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1. Technical Progress During Period July 1, 1984 - June 30, 1985

'

During the year covered by this report, technical progress was made in a number
of directions in our project, "Distributed Knowledge Base Systems for Diagnosis and
Information Retrieval.” Our recent emphasis on the general area of reasoning about
complez devices and systems has continued. The ubiquity of complex devices in
our technological life and the importance of keeping them operational is a sufficient
justification for studying how human experts reason about them and how such

BE&S

el

v v v

reasoning can be incorporated in computer systems. From a purely scientific view-
point, these forms of expert reasoning provide a good experimental arena for
- theories of knowledge representation and problem solving.
o
& Our long-term goals are to understand the structure of knowledge and the reason-
. ing processes needed for producing computer-based expert decision-making and con-
~ sultation systems. We would like our systems to have a measure of understanding
~ of the domain, different types of problem solving strategies, and have a conceptual
. structure that matches that of humans in the same domain, so as to facilitate
N knowledge acquisition and user interaction. Our near-term goals are to pursue this
aim in the specific task domains of diagnostic reasoning and automated design.
\ During the year under report, we especially concentrated on:
U

1. diagnostic reasonsing about complex systems;

2. automation of expert design behavior of certain types;

L3

) 3. giving diagnostic expert systems a measure of understanding of their
° domain; and,

-y
a’a

4. laying the conceptual foundations of an approach to expert system design
at a much higher level of abstraction than is currently common.

'~

Basic research on diagnostic reasoning includes:

A 1. Control strategies and knowledge organization. [lssues: which diagnostic
hypothesis to consider when? How should diagnostic knowledge be dis-
tributed among various hypotheses?

L4

4

A
o~ 2. Causal models (we call them “functional models”). They describe how
devices actually work. Aim: to be able to automatically generate diag- \
'::: nostic hypotheses and diagnostic knowledge from these models. ‘\ﬁ_t’
¥ ]
= 3. Investigation of how to reason about the gqualitative behavior of complex
Y systems, much like human experts do. Traditional approach of qualita- 5 "
by tive simulation is useful where applicable, but when a large number of
) components involved it may result in combinatorial problems. Our ap- T
RS proach: consolidation of behavioral abstractions of components into a
' whole without the need for actual simulation. Goal: to be able to give T
Al systems the ability to put together descriptions of how systems of "‘d
" Codes

) g \
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components will behave, given behavioral descriptions of components
themselves.

Basic research on design problem solving includes:

— understanding the different kinds of design knowledge and strategies used by
human experts.

—we have categorized design into 3 classes, in terms of complexity and types of
knowledge and problem solving. We have shown how to automate Class 3 design,
which corresponds to what one might call “routine’” design by expert designers.

2. Project Progress Reports

Following the tradition of earlier years, we will present the specific progress during
the year by summarizing the contents of new papers that were prepared, submitted
or published during the year. The papers themselves will be attached as appen-
dices to this report. A number of papers that had been submitted as appendices to
the previous annual reports were published during the year, but they will not be
included in this report.

1. Qualitative and Functional Reasoning about Physical Systems and Devices.
The “Consolidation” Technique for Reasoning about Behaviors of Sys-
tems of Components: Commonsense reasoning includes, among others,
an ability to efficiently derive qualitative accounts of systems of physical
components behave. Al research of the past few years has paid increas-
ing attention to this problem. A class of approaches called qualitative
ssmulation has been proposed for this class of problems. Essentially,
each component is described in terms of qualitative changes its impor-
tant variables undergo in response qualitative changes in some of its in-
put variables, and a calculus by which these changes can be propagated
through the components. The progress in our research has been in two
parts -- one, in understanding the limitations of qualitative simulation,
which has so far been the main method that has been available for in-
ferring the behaviors of systems from the behaviors of the components;
and two, in understanding the prospects for an alternative method. In
Appendix A, *“A Critique of Qualitative Simulation from a Consolidation
Viewpoint,”” we compare two main techniques for qualitative simulation
with the consolidation approach. In Appendix B, ‘“Understanding Be-
havior Using Consolidation,” we give details of the consolidation ap-
proach. Appendix C describes both our functional representation and
the consolidation investigations in the context of diagnosis.

