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for which iterative reconstruction is facilitated. Several potential constraints
for use in reconstruction algorithms were examined briefly, but support and non-
negativity are the only two constraints that have been extensively exploited.
Convergence problems when the support constraint, imposed on the world by active
illumination, has tapered edges were ameliorated by a modification to the itera-
tive transform algorithm using an "expanding mask." Alternative reconstruction
algorithms were studied, including various gradient search algorithms (for which
analytic expressions for the gradient of the error metric were derived) and a
modelling approach, but they have not yet been developed to the point where they
outperform the iterative transform algorithm. Laboratory experiments have been
planned, starting with an active laser illumination of the target with a known
illumination pattern and Fourier 1ntensity measurements. Laboratory experimental

set up was begun.
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1
INTRODUCTION AND OVERVIEW

1.1 BACKGROUND
In many imaging scenarios that require fine resolution at long

ranges, phase errors 1imit the achievable resolution and prevent
diffraction-1imited imaging. The phase errors may arise from a variety
of sources, including atmospheric turbulence, misaligned or aberrated
optics, motion compensation errors, local oscillator errors, and
waveform generator errors. The conventional approach for obtaining
diffraction-1imited imagery is to build increasingly more complex sensor
hardware having tight tolerances on its various components to achieve
the desired phase stability.

An alternative approach is to build hardware having reduced
tolerances on its phase stability, and correct for the phase errors by
employing a phase retrieval algorithm in a post-processing step. In
some instances a sensor can be used that is capable of measuring
intensity only and does rot measure the phase. Then a phase retrieval
algorithm is used to retrieve the lost phase. This is what we refer to
as Reduced Tolerance Imaging (RTI). Using this approach one can
potentially achieve diffraction-l1imited imagery using a sensor system
that is less complex, cheaper, lighter weight and less bulky.

In order for a phase retrieval algorithm to work, it is necessary
to have some form of a priori information about, or constraints on, the
image. Examples of such constraints that have been useful in the past
are nonnegativity (applicable to incoherent imaging) and knowledge of
the object's support (knowing its width or share, which is available for
objects on dark backgrounds or if one controls the pattern of radiation
that {1luminates the object).



Several important issues must be addressed to make the RTI concept
feasible. Constraints must be found that are powerful enough to ensure
that the retrieved phase and the reconstructed image are uniquely
related to the measured data. The relationship between the
reconstructed image and the measured data must be robust enough that it
1s not overly sensitive to noise or other imperfections in the data or
constraints. Reconstruction algorithms must be found that converge
reliably to a solution with a reasonable amount of computation and in
the presence of realistic amounts of noise.

This report describes the results of the first year of a two-year
program to develop the Reduced Tolerance Imaging concept.

1.2 OVERVIEW OF ACCOMPLISHMENTS TO DATE

In this section the principal results of the first year of the RTI
program wil’ be briefly susmarized. They are reported in detail in the
sections and appendices that follow.

One would 11ke to know how well one could ever hope to reconstruct
an image from given data and constraints. Then one would know whether
current reconstruction algorithms are good enough or further development
1s needed. One would also be able to evaluate and compare various
measurement schemes without having to develop reconstruction algorithms
for each. This can be done using estimation-theoretic lower bounds on
the reconstruction errors. The Cramer-Rao lower bound was derived for
the case of far-field intensity measurements with additive Gaussian
noise. The lower bound was computed and compared with actual errors
experienced in imagery reconstructed from simulated data. These results
demonstrate the usefulness of estimation theory for predicting system
performance. Section 2 and Appendix D describe these results.

For discrete, or sampled, objects of a certain type a closed-form
recursive reconstruction algorithm has been developed. It reconstructs
an image from the autocorrelation function which {s gotten by inverse
Fourier transforming the measured Fourier intensity data. Although the



closed-form reconstruction algorithm has questionable usefulness because
1t is sensitive to noise, 1t has provided valuable insights into the
reconstruction problem. It constitutes a uniqueness proof for the class
of objects for which 1t 1s applicable and suggests {1lumination pattern
shapes that are advantageous. These results are described in Section 3
and Appendices A, B and C.

Since image reconstruction with degraded Fourier phase or no
Fourier phase requires a priori constraints on the object, it is
imperative that object constraints that are sufficiently powerful and
robust be found. The vast majority of the work to date has concentrated
on two constraints: support, or shape (which occurs naturally for
imaging satellites and may be forced by an illumination pattern) and
nonnegativity (valid for most passive incoherent imaging problems).
Issues relating to these and other potential constraints are discussed
in Section 4.

