
RD-AI?l 393 DESIGN OF A GRAPHICS USER INTERFACE FOR R OATABOSE 1/2
MNNGENENT SYSTENCU) NAYAL POSTGRADUATE SCHOOL NONTEREY
CA J K ADCOCK JUN 86

UNCLSSIFIED F/G 9/2 NL

mEEmhmhhhEEEEE

E~h~hh~hhh

IL6

11111 ______

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- 1963-A

477, -";7 7

CV)7

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC3

S EECTE

THESIS
DESIGN OF A GRAPHICS USER INTERFAC
FOR A DATABASE MANAGEMENT SYSTEM

o by

Jerry K. Adcock ~ ~

June 1986 .

Thesis Advisk C. T. Wu

Approved for public release; distribution is unlimited. \.~

-86 9 5 08

~~ A

SECURITY CLASSIFICATION Of. TRIS PAGE P-"7~4~7 :'3
REPORT DOCUMENTATION PAGE

l. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABIUTY OF REPORT

Approved for public release;
25. DECLASSIFICATION/DOWNGRADING SCHEDULE dist ribut ion is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduate Schoo (Npplikca) Naval Postgraduate School

6C. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, California 93943 Monterey, California 93943

Ba. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (I a able)

Sc. ADDRESS (City, State, and ZIPCode) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

S 11 TITLE (include Security Classification) UNCLASS IFI ED
S Design of a Graphics User Interface for a Database Management System

Q PERSONAL AUTHOR(S)
Jerry K. Adcock

13a TYPE OF REPORT 113b. TIME COVERED 114 DATE OF REPORT (Year, Month, Day) S. PAGE COUNT
Master's Thesis I FROM TO ,.__ 1986 June 20 168

16 SUPPLEMENTARY NOTATION

17 I'COSATI CODES 18. SUBJECT TERMS (Coninute on revern if necessary and identify by block number)
!FIELD GROUP SUB-GROUP GLAD, Graphics User Interface, Graphics Language,L Ifor Accessing a Database, Hierarchical Input

Process Outnut HTPOI 9,S TRACT (Continue on revrse if necenary and identify by block number)
This thesis presents a solution to the problems associated with database
management systems. User needs are discussed, with a methodology to meet
those needs. It is shown that no current system exists which can satisfy
all requirements, so a new syste or interface must emerge.
The remainder of the thesis presents the design of such a system, called
Graphics Language for Accessing a Database (GLAD). The Hierarchical
Input Process Output (HIPO) System is used for design representation.

20 DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
(OUNCLASSIFIEDAUNLIMITEr 0 SAME AS RPT. 0 DTIC USERS UNCLASS T F E

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Prof. C. T. Wu 408 646-3391 5Wo

OD FORM 1473.84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFCATION OF THIS PAGE
All other editions are obsolete

1

Approved for public release; distribution is unlimited.

Design of a Graphics User Interface
for a Database Management System

by

Jerry K. Adcock
Lieutenant, United States Navy
B.S.E., Purdue University, 1978

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

J 1986

Author:
Jeiry K. Acock

Approved by: C T. .

Vincent Y/ Lum, Chairman,
Department of Computer Science

Deanl T. Mass94

Dean of Information and icy ces

2

ABSTRACT

This thesis presents a solution to the problems associated

with database management systems. User needs are discussed,

with a methodology to meet those needs. It is shown that

no current system exists wich can satisfy all requirements,

so a new system or interface must emerge.

The remaineder of the thesis presents the design of such a

system, called Graphics Language for Accessing a Database

(GLAD). The Hierarchical Input Process Output (HIPO) System

is used for design representation.

copy

I c

Accesion For

NTIS CRA&I I
DTIC TAB
Uniannounced Q

Justification

By
By

Dilt. ibution I
Availability Codes

D Avail a dIor
~eSpecial

A-1

3

11,~ fill e

TABLE OF CONTENTS

I. INTRODUCTION... 6

A. BACKGROUND........ 6

B. MOTIVATION ..7

C. POSSIBILITIES................................... 10

D. EARLY WORKS..................................... 13

E. NEW SYSTEM PROPOSAL15

F. THESIS ORGANIZATION17

ii. SPECIFICATIONS...................................... 19

A. INTRODUCTION.................................... 19

B. ADVANTAGES OF GLAD.............................. 19

C. BASIC PROGRAM COMPONENT DESCRIPTIONS24

*D. EXCEPTION HANDLING.............................. 38

E. PRIORITIES IN DESIGN39

F. DESIGN HINTS AND GUIDELINES40

III. DESIGN.. 42

A. METHODOLOGY..................................... 42

B. DESIGN CONSIDERATIONS........................... 43

C. DESIGN DECISIONS................................ 44

D. DESIGN LAYOUT................................... 45

IV. CONCLUSIONS AND RECOMMENDATIONS46

A. CONCLUSIONS..................................... 46

B. RECOMMENDATIONS................................. 47

APPENDIX.. 52

4

LIST OF REFERENCES...................................... 164

BIBLIOGRAPHY.. 166

INITIAL DISTRIBUTION LIST............................... 167

44

I. INTRODUCTION

A. BACKGROUND

Electronic assistance to office workers and the result-

ing productivity increases have risen dramatically in the

past two decades. Even the early 1970's products, such as

the IBM magnetic card typewriters, enabled workers to

vastly improve both the quantity and quality of their efforts.

* The largest gains, however, resulted from the introduction

of affordable microcomputers. Microcomputers in the office

environment provided seemingly endless possibilities, such

as word processing, data processing, information storage,

message/letter routing via networks, facility for automated

computations, integration of multiple office functions,

graphical displays, and numerous others. In fact, office

workers discovered that one of the marvels of microcomputers

is that every use of a micro prompts a "wouldn't-it-be-nice-if"

for other users.

The challenge to meet these "enhanced capability" desires

was met with gusto by computer programmers- -there are now

thousands of applications programs in the marketplace to

meet almost any need. However, since they were written in

response to specific needs and desires, almost all of these

programs share a common deficiency: they are too specific

to be generally useful. Sophisticated word processors

6

cannot handle spreadsheet applications. Simple, menu-driven

programs are annoyingly tedious to experienced users.

Integrated packages lack sophistication in all areas.

B. MOTIVATION

one area that provides good example of the wide range

of capabilities of applications-based programs (and the

motivation for this thesis) is that of database management

systems. They cover the spectrum from very easy to use

(but very limited in complex querying capability) to very

powerful (but too difficult for the novice user). While any

one of these programs might be ideal in a particular situa-

tion, any change in the environment necessitates a change

of systems or an extensive training program. These changes

might be prohibitively expensive in terms of time, money,

or both, and should not be necessary. "Wouldn't-it-be-nice-

if" there was a system that was capable of satisfying both

needs? There will be.

Before attempting to design such a system, we must

-' address two major areas of consideration: 1) the needs of

the user, and 2) the requirements of the program to meet

those needs. These areas will be addressed directly here,

and indirectly throughout the remainder of this thesis.

1. The Needs of the User.

General requirements for office workers are covered

expressly in (LAR 84), and less formal approaches in (WON 82),

(WU 85), and (ZLO 77) also address user needs. Following

is a consolidation of the ideas expressed in those articles.

7

a. Information must be presented in the user's

view. It must be presented in a form that is natural and

familiar to the user, or he will never be comfortable

with the system- -it will always remain somewhat magical

(and not to be trusted completely).

b. Memorization requirements must be minimized.

Most keywords and interaction procedures are arbitarily

assigned, and requiring the user to memorize them intro-

duces a new abstraction that is not natural for him to

accept. This concept should be applied to several areas:

(1) Database. (LAR 84) states "~the office worker should
not need to remember the logical structure of the
database... .the system should display this information";

(2) Query language. Whether the language is composed of
words, pictures, or some combination of those, the
user should be able to quickly gain an intuition
about the meaning of the symbols;

(3) Query formulation. The formulation process should
coincide with the user's thought process, so the
program must include the capability for the user to
formulate a query in a piecemeal fashion.

c. Training time must be minimized. While there

must be some training for any non-trivial program, anb

excessive training time requirement will exclude some users

(who simply cannot invest that amount of time) and will

discourage those who do attempt the training program.

d. The possibility of erroneous input must be

minimized. There are two types of errors which can be

easily detected (and therefore avoided): 1) an inappropriate

command (i.e. a normally valid command at an inappropriate

8

-,"I " - -1

time in program execution), and 2) a mistyped command

(i.e. improper spelling or invalid format). Taking action

to avoid these two errors will not assure the user a mis-

take-free session with the program, but.it will go far to

increase the user's confidence by eliminating major prob-

lems caused by trivial errors.

e. Feedback must be provided. A good example of

this (without examining a specific program) is the capability

to display intermediate results during the query process.

While it is not desirable to overburdent the user with

informatin (don't make this display mandatory), he should

be able to access it if desired to verify the correctness

of his query. Another benefit of feedback is that it

encourages experimentation--it answers the "what-would-

happen-if-I-asked-this" question.

f. Help must be provided. User help can take on

many forms, such as menus, subject directories, help

messages, error messages, structure displays, screen layout,

intermediate result displays, input prompts, and many

others. It is the responsibility of the designer to pro-

vide sufficient help to the novice user without forcing .
9.'

unnecessary help onto the sophisticated user (WU 85).

g. It must be capable. Though all other goals

may make the user comfortable and confident, they are all

for naught if the user cannot extract the required informa-

tion. He must be able to perform a wide range of activities,

9

from simple data/structure viewing to the formulation of

complex queries.

2. The Requirements of a Program to Meet User Needs.

The characteristics of such a program (or, more

specifically, a database interface package) are addressed

in (WU 85). Those characteristics are reiterated here,

along with explanatory comments and the user requirements

(described above) that they satisfy.

a. It must be descriptive. This includes both

the kinds of data stored and their relationships. This

characteristic satisfies requirements B.l)(a), B.l)(b),

B.l)(c), and B.l)(f).

b. It must be powerful. If the information is con-

tained in the database, the user must be able to extract

it, regardless of the complexity of the query. This

characteristic satisfies requirement B.l)(g).

c. It - "t be easy to learn. Many users of the

program will be novices unfamiliar with database L.-rminology,

and the designer is challenged to produce a program which

can be quickly learned (interactive tutorials are often

helpful in this process). Designing a program with this

characteristic will necessarily satisfy requirements B.l(a)

B.l(b), B.l(d), B.l(e), B.l(f) and B.l(g).

C. POSSIBILITIES

We now have some solid requirements to begin a program

design. However, there still remain several questions that

10

must be answered. These questions present themselves in a

sequential nature, so let us now address them in that man-

ner and explore the possibilities.

1. Has the Problem Already Been Solved?

The answer is "no". While there are many database

programs available (some of which will be discussed in

Section D), none of them satisfy all the requirements for

the user and the program. The biggest trade-off in exist-

ing programs is the ease of use as opposed to power.

2. Is an Entire New Program Required?

Probably. While it might be possible to modify

existing programs to eliminate some of the disadvantages

and meet more of the requirements, there would inevitably

remain some inappropriate characteristics which are either

impossible or not cost effective to remove. It would be

much better to incorporate the positive characteristics of

many such programs into a new one while avoiding the negatives.

3. Will an Interface Program Meet Our Needs?

Yes. The only caution here is to ensure that the

underlying program/query language is capable. A powerful

program can be made easy to use: an inherently weak program

cannot be made powerful without extensive, fundamental

changes.

4. What Type Of Interface Do We Want To Use?

As discussed in (WU 86), there are three ways the

user interacts with a database management system: the

-~~f -RO K-- V.- So T-12- V-.-- .-

creation of the database, the manipulation of data, and the

development of applications programs. He goes on to dis-

cuss several existing interface methods, such as natural

language interface (BOG 84, COD 74, HEN 77, WAL 78),

modified query language interface (KOR 84, MAC 85), graphics

interface (HER 80, LAR 84, MCD 74, STO 82, WON 84, ZLO 77),

fourth generation languages, and fill-in-the-form program-

ming (ROW 85). None of these existing interfaces, however,

address all three types of user interaction. What is needed

is a single, unified interface which will enable the user

to accomplish all his activities within one environment.

The interface method which presents the greatest potential

for this is the graphics interface.

5. Why a Graphics Interface?

(RAE 85) presents an excellent discussion of the

advantages of using graphics in programming, and those

points can be directly related to program users. Some of

those advantages are: the random-access nature of text,

the increased dimension of expressions one can achieve

with pictures, the higher rate of knowledge transfer through

pictures, and the increased ability to represent the real

world through pictures. While it would not be universally

useful to devise an interface which presents only pictures,

some combination of pictures and text layed out in a

graphical representation would achieve the same advantages.

12

D. EARLY WORKS

The potential for a userful graphics interface has long

been recognized, as evidenced by the number of graphics

interfaces developed over the past ten years. Following

is a brief review of four of these interfaces, using the

criteria in (WU 85) (described in Section B.2) to judge

their effectiveness.

1. Query-by-Example (QBE).

QBE (ZLO 77) was one of the first DBMS graphics

interfaces. Its philosophy was to minimize the requirements

(of initial knowledge and memorization) imposed on the user.

QBE is relationally complete, so users can formulate any

query that can be expressed in relational algebra or predicate

calculus; however, "skeletons" (templates) are provided for

query formulation to alleviate the need for the user to

know first order predicate calculus. The major problem

with QBE-and similar approaches, such as those reported in

(LAR 84) and (SUG 84), is that they lack descriptiveness.

All input and output in QBE is in tabular form, so it is

difficult for the user to get a good overview of the system

and relationships of the data, and it is not possible for

him to easily browse through the data or database schema.

2. Spatial Data Management System (SDMS).

SDMS (HER 80) is a good example of a program that

is easy to use, but has limited capability. Data are

represented in graphical form, and their relationships are

13

determined by their spatial positions in a graphical data

space. The system was written for novice users, and seems

to encourage browsing with its "zoom", "unzoom", and "position

cursor" commands. Simple data retrieval is relatively easy

with SDMS, but it lacks a simple method to formulate a

complex query. Therefore, the poser of SDMS is not accessible

to many users.

3. Text, Icon, and Map Browser for Extended Relations

(TIMBER).

