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I. INTRODUCTION

One of the most important aerodynamic performance characteristics for
shell is the total drag. The total drag for projectiles can be divided into
three components: (i) pressure drag (excluding the base), (ii) viscous (skin
friction) drag, and (iii) base drag. The base drag is a major contributor to
the total drag, particularly at transonic speeds. Thus, the determination of
base pressure is essential in predicting the total drag for projectiles. The
breakdown of the total drag into various components is important in the pre-
liminary design stage of shell, This information can aid the designer to find
potential areas for drag redustion and achieve a desired increase in range
and/or terminal velocity of projectiles.

Nesign codes are available that can predict the individual drag compo-
nents and thus, the total aerodynamic dragq. Typically, the total drag
predicted by these design codes agrees well with the total drag measured from
flight tests. BRut, how well do these codes predict the individual drag compo-
nents for a projectile? It is difficult to measure the individual drag compo-
nents experimentally (especially the base drag and skin friction drag) and
verify the accuracy of these predictions. Recently developed Mavier-Stokes
computational procedures are capable of predicting all the individual drag
components for projectiles and can- be used to determine how well the design
codes predict the individual drag components. This report describes such a
Navier-Stokes computational study to predict the individual drag components of
projectiles and determine the accuracy of the predictions from available
design codes.

I1. COMPUTATIONAL TECHNIQUE

The Azimuthal Invariant (or Generalized Axisymmetric) thin-layer Navier-
Stokes equations for general spatial coordinates &, n, ¢ can he written as!

aTa + aEE + 3Cé +H = Re-13C§ (1)
where £ = £(x,y,Z,t) is the longitudinal coordinate
n = n{y,z,t) is the circumferential coordinate
¢ = g(x,y,z,t) is the near normal coordinate
Tt =t is the time
and

v

1. CuJ. Nietubicez, T.H. Pulliam, and J.L. Steger, "Numerica. Solutiom of the
Azimuthal-Invariant Navier~Stokes Equations,” US Army Ballistic Research
Laboratory, Aberdeen Proving Ground, Maryland, ARBRL-TR-02227, March
1380. (AD A085718) (Also see ALAA Jourmal, Vol, 18, No. 12, Decenber
1980, pp. 1411-1412)
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o ———
—_— 0 —_—
u(cf + c§ + c%)uc + (u/3)(cxuc MR czwc)ix
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S - 2 z 2
S uleg + et cpdwe v (w/3)(5,u, + TV )8,

(2 + 62+ SOL(/2) (U2 + v2 + wh) 4 xPr7i(y - 1)71(27) ]

+ (u/3)(cxu MR czw)(cxuC MM czwc)}.

The velocities

U=§t+£xu+£yv+gzw
V=, +nu+ Ny * nw (2)
W=7y

t + Cxu +CyV + LZW

represent the contravariant velocity components.

The Cartesian velocity components (u, v, W) are nondimensionalized with
respect to a_ (free

stream speed of sound). The density (p) is referenced




to o, and total energy (e) to p,a2. The local pressure is determined using
the equation of state,

Pas(v-1)[e- 0.5(u?+vi+ w?d)] (3)

where v is the ratio of specific heats.

In Equation (1), axisymmetric flow assumptions have been made which

result in the source term, H. The details or how this is obtained can be
found in Reference 1 and are not discussed herc, Equation (1) contains only
two spatial derivatives., However, it ret:ins all three momentum equations and
allows a degree of generality over the standard axisymmetric equations. In
particular, the circumferential velocity is v assumed to be zero, thus
allowing computations for spinning projectiles to te accomplished.

The numerical algorithm used is the Beam-Warming fully implicit, approxi-
mately factored finite difference scheme, The algorithm can be first or
second order accurate in time and second or fourth order accurate in space.
Since the interest is only in the steady-state sclution, Equation (1) is
solved in a tiine asymptotic fashion and first order accurate time differencing

is used, The spatial accuracy is fourth order. MNetails of the algorithm are
included in References 2-4.

