX I informa-
tion. Consider every Y such that IY = JX and Y-- a YO ... Yk for some

~YO * Yk.-

(1) Check if Y is the same as X at positions other than those places occupied by
U1 , vi ES.v •

(2) If (1) is true, then construct the input, wy, as before except with zi replaced by yi
for i= 0,1,- • • ,k.

(3) Run M following path P up to time ta.

(4) We distinguish between two cases according to Claim 7.

Case 1. (b) of Claim 7 is true. Record the crossing sequence from t 8 to ted.

Continue to run M from tr to t, 3d such that h 2 never goes into S 2. Whenever
h 2 reaches the border of S2 it matches the current ID with the crossing sequence.
If they match M jumps over S2 and, using the next ID on the other side of S 2 to
start from, $M$ continues until time tend.

Case 2. (a) of Claim 7 is true. Record the crossing sequence from time e1 a to
time t o and the contents of S2 at time t0 . Simulate M, with h 2 staying outside of

S2, from time e a to time to similar to Case 1. At time to, M puts the (short)
contents of S2 in the position of S2 and then finishes the computation in the nor-
mal way.

(5) By the end M accepts iff Y=X. Notice that since M is nondeterministic, by
"accept" we mean that there is an accepting path.

Now the information we used in this program is only the following.

(1) X - S.,, plus the information to describe the relative locations of bj E-I in X and
the relative locations of uj,vnnj in biE. 1 Using the coding method described in
the previous part of the paper, this would require at most

I 2c log + ( n),-- c logn logn

where the second term is for the u1 ,vi in S.,, the third term is for the information to
describe the relative positions of bi E7 1, and the last term is for the information needed
to describe the relative positions of ul ,vi in each b,

(2) Description of the crossing sequence, of length less than n aroundCglog n loglogn

S2. Again by the method used in previous part of this paper, this requires at most

n nbits.C~logn loglogn
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(3) Description of the contents of S1 at time t o when (a) of Claim 6 is true. But

IQueue (to) 1 C1 0lon
--C lologn"

(4) Extra 0 (log n ) bits to describe the program discussed above.

The total is less than I X I. Therefore K(X)< I X I, a contradiction.

Corollary. Simulating two deterministic tapes by one nondeterministic queue
requires fl(n 2/log 2n loglogn).

Proof. Since L can also be accepted by a two tape Turing machine in linear time.

Theorem 5.6: It requires fl(n 2 ) time to simulate two deterministic queues by one
deterministic queue.

Proof Idea. Define a language L 1 as follows. (Below, a ,xi ,yi E{0,1}.)

L I = (a & X A ' $zk#y $ ... $y1#(l1i,lJI)(lijl2)...(it,J) e a

X)- -yq 8f (p = i +...+it, q = J+...+jg) 8f i<t < }

L I can be accepted by a two queue deterministic machine in linear time. But using
Lb the techniques in Therem 1 and in the proof of one deterministic Turing machine tape

requiring square time for this language (See [LV]), it can be shown that L I requires
Q Q(n 2) for a one queue deterministic machine. We omit the proof.

Remark. The above lower bounds are similar to the case of one tape vs two tapes
[Ma,LV]. However, the proofs require special techniques to handle the queues. Still we
do not have a lower bound as good as in the nondeterministic tape case [LV,GKS]. We
feel that some improvement should be possible.
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