When a support constraint is imposed by using an active
11lumination pattern at the target to achieve the desired known shape,
the principal problem is diffraction effects at the edges of the
11lumination pattern. This makes the 1llumination pattern fall off
slowly and smoothly, {.e., 1s tapered, rather than falling off abruptly
as would be preferred. It has been found that reconstruction is much
easier when there is little or no tapering of the 1l1lumination pattern.
Previous versions of the fterative reconstruction algorithm were
unsuccessful in reconstructing complex-valued images when large amounts
of taper was present. Improved versions of the algorithm, employing an
"expanding mask,"” were developed, and this resulted in a greatly
fmproved result. It consists of using an unrealistically small support
constraint for early iterations, which forces the energy of the image to
be better centered within the true support constraint, and using
progressively larger support constraints for later iterations. Section
5 describes the effects of different types of illumination patterns,
describes the improved algorithm employing the expanding mask, and shows



experime~tal reconstruction results.

The 1terative algorithm described 1n Sectfon 5 is one of several
possible approaches to solving the phase retrieval problem. Improved
slgorithms are sought which are faster and more robust. One family of
altermative algorithms are the gradient search algorithms. They consist
of defining a merit function, computing the gradient of the merit
function as a function of a parameter space, and searching in the
parzmeter space for a minimum of the merit function in the direction of
the negative of the gradient (the global minimum of the merit function
defines the solution, the reconstructed image). Merit functions that
were examined include the amount by which the modulus of the Fourier
transform of an object estimate differs from the measured Fourier
modulus data and the asount by which an output image violates the
object-domain constraints. Parameter spaces that were investigated
include the space of object estimates and the space of Fourier phase
estimates. Closed-form expressions for the gradients were derived, and
the entire gradients can be efficiently computed using a small number of
fast Fourfer transforms. Gradient search algorithms were tested on the
computer with mixed results to da‘e, dDut they show promise and will be
developed further. These resuits are described in Section 6 and
Appendices E, F and G.

Another approach to solving the phase retrieval problem 1s a
modeling approach. The complex Fourier transform or pieces of it are
modeled by a parameterized function. The measured Fourier modulus fis
least-squares fitted to the modulus of the model to determine the
unknown parameters. Then the parameters are inserted into the complex
mode]l which 1s evaluated to determine the phase. Attempts to make the
modeling approach work were unsuccessful. It is likely that the models
used were not appropriate to the complex Fourier transforms of interest.
Better models would be needed before further work along these lines
should be pursued. This work is discussed in Section 7.



The vast majority of the phase retrieval work prior to the current
effort revolved around analysis and computer simulations. Since the
computer simulations implicitly assume a discrete model for the object,
there is a danger that the real, continuous world might behave
differently. For this and other reasons it is very important tc
demonstrate feasibility on real data collected in the laboratory that
allows us to include the important real-world effects on the data. At
least two experiments will be performed: an active, coherent experiment
and a passive incoherent experiment. The active coherent experiment is
being set up in the laboratory. It fncludes the 1l1lumination of the
target with a laser beam pattern having the desired illumination shape
and controlled amounts of edge tapering. A lens forms the far-field
(Fourier transform) at a detector plane. A second channel including
imaging optics will be used to form a "ground truth” image. Section 8
describes the active coherent experiment being set up and mentions plans
for the passive incoherent experiment.
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INFORMATION THEORETIC LOWER BOUND FOR PHASE RETRIEVAL

2.1 INTRODUCTION

In phase retrieval problems, it is desired to estimate the phase of
the Fourier transform of an object given measurements of the magnitude
({.e., the modulus or the square root of the intensity) of the Fourtier
transform. This is equivalent to estimating the object itself because
of the Fourier transform relationship. Several jterative Fourier
transform algorithms have had great success in making such object
estimates from Fourier magnitude data and object constraint information
[2.1, 2.2]. However, other than through empirical results [2.3], 1t has
not been known how the error in the object estimate depends on
measurement noise, constraint information, and other parameters
describing the problem.

Results in estimation theory include a number of methods whereby
lower bounds on the mean-squared error of the object estimate may be
calculated. These methods use knowledge of the measurement procedure,
the statistics of the object, and the statistics of the nofse process to
compute an error lower bound. An important feature is that these
methods do not require specification of the algorithm used to compute
the object estimate from the measured data. The lower bound, then, is
independent of the algorithm and therefore indicative of the best
possible estimation performance given the chosen measurements and the
underlying statistics. '

The Cramer-Rao lower bound is the most often used lower bound
because it 1s usually the least difficult to compute. It has been used
in a large number of single and multiple parameter and time-varying
waveform estimation problems with great success [2.4]. Algorithms exist



which produce estimates that achieve the Cramer-Rao bound in problems in
which the measurements are linearly related to the parameters to be
estimated, the noise is additive, and the statistics are Gaussian. In
nonlinear problems (of which phase retrieval will be an example), the
lower bound can usually be achieved only at high signal-to-noise ratios
(2.4, 2.5]; nonetheless, the lower bound is generally regarded as an
important first step in evaluating and designing measurement procedures
and parameter estimatfon algorithms for these problems. The application
of Tower bounds to two-dimensional signal recovery problems described
here 1s a recent development, and it is shown that it is again a useful
tool. Appendix D gives further background materfal on Cramer-Rao lower
bounds.