For the computation of turbulent flows, a turbulence model must be sup-
plied. 1In the present calculations, the two layer algebraic eddy viscosity
model developed by Baldwin and Lomax> is used, In their two-layer model, the
inner region follows the Prandtl-Van Driest formulation. Their outer
formulation can be used in wakes as well as in attached and separated boundary
layers. In both the 1inner and outer formulations, the distribution of
vorticity is used to determine length scales, thereby avoiding the necessity
of finding the outer edge of the boundary layer (or wake). The magnitude of
the local vorticity for the axisymmetric formulation is given by:

2. J.L. Steger, "Implicit Finite Difference Simulation of Flow About
Arbitrary Geometries with Application to Airfoils,” ATAA Jourmal, Vol. 16,
No. 7, July 1973, pp. 679-686. e —

3., T.H. Pulliam and J.L. Steger, "On Implicit Finite-Difference Sirulations
of Three-Dimensional Flow,” ATAA Jourmal, Vol. 18, No., 2, February 1969,
pp. 159-167. —

4. R. Beam and R.F. Warming, "An Implicit Factored Scheme for the Compres-

sidle Navier-Stokes Equattions,” AIAA Jourmal, Vol. 15, No. 4, April 1578,
pp. 393-402. -

§. B.S. Baldwin and H. Lomaxr, "Thin-Layer Approximation and Alzebraic ‘odel
for Separated Turbulent Flaws,” ALAA Paper No. 78-257, 1975,
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In determining the outer layer length scale a function®
. + et /
F(y) = ylul [1 - exp(-y /A")] {5)

was used where y* and A* are boundary layer parameters.

The thin-layer Navier-Stokes computational technique described above has
been wused 1in conjunction with a unique flow field segmentation proce-
dure®,” which allows the entire flow field over a projectile including the
base region flow to be computed An important advantage of this segmentation
procedure lies in the preservation of the sharp corner at the hase; in other
words, no approximation or rounding of the actual sharp corner at the base is
made, The detaiis of this procedure can be found in References 6 and 7.
Since the entire flow field over the projectile is calculated, all the
individual drag components can be computed and thus, the total aerodynamic
drag can be determined,

111, DESIGN CONES
A. NSWCAP
The NSWCAP code®,% is a semi-empirical/analytical techanique which
provides fast predictions of static and dynamic¢ coefficients of shell at

transonic and low to moderate supersonic velocities. This code is relatively
simple to use and is formulated to be a 'design tool’.

6. J. Sahu, C.J. Nietubica, and J.L. Steger, "Numerical Computation of Base
Flow for a Projectile at Transomic Speeds,” US Army Ballistic Research
Laboratory, Aberdeen Proving Ground, Maryland, ARBRL-TR-02495, June 1983.
(AD A130293) (Also see AIAA Paper No. 82-1358, August 1982) :

7. J. Sahu, C.J. Nietubica, and J.L. Steger, "Navien-Stoles Computations of
Progjectile Base Flaw with and without Base Ingjection,” US Army Ballistic
Research Laboratory, Aberdeen Proving Ground, Maryland, ARBAL-TR-02532,
November 1983. (AD A135738) (Alsoc asee ALAA Jourmal, Vol. 23, No. 9,
September 1985, pp. 1348-1355)

8. F.G. Moore and R.C. Swangon, "Aerodyramics of Tactical Weapoms to “Yach
Number 3 and Angle-of-Attack 15°, Part I - Theory and Application,”
NSWC/DL TR-3584, February 1977.

9. F.G. Moore and R.C. Swanson, "Aerodunamics of Tactical Weapona to “ach
Number 3 and Angle-of-Attack i5°, Part II - Cormputer Program and ‘/acge,”
NSWC/DL TR 3600, March 1377,
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The total! drag is obtained by a linear superposition of pressure drag,
skin friction drag and base drag. This code also has the ahility to estimate
the drag due to a rotating band if it is present.

The pressure drag consists of contributions from the nose and the boat-
tail. The nose drag is based on empirical as well as experimental data at
transonic speeds. The boattail pressure drag is based upon a small distur-
bance potential solution. The estimation of nose drag and boattail drag at
supersonic speeds is based on the Van Dyke second-order theoryl!0,

The skin friction component of the total drag is computed using the model
of Van Driest!} The base drag prediction is empirical., It is assumed that
the boattail 1is Jlocated after a relatively long afterbody so that the
approaching external flow is at free stream conditions, The base drag is
determined by the expression

Cap = -C5 M I(RR/R__¢)°
AB PBA B/ "ref

where CPBA(M“) is the base pressure coefficient for a laong afterbody with no

boattail, Rg is the base radius and Rraf 1S the reference body radius

(usually the radius of the cylindrical section). CP ts based on the data
BA

for a long cylindrical afterbody and a fully turbulent boundary layer ahead of
the base. The affect of base bleed or rocket exhaust can nnt be accounted for

in this approach,
B. MCDRAG

This 1is another programi?¢ based on semi-empirical technique which
provides a ouick response and is very easy to use. This code is used for
estimating the drag of a projectile in the Mach number range of 0,5 to 5.0.
The total drag takes the form

C = Cy +Ch + C
DO DP »DV DB

10. M.J. Van Dykes, "The Similarity Rules for Second-Order Subsonic and
Supersonic Flow,” NACA Tech Note 3875, October 1356.

