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I. ACKCROUND

Coherent fiber-optics offer great potential for application to sighting
systems. However, optical fibers currently made from mixed silicate glasses
exhibit attenuation coefficients as high as 2000 dB/km or more and are subject
to optical blemishes arising from imperfections in the glass--particularly at
the core/clad interface. Such high attenuation practically limits coherent
fiber bundles to lengths of about three or four meters. This situation
restricts the application of various electro-optical imaging techniques to
sighting and fire-control problems.

Fused silica offers great material improvement over conventional silicate
glasses. After twenty years of development for the communications industry,
optical fibers made from fused silica are available with attenuation
coefficients as low as 1.0 dB/km. In addition, Chemical Vapor Deposition
(CVD) process used to manufacture preforms for such fiber results in near
perfect, blemish free material because CVD processes are largely immune from
the limitations of conventional silicate melting technology. Although
communications quality fiber is not needed for the present application, there
exist intermediate quality fused silica materials which exhibit attenuation
coefficients between 10 and 100 dB/km. Made with CVD technology similar to
that used to make communications fiber, such material provides an ideal
opportunity for facilitating the application of state-of-the-art imaging
technology to sighting and fire-control problems.

Galileo has developed technology for making coherent fiber bundles from
conventional silicate glasses. Cane made of 1-5 mm diameter glass rods with
an appropriate optical cladding is laid up into a square array and drawn into
a square multifiber. The square shape of the multifiber permits it to be laid
into a coherent bundle in which space is filled. This same technology can, in
principle, be applied to fused silica. The key to developing fused silica
coherent bundles is developing the ability to draw square multifiber from
fused silica.

The present program is a two-phase effort to develop coherent imaging
bundles from fused silica. The goal of Phase I was to develop and
characterize a 60-micron, 6 x 6 square multifiber array from fused silica.
The goal of Phase II, the subject of the present report, is to fabricate a one
meter long, 3 x 4 mm coherent fiberoptic array from fused silica and to
demonstrate a resolution of at least 50 linepairs/mm.

In Phase I, the ability to draw a square, 6 1x 6 array of 60-micron fused
silica multifiber was successfully demonstrated. The mechanics of the draw
were shown to be a straightforward extension of the technology previously
developed at Galileo for mixed silicate glasses. Further, some of the preform
requirements for both mechanical and optical performance of the multifiber
were identified. The present report describes the successful fabrication and
characterization of a one meter long, 4 x 4 mm coherent fiberoptic array.

II. INAGESCOPE MANUFACTURE

The drawing of multifiber consists of three steps, drawing cane, laying
the cane into an array, and drawing the array into multifiber. The cane is
drawn from the preform down to a diameter of 1.5 mm in one meter lengths. The
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cane is sorted and assembled in a 6 x 6 element square array. The individual
cane elements fuse together in the hot zone of the furnace during the draw to
form a solid square fiber. The resulting 60 micron multifiber has 36, eight
micron optical cores held together in a matrix of low index cladding
material. The secret to drawing good quality square multifiber is to find a
combination of draw speed and temperature which permits consolidation of the
individual elements without distortion.

To assemble an imagescope, the fiber is laid on a traversing drum and
hand packed so that each multifiber is in intimate contact with its
neighbors. Epoxy is brushed onto the multifibers to hold them together. The
epoxy is partially cured and the ribbons of multifiber are removed from the
drum. A number of ribbons are assembled vertically and pressed to form a
solid block of completely cured epoxy holding the multifiber ribbons firmly

together. The epoxied multifiber block is precisely cut to yield a coherentassembly of optical elements.

III. FUSED SILICA I LTIFIBER

Fused silica fiber is drawn in the same manner as conventional glass
fiber. A preform is fed vertically into the top of a tube furnace and heated
to a temperature within the working range of the glass. The fiber is drawn
from the bottom of the furnace and spooled on a drum. The size of the fiber
is controlled by the ratio of the feed speed to the draw speed. The primary
difference between drawing fused silica and conventional glasses is the high
temperature (~2000"C) required for fused silica.

A. Equipment

A high temperature draw tower located in a Class 100 Clean Room was used
for the present work.