TIMBER (STO 82) is described by its author as "a

user friendly, graphics-oriented browser for a relational

data base". It provides the same type of browse capabilities

as SDMS, enhanced by incorporating some of the concepts of

QBE. Its ability to support icons, maps, text, and normal

fixed format relations is an improvement over SDMS, but it

still lacks power and descriptiveness.

4. Graphical User Interface for Database Exploration

(GUIDE).

GUIDE (WON 82) is the first granhics interface

package that attempts to address all the requirements

described ablve. It is descriptive in that it displays

the database schema as a network of entity and relationship

types. It also provides hierarchical subject directories

to further describe database contents and assist in data

location. It allows for piecemeal query formulation and

gives feedback by displaying intermediate results, making

14

complex queries possible. However, some aspects of GUIDE

still hinder its effective use. These include the lack of

relation browsing capability, the lack of aggregate functions,

and the use of two different types of diagrams (Entity!

Relationship and hierarchical subject directories) during

program execution. These disadvantages can be major

hinderances to the novice user.

E. NEW SYSTEM PROPOSAL

As we have seen, each of the previous works in graphics

interfaces addresses one or more of the requirements for

an effective system. However, none of them satisfactorily

provides solutions to all requirements. It is the purpose

of this thesis, as the initial step in the production of a

useful graphics interface, to introduce and design a system

to address all requirements of both the user and the program.

Basic descriptions of such a system are presented in

(WU 85) and (WU 86). The system is called Graphics

Language for Accessing Database (GLAD). Its intent is to

provide a complete, effective interface devoid of the pre-

viously discussed disadvantages by incorporating the

positive characteristics of several earlier works into a

single, unified interface package. A complete description

.of GLAD characteristics is given in Chapter 2, but let me

now briefly address how GLAD will satisfy the four require-

ments for an interface presented in (WU 85).

15

1. Descriptiveness.

GLAD will employ a diagrammatic display of the

database schema. This diagram will be rich in meaning

because it gives a graphical representation of both the

entities involved and their relationships, and is applicable

to all data models. In addition, help facilities will be

included to describe object names and formats to the user.

2. Power.

GLAD's querying capability will be based on the

concepts of QBE. As previously discussed, QBE is relational-

ly complete, so GLAD will inherit from QBE the ability to

formulate any query which can be expressed in relational

algebra or predicate calculus.

3. Ease of Learning.

GLAD will be easy to learn because it employs the

use of common, easily recognizable symbols to identify

objects.. These symbols are circles, dotted and solid lines,

and regular, nested and repeated rectables. They will be

arranged in a natural, sensible manner with the complexity

of the arrangement corresponding to the complexity of the

objects/relationships. In addition, many help facilities

will be available to (but not imposed upon) the user.

4. Ease of Use.

GLAD will have many features making it easy to

use. One of these is a convenient browsing facility with

its own submenu to allow the user easy access to any area

16

of the database and its information. Another is its

mechanism for query formulation. The user can formulate

queries in piecemeal fashion, access intermediate results,

and combine results in any manner convenmient to him.

Finally, help facilities should quickly alleviate any

stumbling block the user might encounter.

F. THESIS ORGANIZATION

The remainder of this thesis will be organized as

described below.

1. Chapter 2: Specifications.

This chapter will include informal specifications

for GLAD, including characteristics, program components,

menu lay-outs, use of the mouse, design priorities, and

design hints and guidelines.

2. Chapter 3: Design.

This chapter will be divided into two major

sections- -architectural design and detailed design. The

architectural design section will decompose the program

functions into "black boxes", with emphasis on relationships

and interfaces. The detailed design section will be a re-

peated stepwise refinement of those functions until they are

reduced to a sufficiently low level to be readily imple-

mented in a programming language (in this case the C Programming

Language).

3. Chapter 4: Conclusions and Recommendations.

This chapter will provide the conclusions of the

author as a result of the design of this program, along with

17

some recommendations to aid/guide further work. These

recommendations will address the required steps to

complete the production of this system, and some avenues

of further research which present themselves during this

current work.

Finally, sections will be included for the list of

references and bibliography.

18

......

II. SPECIFICATIONS

A. INTRODUCTION

This chapter describes GLAD as it is to be designed,

including its screen presentation, possible user actions,

data representations, and other characteristics of the

program. It does not provide requirements in the strict

sense (FAI 85), because the specifications are not (nor are

they intended to be) complete. Formal specifications for

a software project generally provide a means to ensure the

designers, testers, and customers are in agreement about

the use and action of the program, provide a basis for

product validation, and provide a document to assist

maintenance personnel. In this project, however, there is

only the design team and the motivation for writing

"specifications" is to solidify the concepts and general

operational characteristics of the program in our own minds.

As such, this chapter might be more appropriately titled

"GOALS for GLAD". Areas to be addressed include advantages

of GLAD, basic program component descriptions, exception

handling, priorities in design, and design hints and guidelines.

B. ADVANTAGES OF GLAD

The motivation behind designing this new database manage-

ment program interface stems directly from the disadvantages

found in earlier works in this field. Several such works

19

were discussed in Chapter 1, so we will confine our dis-

cussions here to the advantages we will achieve with GLAD.

1. Ease of Use.

In today's environment, many database management

programs are used by those who are either unfamiliar with

computers in general or are not experienced in database

terminology. This necessitates a program which can show

the user what he needs to know and what he needs to do

without requiring him to invest excessive time to learn

database terminology or a query language. At the same time,

ease of use implies that a user should be able to formulateI complex queries in a simple, straightforward manner. GLAD

will accomplish ease of use by:

(a) Presenting the database schema in a graphical form,
as shown in Figure 2.1. This will provide the user
an immediate overview of the database and its re-
lationships, which will benefit the novice by giving
him an intuitive feel for the relationships in the
database, and the experienced user by showing all
top-level aggregates and their associations. It also
serves as a data dictionary, since the user can easily
examine the format or contents of an object.

Figure 2.1 Graphical Representation of Data

20

(b) Encouraging relation browsing. The graphical
presentation of the data and the simple use of
the three-button mouse make it very easy for any
user to browse any object or relation in the database.

(c) Using similar techniques for all user actions. The
user will be able to press the same buttons on the
mouse for similar functions, whether he is viewing
the database or formulating queries. For example,
the center button will be used for displaying a pop-
up menu and selecting an action both to query the
database and to print the results of the query.

(d) Making it simple to change levels of abstraction.
By a single press on a mouse button, the user can
change from the display of all aggregates to showing
the attributes (sub-objects) or members of a single
object.

2. Power.

The most essential element in any database program

is the ability to extract the required information from it.

GLAD will use graphics to assist the user in query formula-

tion and will pattern its querying capability after QBE

(ZLO 77), which will ensure it is capable of any query

which can be expressed in relational algebra or predicate

calculus.

3. Descriptiveness.

This entails both displaying all data and their

relationships and assisting the user by describing his

options for actions and their consequences. GLAD will

achieve these by providing:

(a) Aggregation. This is a grouping of objects or sub-
objects. The user will see aggregates as object
names enclosed in rectangles, and can view the sub-
objects by EXPANDing the object (see Figure 2.2).

21

objecI object hato Iatom I atom

Figure 2.2 Object Representation

(b) Generalization. This is a grouping of objects by
their general category. The user will see generaliza-
tion names enclosed in double (nested) rectangles,
and can view the individual objects by EXPANDing the
generalization.

(c) Classification. Each item in the database will be
described (classified) as a piece of information
about an object. These data items will be defined
as members of an object and can be viewed by select-
ing the LIST MEMBER command (from the pop-up menu
on the mouse or the menu along the top border).

(d) Relationships. Relationships between objects in
GLAD are broken down into four categories (see Figure
2.3):

(1) Relation. This is a basic association between
two objects as defined by the user (i.e. identical
object or sub-object names that provide a link
between the objects). A relation is indicated
by a solid line connecting the two objects (see
Figure 2.3a).

(2) Partial relation. This is a relation where,
given two objects A and B, 1) a sub-object of
A is related to B, 2) a sub-object of B is
related to A, or 3) a sub-object of A is related
to a sub-object of B. A partial relation is
indicated by a dotted line connecting the
objects (see Figure 2.3b).

22

Figure 2.3a Relation Figure 2.3b Partial Relation

Figure 2.3c Disjunctive Figure 2.3d Recursive
Relat ion Relat ion

Figure 2.3 Relation Representation

(3) Disjunctive Relation. This is a relationship
between one object and one of multiple other
objects. A disjunctive relation is indicated by
a solid line connecting the first object to
each of the other objects with a circle at the
end of the lines terminating at the first object
(see F igure 2 .3c) .

(4) Recursive Relation. This is a situation ini
which two specialized objects within the same
generalized object are related to each other.
Recursive relations are represented by a re-
peated rectangle (see Figure 2.3d) and each
association in the recursive relation is in-
dicated by a semi-circular solid line beginning
and ending at the object.

(e) Ihelp. On each menu level, there will be provided
HELP selection which will describe the actions the
user may take at that point and the consequences
resulting from each.

23

4. Ease of Learning.

This generally follows from (1), with the addition

that the program must provide sufficient assistance so that

a novice can quickly acquire the ability to command those

actions necessary for him to extract his required informa-

tion. This is provided by the graphical display of the

data, the permanent menu displayed along the top border,

the use of the mouse, and easy-to-access help.

* C. BASIC PROGRAM COMPONENT DESCRIPTIONS

This section will provide definitions of terms,

descriptions and lay-out of menus, screen display character-

istics, program flow, and use of the mouse. It is not

intended to be intractible, but will provide guidelines for

the design phase.

1. Definition of Terms.

a. Object--any single piece of information or

collection of information which is intended to be recognized

as a single entity.

b. Atomic Object--a single piece of information

which represents only one system-or user-defined base object

(string, number, enumeration, subrange, and boolean).

c. Agregate object--a specific collection of one

or more (sub)objects.

d. Generalized Object--a collection of objects

grouped together by a common category or subject.

24

qJ

e. Specialized object--any one of the grouping in

a generalized object.

2. Descriptions and Lay-outs of Menus.

GLAD will provide menus to cover all user actions.

They will be heirarchically structured, and will be ac-

cessed in two ways: by selecting one of the items listed

on the menu along the top border and by pressing the center

button on the mouse and selecting one of the items on the

menu which pops up. There are three main functional menus

in GLAD: the Administration Menu, the Browse Menu, and the

Execution Menu. The Administration Menu will be displayed

when the program starts, the Browse Menu is accessed by

selecting EXPLORE, and the Execution Menu is accessed by

selecting QUERY. In addition, several items on these menus

will have their own short sub-menus, which will appear be-

low them (and can be accessed by the mouse when appropriate.

Only the current main menu will be displayed, and others

will appear when an appropriate selection is made on the

current level. Menu items are selected by pointing to

them with the mouse pointed and pressing the right (select)

button, or by displaying the pop-up menu by pr-ssing the

center mouse button and keeping it depressed while you roll

the mouse down until the correct choice is highlighted and

releasing it. Menu items are de-selected (i.e. results are

erased and screen is rewritten by re-selecting an already

active (selected) item. All prompts to the user will be

25

& "

V x .%1=WX aXTM n X Ipvsa wu an MWIR r!.VTR4-zr71_72 . 1 u,.pn .S. VI

placed on a Command Line located immediately below the

top border menu.

a. Administration Menu (see Figure 2.4). This

menu will be displayed immediately when.the program starts,

and provides the user with his initial choices for manipu-

lating the database. Menu items include:

(1) OPEN--this option opens the database to be used by
prompting the user to enter the database name.
When it receives the name, it causes the initial
screen display showing object rectangles, names,
and relationship connecting lines.

(2) CLOSE--this option closes the database by ensuring
all files are closed. The user is queried to
save or abandon any open files. This can be done
at any time during the execution of the program,
providing the user the ability to ensure all prior
work is complete before continuing or quitting.

(3) EXPLORE--this option allows the user to view and
query the database. While no database manipulation
is performed as a direct result of choosing EXPLORE,
the menu is changed to the Browse Menu (described
later), and the level of abstraction is changed so
that data manipulation can be done.

(4) SET-UP--this option allows the user to alter default
values in the program. For example, he can instruct
the program to SHOW RESULTs each time they are
created, or he can have the results DESCRIBEd auto-
matically.

(5) HELP--this option provides help with all Administra-
tion Menu items. It describes each of the menu items,
actions which will be performed when selected, and
associated sub-menus.

(6) QUIT--this option exits the database program and re-
turns the system's prompt. If there are any open
files, it provides a prompt to the user to CLOSE
first or QUIT abandoning open files.

26

E I close explo Set I E I ep I o quitI

Figure 2.4 Administration Menu

b. Browse Menu (accessed by selecting EXPLORE on

the Administration Menu) (see Figure 2.5). This menu pro-

vides options to the user to manipulate the database on

the "aggregate object" level. Items provided in this menu

are:

(1) DESCRIBE--this option provides the user with a
definition-type description of an object. The object
and all sub-object names are displayed with their
associated data types, and all relations linking this
object with others are listed. If the object is
a generalized object, its associated specific objects
are displayed with their data types.

(2) QUERY--this option is similar to the EXPLORE menu
item in that no direct data manipulation is performed
when it is selected. It does, however, change the
level of abstraction and displays the Execution Menu
to allow the user to query the database.

(3) UPDATE--this option allows the user to add to or
change the information in an object. It provides an
object skeleton (with current values if the mouse
pointing to an object) and a sub-menu to prompt the
user for pertinent information.

(4) PRINT--this option allows the user to print portions
of the database or results of a query. In addition,
there is provided a means to "screen dump" to allow
the user to make a hardcopy of the graphical repre-
sentation of any screen display during the execution
of the program. These options are provided in
PRINT's sub-menu.

27

(S) EXPAND--this option is similar to DESCRIBE except
that it is intended to be used in a "browse mode",
and just shows the atomic sub-objects of the se-
lected object. It is important to note here that
non-atomic sub-objects are not displayed: they are
the items which link the object to other objects
and are not important to the object definition.
These are only displayed during the UPDATE operation.

(6) LIST MEMBER--this option is used to display an in-
stantiation of an object or sub-object, listing
current information contained in it.

(7) CENTER--this option will center the display around
the object pointed to by the mouse pointer. If no
object is being pointed to, the user is prompted
for the object name around which to center the display.