2. Diagnostic Reasoning. As we have indicated in earlier reports, we have
been developing a family of higher level languages for expert system
design, with partial support from this grant. The CSRL language is,
particularly useful for diagnostic system design, and we have reported on




it widely in the literature. Appendix D, “Mapping Medical Knowledge
into Conceptual Structures,” describes how a complex body of knowledge
may be analyzed properly so that it can be encoded adequately in this
language. The research for the paper was partially supported by the
AFOSR grant.

Also in the area of diagnostic reasoning, Prof. Chandrasekaran co-edited
a special issue of the SIGART Newsletter on ”Structure and Function in
Diagnostic Reasoning.” We include as Appendix E the editorial of this
special issue, which gives an architecture for diagnostic reasoning. This
paper organizes the research in this area into a framework that we think
may be useful in understanding the difference in motivations between
different research activities in the area.

. Design Problem Solving. The year saw the completion of the Ph. D dis-
sertation of David C. Brown, ‘‘Ezpert Systems for Design Problem Solv-
ing Using Design Refinement with Plan Selection and Redesign.’”’ This
research was supported by the AFOSR grant. We have forwarded
copies of the dissertation to AFOSR earlier, and in the last year’s an-
nual report had included an extensive summary of the research. Appen-
dix F, ‘“Plan Selection in Design Problem-Solving,” describes the specific
technical issues in how design plans are selected.

. Theoretical foundations of knowledge-based reasoning. For a number of
years we have been arguing that much of the discussion in knowledge-
based reasoning has been at toc low a level of abstraction, and that
phenomena at the knowledge level exist and need to be explored. Essen-
tially the idea is that the current emphasis on rules, frames or logical
languages is really an emphasis on implementation-level issues. A useful
level of abstraction is one which considers different types of knowledge
and different types control regimes for different kinds of generic tasks.
The idea is that if we have a repertoire of such generic tasks with as-
sociated characterization of types of knowledge, then complex knowledge-
based reasoning tasks can often be decomposed into an interacting collec-
tion of modules, each of which performs one of the generic tasks. In
our research we have developed an open-ended repertoire of such tasks
and show how most of the expert systems extant can be viewed as com-
binations of the generic tasks that we have identified. As Appendix G
we enclose ‘“‘Generic Tasks in Expert System Design and Their Role in
Explanation of Problem Solving,”” which describes these ideas.

One of the fundamental paradigmatic characteristics of Al is the fact
that it uses complex symbolic and qualitative structures for representation
and manipulation as opposed to numerical information. The task of
classification is one of the tasks for which Al expert systems have been
most successfully deployed: systems such as Mycin, MDX and Prospector
can be viewed as performing some version of the classification task.
Now, for more than two decades there has been a field called pattern
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recognition, which has used statistical classification as a basic tool. We
have compared the numerical approaches of pattern recognition to the
symbolic approaches of Al to the same classification task in an attempt
to learn where and why symbolic and qualitative structures that so
characterize human thought emerge. Results of this investigation appear
as Appendix H, "From Numbers to Symbols to Knowledge Structures:
Pattern Recognition and Artificial Intelligence Perspectives on the Clas-
sification Task.”

3. Publications Prepared During the Year on Research Supported by
the Grant

1. B. Chandrasekaran, co-editor of ACM SIGART News Special Issue on ”Structure,
Behavior and Function in Diagnostic Reasoning,” July 1985. Editorial, with Robert
Milne,with the above title. (Appendix E.)

2. B. Chandrasekaran, Tom Bylander and V. Sembugamoorthy, Functional
Representation and Behavior Composition by Consolidation: Two Aspects of Reason-
ing about Deuvices, SIGART Newsletter, Special Issue on Structure, Behavior and
Function, No. 93, July 1985, pp. 21-24. (Appendix C.)

3. B. Chandrasekaran, Generic Tasks in Ezpert System Design and Thesr Role in
Ezplanation of Problem Solving, To appear in the Proceedings of the National
Academy of Sciences / Office of Naval Research Workshop on Al and Distributed
Problem Solving, May 16-17, 1985. (Appendix G.)

4. B. Chandrasekaran, From Numbers To Symbols To Knowledge Structures: Pattern
Recognstion and Artificsal Intelligence Perspectives on the Classification Task, Paper
presented at the Workshop on Pattern Recognition in Practice-II, June 19-21, 1985,
and to appear in the book Pattern Recognition in Practice-II. (Appendix H.)

5. Tom Bylander, A Critiqgue of Qualitative Simulation From a Consolidation
Viewpoint, To appear in the Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics, November 12-15, 1985. (Appendix A.)