2.2 PHASE RETRIEVAL PROBLEM DEFINITION

From the many combinations of possible phase retrieval problems and
underlying assumptions, the following specific example is chosen. It it
desired to estimate a two-dimensional, complex-valued object fm from
real-valued measurements Sp where m = ('1' nz); My, M, = 0, 1,..., M-1
and p = (pl. pz); Pys P ® 0, 1,..., 241. The measurements are related
to the object by

Sp = clp + Np (2-1)
and
'12 [ 2
Ip = Z Wl X [—"Zﬁ'—pi] , (2-2)
m

where Ip is the magnitude-squared (intensity) of the discrete Fourier
transform of f, c 1s a proportionality constant, Np 1s additive noise,
<M, p> = mp, + moPos and summation over m implies the double summation
over m, and ",. Object constraint information {is essential for



estimating the object. The weighting array Yo 1s explicitly included in
Eq. (2-2) to allow arbitrary support constraints to be placed on the
object. For an object of M by M resolution elements, Nyquist sampling
requires a measurement array of size 2M by 2M because the
magnitude-squared has twice the bandwidth of the complex-valued rourier
transform. It will be convenient later to consider w, f, S, I, and N as
vectors. The phase retrieval problem 1s to estimate the object f civen
the set of measurements S and knowledge of the constraint that the
product w.f. 1s zero wherever Y 1s knowmn to be zero.

This mathematical statement can represent a number of applications
in which phase retrieval problems arise. For example, consider the
measurement geometry shown in Fig. 2-1. A known, complex-valued,
monochromatic wavefront w(x,y) fl1luminates an unknown, complex-valued
object f(x,y). Alternatively, for the wavefront sensing problem, an
unknown monochromatic wavefront may pass through a known aperture having
known complex transmittance w(x,y). The intensity I(u,v) in a
measurement plane located a distance R from the object plane fis:

2

I(u, v) = —I-E-Iffw(x. y)f(x, ¥) exp [ 12n(ux s vl | 4 U (2-3)
(AR)

where ) is the wavelength and it is assumed that R is sufficiently great

that the Fraunhofer approximation can be made. A discrete set of

measurements S 1s made with

Sp = T ]I(u. v) du dv + N (2-4)
AA
where n {s the detector efficiency, T is the detector integration time,

AA is the area of a detector element, Np is the detector noise, and the

subscript p = (pl. pz) indexes over the measurement plane. A phase
retrieval method (e.g., an iterative Fourier transform algorithm) would
be applied to the measurement set S using the object constraint provided

p



llumination
&~ wxy)
g —

f(x. y)

Figure 2-1. (U) Measurement Geometry for Phase Retrieval Problem

-

Measurenent
plane

Iy, v)



by the 1llumination pattern w to give an estimate of a sampled version
of the object f. Conversion of Eqs. (2-3) and (2-4) into discrete form
gives, for this application, a value for the constant c in £q. (2-1) of
nTM(Aa/XR)z where Aa 1s the square area of an object sample.

The complex-valued object f can be written in terms of {ts real and
imaginary parts,

r i
£ o1+t (2-5)
Equation (2-2) then becomes
2
r § -{n<m >
Z w.(f. + 1f.) exp [_;_L] !
m

] =

p (2-6)

2.3 CRAMER-RAQ LOWER BOUND

It can be proven that the variance of any unbiased estimate of a
component of a random vector is greater than or equal to the
corresponding diagonal element of the inverse of what is called the
Fisher information matrix. The value of the diagonal element is the
Cramer-Rao lower bound. The elements of the Fisher information matrix
depend in turn upon the second partial derivatives of the joint
probability distribution of the measurement vector and the vector to be
estimated. This result 1s proven primarily by the use of the Schwarz
tnequality.

Application of the Cramer-Rao method for determining lower bounds
on estimation errors to a specific problem must therefore begin with a
determination of the statistics of the parameters to be estimated and of
the noise [2.4, 2.6]. In this analysis, 1t is assumed that fl, f;. and

Np are each statistically independent, zero mean, Gaussian random

10



varfables with variances c}?z. g$/2. and o% respectively. Note that

this implies that the variance of the complex-valued f. is 03.