(8) HELP--this option is identical to the HELP option
in the Administration Menu, except that it covers
items in the Browse Menu.

(9) QUIT--this option returns the user to the Administra-
tion Menu. If there are any open files or queries,
it will prompt the user to complete the action be-
fore the return is executed.

scib erpin.~ liste centr hl quit

Figure 2.5 Browse Menu

c. Execution Menu (accessed .y selecting QUERY on

the Browse Menu) (see Figure 2.6). The functions described

in this menu demonstrates the real strength of GLAD. They

allow the user to specify objects and sub-objects, create

results of queries, and display, print, combine, and save

those results. The Execution Menu items are:

28

j, , ; ; , ', , , ;.?;.;.:.~A,% _-V,_. VW]'b;.; r,¢ ..!'% %

(1) SAVE RESULT--this option provides to the user a
permanent record of process used to achieve his
result. This is done by saving to disk a file (user
is prompted for filename) containing the process.
This process can be called later by the user by the
use of a "program box" (which will be designed and
implemented later).

(2) SHOW RESULT--this option is identical to the LIST
MEMBER command, except that it acts on the result
pointed to by the mouse pointer. By requiring the
mouse to point to the result, the user can review
any of several results he has created. It should
be noted here that SHOW RESULT causes the actual
result formulation: before this time, only the
process for result formulation is saved.

(3) CLEAR RESULT--this option simply erases the process
which creates the result pointed to by the mouse
pointer. This enables the user to "take back"
erroneous query formulations, and eliminate old
results before proceeding with new queries.

(4) CREATE RESULT--this option tells the program that
all specifications have been made and the user is
ready to form the result. The result formulation
is not actually performed at this time (since it is
time-consuming and may not ever be required), but
the process is saved to be used if needed. When
the process has been saved, an icon (rounded-corner
rectangle) is placed at the bottom of the screen
labeled RESULT X, and all rectangles associated with
the query are identically shaded (see Figure 2.7).

(5) COPY RESULT--this option makes an identical copy of
the result process pointed to by the mouse pointer.
It is placed adjacent to the copied result at the
bottom of the screen and is labeled RESULT X COPY.
By performing the COPY RESULT, the user is able to
experiment with several combinations of results
without destroying the original contents of the
individual result processes.

(6) COMBINE RESULT--this option performs a join of two
or more intermediate results. If there are only
two results present, the join is done immediately.
If there are more than two, the user is prompted for
the names of the results to be joined. When the
join is completed, the individual result processes
are erased and a new result process is placed at the
bottom of the screen with all associated rectangles
(from the previous results) identically shaded (see
Figure 2.8).

29

.I f 9.[I.!* V 1Y VI 2 .

save show clear create copy combine
result reul t result result result tsil IItI '"1 esl

ify des- create help quitspeify cribe report

Figure 2.6 Execution Menu.

result

Figure 2.7 Creat.e Result.

30

-Y•4 ~ 4 Z ~ ~ * * *1

/object a! +object c+ /object a/ /object c/

I.I

/object b/ +object d+ /object b/ /object d/

+object e+ /object e/

[/result 1/ i+result2+ I/result l/

Figure 2.8a Before Combine Figure 2.8b After Combine

Figure 2.8 Combine Result

(7) SPECIFY--this option creates an "object skeleton"
for the object pointed to by the mouse pointer.
This skeleton contains the name of the object and
all associated fields in table-name format, and an
area below these for query specification (see Figure
2.9).

(8) DESCRIBE--this option provides a description of the
result pointed to by the mouse pointer. Included
are the name of the queried object and the specifica-
tions entered by the user. This description is
placed immediately below the result. It remains on
the screen until the result is CLEARed or COMBINEd
(see Figure 2.10).

31

- r, .t,' ', ,,;.,. ,,. ;,V.,. . , ; , , .,.. - .':' '' ' : :;'- ' '-' * ' % " ; T.
.k, '.l,

w~Tw2'~ KW Ir W-J W~Y7 W-r -' V.- ~ ~ ~ i~ ~~ . E ~ ~WIR~W~

zS

nmaie [atom 11 latonmn

I HI I fl

Figure 2.9 Specify Skeleton.

resltlI

contains (object name) information where
(condition 1)

(condiion n)

Figure 2.10 Describe Result.

(9) CREATE REPORT FORM--this option allows the user to
format a report to be printed (and will apply to
both objects and results). He is given a skeleton
in which he must provide the form name, report title,
and field names, data types, and sizes. The field
names are especially important because when the re-
port form is used, type-checking will be accomplished
to ensure those names match the sub-object names in
the object chosen to be printed.

32

(10) HELP- -this option is identical to the former HELP
options except that it acts on Execution Menu
items.

(11) QUIT- -this option returns the user to the Browse
Menu. If there are any open queries, it prompts
the user to either complete or abandon those actions
before QUIT is executed.

d. Update Sub-Menu (Execution Level) (see Figure

2.11). This sub-menu provides a means for the user to

enter or update information and relations. This ability

applies to all actions normally performed in the creation

of an object/relation, and the capability to change things

such as object names, attributes, values, and relations.

Access to this ability must be limited to specific users

in order to preserve the integrity of the system, and that

access will probably be determined by the database administra-

tor. (The specifics of this process have not yet been de-

termined. The following description assumes complete access.)

If the mouse pointer is on an object, the selected object

is expanded to an object skeleton, where the user can add

to or change any part of the object. If not, the user is

prompted to determine if he wants to create a link or an

is generated where the user can identify names and informa-

jtion. If he chooses link, he is prompted for objects to be

hlinked and the link field. Items included on this menu are:

(1) SAVE- -this option allows the user to save his changes
or additions. If he has created a new object, it
will not yet be linked to any other, and will be
displayed as an object, except that it will show no

33

links. If he has created or changed a link, the
screen presentation will be altered to show this.

(2) ABANDON--this option allows the user to exit UPDATE
without any changes or additions made.

[ave I abandon

Figure 2.11 UPDATE Sub-Menu.

e. Print Sub-Menu (Execution level) (see Figure

2.12). This sub-menu allows the user to obtain a hardcopy

of any object (including results) or screen display during

the execution of the program. Items on its sub-menu

include:

(1) SCREEN DUMP--this option prints the entire screen
with the exception of menu items and user prompts,
to enable the user to presentations and records of
his work.

(2) PRINT OBJECT--this option prompts the user for the
name of the object (which can be RESULT X) and sends
it to print. It will be printed in tabular form
with the name of the object displayed as the report
title.

(3) PRINT REPORT--this option allows the user to print
a previously formatted report. lie will be required
to enter two parameters: 1) the name of the report
form. He can either type the name or depress the
center mouse button and roll it down until the cor-
rect choice is highlighted and release it, and 2)

3 r 4

" -.-V,. ,, ., , K ' 7 % '7V,

the object (including results) to be printed. Again,
he can either type the name of the object or position
the mouse over the object and press the select (right)
button. These inputs can be in either order, but
the second choice will be type-checked against the
first to ensure the field names to be printed in the
report actually exist in the object.

- - print *

screen print print
dump object report ,

Figure 2.12 PRINT Sub-Menu.

3. Screen Display Characteristics.

Since GLAD is being written to be run on a graphics

terminal, several advantages are gained in the screen dis-

play. The basic display, as shown in Figure 2.13, is as

follows:

(1) All major program components are placed in windows.
Included are menus, object-relation layout, and
menu operations (e.g. LIST MEMBER, SELECT).

(2) All windows will include elevator bars to show the
user where he is in relation to the entire window
if it does not all fit into the allotted screen
space.

(3) Any window size can be changed at any time by press-
ing the left (drag) button on the mouse and expanding
or contracting the elastic rectangle. When the
button is released, the amount of information dis-
played will be altered to accommodate that window
size.

35 '-

0
V)
rz O

co 04

Su -

ca)
a' .-4 r.

4J C ,

r.* 0

W. -4 0

Ca) -4+ -

aV)

U,,

36

4. Program Flow.

Basic program flow has been discussed at some

length and the basic control flow diagram is shown in

Figure 2.14. In amplification of those two sources, the

following lists the steps required to operate the program.

(1) Boot or execute the program. This will present the
Administration Menu and object display windows.

(2) Perform administrative tasks or select EXPLORE to
enter the Browse Menu.

(3) Perform object/relation browsing and/or select
QUERY to enter the Execution Menu.

(4) Do database querying at this level. Create and
save results, then return to higher-level menus
by selecting QUIT.

Administration Quit
Execute I-euQi
Program

0 +

Browse
Menu

Update Execution Print

Sub-Menu Sub-Menu Sub-Menu

Figure 2.14 Basic Control Flow Diagram.

37

5. Use of the Mouse.

A three-button mouse is required for the operation

of this program. Its use is as follows:

(1) Button 1. This is the "drag" button to be used for
adjusting window sizes. To alter the size of a
window, put the mouse pointer on the upper right
corner of the window and depress button 1 (the left
button). Keeping the button depressed, roll the
mouse in the desired direction until the elastic
window is the right size. Then release the button,
and the window will expand/contract to the new size
and the amount of information displayed (and the
elevator bars) will be altered accordingly.

(2) Button 2. This is the "menu" button to be used for
displaying and selecting menu items. When button
2 (the center button) is depressed, the same menu
as appears along the top border will pop up. Keep-
ing the button depressed, roll the mouse down until
the desired option is highlighted. Then release the
button, selecting the highlighted option. Repeating
this procedure on a previously selected item will
de-select it, clearing the operation and rewriting
the screen.

(3) Button 3. This is the "select" button to be used
for selecting an item. Roll the mouse until the
pointer rests on the desired item, then press
button 3 (the right button). Repeating this procedure
on a previously selected item will de-select it,
clearing the operation and rewriting the screen.

D. EXCEPTION HANDLING

This selection will not be all-inclusive in that we

cannot at this time foresee all possible situations which

might present "fatal errors". However, several areas can

be discussed that will contribute significantly to con-

sistency and "friendliness" in program execution. The de-

sign should incorporate the following procedures and use

them as conceptual guidance in other exception handling

decisions that might be required.

38

(1) In general, test specifically for acceptable input
rather than testing for specific erroneous input.
For example, let's look at the situation in which
we are waiting for a REPORT FORM object to be selected.
Rather than deciding how to handle a mouse click in
the describe window, or a mouse click outside all
windows, etc., ask "is the mouse .positioned on an
object?" If it is not, then it is an error, regard-
less of where the mouse was when it clicked.

(2) When an error has been detected, prompt the user for
the correct input by printing a "reminder" along
the bottom line of the screen (in inverse video).
In the example above, the prompt might read "position
mouse over desired object and click right button,
or type object name".

(3) In situations where user confusion might be antici-
pated, look for specific errors that would enable
the program to assist the user. In the example
above, if the user selected another menu item when
the object selection was expected, a reminder along
the bottom of the screen might read "operation pend-
ing.. .must complete or de-select previous operation".

E. PRIORITIES IN DESIGN

The design for GLAD will be accomplished in two

distinct stages. First will be the preliminary (or archi-

tectural) design. This entails decomposing the program

into "black box" modules according to functions to be ac-

complished. It will concentrate on the properties of the

modules and their interconnnections. The second stage of

design will be a stepwise refinement of the abstractions

introduced in the first stage. The completion of design

will be defined as the point at which all modules are

written in low-level algorithmic language appropriate for

direct implementation in a programming language (in this

case, the C programming language).

39

Accomplishing the design as described above supports

a consistent, organized, hierarchical program structure.

However, it does not lend itself well to assigning

priorities to designing particular program components

before others. In general, we do not desire to assign

such priorities, but there are several areas which could

be addressed that would enable early completion of a proto-

type of the program if it is deemed necessary. These areas

include:

(1) Screen display. Program components such as genera-I tion of windows, use of elevator bars, and arrange-
ment of windows on the screen are important to the
program, but are not dependent upon the data structures
or other aspects of the program. Therefore, imple-
mentation work on these components could begin as
soon as the exact screen layout is designed.

(2) Use of the mouse. Again, the use of the mouse will
not depend upon the details of the rest of the pro-
gram, but only needs to know the general layout of
pop-ip menus and the use of each of the buttons.

(3) File handling. This aspect of the program is general
in nature and is identical to any other in that
files will be opened, appended, edited, deleted, and
saved. The modules dealing with these functions
could be implemented at any time.

F. DESIGN HINTS AND GUIDELINES.

Many aspects of the design have already been addressed

in these specifications, so this section is intended to

augment rather than supercede any previous design discussion.

The following comments will assist in the design phase by

providing the ''policy' for program characteristics and user

friendliness.

40

VJ OMWM " "_ WV- = " ~ - w 4 L4 7 -. * _. . .? _ - j _ . !7i _- -WI - -'

(1) Always design to allow the user to escape from any
action before it is initiated. The user should
always be able to press the "escape key" (actual
keystroke not yet determined) to erase an operation
before it begins. Let's look at CREATE RESULT for
an example. In this case, the user will have
selected the modules and determired the conditions,
but may change his mind before selecting CREATE
RESULT. Pressing the "escape key" will cancel all
current SPECIFYs and return to the current menu.
This ability will greatly enhance the user friendli-
ness of the program to novice users, and will bene-
fit sophisticated users as well.

(2) Do not make the user a slave to the program by making
him memorize arbitrary formats. For example, the
program may store all REPORT FORM files as a filename
ending with ".form", but do not make the user remember
to put ".form" at the end of all such filenames.
Rather, make the program append it to the name sup-
plied by the user. In addition, when printing these
filenames in the CREATE REPORT FORM pop-up menu,
take the ".form" off to avoid any user confusion.

(3) Do not force unnecessary information upon the user.
It might confuse the novice user, and it would
definitely annoy the sophisticated user. A good
example of this point is the situation described in
the "Exception Handling" section. When an error has
been detected, it is appropriate to remind the user
of what type of input is expected. Providing this
reminder before that time could be both distracting
and discomforting.

41

III. DESIGN

A. METHODOLOGY

The design phase of the life-cycle of a computer program

is one which is of utmost importance. The reason is that

its usefulness is directly related to the value placed on

it by the software development team. It is sometimes poorly

performed or omitted entirely. When this occurs, the im-

plementation is much more difficult and the maintenance

phase must depend entirely on the information supplied in

the code by the implementors.