1. E.R. Yan Driest, "Turbulent Boundary Layers in Compreds

te Fluids,"”
Jourmal of the Aeronauticrl Sciences, Vol. 18, No. 3, 2

!, pp. 145-:160.

12. R.L. McCoy, "Medrag - A Computer Ppogram for fstimating the Dra;
Coefficient of Projectiles,” US Army Ballistic Research Laboratory,
Aberdeen Proving Sround, Maryland, ARBRL-TR-52283, Feobruary 1587, (42

A0881:0)}
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where CDO total drag coefficient at zero angle of attack

pressure drag or wave drag coefficient

e

viscous or skin friction drag coefficient

o

ST T PP VPR, ES DA .

O
]

base drag coefficient,

oL
o
o

The pressure drag consists of drag due to the projectile nose, boattail and
the rotating band (if any). Prediction of the projectile nose drag is based
on analytical theories at supersonic speeds while the transonic nose drag is
based on correlations with experimental data., This is similar to the pro-
cedzre used in the NSWCAP code. The effact of leading edge bluntness fis
accounted for in estimating the nose drag. As for the boattail drag, second
ocrder thecry is used to correlate with experimental data to estimate this
component of drag at supersonic speeds and a similar procedure is used at
transonic speeds as well, The drag due to the rotating band 1s usually very
small (of the order a few percent of the tctal drag) and {is based on
correlations with few experimental tests,

e

. ". ..-—’ A , . .T.". -‘-‘ 4-_

The skin friction drag coefficient, C; , 1s given by,
v

IDABE o ARy
o
o
a
o
~
(%]
=

where Cp = skin friction coefficient for a smooth flat plate

a'sx

Sy = projectile wetted surface area (excluding the base)

TV

Cr 1s estimated analytically depending on whether the bouncary layer fis

i

? laminar or turbulent on the nose. The flow over the afterbody is assumed to

F be turbulent always.

b The base drag coefficient, Cn is estimated empirically. The approach
B

E taken here differs from the procedure used in the NSWCAP code. The pressure

drag and skin friction drag are estimated as describad previously. These con-
tributions are then subtracted out from the measured tntal drag coefficients
which are available from free flight data of various projectiles. An average
) hase pressure is then inferred from the derived base drag cnefficient. The
estimate of hase drag coefficient is obtained from the relation,

b
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n

EFGAP P R IE Y
FAALESTD X KE E=

2
. 2dg P

Ch = — (1 - 52)
Dp  ym 2 P

where P5/P, = base pressure obtained from a least square fit of the data which

includes Mach number and boattail effects
and dg = diameter at the base.

IV. RESULTS

Computations of various drag components, and thus the total drag have
been made for three projectiles: SOC; SOCBT; and the M549. For the Navier-
Stokes computatfons, solutions were marched in time until the steady state
results were achieved. Results are now presented for the three cases
considered. '

A. SOC Configuration

This projectile has a 3 caliber (1 caliber = 1 reference body diameter)
secant-ogive nose and a 3 caliber cylindrical afterbody as shown in Figure
1. One of the first steps before performing Navier-Stokes calculations is the
determination of a computational grid., An expanded view of the grid near the
projectile is shown in Figure 2. The grid consists of 114 points in the
longitudinal direction (fncluding 30 points in the base region) and 50 points
in the normal direction, The grid points in the normal direction are
stretched away from the surface exponentially. The clustering near the body
surface 1s required to resolve the boundary layer. Additional grid clustering
s used in the longitudinal direction near the nose-cylinder junction and the
base where appreciable changes in the flow field variables are expected,
Figure 3 shows an expanded view nof the grid in the base region. Fifty grid
points are used in the base region from the base corner down to the center
1ine of symmetry. This is done to provide adequate grid resolution along the
base of the projectile.