By the definition of conditional probability,
p(S, f) = p(S|f)p(f) (2-7)
where p(S,f) is the joint probability density of S and f, p(S|f) 1s the
conditional probability density of S given f, and p(f) is the

probability density of f. (Recall that f and S are vectors.) The
assumption of Gaussian statistics gives

2
-1f |
p(f) =] [L5 exp —— (2-8)
I_:i[g °f
and, using Eqs. (2-1) and (2-6) which imply that p(S|f) = p(N = S - cl),
2
-(S. -cl))
p(S|f) = I I 1 exp P , p . (2-9)
5 n/?? 20

The Cramer-Rao method continues by defining the Fisher information
matrix J in terms of the probability density functions. For the present
problem, where it is desired to estimate the statistically independent
real and imaginary parts of f, a workable notation 1is to partition J
into four submatrices:

Jrr E Jri

PR PR SRR (2-10)

Jir , Jii

1



J 1s of dimension 2"2 by 2"2 (representing the "2 independent f; plus

the "2 independent ﬂ:) and each of the submatrices 1s of dimension "2 by
Hz. The elements of the submatrices are defined by, for example [2.4,
2.6],

2

re 3-&n p(S, f)

Jmn -t [ " ] (2-11)
m’'n

where E[:] denotes expectation taken over both f and N and the partial
derivative holds S constant. The other submatrices are defined by
appropriate substitution of the superscripts r and 1. It is assumed that
these and any other required derivatives exist. This assumption is valid
for the phase retrieval problem.

The Cramer-Rao method concludes by determining the inverse J'1 of
the Fisher information matrix J. The dfagonal elements of J'l are the
desired lower bounds on the mean-squared error of the object estimate f.
From the convention used to define J, the upper left diagonal elements
of 31 refer to f; and the lower right elements to f;. 1 J° ! gs
similarly partitioned into four submatrices:

K" ; Kri
R A s I (2-12)
Kir ' Kii
2

then the Cramer-Rao lower bdound em ON the mean-squared error,
E[Ifn - f.IZ]. in the estimate f_ of object component f.. 1s the sum of
the diagonal elements for f: and f;:

e, = KT+ KM, (2-13)

12



This is the quantity which the following analysis seeks. Strictly, the
lower bound 1s only for unbiased estimates of f. It 1s beyond the scope
of this work to determine whether particular phase retrieval algorithms
give unbiased es imates.

2.4 LOWER BOUND FOR PHASE RETRIEVAL

Substituting Eqs. (2-8) and (2-9) into Eq. (2-11), differentiating,
and discarding a term with zero expected value gives [2.4]

rr = CZ al + Zémn (2_]4)
on 07 afr af <
N Of
where 6 1s the Kronecker delta function. Similar results hold for the
other submtr1ces of J except that J and J" have no S term. It is
important to note that this result holds for any function [ of the
parameter f. It does not assume that the measurements are of the
Fourier magnitude-squared.

Equation (2-6) can now be used to compute the first term on the
right hand side of Eq. (2-14). First,

_ = w*z j(fj + 1f ) exp[ inej - m, p>] + c.c. (2-15)

r 1y /el i -in<j + k - m-n, p>
Z E wn‘;w,‘;z Z ijk(fj + H"J.)(fk + 1fk) exp[ M . ]
k

LI
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r Ty /el i -in<j - k -m +n, p>
+ w';wnzg w’jwi:(f"j + ifj)(fk - 1fk) exp[ L M ]
J

+c.c.'s|. (2-16)

Taking the expected value gives

X _aﬁn ]
af af"

p

Zw:"‘w Z |w Izof exp ['1“" ﬁmj p’] +c.c. (2-17)

The summation over k is eliminated since the f; and fui' are independent.
The first and third terms in Eq. (2-16) are also eliminated because the
fn'; and f:' have equal variances. Finally, the summation over p gives

2.2
(% f"z'"' I .
"jl Smn (2-18)
c
because
p

14



Equation (2-18) is a general expression for one of the submatrices
of the Fisher information matrix J given the assumptions above. Similar
computations show that J11 = J™" and Jr1 = J‘r 3 0. In this case, then,
J is diagonal and can be analytically inverted to obtain J'l. This is,
of course, a result of the discrete Fourier transform nature of Eq.
(2-2). Other phase retrieval problems may lead to nondiagonal J

matrices which may be difficult or impractical to invert analytically.

Using Eqs. (2-13) and (2-18), the lower bound ‘3m on the
mean-squared error in the estimate of fm is:

2
2 . f

(2-20)
om 4C204 le |2 2
. sz m }E:lel

1

IN ]

It s, as stated earlier, independent of the phase retrieval algorithm
used to estimate f.

The notation of Eq. (2-20) can be simplified by defining a
signal-to-noise ratio:

2
{EfcI ]}
SNR = ——P— (2-21)
N
where, by Eq. (2-6),
2
E[clp] = cog E: | wyl® (2-22)
J
Equation (2-20) then becomes
2 gf
e- = . (2-23)
on 4 SNR M pw |
1 +




As would be expected, the lower bound on the estimate reduces to the a
priori variance 03 if either f_ 1is not 11luminated ("n = 0) - the SNR
is zero. The lower bound also approaches zero as the SNR a_proaches
infinity.