Conversely, a good design greatly simplifies implementa-

tion and facilitates maintenance by providing documentation

and considering modern programming practices (as described

in (FAI 85)). The benefits available from a good design

of GLAD are even greater, since the implementor will not

have the advantage of communications with the designer.

For this reason, it is very important to find a representa-

tion which will be well-documented and easily understand-

able.

The design notation chose for this project is Hierarchy-

Input-Process-Output (HIPO) diagrams. Some of the advantages

HIPO provides include:

1. Improved Documentation.

Since HIPO is a multi-stage process, both the function

and method of each module are well-explained. The advantage

42

is that the designer is not required to generate this

documentation as a separate step: it is inherent to the

process of designing the overview and detail diagrams.

2. Application of Modern Programming Techniques.

HIPO is a top-down design approach, which lends

iteself well to the considerations of modern practices,

such as choosing an efficient design technique and other

design considerations (such as coupling and cohesion (YOU

79)).

3. Descriptions Vice Algorithms.

This can also be a disadvantage since the design

cannot be mindlessly implemented, but it allows the imple-

mentor some freedom in implementation style and techniques.

Since the implementation will be a follow-on project in

this case, this HIPO property should prove advantageous.

B. DESIGN CONSIDERATIONS

Throughout this (and any other) design activity, many

choices evolved. Some affected the nature of the program,

some were "the best of several alternatives", and some were

just a matter of style. Since our approach here is top-

down, all decisions were put off as long as possible (and,

indeed, many will be made during implementation). Of the

decisions which were made during design, some are self-

explanatory and are not discussed in this document. Others

are minor (perhaps style) decisions, and are addressed in

the "notes" section of the HIPO diagrams. There are a few,

43

'. * . . -- -

however, which are important to the very nature of the

program and are explained here.

C. DESIGN DECISIONS

Perhaps the most important decision.is whether this

program will result in a new database management program

or serve as an interface to an existing program. While

either decision could be accomplished, we decided to make

this an interface. However, as discussed in Chapter I,

we must ensure that the underlying query language is capable.

The intention is that the implementation will take the

actions to a certain level of abstraction, then a simple

adaptive interface could be written that would "translate"

GLAD's symbolic instructional words to those of any under-

lying query language. It is interesting to note, however,

that the implementation could just as easily be written so

that the instructions are in a particular query language

to facilitate maintenance.

A second "early" design decision was the type of

modularization that would be used. We decided to break

the program down into modules that would most closely follow

the static, hierarchical nature of the program, since that

would provide modules which are easily recognizable by

function. In addition, this provides very cohesive modules

with minimum coupling (again, to make implementation straight-

forward and maintenance easier).

44

S'x".

Another important decision involves the user interaction.

Two aspects of that decision, which will be addressed here,

are menus and windows. These are discussed at some length

in (RAE 8Sa), and are summarized here to provide justifica-

tion for the decisions we made. First, menus will be used

because:

(1) They do not require the user to memorize any (arbitrary)Isyntax or reserved words.

(2) They encourage exploration.

(3) They are feasible with fast screen updates.

(4) They do not require much overhead.

Windows will be used because:

(1) They greatly increase the amount of information which
can be displayed at one time by breaking it up into
sections (this concept is explained in (IVE 82)).

(2) They provide easy access to different levels of the
program, since they can be easily shifted by the
use of a mouse.

D. DESIGN LAYOUT

As stated earlier, HIPO diagrams were chosen as our

design representation. The figures in Appendix A are those

HIPO diagrams. They can be broken down as follows:

(1) Figure 3.1 is the HIPO Table of Contents. It shows
the hierarchical layout of the program and the
numbering system which is used.

(2) The remainder of the figures are grouped by module.
They are identified by the number which corresponds
to the module number in the HIPO Table of Contents.

45

IV. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

There were two major conclusions reached during the

research for (and the writing of) this thesis. They are

both broad in nature and encompass several other findings.

1. GLAD is Necessary.

Although there are numerous products on the market

which address database problems, one cannot find any

product which fill the requirements of descriptiveness,

power, and ease of use and learning. These properties

are absolutely necessary in today's environment, since

there is an ever-growing diversity in database users.

GLAD will provide these properties.

2. GLAD Can Be Done.

There are many properties which must be incorporated

into a database management system as was discussed in

Chapter I. However, by a combination of incorporating the

good properties of existing programs and designing new

properties to meet the needs which have not yet been satis-

fied, we can develop a program which should help today's

workers to become highly successful database users. The

design for such a program has now been accomplished.

46

B. RECOMMENDATIONS

The implementation of GLAD represents the amount of

work still remaining on this project. Much thought will

be required during that phase, since many of the decisions

(especially those of style) were left for that time.

However, many ideas relating to the implementation pre-

sented themselves during the design. The following list

of recommendations is provided to the implementor to

assist him by presenting some further study which will be

necessary and some suggestions regarding those decisions

which remain.

1. Help Facilities/Error Messages.

This aspect of a program is one of the most important

(and often the largest). There is a fine line between

providing enough help for the novice user and being a

nisance to the experienced user. (An excellent discussion

of prompts and error messages is contained in (DEA 82)).

It will be important to devise a scheme which is regular

(provides the same error message for the same type of mis-

take), robust (does not allow the user to become "hung"

in a process with no escape), and appropriate (allows for

different levels of help/error messages depending on the

user's experience level). This design allows for such a

scheme by providing a error-handling module which can be

called by, and returns to, any point in the program. In

addition, since a parameter is passed identifying the

47

calling module and the type of error, it will be very simple

to provide identical error messages for similar errors.

(incidentally, this feature should also aid maintenance by

enabling the maintenance programmer to identify the exact

point of call for any error message).

2. Use of Forms.-

There are several instances in the design where

forms are used, such as the expand object form. These

forms are used for two reasons. First, it separates the

structure of the form from the remainder of the module to

facilitate ease of implementation and maintenance. Also,

it allows for flexibility in the implementation, whereby

the implementor can easily adjust the structure of the

forms to make them all as similar as possible (which, in

turn, makes the program easier to use because it is more

regular).

3. Use of the Mouse.

There is no module in the design which addresses

the use of the mouse. This is because it is intended

that standard library rQutines be used in implementing

mouse operation. Again, the reason for this is to provide

standardization in the operation of programs for the user.

He needs to feel comfortable that he will be able to operate

this program in the same manner as he does others. The

use of standard library routines will allow that to happen.

48

-WW 4MM9 1 -- --- uwFlF.M u~rr.. t~ wrw ~ -r- ~ vu a

4. User Access Levels.

There is no mention in this design of access levels

for database users. However, it is probable that any

operational system will have the requirement of restricting

access depending on the clearance level of the user. One

example of such a need is the actual changing of data in

the database. Naturally, one will not want to allow all

users to change data values. This ability should be re-

stricted to just a few people or billets. One recommenda-

tion of how to provide this feature is a "login" process

at the beginning of the session. Depending upon the

clearance level of the person logging in, access to certain

features of the program could be restricted. In fact, menu

displays could be altered so that choices are not presented

to users who are not authorized to choose them.

5. Number of Active Databases.

As designed, the program recognizes only one active

database. However, there is no reason that more than one

database could be used, so long as the files used in queries

are compatible. Such a capability would not affect the

ability to keep the database themselves separate, but

facilities would have to be added to determine where query

sequences would be saved if requested (and others).

6. Window Sizes.

The screen percentage allocations made for the win-

dows in this design were best-guess estimates of actual

49

requirements. They can be adjusted as necessary at the

discretion of the implementor, based on more specific

knowledge from empirical results or further research.

It is also intended that the user be able to adjust the

size of windows by the use of the mouse. There is no

provision yet to allow him to change the permanent de-

fault value of window sizes, but that may be another

feature the implementor could add. There could be cir-

* cumstances, for instance, that a user would never have the

occasion to use the query facility, but only browse the

database. In this instance, it would be more beneficial

to have a large schema display window at the expense of the

result display window (without forcing the user to effect

that change every time he uses the program).

6. Use of Prototypes in Implementation.

There is little discussion in this thesis regarding

the order of module implementation. However, since this

project is to produce a generally useful program (as

opposed to an answer to a specific application), many of the

features of GLAD will be evolutionary in nature. In fact,

implementation of new features could continue indefinitely

if desired. The consideration will be one of value versus

time to implement. Because of this property, it would be

beneficial to use prototyping in order to see which features

are naturally important and which might prove superficial.

One recommendation towards this goal is to implement the

so

basic screen display and windows first (with the use of

dummy variables and modules where required), then build

from that point, one module at a time. This procedureI

would also aid the implementor in debugging and incremental

testing.

7. Use of Color.-I

This design is intended to be displayed on a mono-

chrome monitor, but there are some advantages which could

be gained on a color system. For example, different

colors for different windows might help the user to focus

on the most important part of the screen. There is one

caution, however. It is very easy to overuse color to the

point where the information is obscured. Any use of color

should be carefully examined to ensure a positive contribu-

tion results.

8. Implementation of Additional Related Packages.

There are several possibilities for additional

programs that could be used in conjunction with GLAD.

One such program might be a chart/graph package. While the

original implementor will not be able to undertake such

additional challenges, he should certainly watch for such

possibilities and guide his implementation so as to easilyA

accept them.

51

APPENDIX

updatesarit - auey pn - lit-1etr

b o b 1.3 obj helpob

1.1p 1.2 rep q.4ery

*~.. Figur 3. -IOTbeo otns(anMdls.3.

! t1 ate- print- u r x ad it e t r

obj bj 13.4 bj mm 52

err- screen
jmsgsj layout

L 1 U2

draw- draw- draw- draw-
screen schema admenu br-menu
U2.1 U12.2 U2.3 U2.4

drwerase- erase- erase-
*ue menu schema misc

Figure 3.2 HIPO Table of Contents (Utility Modules).

53

d)

u :3

4-A)

0 4-J

0~

m 4J

00 4-1

CIS I S-i

uC

0- 0

Ics C)

00

r-4

s-I 5-4

04 0 U

4.)

H -

4) ~54

0 4-J

0 "

4--4

o-4

oo co

+j 10
'-S cis

co 4..

~ Cd

H I Cd P- a .

0d 0 0 4 i
u -a0u u C

4-J n 0 +j
0- '0 0 -

Cu 0 cuo m W

r- LkL4 i

4>I0
a;... ... ~ *.*~ **5*

HIPO NOTES
for START (0)

Step I Note

1. The parameter "start" must be passed to
screen-layout for the proper sub-module
to be called

2. Curr-defaults are contained in a file na.-.ed
curr-default-file. Items in the file include
curr-menu, auto-res-show, db-sys-nar:e, and
any others which should be global to tie
rogram

3. he initial set-up is now complete, so pass
control to the administration menu _odule.

Figure 3.5 Start.

56

.4 0 41 - r4

0 -4

1 4-4 r= ~ f
9.4-J 0

4-4 E-4

0

0 1\

1.94

4$

a U- - Q.
* 00 $4 -

QH "

90 .0 0

0-4- 0 +

$4 ('.

V)4

57 f

HIPO NOTES

for DO ADMIN (1)

Step Note

1. The AD,,IN Menu is displayed, but no selectio:x
has been made. Execute a chec,-for-inrut ioon
until a mouse button is pressed.

3. Allow the user to assure himself that he -as
saved/abandoned all changes 6 additions before
quitting

h

Cig,,re 3.7 Do-Admin.

58

(A

Cu

-1-Q

0 u

o o aj

o .,.,0.

n 00

00 o1 o.

0 44

0 (A 0 0
'44 t4-

m 0

au 4

Cu)

0

~s.. 9

'D o) cu (n C

oz ruO. t oa

V)) E -4 >

>. 0) =. 0uu

r44 Cn) to 4-'V LOR

44-J

V)I 0 0 0o

*~ .0 .
0 (n- C1 cisu0)C

- ~ s V) CA V "0 h

0 Z) r- '- -4 u0
-o oH 5u I u 0'C) C

4) I CJ) 2n E-2
zu =)i +j I) W Q) S 0

0 00 02 e

zca Q)' I n W - -

M. C4 U IV- +j) 0 0

E-4 +j * V) thr- Cu3

Cu3 (A2 4-) 0) 4-4 C) .0

rz cus 0-- 00 Cu co 2S
*H +- >, fl >2 r= r u "o

, 0 Cu44-)C ' -o Cu0 6

0 .1:4 'C) I >% 0 -

C)w~ 0 .. 0 4)~ >%
QJ - ~ 0 C)I . 0 0

r. P4~~-. 'o +-)

*~ Uo u% -0~ '
'- o co Cu ICd In C) r-

r-4 Wn C: r4 C- o S -4 s-i

00 LI a-2 +j ,-4n 1-4 () vs +a +
"-4 ~CO) Cu-1i C3 4 j- C) C)

1 0

4-4 : 4h
0. 0

In *-4 C) tC)

60

4 .*t.,W~-. *' "A

HIPO NOTES

for OPEN-DB (1.1)

Step Note .-

1. Throughout program, highlight action as it beins
and return it to normal video when action is
complete.

2. Header message may say "Select one of the following

databases on file:"

3. db-sys-name is one of the pararieters which must be
accessible at any time during progra1 execution.
The distinction is made here that curr-defaults is a
set of global variables used throughout the program.
This is not to be confused with curr-defaults-file,
which is the file where the "permanent values" of
these variables are stored and is changed only by-
executing the setupdefaults module.

r

Figure 3.10 Open-db

61 ..

00

"7-0E-

> 0

tn~ $4

o
-0

H -4 4- ci

OL))

Cd 0

-0
UA (

01 . (
tn 4) FSI0 mo 0
"00r

62

4-J 0) $ 04

V) - U

0) O 4lm4 1 -4 4) 0
0 4) C0$ 0)m)$4

q C -4(n j C z Cu

o.00) Ocu +$4 -

:3~~ 4JJ cu -

C,1 +J (1 4

,a co a 4 r_

Q u 0 ''I

u~ 00-9a A0f
W.M0_ Z 0 E-40

0 "c a N + .
() *.-t) V

.0 r- 0 t4- S-4
cc% c-0 Iz - 0 u(

4-1 4-;f Cu13ua

E-4 Cu 4) 0 0

>) 0 0 C : co

0 ~ ~~~ (A 03 V .)0 , 4 10 "
ad0 0 m Io C

1-4-- 0) f-4 +j 0' a)3 4-4 I
44 0u (A) >14 Icn A 0-

4) Cu (D $4 Cu -- 0P

Hg C 0) to 00 Q) (4

0)-. z - CIS 6 +

talJ to0 C1

W 0) >U Cu0 06 Cu

f. W-- 1 a)$ 0)s f-.0 4 0
1-40 ta 0 V) -

Cu= 0) co Cu

W0 0 C$ $.0 0-
4-0$ Cud z~) C)

- 0 0

63N

HIPO NOTES
for CLOSE-DB (1.2)

Step Note

2. It is not anticipated that any changes could remain
unresolved (saved/abandoned) at this point of the
program. This step is intended to be an "insurance"
check.