6. B. Chandrasekaran and Tom Byiander, Understanding Behavior Using
Consolidation, To appear in the Proceedings of the 9th International Conference on
Artificial Intelligence, Aug 18-24, 1985. (Appendix B.)

7. Tom Bylander and Jack W. Smith, Jr., M.D., Mapping Medical Knowledge Into
Conceptual Structures, To appear in the the Proceedings of The Expert Systems in
Government Symposium, October 24-25, 1985. (Appendix D.)

8. B. Chandrasekaran and David C. Brown, Plan Selection in Design
Problem-Solving, Appears in the Proceedings of The Society for AI and Simulation
of Behavior 1985 Conference, April, 1985. (Appendix C.)
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Appendix A

Special Section on

Reasoning About Structure,
Behavior and Function

B. Chandrasekaran' and Rob Miine?, Guest Editors

Introduction

The last several years’ of work in the area of
knowledge-based systems has resulted in a deeper under-
standing of the potentials of the current generation of
ideas, but more importantly, also about their limitations
and the need for research both in a broadw framework as
“well as in new directions. The following ideas seem to us
to be worthy of note in this connection.

* There is increasing interest in the multiplicity of
knowledge structures and problem solving tech-
niquaes that seem to underlie complex reasoning
tasks. When viewsd at the implementation language
'avel, systdins often seem to have relatively simple
and unitormly represented pieces of knowledge and
control structures. but viewed at the task level, they
often do fairly complex kinds ot actions. E.g., MYCIN,
viewed as rule-based system. has knowledge en-
coded within the simple rule formalism, and its con-
trol structure is again a simple backward chaining.
But viewed as a diagnostic prcblem solving system,
it has a much more complex knowledge structure
and problem solving regime, all of which happen to
be implemented in a rule-based formalism. There is
considerable intarest in trying to understand the
tasks themselves. Thus there is interest {1-4] in the
class of problems that can be called diagnostic
problems or design problems, or classification
problems,

* While rule-based languages are, logically,
computation-universal, and thus can incorporate any
kind of knowledge. in practice, most of the systems
have encoded what have been called associationa)
knowledge, i.e. pieces of knowledge that go from
data in the domain to partial conclusions of interest.
Thus diagnostic systems would typically have most
of their knowledge in the form, "Observations -->
diagnostic hypothesis.” Often such knowledge may
not be available, or may become too large in number
in complex domains, or the knowledge base may be
incomplete. In these cases, it would be useful to
have methods by which the system can use a mode|
of the domain or system under consideration, and
reason with this model to generate information
about the expected behavior of the system Such
models have been variously called causal or deep
modeis. There has been significant interest in
representing and manipulating such modaels.

1

Laboratary for Al Research. Department ot Computer and Infarmation
Science. The Ohio State University, Columbus. ON 43210
this editorial sctivity wae supported by AFOSA grant 82-0255

His work in

zh'mv Al Center HQ DAIM -00. Pentagon, Waeshington. OC 20310

In fact these two trends come together rather well in
a body of recent work that deals with reasoning about
devices, where the general concern is ong of how the
behavior of a device is related to and arises from its
structure. On one hand. the general motivation behind
this class of work is to understand the muitiphcity of
processes that are needed for a complete account of
diagnostic reasoning as a task (i. e. concern with architec-
ture ot task-specitic reasoning as opposed to concern
with implementation-lavel concerns at rule, frame or logic
language level). On the other hand, such an understanding
of the relation between structure, behavior and function of
a device is precisely the causal model for the diagnostic
task in that domain: it explains how the behavior (or
malfunction) is caused by the structural properties of the
device. As we shall see later in some of the papers in-
cluded in the special issue, they are also deep models in
the sense that they correspond in some cases to some
degree of understanding of the device. and can be used to
derive the more associational pieces of knowledge used
by the shallower problem solving systems.

Structure, Behavior and Function: Relation to Diagnostic
and Other Reasoning Tasks

In order to get a better understanding of the different
processes and types of knowledge involvad in diagnostic
reasoning, it will be useful to consider some typical diag-
nostic scenarios.