The individual drag components (pressure drag, viscous drag and base
drayg) are obtained from the computed solutions and their varfations with Mach
number are presented next. These results are compared with the predictions
from the design codes. As shown in Figure 4, the pressure drag predicted by
the Navier-Stokes code agrees well with the MCDRAG and NSWCAP predictions
except at M = 1,2 where a small discrepancy is found. Comparison of viscous
drag 1s shown in Figure 5. Here the viscous drag predicted by the Navier-
Stokes code 1s 1n very good agreement with the MCDRAG prediction. The NSWCAP
code underpredicts this drag by about 15% in the transonic speed regime, This
contribution to the tocal drag is, however, small,

Figure 6 shows the variation of base drag as a function of Mach number,
As expected, the base drag decreases as Mach number is increased from 1.2 to
3. For this range of speeds the MNavier-Stokes code result agrees very well
with the NSWCAP prediction, MCDRAG overpredicts these results by about 12%,

13
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Comparison of the base drag is shown more clearly in Figure 7. The Navier-
Stokes results are indicated by circles, experimental resultsl!? by triangles,
data basel* results by diamonds and MCDRAG results by squares. The results

~ from the data base are based on correlatfon of base pressures obtained from a

number of experiy.sents and other analytical techniques. The increase in base
drag with increase in Mach number in the transonic regime is predicted by all
techniques. However, large scatter in the predictions of base drag exists,
The Navier-Stokes result agrees well with the result from the data base except
at M = 1,1 where it overpredicts the base drag by 12%. The MCDRAG prediction
of base drag is consistently higher (up to 10%) than the data base result,

The total aerodynamic drag 1is obtained from the individual components
and is plotted as a function of Mach number in Figure 8. The Navier-Stokes
result compares very well with NSWCAP prediction at all speeds (transonic and
supersonic). The MCDRAG prediction 1s {n reasonahle agreement with other
results at higher Mach n-ybers (M > 1); however, discrepancy up to 20% fis
found at Jow Mach numbers (.9 < M < 1.,0). The total drag, as expected,
increases as Mach number increases from 0.9 to 1.2 in the transonic speed
regime,

B. SOCBT Configuration

. The model geometry for this secant-ogive-cylinder-boattail (SOCBT) con-
figuration 1s shown {in Figure 9, It has a 3 caliter secant-ogive nose, a 2
caliber cylinder and a 1 caliber, 7° boattatl. A computational grid was ob-
tained for this configuration and an expanded view of the grid near the pro-
jectile is shown 1in Figurc 10, This grid consists of 114 points in the
streamwise directfon and 50 points in the normal direction. Grid clustering
in the streamwise direction has been used near the ogive-cylinder and
cylinder-boattatl junctions as well as the base, Figure 11 shows the expanded
view of the grid in the base region and again shows the large number of grid
points used in this region,

The drag components (pressure drag, viscous drag and base drag) for this
shape are shown in Figures 12 through 18, Figure 12 shows the pressure drag
comparison, At higher supersonic Mach numbers all predictions are in
reasonahle agreement. The pressure drag at transonic speeds 1s under pre-
dicted by both the design codes, As shown 1n Figure 13 the pressure drag

13. L[.D. Kayser, "Base Pressure Measurements on a Projectile Shape at Mach
Numbers for 0.91 to 1.20," US Army Balliatic Keeearch Laboratory,
Aberdean Proving Ground, Maryland, ARBRL-MR-03363, April 1864. (AD
Al41341)

14. P.R. Payna and R.M Hartley, "Afterbody Drag, Volume 1 - Drag of Coniocal
and Ciroular Aroc Afterbodies without Jet Flow,” Final Report,
DTNSRDC/ASED-80/10, Bethesda, Maryland, May 1940.

14




obtained from the Navier-Stokes results is compared with experiment!5 and is
in excellent agreement with experiment. The viscous drag is compared in
_Figure 14, The Navier-Stokes result {s in good agreement with the MCNRAG
" prediction at all Mach numbers from .9 to 3.0. The MNSWCAP code prediction is
in reasonable agreement at supersonic Mach numbers and 1s underpredicted at
311 transonic Mach numbers. Comparison of the base drag is shown in Figure
15, As shown 1in this figure, the Navier-Stokes code prediction is in good
agreement with the predictions from the design codes at higher Mach numbers (M
> 1.5). Large discrepancies are seen between the predictions at transonic
speeds, Both design codes MCDRAG and NSWCAP grossly overpredict the base drag
in this speed regime. The Navier-Stokes result is compared with experiment!3

and the MCDRAG result 1in Figure 16, Although there {is a small discrepancy
between the numerical result and the experimental data, the trend f.e.,
decrease and fincrease of base drag with Mach number seen experimentally fis
c¢learly observed in the computational results. MCDRAG, on the other hand,
does not show the correct trend and grossly overpredicts the base drag except
at M = 1.2, NSWCAP, predicts even higher base drag at transonic speeds and
thus, 1s in worse agreement with the Navier-Stokes result and the experiment.
The computational result and the experiment show a negative base ‘drag (or
thrust) at Mach numbers 0.94, 0.96 and 0.98 which is not predicted by the
design codes. '

Figure 17 shows the varfation of base drag with Mach number for both 30C

and SOCBT configurations. These are the computational results and the reduc-

jon in base drag due to the boattail is clearly seen, Figure 18 shows the

total drag as a function of Mach number., The Navier-S5tokes result 1s compared

with the design code predictions. The agreement 1s good at all Mach numbers

except between 1.1 and 1,2 where about 15-20% discrepancy is found between the
design code predictions and the Navier-Stokes result.