The high temperature furnace is equipped with an yttria-stabilized
zirconia muffle tube coupled to a radio frequency generated field.
Temperatures of 1400 to 2300"C are controlled by a three mode controller using
an IR temperature sensing head focused on the stabilized zirconia tube. The
preform or array is fed into the furnace by an electrically driven screw
assembly. The fiber is pulled from the preform by pinch wheels and spooled
onto drums. Fiber size is controlled by the ratio of feed speed to draw speed
at constant drawing temperature.

B. Preforms

Preforms suitable for making fused silica optical fiber are currently
made in a variety of ways. A relatively high index core with a lower index
cladding is required. This configuration is achieved in practice by one of
two methods. In the first, the high index core is made from Ge or P-doped
fused silica, and the low index cladding is made from pure fused silica. In
the second, the high index core is made from pure fused silica while the
cladding is made from B- or F-doped fused silica. (Boron and fluorine are the
only two dopants which will lower the refractive index of fused silica.)

In Phase I of this program, preforms made by Heraeus Amersil (SS-1.4)
were used to demonstrate a square multifiber. This preform had a pure fused



silica core, an F-doped fused silica optical cladding, and an outer buffer
layer of pure fused silica. The preform was successfully drawn into a 60-
micron, 6 x 6 multifiber array. However, the outer fused silica buffer layer
consolidated in the interstices and formed an extraneous waveguide in the
fiber structure, resulting in crosstalk or leakage of light between the
individual fiber elements. The effect is shown in Figure 1.

Figure 1. Effect of Extraneous Waveguide in Multifiber Wade from Peraeus
mersil's SS-I.4 Preform

In Phase II, preforms with Ge-doped fused silica cores and pure fused
claddings were used. This eliminated the extraneous waveguide effect and
resulted in an array of optically independent conducting elements. The
independence of the elements is demonstrated in Figure 2. Figures 2a through
2d arc photomicrographs of the output end of a multifibr array under
different illumination conditions. In Figure 2a the end was uniformly
illuminated. Note that the individual cores are all illuminated, and no light
is seen emanating from the continuous cladding area.



mo~ijoK xqlj;1nU u apuadopui :3uammR o uo1:3wuI:somuc -Z 'n

s MM (P) AOR (0)

I pw& (q) UOlIBUUIII in~olluf (W)



I

In the subsequent pictures (Figures 2b-2d), the input was illuminated through
a 10-micron rectangular mask which was indexed across the face of the array to
illuminate one row of elements at a time. At the output, only the illuminated
row of fibers is seen, showing the absence of crosstalk in the array.

IV. TKAGESCOPE

A. Fabrication

A prototype one meter long, 3 x 4 mm format imagescope was made using the
process described in Section II. Step index preforms with Ge doped silica
cores and pure silica claddings were drawn into 1.5 mm diameter lengths of
cane; the pieces of cane were assembled into a 6 x 6 square array and drawn
into multifiber. The multifiber was spooled onto a one meter circumference
drum, handpacked and epoxied to form ribbons. The ribbons were assembled,
pressed, and sliced in the epoxied region to form the coherent bundle which
was then mounted into the hardware and polished.

A transmitted light photomicrograph of one end of the imagescope is shown
in Figure 3. This clearly demonstrates the applicability of the existing
technology to the manufacture of large format fused silica coherent arrays.

Figure 3. Photograph of 4 x 5 m (3 x 4 - Active Area), One Meter Long
Imagescope
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The few defects which are visible, broken fibers and irregular size and
spacing of some fibers, are readily corrected.

The broken fibers result from the use of uncoated fiber for this

project. The strength of fused silica fiber is known to be degraded rapidly
through abrasion and atmospheric attack. The adoption of organic coatings has
solved this problem in the communications fiber industry and is expected to do

the same here.

Irregularly sized fibers are due to inadequate fiber size measurement
equipment in the closed loop control system on the draw tower. The present
system, designed for drawing round fiber, makes measurements on only one axis,
and therefore it cannot differentiate between twist or size variation of a
noncylindrical fiber. Addition of a two-axis measurement system to the tower
will permit effective use of the closed loop size control system. Such a
system is expected to limit fiber size variations to about 1%.

Irregular spacing of fibers is caused by the size variations mentioned
above, as well as the need to handpack the fiber on the drum. An automatic
spooling system with appropriate tension and indexing controls is required to
eliminate handpacking and control fiber spacing.