Typically, a diagnostic problem starts with the obser-
vation of some behavior which is recognized as deviation
from the expected or dasirable, i.e, a maifunction behavior
is observed. The problem solver at this stage needs to
generate some hypotheses about the cause of the mal-
function' typically these are in terms of changes In the
structure of the device from the specifications [n areas
such as medicine, at this stage a number of low-cost
broad spectrum testing (such as physical examination. a
battery of blood tests, etc) may be undertaken without
any specific hypotheses 1n mind, or the inihal malfunction
may be used to invoke one or more specific malfunction
hypotheses. Most often these hypotheses are invoked by
using what one might call “precompiled” pieces of
knowledge that relate behavioral observations to one or
more hypotheses. This initial hypothesis generation task
can ba more or less complex, and more or less controlled
depending upon the domain, and the knowledge the
problem solver has. Whatever the particular method. they
all involve going from behavioral observation (test values.
signs and symptoms, etc.) to a number of hypotheses.
possibly ranked.

At this stage typically a small number of the more
plausible hypotheses are considered the differentials In a
compiled system, knowledge may be explicitly available for
each hypothesis in the differential about which further
tests may be useful for confirmation or rejection of that
hypothesis, and in that case by comparing this knowledge
for the ditferent hypotheses in the differantial. the problem
solver can generate tests that have the potential for the
greatest discrimination between the hypotheses 1t
howevar, this knowiedge 1s not directly available to the
problem solver, but the structure of the device 1s known
than the following reasoning can be very useful Assume
the structure change corresponding to each of the mal-
function hypotheses n the differential hst. and reason
about what behavior will follow One would like to do this
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quahtatively in general for a8 number of reasons {see the

paper by Forbus in this collection for these reasons). The
basic work in this area was initiated by de Kleer (1], and
he and Brown at Xerox PARC, Forbus. and Kuipers (see
references in Forbus' paper in this Issue) are among those
who have continued this line of work. In this special is-
sue, Forbus reports, among others, on work of this type.
and gives the mativation of the research, and the com-
putational constraints on the kinds of solutions. Reason-
ing trom a given structure to its behavior is required not
only in diagnostic reasoning. it is alsg useful in design,
where the problem soiver will need to project a design’s
behavior to check conformity to design specitications, and
In planning, for very similar reasons

Architecture of Causal Reasoning

Causal reasoning about devices or physical systems
involves multiple types of knowledge structures and
reasoning mechanisms The following diagram schemati-
caily indicates some ot the components of this. In what
follows. we will attempt to relate the papers in the special
1ssue to the issues as we identify them
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For purposes of our current discussion. the following
stages can be recognized in causal reasoning.

1 Given a representation of the behavior of the
components of a device or system and a representation
of the structure of the device i1e the interconnaction of
the components, the ability to gensrate the behavioral
gescnption of the device as a whole 15 an important part
of causal reasoming In simpie de.ices or systems this
stage will generate enough informatinn to understand the
device But in general this technique s useful for produc-~
'ng vanous fragments of behavior for ranges of values of
components Often these fragments may need to be fur-
ther organized to exphcitly represent the hierarchical
structure of the device and also to capture the teleology
nt the Jevice as in 2 below

't s o be noted that as a3 rye
havioral descriptions of components
ot domain  knowledge or

«n addition to be-
substantial amounts

gereral common sense
knowtedge may be needed for tr s reasoning In the
dagram  thus s ndicated by the box “naive physics”
knowiedge But n speciic domez -5 instead of naive

phvsics knowledge domain-specit.c xnowledge (such as
«anous laws of electricity) wrll be nez=agd

'n this special i1ssue Forbus prz:ents, among others,
an account of how a qualitative az:-_nt of behavior can
be obtained given a structural desz- --.on of objects and
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their connectivity. Bylander and Chandrasekaran in their
work on consolidation reported here discuss how the be-
havior of composites of components may be put together
from the behavioral descriptions of the components.

Cross describes how qualitative reasoning from struc~
ture to behavior is useful in evaluating proposed ptans in
the air traffic control domain. Both Cross and Forbus are
also concerned with how qualitative reasoning and quan-
titative models may be combined in certain situations.
Stanfill looks at some naive physics aspects of reasoning
about simple machines. Relationship between the spatial
properties of the components and possibie motions is an
important part of this work.

White and Frederiksen discuss qualitative reasoning in
the domain of circuits. The context of the work is in

teaching trouble-shooting (as opposed to automated
diagnosis). The work is conducted in the domain of

automotive electrical systems.