4. Permanent changes to the curr-defaults-file are onl
made in the setup-defaults module.

Figure 3.13 Close-db.

64

C

ou

00

rZ' E--

oo

5MOO

4-4 '-0

cn x
co 0

0 .5

to

.} ___ .iZ ? , 5) .. ;:;: , ,.._. .-. _.,. . ,

V)

o >Z

Z0 V) 4-I

0 1

0 4.)cl

00 _0

V) 00

H.) I

E-4 0

z) a) Q054
0 0-

a4.

00

u0) u) .
0 V)~ cl

co nCz) '

0 0o
as~ CIS C

c() C(-

u- u 0

66-

HIPO NOTES
for BROWSE (1.3 Prep)

Step Note

This preparatory module, and a similar one named
Query in the BROISE Menu, are included as "lead-ins"
to the main menu control modules. Since we want the
program to execute as efficiently as possible, we
do not want the menu re-written every time a
subordinate module returns control to the main menu
control modules (do-admin, do-browse, do-query).
The inclusion of these "prep" modules enables us to
accomplish the initial set-up activities w.ithout
having to repeat them.

Figure 3.16 Browse.

67

. . . 00

-4 tn-4 -

Z ~02E0 sz

I 4)

CZ4 4J 4)

I.-4 V) 1-.
4) 0 0

In..

+j 0) -'en

0)'- Cts .0r-

:a:01 0 $-4
0 Z0 4) '4)

.04) 1 1

U a) 04 . $"0 rin

0 0 0

W 1-. c-4 0)
0 44I 4- 1-

H 0) 0

>- 4) -4-
mo +j (
W 4u 41 9

0 (1)4
.0 4 0 C -

In 4-J

~0 (V :3 "
t.4-4 r-4 r. LT~.

~ 4) 0

* 42 0

(2 2 cc

4oo
0)4~ -

4-)1-i -68

00

- M - , c

o1 (1 cU4LnC

$4~ ~ 0 U 4$. e 4 - -1

+jn .- I - rn

__ _ __ _ _ __ _ _ ___(n_ _ _ __ _ _ -% 0 .0 > 0)

C$4 0 0 /.d

0 1 r0)d

0 0.S~, z *v

:3U(2 4 -0 - '-"-
40) a) 0r I

0) e'0

CA 0

oo 4a) co r

00 ~ 0 0 -4-4 04 U01.$-4j

0 1 $4c Q Z cC-1 0 E~
004 $ I 0* ~ ~ ~ f 04'

00 4-C13 $4x u 4+
0 *-i) $4 0 u 00)

4-J E4 +-) 0$ a.0 U U
U ' .H V)I - IA 0

01 4-) 0 44 P- $4 z c H (

20 $-4 0)

4-4~4- 0 r0 0 -4

0 0 - 0 2 C

00
CA u

-0u 00

2 2 69

...... 0)

HIPO NOTES

for DO-BROWSE (1.3)

Step Note,

3. If we got past step 2, the only valid choice was
"quit", which returns us to the ADMIN Menu control
module. If "quit" is not the selection at this
point, there was a mistake in the input, so output
an error message and return to the top and let the
user try again.

4-7. The remainder of the steps perform a "prep" functio
for do-admin (1). We cannot call start (0) to do
this since start (0) also does program initiation,
such as loading Curr-defaults.

tI

Figure 3.19 Do-browse.

70

'-4 -

3 .

as

I o
a)

o0 "

0 u Q

Ia"
0

4
44 ,a)

u a

"o

4 a)

coo

71

4-1 4J

CD cu V)
V -4q CA~ m- ,

o -.
4

r -I z -4 -

0)~- 4-4 u e*.s-

.0- -- 0 .
4Jh CIS Q 0
"44-
:3 $- (Al =

o. mo S
5-. M. co 4-

04U00 C0
3 ' r-I 4-) 0~ CD

0 C) -4 -4 rj- "o
C 0 Mu S *.4 0 0

co 4)u (A~ i ' 4 (nl - C
C).-M *-4 cl cd V

: 4-4 eN

=) U) A U) 0 -. or-

0 t -. 4-4 4-4 C) 1
.145- * 4 C) C) Cu m-

H0 1) C) cf3 0
-o :u$. r-. 3 +

C0 (-J s. - C0 C)

a ~) u u = 4.)+
*.-49 tn~uC) CC u~ rl

I- J C13 (E D 4-JO 0 - -

"U 0 (U C)5- CI CIS r- 1- u

=-4 -4-4 4)0 r- I. Q.4 C H C) a)

.w Su 04 C:

I 1-4
CiA Un) 4..

:3 4-4 4.4 r-

-4 r4
Li U Li E

Cu ~ fl u Cu72

HIPO NOTES

for SETUP-DEF (1.4)

Step Note

2. Header message might say "Following is a list of
current system parameters. 'Jove curser to appro-
priate box to make changes."

4. This step only affects the variables being used
during the current program run. W'Vhen the program
is exited, they will be lost.

5. This step chanes the file that stores the defaults.
The new values will be saved and will be loaded by
start (0) the next time the program is run.

i

Figure 3.22 Setup-Def (1.4)

73

- -4

Lo 0 U

- -4

-4., L -4

0 0

4- E-4)

W44

-- 0 4,,

W j - -4

0,,

a 4)4

4 -- 1

tm.

0-

-o

' I74

U,4

1 -4 >

r-o 0.
r-4 C4 1q

) .-1 .0.1

4- z

0)- - 4-

0.

0-4 cis

-4 0

0 u - C

Z r-4

a. 10 (-4 -
-3 c.. O) u .o

V44 =.,I -n r

M C14 0 5

0 S. r~-I=) + i
H-- 1C -4

C:

03~

$Z z~~ r. C13 z0

.0 0.

r-4 2 C-1 -3-

* - -4 r-4
e .14-x

.0 0H~ -

75U -I -

HIPO NOTES

for AD-HELP (1.5)

St ev Note

This module is currently designed to providle a
simple list to the user. Each menu item is de-
scribed along with the types of actions which will
be required of the user. It might be more useful
to prompt the user for a menu item he wants de-
scribed, and present only that item. Or, better
yet, allow the user to choose the "help" option
anywhere during the execution of thle menu or sub-
menu items, and provide very specific guidance re-
garding the actions expected of the user at that
point.
Deciding which of the first two methods to design
was simply a matter of personal style.
A decision to use the last method should be made
only after much deliberation, because it implies
that a help message be prepared for every possible
user situation (very difficult indeed).

3. Any keystroke can be used here to symbolize corn-
pletion. I recommend that the particular symbol be
chosen to coincide with the one used on the imple-
mentation system to indicate a "continue" selection.

Figure 3.25 Ad-Help (1.5)

76

00

00

0 I4
a4C) z

0 U cfl

d 0 0Z

sa 0

o 4J

(n 00

~0 0

77 %

- -- - --. t M. -..--. ~--~ r-4 -r- C' -H w w ~~

.,f t4.-4 0 +

= 41) 1=

0I UU. QJov-o ~- C ..-

-4 Q
u u+j+j O-

V) (2) =I co lr . a

.,I UV) O~I

4)Q) +j 0J 0

4.)U 0 -4 - M

4-4 4-4 0 0s
10 ~ ~ C (1 QF 0 (1

0 C) 9:uu u n 4)

.00.0 7)$4 "00-
*0 ~ 0 4 rj u" 1

r- Q z In n 4)

.0 -4 :w3 =V. M A:\'.U 'o +. :x-.-- o

HIPO NOTES

for DESCR-OBJ (1.3.1)

Step Note

3. Curr-descr-obj is a list of objects which are being
described in the schema presentation.

4-8 This "describe object" selection should act as a
toggle for each object. If the object is not being
described, selecting "describe object" will cause it
to be described. Conversely, if it is already being
described, this selection causes the description to
be cancelled and the schema to be rewritten without
it

4-6 The method of display for an object description is
as follows:

-> use a small window format which will overwrite
the object in the schema display

-> this window will have standard boxes which will
be filled in from information in the object
file, such as name, fields, etc.

This action is actually performed in the screen-
layout module, but is introduced here for clarifica-
tion.

Figure 3.28 Descr-Obj

79

.,. *"*.. _ . "* L M Z . . " . . " "; •"

--
-0

c I0

: C

CC

00

0 .0 c

0 d)0c
4-4 V) 000-

u 0H 04

0 u :

-4 Cu 0

r-4

oU U
InO 4)~L 4 0 -In x)0 -

4' .0 0

CCu

IN 80-Cu .

6 o4

u C30 1

0 I a-H3:H 4.)
04 0'

+j --4 ~ 4-) n - " -

0) cz Q) V) 0

0

-4 .-4Q

t I u

V) 0 0

0 -

Q0 In) 4 -4 0

0 0 u - 4 U- 1
N ~ 0 04) 4- V) C

4-4- -r- -4 .U I4.!-4 0
0 0 Ei

0 00
Ht Q C 0 E4 cwd

4-4 0 (n4U,-u 4..) tIn0

10 0 0 0 1+
1.,0)-4 -4 4-0) ~

&4 0 0 0,. 14 rq r o)C
t4- +J "Cl 0 z +- .,- V)t

4.-) .4 4 -H r- 0 0 0 t
0U m , V) Q + 0 C:$-
a4" 0 V) rZ ' 0C M 0) .0 0)H P. zC 0 '-4 4.) 1

t"(41(n .0 C= ' 0 "o to
-4 0.z) CU 00)V 0 a.
4-)"-.' 00 co "U0) 0
(1 0 r. c - r 4..)

to (A $0>1 CU3 > -u-
:4 0. 0C CU3 0 0 :r

- 0 -4 u (A 1

00 V) Ln 4-1 4-1) -4 V4) +j +
"-I '.4-4-44 0) M) cl -4) a)

I" Nl r ~ Lf) r- 0 al

0) 00

tn -4 0) -4

:3 4-4 z Z +-
0 0 0

C -+j C- Sz

0) $400 Q

tA r0 V)a

81

HIPO NOTES

for UPDATE-OBJ (1.3.2)

Step Note
3-4. This display and edit function should be done in a

standard edit format that the normal user would be
familiar with. It is not necessary to have an elab-
orate editor since this is not the primary function
of the program, but it should be effective and
understandable.

5. Save and Abandon should be small icons located in
the top corners of the misc-window. By having them
displayed there, the user will always be comfortable
that he knows how to end the update function at any
time (and for any reason for the "abandon" option).

Figure 3.31 Update-Obj (1.3.2)

82

-"e p' P.. +- " C , 4. C,.
.,

E-

4.4J

-4 .

4-44

4-1S

Q Z)

oP
-0-

83 - -

-r4-J "J V

- 0) E

-4 C-O -4 a C1

C14

t4-44

00

0 1 0 1-4-I .d
0) I -

0 20 '~0 r-

0 0

0- ~ 0 a) (n E-4
r-- +j C-

L) V)+ ,.
0 W 0 0 0 tn rf

W z0 V4 th0t
Q - "1* -,4 w-

0 c~ ~0 4-J~ S'

o 4) 1 r- (n)'Cu

14 41)5

.4 C- = ~ f (n ,4

0 0

r2 V)-4 C -
V) U 0).-i- 0

*'4 -4 Cd W4 W C 1

84

HIPO NOTES

for PRINT-OBJ (1.3.3)

Step Note

2. This sub-menu is actually composed of just the
three choices printed out on the line immediately
below the menu box.

4. Deciding whether the mouse is positioned on one of

the items entails noting the curser position at the
start of each choice and counting spaces

Figure 3.34 Print-Obj (1.3.3)

8S

CC

C) 0

0l 4 -4

1 -
4-4

-c

V) u 0

-4-J

00

~ 0 4 (D

5* -4-86

"--4
CCI

(1) r= 0 0 4-

E*~0 0

0 4-)

o 010 .,-4

04 0

.00 (1)Cf = A 4
0 4J () 0 U

I- Ur r-u0Q

4) 4 4 01-,1 0
1-4 u C: J C

0U - r-4 0

0~ (0U) -44U

) 00 .,1 0 U0.. z 0. as 4 .) 9

>) 0 U) 0: '-

Moo CU 0 r=:U U) U)0
V) 4.4 a) z
to $.H V)0 0 0 4
V-) % U)C U l.U
V4~) Z r- r- U .00

H Cl2 4.) M) ~. 4-J 4-4 I
:3 Q) r- U4 u 0

) "7) 3 U) .,. IT
0 10. 4)~. $.Oa /) .4

0. 1 u CuU) U1) 0. 0
Q) 41 m cn -. +..j

0 4..bU) 4.1 C

= r= -*4 1).144. U)j
4 -4 0 4. 0.C 0 m4.4+) 4-A

c:- -4 czo F-44 L) (3)

- ~ ~ ~ ~ c C0s g4~ I,~0 ~

1- 0 .

08

HIPO NOTES
for SCREEN-DUIMP (1.3.3.1)

Step Note

2. This header message will probably include things
such as database name, current date, and user access
level (if used)

4. It is anticipated that the user will usually want
to print what the schema looks like, so we give him
this option which will be quicker and use less
paper

6. In this, and the two following PRINT sub-items,
highlighting is turned off in a module that does
not turn it on. While this is usually not a de-
sirable characteristic, in this case it is justified
since the modules and logically connected and it
speeds execution

Figure 3.37 Screen-Dump

88

°0

4J

4-J

.44

.00

0 0

> ,00

> 0-4

:1 I

0 4
rzcz

0 r- ru (n 0
C) 4-J

o C:

O0.-

HO 00

a)

5u

rca

* .0

. 89

O!