B. Optical Characterization

The attenuation coefficients of separately fabricated 6 x 6 multifibers
made from graded-index and step-index material were measured as a function of
wavelength and the results plotted in Figure 4, along with those for a 10-
micron monofiber of graded-index material. The attenuation in the multifiber
arrays ranged from a low of about .26 dB/m in the step-index material to a
high of about .55 dB/m in the graded-index material. The losses in the

- monofiber were significantly less than those in the multifiber arrays (about
.002 dB/m at 850 nm)9 The differences are believed due to less than optimal
core/clad ratios for multifiber fabrication and to the relative difficulty in
controlling fiber geometry in the drawing of multifiber compared to
monofiber. In the future, adoption of a system designed to measure the size
of square fibers will permit use of the same closed loop control system to
control multifiber size during the draw as is now used for monofiber.

Transmission for the imagescope was determined by measuring the detector
response at each wavelength for a given aperture mask placed in front of the
imagescope. Collimated light was then launched into the input end of the
imagescope through the aperture mask and the output light level was measured
with the detector butted against the output end of the imagescope. A
reference level was determined by placing the detector behind the mask and
measuring the incident light level. Transmission was reported as the ratio of
the light output level to the reference level and therefore included all of
the following effects: reflection, attenuation, packing fraction, core/clad
ratio, and dead fibers. The transmission was approximately 40% across the
visible and near IR; a plot of transmission vs. wavelength is shown in Figure

5.

The numerical aperture (NA) of the imagescope was measured by rotating
the input end face (centered on the axis of rotation) within a wide,
collimated beam of light, while recording the light transmission at the

12

I

.'. :,.,",'.L'",cy.... q , " '....'...... ... " ....... .'- '.J



0

0
\~-Io

m .0

ICI

L

> C .

c c

I / 0

000

• .. I-/

cu8
41

si

" I I 1I/ r,,/

IU a

* 1 /

1 13a ,.1 III I_111111 Ill l ! , I!11111 1 I _
S§.SiU 01 m %mm 0

L,', < ' , ,:, -'' . ,.',.. . -: ji ' i 'I;m , 1 W 0 , . ., . ., . .q.,, . ., ,.



3r.4

c Le

o COL

0)

* EE

>0

a)

LL

141



opposite end. A variation of light intensity vs. angular position was
approximately Gaussian. The NA is defined to be the sine of the half-angle at
5% of the maximum intensity and ranges from .29 at 400 nm to .26 at 1050 nm.
A plot of NA versus wavelength is shown in Figure 6.

The resolving power of the imagescope was evaluated by photographing a
standard Air Force Resolution Target through the imagescope. The resolving
power is given by the smallest resolution element that can be distinguished in
the target. A photomicrograph of a resolution target taken through the
imagescope is shown in Figure 7. It clearly shows a resolution in excess of
50 linepairs/m-, the goal for this program.

V. CONCLUSIONS AID RECOMNMEDATIONS

The present task was to fabricate and characterize a one meter long, 4 x
4 mm coherent bundle from fused silica. The desired resolution was 50
linepairs/m. The object of this effort was to demonstrate the feasibility of
making large format imagescopes in lengths suitable for application in
sighting and fire-control applications. A one meter long, 4 x 4 mm format
fused silica imagescope has been successfully fabricated utilizing the
technology developed at Galileo Electro-Optics Corporation for making large
format imagescopes from common silicate glasses. This is believed to be the
first fused silica imagescope of it's kind in the world. The imagescope
successfully demonstrated relative transmission in excess of 40% in the
visible and near-infrared portions of the spectrum, a numerical aperture
between .26 and .29 over the same spectral range and resolution in excess of
the required 50 linepairs/mm. This step clearly shows the feasibility of
developing large format imagescopes in lengths suitable for application in
electro-optic sighting and fire control problems.

Extension of the present work to the fabrication of 11 meter imagescopes,
a practical size for evaluation in its intended application, should be
undertaken. Accomplishment of that task will require:

1. Development of a suitable protective coating for the square

multifiber array;

2. Optimization of the preform to provide appropriate optical
characteristics to interface with the system optics; and

3. Fabrication of a computer controlled spooler with automatic tension
and indexing controls for laying up the long coherent bundle.
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