2. Given the ability to generate behavioral sequences
for various assumptions about the components, the agent
can often put together an account of the functions of the
device, and its relationship to its structure. In simple
cases. the behavior that we talked about in 1 above can
be the function, but in general, functionai specifications
involve teleology, i. e. an account of the intentions for
which the device is used. Also often behavior may need
to 'be abstracted to a level higher than that at which the
component is specified. E. g., in an electronic circuit, the
behavior of the components such as a transistor and a
resistor may be in terms of voitages and currents, while a
device containing them may be described as an amplifier
or oscillator. To go from the level of description in terms
of "currents” and “voltages” to one of "amplification® and
"oscillation” requires an abstraction process. This abstrac-
tion process often involves a hierarchical organization ot
representation of the relation between function and struc-
ture

Sembugamoorthy and Chandrasekaran discuss the na-
ture of such a functional representation, and propose that
't captures in some sense an agent’s understanding of
how the device functions. In general how an agent con-
structs a functional account from the structure and be-
havioral specifications of the components is an nteresting
theoretical question. de Kieer [5] has provided some ex-
amples of this process.

Simmors, in his paper in the special issue, outlines
the 1ssues .n representing in a graphical (and animated)
form the fur ctioning of devices and relating this to natural
language descriptions of how the device works

3 Whilz the stages so far help in understanding how
the device ~orks, these structures wili need to be used in
specific wa.s to help in specific problem solving tasks.
The most zommonly studied such task Is diagnostic
reasoning. Often, one can generate diagnostic possibilities
{malfunctior modes) and test data that will help in deter-
mining the oresence of these from one's understanding of
how the cevice works, or in specific domains by
knowledge zoout the components and their behaviors and

functions The paper by Sembugamoorthy and
Chandraseka-an outlines how thair functional represen-
taton can be manipulated by device-independent

processes tc produce diagnostic knowledge of this type

As anofner example, in the HELIOS system described




by Kramer (6] the behavior of the devices and thair struc-
ture are used to propose possible faults and generate
tests in order to confirm these faults. This system uses
the design description of digital circuits to both confirm
the design and diagnose faults in the system. Expected
behaviors can be propagated through the structure in or-
der to diagnose faults. Conflicts in this propagation are
used to generate diagnostic passibilities and tests are
then proposed to confirm or deny the candidates.

In this Special Section, Davis, et al, report on what
has already received wide attention: their work on doing
diagnosis of digital circuits by using knowledge of struc-
ture and function. Because of the digital nature of the
outputs, the distinction betwaen behavior and function is
not as clearcut as in the work of Sembugamoorthy and
Chandrasekaran, but both works emphasize the hierarchical
nature of the functional representation.

Milne presents an approach where portions of the in-
tended behavior of the device can be directly traced to
certain components, i. e, thea component is responsible for
that part of the output behavior. Of course, in general
there will not be such simple mappings between functions
and components, but whenever such a mapping is pos-
sible, diagnostic knowledge can be easily generated relat-
ing undesired behavior to component maltfunctions. Can-
tone, et al, describe work which has similarities to Milne’s
work. In their work, a data base of relationships between
genaric components and the kinds of device behavior they
contribute to is assumed available, and as the structure of
a particular device containing these components is given,
their approach provides a means in some cases of
automatically putting together a collection of diagnostic
relations between obsaervations and malifunctions.

Use of such causal models for other tasks than diag-
nosis is of interest. Cross uses qualitative simylation far
evaluating plans, and White and Frederiksen use it for
generating explanations of device functioning in teaching.
Beck and Prietula also propose using it in teaching
pathophysiology to medical students. Miine uses qualita-
tive simulation in order to derive the responsibility each
component has in the final output. The representation in
Sembugamoarthy and Chandrasekaran can be used for
certain classes of "What will happen if.." questions about a
device.

Long describes a structural representation and some
processes that operate on it for reasoning about the
pathophysiology of heart diseases. The use of causal
modaels in this pager is rather unusual: as he points out it
is 8 sort of “visi~calc” for the patient data base. As new
data are entered, the information stored in the structurai
model of the pathophysiology is used to chsck consis-
teancy and make projections of values of other relevant
data items.

Hudlicka and Lesser take the novel approach debug-
ging problem solving systems by modeling their structure
and function in analogy with physical devices.

Diagnostic Strategies

In this section, iet us eiaborate on the origin and use
of what one might call structure and function expert sys-
tems.

in the beginning was the rule-based expert system.
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Knowiledge was represented in the form ot production
rules. The inference engine was a very simple mechamism
It merely found the set of rules that could conclude the
current hypothesis, and tried each one in turn On oc-
casion, in order to satisfy a rule, other rules would be
needed. This lead to recursion and backward chaining.