0 -J

4-) r-4
-4 C: = 0

.4C

41M

0 CD

-4-

oy C)

C)

04C C)
o lz 0jr 0-

-a)
C) Cl)

0)2

00
S 4-) C)z-

C) ,- - ,.

U C) .fl 90

HIPO NOTES

for PRINT-OB (1.3.3.2)

Step Note

1. The object name can be typed in, or the user can
position the mouse over the desired object and
press the "select" button.

3. The number of field names (and table values) to be
printed will be determined by the width of the
fields in the records and the width of the platen
on the printer. Stop at the last field name (and
value set) which will fit completely.

Figure 3.40 Print-Ob

91

gel "!V

4 -J

-

0 c 0

4--4

0- zt

00

.IZ4

0 *

-4 C-4

92

WA. .. 'o.
_0%- %-%- !.

+j 4-)

L04-J13 0

-44

00 0 ~ 0

0

1-4 .

__ (1)4~ 0
V)' U *-4 - 0n
r0 (4. -f- -1: 0r4 1

4-4 00 '- -q $4 $0
u 4-4 Q.0

00-

4-.W4- -4

0-4 $-4U
.,4 0 '

4-4~4 C4-4 .

5 4) J - ~ 4-

4- 4-) ~ z

.0 0 .4-4 5-93

HIPO NOTES

for PRINT-REP (1.3.3.3)

Step No te

3. All fields in report form must exist in the object.
otherwise, you cannot know where the inconsistency
is.

5. This will be done as indicated in the report form
directives (i.e. the header, field names, and
widths will be specified)

Figure 3.43 Print-Rep

94

a.)

0 -1

a))

o 0

-cimoo.

crI~

1400

~ 0 95

AD-R171 393 DESIGN OF A GRAPHICS USER INTERFACE FOR A DATABASE 2/2
MANAGEMENT SYSTEM(U NAYAL POSTGRADUATE SCHOOL MONTEREY
CA J K ADCOCK JUN 6

UNCLASSIFIED F/ 9 2 .

LEEENONhEE

ll1.511111L.25 11111 1.6
- IIIII

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU Of STANDARDS 963-A

. % %176

J-ew6..p. a- r -j-p -Mra-. s-aTW raTv ~ -. a Nib PA W>w R-u-NR~r', No r -U

tn

.e>1 4
0W0 C

tn coh

0t

U) 0 0 C

0 Q

Iu 0

a) -11

0 0 4

0- 04) 0 -4

0 '-D

u Cu >1

tn4 he m

-4 co U4%:. 0

u) u a 4)

0u 0

4) alCu v-

Cu'-4 C"4 ~ 96

u.%N N
U-

th W~

r-4 ' tr L

r-4 P- t
'-

> 0 4)W-E

tnV u Cu U~ 3

CY

0 0

-4 r4 04'5I

-4 0uG

V)

$" 040)
4). X 0

97uUU

* M

.f\C . O

4)~~(0 n4)

, ul u

00 , Z 0)

4)J

C. a) -* ~ 4

4-1)

.0 #~~U

4J
>4O 0

0.0~ tn(uu
4))Mo 0

w. 4C. J .

r.4 ., Q

4) ;-4 '-

0f u.0~
.4-4 0 V) 4

-1 0~-
0 0 u0
0 r.l 4-J

~~.Jt '-I 4

CU:34 '440 '-4 CU3
co)44. 4) UJ

Im..

-9

HIPO NOTES

for DO-QUERY (1.3.4)

Step Note

4. The call at the end of this module is different
than the one at the end of do-browse (1.3). The
reason is that do-browse has a simple lead-in
module that can be used (recall that the lead-in
module to do-admin is start (0) which does more
than simply change the menu display and the curr-
menu variable).

Figure 3.48 Do-Query.

99

P 0 '.

CU)

<u

~4U

V)

0)
4-))

-~ 0

0 (40

44 0. 0

r-l C.

00

UU0)

co 0-

00 V-4
41 0 44

00

44U-4 0

.10

IWO

(ns
In C*4

u +j
4)r- C
*r0 41 3V r e

W0. r- C13-4 -4 "

.~ 0 0) m
*ca S-4 01 . az "0

+j a-) r" 4J Sl- >
= C- 0 C =u -4 a~ 0

0-4 W r- U..UU -4C (1) in. f

-4 4J 0W-4

0 0 c
4-n 0

CU 0
C's (ns 0 -o -

0 >. . -)-

0 r- a~- 0

V0 .0= 0 0~ co s-0
o0 0.0 r- 2 '-'eu rz 0

*0 r 0- I Z 0 = 00 0~ 0
O 0 0 0.0 c u*~- .0 0.U

(0 r- U 0 1 0 4. i

S.-1 0 r= 1 4I- +
u- Cd$4 D$4 1- O ' uH -0C3+jxV

a) $L I=' .~ 0 = a) 4) 0 5- d) - -
H r. z a U 4 W~U 1 "0 a0 4 4

9cc 0 C in0. >. c r3-- j 344 u
&z0 0 0 x 1 E0 0 0 X .,4 :)) L's

rza < 'I-4 4-4 +j 0 c 0 >% $-4 o +j 31*v-4'-- -r% t
r- C'1 4)-4 co "0.0 1~ :3 . .0 3

X .4 t 4 4 L4-4c~ Sr .40 m> 0 0 0
0 co tAf Q)-4r- 4 1 5 0 o w>. E J +j $-,

In.0 o ,i 0) r.) r - : ~co 4) o C~ o .O
x a- X. 2 CO 4) m 4) =x ur- U (0) r =

o 0 a. V~0) 1(Du 4)O0 1 0 4 0 0

.,4 P6 u c 010 x0
4J E 0 OU 4 CU.4 0).0X .x4.1: -,a

00 V21- g o0504)- O,- 0 r-4.4

=~0)Wr14 .00 0 0 0 QL cah..03 c

0 . 0 m0r4 -

L L's

-4

US 4.1 t054

0 0

0 z &0-4 44 r-4
- 0 0 0 4) 1

2 20 r-

101

,
"M .I 1, 1W 7 7 - -M N RP

HIPO NOTES

for EXPAND-OBJ (1.3.5)

Step Note

This module should be implemented in a manner alnost
identical to that used for descr-obj. They are
similar functions, so they should look very similar.
The only difference between the two modules is the
actual layout of the forms (small windows) that will
overwrite the schema during screen-layout (draw-
schema).

Figure 3.51 Expand-Obj.

102

* ~ s ~Ab~AI'J~.~V.%',.'A& ~ *, -A

4

) -4

0

.('4

E-4-

r-4 tn

rz '-,-0

oa

0Z 0

u) -4
W 2 -1 4

co

tnf

*1 ~103

-,Zt,,Xe0

a) ll 4--
o). 0. C3., -4 .,1 -

CE L")C'E 412 4-J4

4- - 4 1 >0u .~ 4) >.0

-=4 "a ~ u 4

4.. u 4- Q u r

V) C)
U) U)0

r-) +jJ 4J)i 1

G_ 0'f 0 4-JH'-

9.0 041 V3 a) 0 44~ >.P C 0) SE u 4.J ' 4 r- 0

-4 1 V) 0 1 .4-O(

re) 00 cl 0 nrn u a)4H 4 0. tn PIZI C4) f- S *)
00 4-b U-M 4~ -4 90)

$. 4.4 S 04u~
.0 r. 03 CU-U- 4)4$. 4J c~ :4-

VgF jt 4) P.4 C)$-.O u-a E. : 4030-4 $ - 0 44r4 C 1 $. N

444 4.-4 4-) V -44
44 0 = 4) +) 4)) 2.=*-

(1)4 0'4)r4 +I- 0=0-
I N

HIPO NOTES

for LIST-MEM (1.3.6)

Step Note

This module is the third in the series of object
"expansion" options. It should be implemented
the same way as the other two (descr-obj and
expand-obj). The use of "forms" in all three of
these cases should simplify their implementation
and enable the implementor to achieve conformity
and regularity in their use.

Figure 3.54 List-Mem.

105

!I

4-J4

0 r

C)~ cl r

> I -I dL

0.*

0 Q) 0)u

+o 0 r- >1

:3 0 4) C

4,1'

00
4J)

C) in U

E0

C10

WT - -1- -7 , -F -7 T- Tv TV --1,7 Mk "I" w

0 +

4-
vi 0 -0

0 -4 ~ 0 ~ v4

0 ~ZU

4--4

Q) 0

0 uo 0

44 0 4

nI (10

71 0

UQ 4 ' 1-

4-1 ~ V). 0

- 0 0 c-acn

r4 0 . 0 ~ 5 ~4 -4

E0 EO0E

+jl 4-) -

1407

HIPO NOTES
for CENTER-OBJ (1.3.7)

Step Not e

This module is fairly straightforward except for
the case in which the user wants to get out of
having the schema display centered around any
object. There are two ways to accomplish this: (1)
the user selects "center object" without having the
mouse positioned on any object, and presses
"carriage return" when prompted for an object name
or (2) the user selects "center object" without
having the mouse positioned on any object, and
types a symbolic name (such as "home" or "none")
when prompted for an object name. The advantage to
option (1) is that it is faster and easier. The
advantage of option (2) is that it precludes the
user from "accidentally" selecting the 'none"
option. However, he would need to be reminded of
the symbolic name for "none", because we certainly
do not want to force him to memorize an arbitrary
command code. The choice between the two options is
really one of style, since either would accomplish
the task.

Figure 3.57 Center-Obj.

108

= W-

0 0

o J 0
34.J ;3:4.

ou~ ou
$4.~(n

00 ~

0 n 0 ~

1+4

414

o o

0 0

r-

'-I~ r34'-

0 0

0 109

to r- r- a) H

~0 to V) t 0 00t2

,~~~- 0q H 4(

0 I

.0 cx3

LO-4 0

PH - "I I -

4 0-
0,3 Ots 00
- r-4, .o 0

x- s-: 0)) S-U:' '

0 2 "a0 0 W
.0 =%~ "0 +jV

1.4 CA e-- 0

ad- 0,2 1 0-
H0 CD l0 M)-. u J Iw

(U - (,-

to >,., IJ

00

.

0,

110

-44

o *0-4

cr 44.0

4))

0' 0

'00

C,. C: 0

C: 4-'

4) :3Q

0n 0 3

d) 04 >
A 4 z 0 4 4

C. C1 C4
cn +j E S ~

Q= 0 0 0
r *4 e_ . C

4) r-4-

V) U) U

rq .0

Q 0Q

r-4 04

-q 4) 0 0

rZf 0 = i4+j1

44 0 r-. Q C1

(A~ U 0 E C3 r c

Q -ri l 4-4 l 0-)

LL3 4 0 6 +

43~C > 0 .0r

1112

0.. -. 0W 440 1
4-4 ~ ~ *1 V) tn 4) 9 0 c

HIPO NOTES
for SAVE-RES (1.3.4.1)

Step Note

2. The query sequence to be saved here is one of the
sequences the user created himself earlier by se-
lecting "create result". It is important to note
here that the result itself may not have been
created at all, and all we are dealing with here is
the sequence that creates the result.

4. This PB-file-list is a list of file names that con-
tain certain query sequences, repetitive actions, or
command "programs" that the user or database admin-
istrator has created. These are included to make
the program easier/faster to use for the experienced
user, and perhaps easier to learn for the novice
user (in the case where the database administrator
creates command programs).

Figure 3.63 Save-Res.

113

V)0

0 $. ~ m $

tJ,4 0

0 44 :

4-1

V) a- i

00 4)

o 4 0

-4 -4

am 00.
H - 4

+j 0

>0 -r

V) tA 4

0-4 0 -

tn 4)

- 4-'

5-.

4) 0

~0

114

0 C C4
.14 *j -

4-I I.- V
04t 00 4J

'Ct -4 4) (D 4-1 (v m

'00 0U,.4

u 4) 4

*V I N~

0 ' - 4 0-
> Q) 4.' ~n C4)

o(co 9-- *r 4)E-'-~~~

'0 EA r=~4G 3c .'0 q OL)
N CU. cn 0>

a r.l 00 = v) 0 co
A0 1 ~ 4.1 0 1

0: ~ ~ ~ ~ ~ $ a.o Aco 0 ntn:30 &

H -4 4-' .0 ff1 $. +J . A = t
o 0 0UfCC~~ CU' Q~

H. CUG) Q)4

E-4 0 0 ro 0 G)) 0 :3 +.

- 4 JC%0>,r 0Z0 4-J 3 -41
-4 '.41.4 tnw*- , () 4)C= 0 Cz

r,$ 4G) 4.. --CU =0 U0 m

0 Nc tn 1 ui -4r 4 1u6 >

12 n cd0) .J (Al 0 7 m0. :

o t0 0 0 00v

F- 0 ~ 41 L4' lG 0I 003

* 0 0 M j 4 -

t4 tn~$ 0Z=Q 4$

., =0, V)r- r4 j j n115 4V

HIPO NOTES

for SHOW-RES (1.3.4.2)

Step Note

6. This instruction may prove to be the most time-
consuming of the entire program. Until this time,
the result has not actually been formed: only the
query sequence has been saved. Now it is necessary
to actually execute that sequence.

7. The show-res-form to be used here will be essential
ly identical to the one used for list members. The
difference is that it is to be displayed below the
result box rather than overwriting it as we did
with list-mem. The reason we do not want to lose
the information content provided by its shading.
(Recall that the result box and all objects used
to generate the result are identically shaded.)

Figure 3.65 Show-Res.

116

00

-oU

04 -4

r-44

41 CS

0 $04

4 -4 U

H4 0 W.

$-, CX

0'

C) 117

-- 7 -- 7 -7 -7 -77" N* p
-

-4 $. :- r_

tfl) a) . V) . - 1 -- 4 j
V 1 t 0 a..

,). 24 0. = ~ t'- -a
o -4- Q) a)'I)' ' ->

V3 ~ 4~J 4-1 V) 4-J =-s) - 0
a)~c =) "S COZ) M j ocz

r-4 to0 01 10 z .z ==

U~~ ~ ~ -- L r= r uuV

t')~(0 4J) ~ *45

00

Q-4 0 0r-

4I C) 4) :3 (L) r*-44.