For the case in which the magnitudes of the support constraint w
are either zero or one, Eq. (2-20) predicts that, if the support
constraint includes a smaller part of the M by M object array (and
thereforez:lelz decreases), then the error lower bound increases. This
1s due to the loss of signal as can be seen from Eq. (2-22). On the
other hand, 1f the SNR is held constant, then Eq. (2-23) predicts that
the error bound decreases. This is equivalent to sampling at greater
than the Nyquist rate in the measurement array in the Fourifer domain.
The well-known error decrease 1s known as compression gain,

It 1s known that current iterative phase retrieval algorithms are
more successful in converging to a solution for some object support
constraints than for others (e.g., for a triangularly-shaped pattern
imposed by w, the algorithm more readily finds a solution than for a
square pattern) [2.7]. By a solution is meant an object estimate that
is as close to agreeing with the measured data and the a priori
constratints as possible. In some cases, an algorithm stagnates and
produces an output in poor agreement with the data 2nd constraints; such
an output should not be considered an object estimate. If there is more
than one solution that closely agrees with the data and constraints, the
algorithm may find a solution that is different from the true object.
There is a tendency for iterative transform algorithms to find solutions
more readily for cases guaranteed to have unique solutions (e.g.,
objects with triangular support constraints). However, when the
solution 1s unique, it 1s also known that, if a solution 1s found (i.e.,

16



the algorithm does not stagnate in poor agreement with the data and
constraints), then the mean-squared error is independent of the shape of
the object support constraint. From either Eq. (2-20) or Eq. (2-23), it
can be seen that, for a given value of z|wJ|2. the lower bound egm
depends only on |\v'.|2 and not on the two-deenﬁonal distribution of w
(the support constraint). The Cramer-Rao lower bound is apparently a
measure of the error of algorithms which have found a reasonably good
estimate and 1s insensitive to lack of uniqueness or to
algorithm-dependent problems such as stagnation. The insensitivity to

unfqueness is further demonstrated by an example shown in Appendix D.
2.5 CONCLUSION AND SUGGESTIONS FOR FURTHER RESEARCH

In this investigation of the application of estimation theoretic
lower bounds to phase retrieval and image reconstruction problems, the
Cramer-Rao lower bound on the mean-squared error in the object estimate
from Fourier magnitude-squared measurements, given additive noise,
Gaussian statistics, and Nyquist sampling, was found. The lower bound
approaches the appropriate values in the limits of high and low SNR, but
does not depend on the object support constraint. Further research
should investigate other measurement models (e.g., Fourier magnitude
measu-ements), object domain constraints (e.g., nonnegativity),
statist‘cal assumptions (e.g., Poisson noise), and/or other information
theoretic lower bounds to extend and refine the bounds and to attempt to
show a dependence on a priori knowledge such as support constraints.
Computer simulations and laboratory experiments should also be performed
to allow comparison of the lower bound to the error achieved by current
phase retrieval algorithms.
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3
UNIQUE CLOSED FORM RECONSTRUCTION ALGORITHM

3.1 INTRODUCTION

Since the object's autocorrelation function can be computed from
the modulus of its Fourier transform, reconstructing the object from
its autocorrelation is equivalent to reconstructing it from the modu-
lus of its Fourier transform. In an earlier effort, it was shown
that a unique closed-form algorithm for reconstructing an object from
its autocorrelation, which operated in a recursive fashion, was pos-
sible for two very special kinds of objects: those fitting within a
rectangle with an additional point off one corner of the rectangle
and those fitting within a triangle having nonzero corners. This
earlier result has been vastly generalized to include objects having
supports whose convex hulls have no parallel sides, a very large
class of objects. This generalized algorithm, which includes a
uniqueness proof, is described in Section 3.2 and Appendicies A, B
and C.

Experimental reconstruction results obtained using the algorithm
are shown in Section 3.3. Although the present form of the algorithm
is very sensitive to noise, 1imiting its practical use, it has proven
to be very valuable in that it suggests useful illumination pattern
(support) constraints, as is demonstrated in Section 4.1. Another
problem with this reconstruction algorithm is that it explicitly
assumes a sampled object, i.e. one consisting of an array of delta
functions, and it cannot in its present form be employed for real-
world continuous objects. One possible way around this problem is to
use the quasi-sampling method suggested in Section 3.4.
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3.2 PHASE RETRIEVAL FOR DISCRETE FUNCTIONS WITH SUPPORT CONSTRAINTS

3.2.1. INTRODUCTION

The reconstruction of object functions having non-redundant
spacings was discussed in [3.1]. Hayes and Quatieri [3.2] showed
that the boundaries of triangular objects can be reconstructed by
making use of certain spacings in the object which are non-redundant.
In another direction, Bruck and Sodin [3.3] showed that the unique-
ness of phase retrieval is equivalent to the irreducibility of a
polynomial in two variables which is closely related to the Fourier
transform (z2-transform) of the object function. Fiddy, Brames and
Dainty [3.4] used Eisenstien's irreducibility criterion to prove
uniqueness for object functions satisfying certain support con-
straints and showed that Fienup's input-output iterative Fourier
transform algorithm [3.5-3.7] converged faster to a better recon-
struction when these constraints were satisfied. Fienup [3.8] pre-
sented a closed-form algorithm for reconstructing such object func-
tions from their autocorrelation functions. He also presen.ed a
similar closed-form reconstruction algorithm for objects sat:sfying a
triangular support constraint and thereby showed that such objects
are uniquely defined by their autocorrelation functions among all

object functions satisfying the same support constraint.