. M349 Projectile

The M549 1s a modern, low drag, Army artillery shell. The geometry of
this shell is shown in Figure 19. It has a 3 caliber ogive nose, an approxi-
mately 2 caliber cylindrical section, and a .59 caliber, 7 1/2° boattail.
Certain simplifications have been made on this shape., The flat nose was
modeled as a hemisphere cap and the rotating band was eliminated. As a
result, a modified configuration, shown in Figure 20, was obtained and used
for the numerical computations.

An expanded view of the computational grid near the projectile is shown
in Figure 21. This grid has 114 points in the streamwise direction and 40
points in the normal direction. Grid points are clusterad near the surface
and also in the base region where large changes in the flow variables are
expected, Figure 22 shows the velocity vectors in the base region obtained

fr?m the Navier-Stokes calculations., The recirculatory base flow is clearly
evident,

1§. L.D. Kayser, "Surfase Pregsure Measurements on a Boattailed Projectile
Shape at Transonic Speeda,” US Army Ballietioc Research Laboratory,
Aberdeen Proving Ground, Maryland, ARBRL-MR-03181, March 1882. (AD
A113520)
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The individual drag components (pressure drag, viscous drag, base drag)
and the total drag are shown in Figures 23, 24, 25 and 26, respectively., The
drag components obtained from Mavier-Stokes solutions are compared with the
NSWCAP and MCDRAG predictions. The pressure drag predicted by the Navier-

.Stokes code, NSWCAP code and MCDRAG is in good agreement at low Mach numbers

(.9 ¢ M < 1,0). MCDRAG predicts slightly higher pressure drag at higher Mach
numbers compared to the Navier-Stokes and NSWCAP predictions, The viscous
drag predicted by all codes is in good agreement. As for the base drag, the
Navier-Stokes result agrees very well with the NSWCAP predictfon whereas
MCORAG underpredicts the base drag by as much as 20 to 25%. The total drag
comparison s shown in Figure 26. Again, the Navier-Stokes result is compared
with predictions from NSWCAP and MCORAG codes. In addition, these predictions
are compared with the LCWSL1® data base and are all in good agreement.

IV, CONCLUDING REMARKS

A thin-layer Navier-Stokes code has been used to compute the flow field
over projectiles including the base region. Numerical computations have been
made for three projectiles (SOC, SOCBT and M549) for various Mach numbers and
a -+ 0, The individual drag components (pressure drag, viscous drag, and base
drag) and total drag were obtained from computed sclutions. In addition, two
design codes (NSWCAP and MCDRAG) that employ semi-empirical techniques were
used to predict the drag for projectiles. Predictions from the Navier-Stokes
code and the design codes were compared with experiment and/or data base
results where available,

The viscous drag predicted by the design codes 1s generally i{n good
agreement with the prediction from the Navier-Stokes code. However, signifi-
cant discrepancies in the prediction of pressure drag and base drag are
found. When pressure drag is underpredicted, the base drag i1s overpredicted
and vice versa, Thus, when the individual drag components are added up to
obtain the total drag, the discrepancy is usually small) and reasonably good
agreement 1s found between the predictions of total drag from the Navier-
Stokes code and the design codes.

16, A. Loeb, "Private Communtication,” Large Caliber Weapons Systems
Laboratory, ARDC, AMCCOM, Dover, New Jerasey.
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Figure 21. Physical Grid for M549 Projectile
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USER EVALUATION SHEET/CHANGE OF ADDRESS
This Laboratory undertakes a continuing effort to improve thg,guality of the
reports it publishes. Your comments/answers to the items/questions below will
aid us in our efforts.

1. BRL Report Number Date of Report

}

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or
other area of interest for which the report will be used.)

4, How specifically, is the report being used? (Information source, design
data, procedure, source of ideas, etc.)

S. Has the information in this report led to any quantitative savings as far
as man-hours or dollars saved, operating costs avoided or efficiencies achieved,
etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future
reports? (Indicate changes to organization, technical content, format, etc.)
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Address

City, State, Zip

7. 1f indicating 4 Change of Address or Address Correction, pleasc provide the
New or Correct Address in Block 6 above and the Old or Incorrect address below.

Name
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