1 C) Cl) .0>
0) 00 0 Q -a -r4l e -

rz~r4: ti) ~~- 5-4 .0 s-. -b
-P 01 '. -4 4.

-~1- r-* - L-4.' 0 0C
0 0-. 4-J u 4C) r-. u 0U . 5.

44 OU) W to I IIE-
~~~~ 00 Uc 04 - C~-4 ' ~ 0

(1)5 CIS C). -4 )-
X2 03 (1) S.--4- u)

E- 0 0 J 0 . W U 5-
-C4 $ - 4)~ -4J .'~

4-1 Cl)n

-41- 5 j0- C
C) (4 '1 0- n >

0l -4 C) UIt d) 4
t*4 Wo +j :3 1) q"

-. , I. V) ) r--4
4-) G Q) W - t) u .

C4 V) C) u- 5 q Q-
U) 1 ) Q0 Q U(

Q~ 0L U V

tA Q 4..

.r.-4 $ 4 z



HIPO NOTES

for CLEAR-RES (1.3.4.3)

Step Note

3. This result-file is the one created by create-res
and includes filenames and query sequences. The
"X" refers to the integer used by the numbering
system for that particular result sequence.

4. This obj-shade-list is the objects which were used
in the result formulation. It is referenced by the
particular result sequence.

Figure 3.68 Clear-Res.

119



1-44

4-i

-4J

00

0. W

u C4

-4

I z

00

12



C-. 4. 4-J > W~~IWVt
3

Lw V~1-',

4JJ

CD

d -4 4J Q

t..4 V) V 1) C4 .4

r= $ I-,- M C

= 0 (L) -4

Q)4 z; -4 V -

- r- t.3C

Ln t- C3 4-J

LA) cI3 -

E-4 L> 1) 4.
"-4 ~ ( 'E 4

C)~~~ s-4 ~ Q 4 -4 4J C

0 ) C3> 0 C) C'J C
o+ >

4.. 4)3 0 ) 3

~f )-4 4.i .nC

0 4JC 10 -4-4 ~
L.4 - 1-4 *,4U u u)E4c

C) 4-1
C) 0. V . C) s-) u

I-4 $.. wt V) $. -: 4-

-4 vs - 4 a)-4 '-

-- >C ~ ) '

vs 0 1 -u to a) C) C
o C4

~1 -~ v0 OC

C) - 0 4.> U C) . a

Hr) i. C3~ 00 1 C)C121



HIPO NOTES
for CREATE-RES (1.3.4.4)

Step Not

2. This step will result in a file which contains all
the steps previously identified by spec-obj

4. This creates/adds to a list of results which the
user has created during this session. It will be
used to determine how many results are shown in the
schema display, along with other user options, such
as save/show/clear result.

5. Once the new file has been created, all current
entries in specify-file are cleared so the user
can begin his next query formulation.

!

Figure 3.71 Create-Res.

122



00
co

V) (1 V

r-4 0-

a 44

4) DO rI4

u) V)

41)

*~~~ 0 + 4-j

1-4 * ~ *-40 X- ~
0~ r=. 0. 0~ n

co 4)41 t'

4 J +j

U~ 4)4)-$

4) $a

123



414

4-J 0

rz4~ 4-1
S 0 X~

z'-4

0 4to 0 w - v

-4-

4j'

4J4 -4

41 54
03 0

C~4 - ) Z

E4 V) 00 J+

PFi Cl 0 * '
0 V) 0 >



ca )

-C1 ) V. :
a 10 -- q

C0 4 44 (

0 0 LQ a)

41 .) u) -

o Cd r- C) 0 )
In. 0

ra 04.0
C) 44 0

th r4 0 -4 r-=.~ -M S 0Ij-4r4 1
Ln r4: X C) t-4 -4 -e94 C 4-4 - r-

> 0 -4 C n
0 U. co

0o %0- v-0 (

HC 0d -H 00W:3 4
o ~ ~ ~ .44r-- + 0

4-1.-1UP4 (D C 0 CLj

-l 0 0
= 0 )* - 0 4J EW

Q) 4J 0 -4 0 01

kw - 1- C) C "1 00

0.

og

125



4) co4 +

C)C0~~ En 4'4 f -Ci

(L) 10 0 .f-f
rC C) 4) $) -C

.0 4-J. =J4- 4.JC -->
rz 4 m CZ

0Z-4C U~ t4-4C 0

-n C4 r-c

03 (A. . e.
=/ 4-) 0-lr

C) -I C) '.f-4 0 C

4E +j '-4E 4-jC -' '
H C)4 0,1 14- ) t (L)

:3 It 0~ 4J -r4 -. M) V) t
t-6 U -,4 cu '' C 4

0- CIOf PC di r
H N-''* *'0C 0-4 S 4-' "0 0M

.. j 2= .,.q- C) ct '01l

w. an4- z l : 4- '

fl r-4 ti-.4 Cu U>

C .)U 0 ) -CMC 0 0

'I. 4.4 44C +0Z 4-) -'0 -4
-4E r-44 +jC u iN

4- $.4 C) 4-J, ZJ t C
(D +jf.l t c zq .,

r -4 I= w IV 4.4 V ' C )C
2 a 41) r-o 0 (Aw u u 0
0 W-4- 4. S- J co 1= - 4 CA .. I

r-4 M.I- CS~ +jC u -1-

PC uC. WJ- VC'V4'.4 3: :3
4-4 0U 9u > C) - 9 CCC 0:5r4 j +

.r -l000 1 -4 C))C 1) co 0
P)0 u4u En t4-4- . sI

00 o2~~~> -42E-u- I
'-'-s~ocu )*~C)C~ut) C

0. ~I) ~ N

S. '.

12



HIPO NOTES

for COMB-RES (1.3.4.6)

Step Note

This module is essentially the same as create-res
except that it takes the steps previously defined
for multiple queries and combines them into one
larger query. Because of that, there are several
"house-keeping" steps to straighten out the files
abd schema display.

Figure 3.76 Comb-Res.

127



0

t4

o 1

E-4

s-I 0 r

04 0
.-w -4

44 c0

>: 4.4

(4-4.

0

00
't44

4.' '-4

C

U ~ 0

.- 4 4.8



0

IV +j'X '4. 3:4 4
0) 0.0 0 ~< .0 *-

U 0U P-4 -4 1 "-4 4J -M 4
=)). $-o u 0) 0 M
t4-~ 0) 0) a) 4 - )vwtos
Cflr-- a0~ U 0~. a.-14 "-4 0)

(A% u

0
U -4

r-4 0
~ -4 ~00

5i 0 0 0 0 0 0)
0)~~ 0 r0- c .' ' 5

Q 1) 9 P0 -4 )
4. 4)4 0 - 4r 0 u
0 ) > 4) E)CJ

0 0 0 E c -4 s-i M u is
"-4 4) -H 0)- -4 Q o

02"s-4c .U S-- 0)I - -
0 - 0% 4Jr + ) 0j -t

u 0(4 0 0-el cl. w
P-) 10 s-4 -0 +J 00r'

rj. *- 4-4 r0. 0 4-' .

4.4 4 U) 4 .0 -r- 044 .. 0 0 '
4.'1. -, C. u - C: E 0)'U
(1) 0 0-40o 0)0 + -so 9 4 c

-44 4.' (A f S-iD .LfULW 4 0 C.

4- Au a 4-F 4 -(1 V-4
.4 ~ ~ ~ ~ 0 4)r44 )r

04 t )X +j 0. CA.

0) 0 u- >xr ). -
C 0 r= CO-4 0aS1 -4 t J 4

1+4 0 d $-4 >4 = T 3lZ o- )
3 r 44 Ur

-4 0 6.
a)) 0 ) S-4 >

4400 t40 . z I

129



HIPO NOTES

for SPEC-OBJ (1.3.4.7)

Step Note

3. The commands are not given here for the QBE query
formulations. Specific information has not yet
been received to provide complete guidance, but
such information should be in hand before proceed-
ing with query rules/codes to ensure consistency.

S. This file contains a list of the names of the
specify-info-X files which will be used to create
the result.

Figure 3.79 Spec-Obj.

130

-I %% ~ " ' A. .~ ~ * *~*' m



00

U4 
E--

C))

a) U

u- 4 0)

a) r=

00

0 _ o

I * ~ 131



0- C0 ) m~ uC)7 - 1C -j

.- - > >~~~~
0 A S-4-C) C $-. ) a. = 0

Q~0 Cnc ) -, 3u t4 r ~ u ca

- , r--U tA r- U~5 1 .=-

.-4 C

0 .

C) ) U ., m )".

lz ui~ " ' -o0r.-

4' re- +j' - -4 C) W AU4-

o -4 34 - E- 't C

Q : 0 0J5C 2 1.) 04 U C
.. L Q0 U- ' +-) U )0 'T 4-J

0 , u 00

u +j C- 0- -~U) 0 mfcJ 0 QU 1

V) ~ r-4 $. r 0 >, ~s E-$- 0 s

0 "1)H~c u p") O- C) *, C)$-C

CZC) 0O -o0 -0 s-.- -. t-

H- C) U~ 5' 0 U + Z '- 4

C) 00 04- "a 1. -) U 0
0 ( *54 -r- 0 r- 5 VU) -0 -

LH -4 01) ) C

0 0 M r-4 u
v) C) C-ZO 'UU 0- r- 4 5 r=

4 0 00 ' U 0o = 0(
0= Q 9/I J4-J *-2C C) $-4U

*.C-) C)0 0 -4' C) )

C )U5-'4-4 4 C 4-'Q - $-0. 0

9-4~4 -4'I N 00

C) u u Cd

0'

C) C - $- $.

*0 =.f ti)0

2132



-:4 0

41~

o 0 a) c 1

'4-4- 4C

C)l 1)~ -4E-

r.... u

+j4 -4

00

4- $. Ili .
0 r-

C--4 '-4> t

.44 0- 1 .~qC

0 U)
co 4.) m ~ >.

F- w .V-. 0
V~) V) 3

4-j +j~C) C
I E 0 4-4 W -a)

'.3(4 - 4 -4 "

0 C *.-*4 C)33 .



C)C) ~ *Ho -4
CJ~ 000 4-j

C v' . -4
C= 0 0 - 00OUM=

4 Q. V) "t- ( Zr

C) Q)Z A-.4C

0 C 4-j W)
t& ~-4 n+

C) V~ 0 0
V) r 04 -o

r0 0 t-
W) 2 ) -41-, >

$0 C) C: HJ 4- r
0 0 0 0 cl$- =-4 a0)

C)0 a)-- 0 )0 $ 00 0
x 3. 4 ' 4.~ 0 -

0, -4 +j I 4J ~ 02
"C: Z' +J 0fl 41

4J +.J4 . 0) r- c ) Ln fJ

$-. 0 Un Z Z4-'CE M
0 0.. 00 cl $-q 4-J -4

W) VC) 4J~- +J t 0

0 0 0fC 0" .- c C)
4,JC-= 0 4 44-40 0 0

Moc. C a)0 c) -14- 'O-- 0 $-

0 0 Q. nt ts(-w ) $-4 -3 0 z A $. v 0 Q4
E~ r-4 = 0 4-J -- C) 0) 5-.

V V3 c C -1 Q ~ S.-4=

0) r_ ' 9 4.) 0~ 4 uJ C +j
C)~ u' V ) 41 +j M. -4 C) 0 0-

-) t24:4 t242 1

(A 0 0 v

0 1 45 r4. 0

0 1c 0~

41 C - 0. M5.5- C1). -

tn r-Q$ ) )= - u,

134



HIPO NOTES

for CREATE-REP (1.3.4.9)

Step Note

This module should be implemented in a manner very

similar to update-obj (1.3.2). It should have a

standard form displayed that the user can fill in

with his parameters.

3. This report-file is a file containing the names of

reports the user has previously created.

7. The save/abandon option only affects current work.

That is, it cannot be used to call up a previously

defined r-eport form and erase it. There should be

some device implemented in the form to allow delet-

ing a report file.

Figure 3.84 Create-Rep.

135



4- 4

a) tn () I

o r-4

-4

U)l
CY

0 0

00

r-44
0- .C

00
H~ ~ ~ +j

s-I4

:3r4 x-

i-i4 0

-s-I 136



a a) tA Q) tAC4r

:3 P4 z -4 a)

~r 4> -4 0

a) V ) U' ) cis

tA CfO ='~ Q

I- I') v~ (D4-'

0 U)

5-q r-4I 0~

u =.- s-U) 0*

73 0 -. 0 C
4) -4~ -q

0 0 -0 E440

o I= e- 004

H ~ 4 a)clvr~

0 "0 -4 0 0

6~~a a)( t
~0

a-a)S -4

44

- -4 co -. 5.

0

Ce cn)

*I*
4

4.37



0

[$4

Q co
%

0 (A
0-0

o "o
$4 a

u 00 V
4)j

oo

4)4C4
r-0 -)
-40

4E-
V~ 4) 0

.a 4- 
0

5)04 -0

0) u Li.
as 0 0

V~) CO-q +

0 5

4) Q

S 0o

so.4 X4

138

4.4



a) (U )

C13

W4o w 4)

CAu

4) ~
:3 x

4)4
Q

4J 4)0 d
0) 0* .1

Cuo
co 0

a) u. oi

4 (D 4)C (4- C

44 C4- to )

cc 1 4) Cuc

04U d ) :3 0 1
4Cu *H CD 4) )

Oo 2jt -

(U 1-

X9 Cu 0i i
4)D rl fl P C4 L

.H ~ 4) 4) 
4

cuu

m) 00~

~C139



HIPO NOTES
for ERR-MSGS (Ul)

Step Note

1. This input parameter should indicate a coding
scheme which will identify the class of error
message, and the particular error message within
that class. By using such a scheme, locating the
message will be simplified, messages can be shared
by many modules, and the message contents can be
standardized (i.e. the same type of error anywhere
in the program will get exactly the same error
response).

2. By using a well-devised coding scheme, the search
technique to find a particular entry should be
trivial.

4. Forcing the user to press Carriage Return (or any
other symbol) to continue implies that we have a
novice user that must be led through the process.
This may not be necessary, and may annoy the
sophisticated user. This is really a question of
personal style, though, and can be altered if
desired. In fact, one could provide a default op-
tion of "Help me through" or "Leave me alone."

Another important point to note here is that this is
the first module which returns to the point of call
rather than simply calling another module. By this
I mean that you must return to the step within the
calling module rather than the module itself.

Figure 3.89 Err-Msgs.

140



Lfn

ci0 :O

uN *C-

0-
C)4 rz

0~ ~ ~ 0) U. I.,q cn o c m

t~ C44 o ) C

CfS) '-

MooUr-4 Cd

Cu 0 :3~ .,4 *10)C~ 0j

$4 4 - 0~

0 0

4).0 0-

.HH

+j~ t '-4 04-'-

co
'0 4-) C

o~n 24- 0 141



v~~ -ww L ~ ~ UW aw~ 2~xwIA £uA Au Eut'- ~ J qm

E ) Q

u Cu)C
V)~* a) Q 4

Cd =
>~~~~ NN ) lcr

Cd C)d C.) th 4 V -.

E-44 W4 N NO $ O-4
W I-S CI" 1 4

0 u u * Cd " co 40
13,~~~~~O O Cd - -% UCT _

H 0 11

''-' 0 CtC)C 1
P. f--4 u z z :: -

HZ0- 0 0~$ Cun u C i

u 1)3 C -4-r- a) t-0
"ri $ -r4- 4 0

~ u "10 % ~ u cda I r

HO ~ ~ - CTS I ~ ~ ~ 4C

4.Ji 0iIC C

C) 142



HIPO NOTES
for SCREEN-LAYOUT (U2)

Step Note

1. This simple case statement uses the input parameter
to determine which sub-module should be called

2. This module, like err-msgs (Ul), must return to the
particular point of call within the calling module

From a strict efficiency point-of-view, this module
is not necessary at all. The reason it has been
included is that it increases program clarity by
providing a single module to interface with the