A generalization of Fienup's results to a wider rlass of support
constraints is presented here. Also, an algorithm for generating

closed-form reconstruction algorithms is described. Brames [3.9]
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recently obtained a result similar to the uniqueness theorem in

Section 3.2.3.

3.2.2. MASKS

Let .‘RZ denote the Euclidean plane and let Z2 denote the points in
®% with integer coordinates. A finite subset of 2° s a mask if it
contains at least three non-collinear points and its couvex hull in
9? (the smallest convex set containing it) has no parallel sides.

Let M be a mask and let [M] denote its convex hull in®R%. Then [M]

is a convex polygon (including its interior). See Figure 3-1. A
vertex v of [M] is opposite a side s of [M] if the line through v and
parallel to s contains no points of [M] other than v (see Figure 3-2).

A vertex of [M] is a reference point of M if it is opposite some side

of (M) (see Figure 3-3). The set of all reference points of M will be
denoted by R(M).

3.2.3. UNIQUENESS THEOREM

Let f be a complex-valued function on Zz. The support of a

function on Z2

is the set of points at which the function is non-
zero. Let S(f) denote the support of f. If S(f) is a finite set,

the autocorrelation function of f is defined for x ¢ Z2 by

f(x) =2y FE(y - x) (3-1)
chz

where the * denotes complex conjugation. Let f] be another
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M M]

M2 M2]

FIGURE 3-1. M, IS A MASK. M, IS NOT A MASK SINCE [MZ] HAS
TWO PARALLEL SIDES.

22



(M]

FIGURE 3-2. THE VERTEX v IS OPPOSITE THE SIDE s.
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(M]

FIGURE 3-3. THE CIRCLED VERTICES OF [M] ARE THE REFERENCE
POINTS OF THE MASK M.
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complex-valued function on Z2 with finite support S(f]) and

autocorrelation function ry-
We have the following uniqueness theorem.

Theorem: If M is a mask, R(M) € S(f) S M, S(fy)SMand r - ry» then

there exists a complex number a of modulus 1 such that f‘ = af.

The proof is in Appendix A.

3.2.4. RECONSTRUCTION ALGORITHMS

In this section closed-form algorithms for reconstructing a func-

tion from its autocorrelation function will be described.

Let S be the number of vertices of [M]. Let Vor ¢ ¢ v Vo be
an ordering of the vertices going around (M] in the counter-clockwise
direction and let Pgr -+ 0 Pr_) be a similar ordering of the
reference points of M. By Lemma A-2 in Appendix A, R(M) contains an
odd number of points so that T is odd. let K = (T - 1)/2 and let
qQ, = p(nK)mod T forn«0, ..., T-1, SinceK and T are
relatively prime, the q, are distinct and hence run through all
the points of R(M) (see Figure 3-4). By Lemma A-4 in Appendix A,

q_ and q(n*l)mod T have unique separation in M, That is, if x,

n
yecMand x -y = q(n*l)mod T - 9 then x = q(n*l)mod T and
Yy =Q,.

Let N be the number of points in M, A reconstruction algorithm

for the mask M is an ordered pair, (q, m), where q = (qo, . e ey qN_])

25



V2¥P4*q2
V3

Va = =
¢ P70 V1= P3* a4
vs
)

V6=pl=q3 v73p23ql

FIGURE 3-4, THE NUMBERINGS OF THE VERTICES AND REFERENCE POINTS OF
A MASK. HERE S = 8, T = 5, AND K = 2,
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is an ordering of the points in M and m = (mT. ol L » mN_]) is a
sequence of integers satisfying the following conditions. The points
Qgs -+ = +» Qp_y are as described above. FornaT, . . ., N-1,
the integers m satisfy the conditions 0 <m < T -1, and
Mh(noqn -qmn)g {qo. RN qn} and

MO(M - q * qmn) c {qo. + « «» G 4} . In the next section, an

algorithm for generating such reconstruction algorithms will be described.

In order to justify the above definition of reconstruction algo-
rithms it will now be shown how they can be used to reconstruct a

function from its autocorrelation function.