rest of the program. Since this project is being
accomplished by more than one person, we do all that
is possible to ensure clear meaning and methodology.

Figure 3.92 Screen-Layout.

143

- C ~ 5 C C -~ *b~.



S as

0n 0 -4

a) NIJP

0

0U :3
>1 C

a)

tff)

od CU

0 00t

Hr- rz4  4-)4

CdU

00



4) 0
" 0 1 3

L4 4 0 0 0 '0
O X' 0 .'

0 cuC 2 3t-

~~v . A cnC CA 2
4~) 0 u a ~ ) *I a
E2 CA $e '$- -

as I I I

0 0

Cu0
Cu

C) 00C 0E
C) 00) -

r
4

q CD

CD 0 0 '0 N

0) X c0

\O CD 3 0 as
3c r4 0) 1--, a)

0 Q) 0 1-- $.4

r -4 *134 . , 30 - q 0
%- I 3 '0 0 r*4 4a

>4 .- 1 0 0 0 ' a5-

S00 "0 1 C: 4 a) u
4a 9z M Cu H a (A zA

u u .2 3 0
V) 0) 5 + * j

Q) 0 u 9) Q) H 0)

$0 U A'0 2 5-

5P-4

3 3 3 3 3%

Cu C Cu u Cu CU C +.

$-I -4 54/5- 5-. 5-. -4 0

14



HIPO NOTES
for DRAW-SCREEN (U2.1)

Step Note

All parenthesized numbers in this module are based
on the percentage of the screen that the associated
box or window will take. The first number is the
percentage of standard text rows, the second number
is the percentage of standard text columns. These
can, however, be adjusted as necessary during imple-
mentation. In fact, some of the curr-defaults could
be current window sizes which could be saved for
future use.

There are three types of drawings to be made by this
module. The differentiation is as follows:(1)boxes
or things which are not intended to be changed. The
information which will be displayed in the boxes
should fit and there is no reason that the amount of
information will change. Boxes are used for menus.
2)windows must be much more flexible. They are drawn
with elevator bars along the bottom and right side
to show the user the percentage of information in
the file which is currently being displayed. Their
size may also be changed by using the left "drag"
button of the mouse (this brings up the issue of
whether this change will remain after the current
operation or not). Windows are used where varying
amounts of information will be displayed, such as
the schema, 3)lines are really miniature boxes.
They will display or accept only one line of
information. Lines are used for commands and
reminders.

Figure 3.95 Draw-Screen.

146



c~U

4-)p

04-

Cd 0

u C)

c~ "-E-4

> *0

0 +j C4

H4 C) ,

~ 0

4-4 00

I C) 0
-go

~~147



a))

(L)

0 ) )4a

C c V)) V) 4-1( O)x - ( '
U -4 4* I- U

0 u

C1 ) -. f- 0

a) r_ ) Q 4

a4 Q'' 0 P. -4
a) 11 3 )

V)) S-4 c- 0 r )1-

CA- 4 U) E) 9

CL u u >10 >1a 1= E- )
tn 4) 4J U1

(1) Q5- -) 0

M -) 0 4J 0

4 -4 z nE_
to"4 -4 0

o C13u i4

rI 5.4( Q

0) a) M)l U0 U) t
'-=- E ) 4- 0 H 4.J'4 -

u +j *- r.,-4 -4U4)

04-4 rX!- 4 -a

U) 4 a)I'--4 a)' rq0 -+4 4

50 4 Z a) - r

(1) C) U) U) ('

4.J4 Li4 t_

4)

U"4 u)U

'4-1148



i* ;-.7 W., V. I" -J -.-

HIPO NOTES

for DRAW-SCHEMA (U2.2)

Step Note

1. This schema-diagram has already been generated for
us in the data definition portion of the program.
It was built as the database administrator designed
the database system. All we have to do here is dis-
play it.

2. These forms are small windows (with varying amounts
of information) which will overwrite the object with
which they are associated. The way they should be
implemented is by a standard form which goes to the
file it represents and pulls out the required infor-
mation to display. It may be a good idea here to
save this information the first time it is retrieved
and use it each time this module is called provided
that it has not been changed (by update-obj).

3. The same comments as step (2) apply to this step,
especially the one about saving the information
required to perform this step. In show-res, this
is where the data manipulation is actually performed,
so it is imperative not to have to rediscover the
wheel each time it is ued.

Figure 3.99 Draw-Schema.

149

A



b

al z

0.) C0

p. u

t.0

Cuu

C-))

03

0 X N

4-

0.)

E1s0

C3

, - .,

.- ,,V



C Zr

NC

41N

0

0

41)

a)Z

u .0O a)

4-) -

a) C)

04 V

(44(j "0 0

Q) 0 t
11 4-J *-4

4) Q)

+ja) -

4uJv)J$ 1:4

z
x
0

is'



HIPO NOTES
for DRAW-ADMENU (U2.3)

Step Note

This module (and the following two) simply write thE
menu items in the menu-box. It is, however, impor-
tant to note the boundaries of each item's small
box because the user can select the item with a
click of the mouse and the program must be able to
tell if he is in a menu item box when the mouse is
clicked.

Figure 3.101 Draw-Admenu.

152



0 4J

ci 0

0n $ ,

Cu

U(

=,1Uo

OM
m_4 0

oU

z

E 0

C15

00

040

H 0

153



0 )

n -H

ouj

0a
>.4-

a) )~0

a) r1-

u (

C --4I

~) 0

E-44

4-)

04- V 4-)>

4J r - 0
-4 0 4- 4

-15



C z

°l

NN

0 0

co .2

0"

r

>o

0155

a):

0)

~ 0 x



a~

___

*0

4a) Q0

C14 '-
00

aas
a4) $--4a

4.) as)

04 00 00
+j o 0

+A) 0

4J.

0 0

0 >-4J'156



~~Cu

4~ 4

000

1-4 0

Cdu

1:4?

>1157



ci 0

4-))

0z

01

(L u)a

444-

V)

44

+4 0 a)3

C.)

4>

*r1..O158



/

HIPO NOTES

for ERASE-IMENU (U2.6)
/

Step Note

The three "erase modules" are used to blank out the
previous contents of a box/window. The reason that
they all are defined by the "boundary" of the sub-
ject area rather than specific positions on the
screen is that the boundaries of the areas to be
erased can be altered by the use of the left "drag"
mouse button, so you must make sure the entire
area gets erased, not just the area initially
defined by the program.

\*

A

Figure 3.108 Erase-Menu.

159



0o

CUd

~~a)

0 4

00

CU

0) a) r

V))

00

H-160



0

TIj

0~

C d
:31

u

E-n as

W

V)' as

NN

0 =
'0 0

-- z

0I

a) E a

cn 0
a') .4

4-J -4 4

L4AFL

0 z 4

.H '- 0 ,

a), >.

.,-,t, ¢

'0 N

t'

H 0C("4

161 i4



- ~ ~ 3 77 -- -Y w- 77y --

u )

II
0 M4

0 rl0

-.1

I')

0 0

4-4

0

00

162



I -:3: T

U )

~C)

I
o 

---- --

3 
0

0

r- 4 ~C 13

a) :3:

1) 1 
)

uu
00.,: 

C) 
) 

: ,J)

u

00 
U C

0 4

-)
4

-

LL 0)

0 Cd t

0C

4-)

~ 0

16



LIST OF REFERENCES

(BOG 84) Boguraev, B. and Jones, K. "A Natural Language
Front-end to Databases with Evaluative Feedback,"
New Applications of Databases, Gardarin, G. and
Gelenbe, E., Academic Press, London, 1984, pp.15 9 -
182.

(COD 74) Codd, E., "Seven Steps to RENDEZVOUS With the
Casual User," Proceedings IFIP TC-2 Working
Conference on Data Base Management Systems
North-Holland Publishing Co., Amsterdam, 1974,
pp. 179-200.

(DEA 82) Dean, M., "How a Computer Should Talk to People,"
IBM SYST Journal, Vol 21, No. 4, 1982, pp. 4 2 4 -4 53 .

(FAI 85) Fairley, R., Software Engineering Concepts, McGraw-
Hill, 1985.

(HEN 77) Hendrix, G., "Human Engineering for Applied Natural
Language Processing," Proceedings of Fifth
International Joint Conference on Artificial
Intelligence, Cambridge, 1977, pp 183-191.

(HER 80) Herot, C., "Spatial Management of Data," ACM
Transactions on Database Systems, Vol 5, No. 4,
Dec 1980, pp. 493 -514 .

(IVE 82) Ives, B., "Graphical User Interfaces for Business
Information Systems," MIS Quarterly Special Issue,
1982, pp. 15-47.

(KOR 84) Korth, H., Kuper, G., Feigenbaum, J., van Gelder,
A., and Ullman, J., "System/U: A Database System
Based on the Universal Relation Assumption," ACM
Transactions on Database Systems, Vol 9, No. 3,
Sep 1984, pp. 3 3 1 -34 7 .

(LAR 84) Larson, J., "The Forms Pattern Language," IEEE,
Mar 1984, pp. 1 8 3 -1 9 2 .

(MAC 85) McGregor, R., "ARIEL--A Semantic Front-end to
Relational DBMSs," Proceedings of VLDR, Stockholm,
1985, pp. 304-315.

(MCD 74) McDonald, N. and Stonebraker, M., "CUPID--the
Friendly Query Language," Memo ERL-M487, ERL,
University of California, Berkley, CA, Oct 1974.

164

-,413r



(RAE 85a) Raeder, G., "Programming in Pictures," Technical
Report No. 8/85, 22.02.85, 193 pages, Ph.D. Thesis.

(RAE 85b) Raeder, G., "A Survey of Current Graphical
Programming Techniques," IEEE, Aug 1985, pp. 11-
25.

(ROW 85) Rowe, L., "Fill-in-the-form Programming,"
Proceedings of VLDB, Stockholm, 1985, pp. 294-404.

(STO 82) Stonebraker, M. and Kalash, J., "TIMBER: A
Sophisticated Relation Browser," Proceedings of
VLDB, Stockholm, 1985, pp. 1-11.

(SUG 84) Sugihara, K., Miyao, J., Kikuno, T., and Yoshida,
N., "A Semantic Approach to Usability in Relational
Database Systems," Proceedings of IEEE International
Conference on Data Engineering, Los Angeles, 1984,
pp.439-445.

(WAL 78) Waltz, D., "An English Language Question Answering
System for a Large Relational Database," Communica-
tions of ACM, Vol 21, No. 7, Jul 1978, pp.526-539.

(WON 82) Wong, H. and Kuo, I., "GUIDE: Graphical User Inter-
face for Database Exploration," Proceedings of
VLDB, Stockholm, 1982, pp. 22-32.

(WU 85) Wu, C., "A New Graphics User Interface for Access-
ing a Database," submitted for publication, 1985.

(WU 86) Wu, C., "A Unified Interface Method for Interacting
with a Database," submitted for publication, 1986.

(YOU 79) Yourdin, E. and Constantine, L., Structured Design:
Fundamentals of a Discipline of Computer Program
and System Design, Prentiss-Hall, 1979.

ZLO 77) Zloof, M., "Query-by-Example: A Database Language,"
IBM SYST Journal, No. 4, 1977, pp. 3 24 -34 3 .

165



BIBLIOGRAPHY

Bryce, D., and Hull, R., "SNAP: A Graphics-based Schema
Manager," IEEE, June 1986, pp.151-164.

Finzer, W. and Gould, L., "Programming by Rehearsal,"
BYTE, June 1984, pp. 187-210.

Heiler, S., and Rosenthal, A., "G-WHIZ, A Visual Interface
for the Functional Model with Recursion," Proceedings
of VLDB, Stockholm, 1985, pp. 2 09 -218 .

Hsiao, D., Systems Programming: Concepts of Operating and

Database Systems, Addison-Wesley, 1975.

Moriconi, M. and Hare, D., "Visualizing Program Designs
Through PegaSys," IEEE, Aug 1985, pp. 72-85.

Shu, N., "FORMAL: A Forms-Oriented, Visual-Directed Applica-
tion Development System," IEEE, Aug 1985, pp. 38-49.

Ullman, J., Principles of Database Systems, Second Edition
Computer Science Press, 1982.

166



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Professor C. T. Wu 1
Code 52Wq
Department of Computer Science
Naval Postgraduate School

w Monterey, California 93943-5000

4. Professor Michael Zyda 1
Code 52Zk
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

5. LT Jerry K. Adcock 1
15870 La Porte Court
Morgan Hill, California 95037

6. Computer Technology Programs 1
Code 37
Naval Postgraduate School
Monterey, California 93943-5000

167j



4

*

* ' . ws