Let f be a complex-valued function on Zz satisfying R(M) S S(f)C M
and let r be its autocorrelation function. Now let
X = q(n*l)mod 1 9% and suppose that for some y ¢ ZZ, f(y)f'(y - x) ¢ 0.
Then y ¢ S(f) S Mandy - x ¢ S(f)CSM., Also, y - (y - x) = x =
Un+1)mod T = In° Since Un+1)mod T and q, have unique
separation in M, it follows that y = q(n*l)mod T and y - x = q,-
Therefore y = q(n*l)md T is the only y ¢ Zz for which

f(y)f (y - x) 4 0, hence

"ot )mod T = %) = F((qet)mog ) F (%), (3-2)

and since R(M) € S(f), r(q(nﬂ)mod T - qn) $ 0. It now follows from

(3-2) that
M e )
"0 = Y2n+1)mod T
2 n=0
If(qo)l L K-T . (3‘3)
T {92002 = Yot
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Since f is defined by r only up to multiplication by a modulus 1
complex number, we may require that f(qo) > 0. Then f(qo) is equal
to the positive square root of the right-hand side of (3-3). Now
f(qn) can be computed for n 1, . . ., T -1 from the formula
£(a,) = r(a, - a,_y)/f (a,_¢). It is shown in Appendix B that if
(g, m) is a reconstruction algorithm then the following program will
compute f(qn) forneT, .. ., N=1, Set f(x) =0 for x ¢ Z2

andxﬁqn,n-o,...,T-l,andsetn-T-l.
Step 1: IfnaN-1, stop. Otherwisen<«n + 1,

n-1 . .
Step 2: f(q,) = |r(q, - q, ) - 2 fq,) f (q - q, * a, )[/f (q, ).
n k=0 n n

Step 3: Go to Step 1.

3.2.5. ALGORITHM FOR GENERATING RECONSTRUCTION ALGORITHMS

It will be assumed that we are given a sequence of all vertices

v o Vo of [M] where M is a mask and the sequence is ordered

0 v -
in the counter-clockwise direction around [M].

Forn=0,...,S~-1, let s, be the side of [(M] with end-

points v_ and v(n*l)mod S Let U be the linear operator on .‘RZ

n
which rotates each vector in.922 90° counter-clockwise.

First, the reference points po. <« s Pry mist be found. Note
that every side of [M] has a vertex opposite it which is therefore a
reference point. Of course, several sides may have the same vertex

opposite them, let w = v -v. forn=0, . .., S-1.
n (n*1)mod S n
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A vertex Vo is opposite a side Sh if and only if

Cvpo Uw > > Ky, Uw D for k = 0,. . ., S-1, where (,) denotes
the inner product on 92 (see Figure 3-5). Thus, by taking each side
in the order Sgr + + +e» Sg_)» all the reference points of M will be
found, and if they are numbered, in the order in which they are found,
po. e o os Pr_p» then the ordering will be in the counter-clockwise

direction around [M].

As mentioned above T is odd. Let K = (T - 1)/2 and q, =
p(nK)mod he 0, . -« «» T=1, Since each q, is a reference point
and therefore is a vertex of [M], there exists an integer kn such that

Oiknis-landqn-vkn. Forn=0, ..., T =1, define

Yo = W(k 1)mod s " ““'k(m)md = (3-4)

Then by Lemma A-3 in Appendix A, for x ¢ M, x 4 q, and x 4 q(n*l)mod T
<qn, yn) < {x, yn> < <q(n*l)mod s ¥y 2 This is equivalent to
saying all points in M excluding q, and q(n+l)mod T lie strictly between
lines pendicular to Yn and passing through q, and q(n*l)mod T See
Figure 3-6. (The uniqueness of separation of q, and q(nﬂ)mod T

mentioned in Section 3.2.4 follows from this double inequality.)

Now let a, = q, * q(nﬂ)mod T and let 8, = an/z for
n=0,...,T=-1. Then 8, is the midpoint of the line segment
joining q and q(nﬂ ymod T° Let D = M ~ R(M) (set difference)
and let ¢ be the characteristic function of D as a subset of Zz.

This is, # is the function on Z2 which is 1 on D and 0 outside D.
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~ TLL wo //

AN ILLUSTRATION OF THE VECTORS w_ AND Uw . HERE n = 0

FIGURE 3-5.
AND THE ORIGIN IN ® IS DENOTED BY “0%.



FIGURE 3-6. AN ILLUSTRATIUN OF THE VECTORS Yp- HERE S = 8, T = 5,
n=4,k, =1, (k4-1)modS-0, (n +1)mod T = 0 AND

k0-4.
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For x eDand0cnecT-1,leth(x)=Cx-8,y>. Then
'hn(x)llllynll is the distance from x to the line through 8  and
perpendicular to Yoo where ||yn|| denotes the Euclidean norm of Yn
(see Figure 3-7). The set D contains N - T points and we define T
orderings of the points in D, 0 = | dn.O' « . ey dn,N-T-l fo
ne0, ..., T -1, satisfying Ihn(dn.k)l > Ihn(dn'k,])l for
k«0, .. ., N=T=2., The following program generates sequences
Qps + = o» Qy and Mry o o oo My gqe

Set naT -1 and k = 0 and enter the following loop.

Step 1: IfnaN-1, stop. Otherwise define
b-min{j:Oijin-T-lme(dkj),l}.
Step 2: If o(ck - dk b) =1, go to Step 7.

Step 3: n+en =+ 1,

Stez 4: [Define q, = dk,b‘

Step 5: If hk(qn) > 0, define m, = k. Otherwise define
m, = (k * 1)mod T.

Step 6: #(q ) - 0.

Step 7: k « (k * 1)mod T and go to Step 1.
[t is shown in Appendix C that the loop is not infinite and if
Q=(q5, . . .y Qy ) andme (m, .. ., m ) then (q, ©) is a

reconstruction algorithm.
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Ya a—tt————-0

FIGURE 3-7. THE DISTANCE FROM AN ARBITRARY POINT x IN D TO THE LINE
THROUGH B AND PERPENDICULAR TO y_ isd = Ihn(x)|/||yn| .
HERES-B,T-S,ANDn=4.
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3.2.6. IMPLEMENTATION

The algorithms presented in the last two sections can be imple-
mented with two computer programs. The first program would implement
the algorithm in Section 3.2.5. Its input would be a mask and its
output would be a reconstruction algorithm. The second program would
implement the program in Section 3.2.4. Its input would consist of 1
reconstruction algorithm and an autocorrelation function and its out-
put would be the object function. With this arrangement, if one
wished to reconstruct many object functions using the same mask, the

first program would have to be run only once.

3.2.7. CONCLUSIONS

[t has been shown that if a function is 2ero outside a given mask
and is non-zero at the reference points of the mask, then it is
uniquely determined (up to multiplication by a complex number with
modulus 1) by its autocorrelation function among all other object
functions which are zero outside the mask. (A mask is a set of
points in the discrete lattice whose convex hull has no parallel
sides.) Moreover, there is an algorithm for generating
reconstruction algorithms for any given mask which in turn can be
used to reconstruct object functions satisfying the above mentioned

conditions from their autocorrelation functions.

This theory has some similarity to holography [3.10, 3.11].

However, here several (at least 3) reference points are used whereas
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only one reference point is needed in the holographic situation. On
the other hand, the holographic reference point must be isolated from
the rest of the object whereas no such isolation of the reference
points is required here. [t is interesting to speculate whether
there might be a more general theory of which this theory and holo-

graphy would both be special cases.
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3.3 EXPERIMENTAL CLOSED-FORM RECONSTRUCTION RESULTS

Autocorrelation data was computer-simulated, including the
effects of noise, and images were reconstructed using the closed-form
reconstruction algorithm described in the previous section.

For each reconstruction experiment an object, f(x,y), fitting
within a triangular support was Fourier transformed:

Fu,v) = FLf(x,y)]

The squared modulus, |F(u,v)|2, of the Fourier transform was com-
puted, and it was scaled in intensity so that the total integrated
intensity became equal to a given number of photons,

2
N uzvlr(u,v)| :

Then each intensity sample IF(u,v)I2 was replaced with a random
number, Fn(u,v) 2 drawn from a Poisson distribution with mean
and variance equal to |F(u,v) 2. When IF(u.v)I2 is a large num-
ber (>32), then a Gaussian approximation to the Poisson distribution
is used. This Poisson noise process simulates the effect of photon
(shot) noise on the measured Fourier intensity data. The normalized
RMS error (NRMSE) of the data is given by

p- -

(|F_(u)| - |F(u,v)])2
;?;: an u,v | Iquv |
(u,v)
;;; |F u vl

A noisy autocorrelation was computed:
ro(x,¥) -‘J"[|F,,(u.v)|2];

and an image, gn(x.y), was reconstructed using the closed-form
reconstruction algorithm., The NRMSE of the reconstructed image is
given by

1/2

Data NRMSE =




[ T2

Z Iagn(x.y) = f(x.y)l2

Image NRMSE = | 2L , y
> o]

Xy
L .

where a is a constant chosen to minimize the error metric, which
accounts for the unknown phase constant associated with f(x,y). It
can be shown that the value of a that optimizes the Image NRMSE is

Z £(x,y)g (x,¥)
1o T
)D

|9(X.y)|

Xy

Examples of images of objects reconstructed from noisy data, for
which the object is a uniform triangle, are shown in Figures 3-8 to
3-10 for various sizes of the object. Figure 3-11 plots the image
NRMSE versus the data NRMSE for the images shown in Figures 3-8 and
3-9. Several interesting effects are evidenced from these recon-
struction examples. First, the closed-form algorithm is very sensi-
tive to noise. A fraction of a percent error in the data results in
several percent error in the image. Second, increased data error
results in increased image error, but only in an a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>