This approach worked for simple problems. In the
early days of expert systams, the field could only do
simple problems. Expert systems could be developed be-
cause the inferance enqine gave a verv simple paradigm
for solving problems. After a time, however, problems be-
came too complex for simple rule bases. Especially in
diagnostic reasoning, as mentioned earlier, structure and
function have begun to be used to guide the effort to 1so-
late the fault. Function is used two ways: first to help
isolate the fault in the structure, and then to turther
reason about the possible fault

The simplest use of structure is outlined in Milnes
paper. By intersecting paths known to be good and bad.
fauits in some portions of the system can be ruled out
This decision is based solely on GO/NOGO information
The simplest algorithm is to split the possible fault path n
half. In order to pick the optimal test to perform next, in-
formation about the cost of each test and the possible
value of the test can be considered. Cantone has one of
the most elaborate algorithms for this task.

Eventually, the presence or absence of faults becomes
insufficiant to reduce tha numbaer of possible candidates
any further. At this time, the expected outputs of the
devices which make up the system can be used to further
identify the fauits. By examining how the function of each
device should alter its inputs. candidates can be
eliminated. Davis uses the propagation of values and the
function of digital devices to rule out possible faults
Genasareth (7] turther reduces the possibie fauits by
reasoning which inputs could not produce the wrong out-
put. For example. if an AND gate has a 0 on nput! and a 1
on input2 and produces 1 on the output. then we conclude
that input? is at fault since i1ts 0 value was responsible to
cause the output to be 0 This approach reduces the
search considerably

Scarl. et al, in this Special issue describe a more
complicated reasoning machanism to declare the n-
nocence of devices by inferring that their function could
not have caused the possible fault. This work lustrates
the reasoning and issues involved in using function in this
way. White, et al. use a simple view of function in electrt-
cal circuits to rapidly guide a binary search for the fault
Their approach is at the other end of the spectrum from
Scarl's work. Whereas Scarl uses a complex combination
of reasoning, White's simple mathod is just as effective.
although not as general.

If there is no output at all, then no information s
present on which to base reasoning about the function In
this case Milne uses the ways devices can behave such
that they produce no output and propose fauits. For ex-
ample no current will flow through a resistor if it is open
In a typical series circuit, there is only one path tor the
current, so each resistor could be open. This is analogous
to the Christmas tree light problem.

When the structure cannot be used to further isolate
the fault, then function alona must be used. Often in
electronic circuits, it is not possible to test between
groups of components. in this function can be used 10
deduce the possible fault. The work of Dawvis and
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Appendix B

Functional Representations and
Behavior Composition by Consolidation:
Two Aspects of Reasoning about Devices®

8. Chandrasekaran, Tom Bylander,
and V. Sembugamoorthy®
Laboratory for Artificial Intelligence Research
Department of Computer and Information Science
The Ohio State University
Columbus, Ohio 43210 USA

In our laboratory, we have a number of projects on
diagnostic reasoning in both medical and mechanical
domains. Qur work on the MDX system [2] considered
medical diagnosis as largely a classification problem solv-
ing activity, and viewed diagnostic knowledge as a collec-
tion of precompiled associations between manifestations
and classificatory diagnostic hypotheses. More recently,
we have extended our investigations in a number of direc~
tions, two of which are relevant to the purpose of this
special issue.

1. One way that an agent may generate diagnostic
knowledge is by deriving it from an understanding of
how the device or system under consideration
works. Here the concerns are: What is the nature of
the representation in which the agent’'s understand-
ing is encoded? What are the device-independent
processes which can operate on the representation
to produce diagnostically useful knowledge? Finally,
what other kinds of problem solving, other than
diagnosis. can be supported by a functional
representation?

2 Given a description of possible behaviors by a com-
ponent and given a collection of components con-
nected in a certain way, how can the component be-
haviors be composed into a behavioral description of
the collection as a whole? The above question is
motivated by what we felt was a need to seek alter-
natives to qualitative simulation, which has been the
most common approach to generate behaviors from
component descriptions.

In the following sections, we outline our research in these
two areas

Functional Representation of Devices as Deep Models

V. Sembugamoorthy and B. Chandrasekaran

Human experts often use in their problem soiving a
deeper understanding of their knowledge domain than has
been captured in the first generation of expert systems.
Several aspects of this deeper understanding are being in~
vestigated under the terms causal reasoning and qualita~
tive physics in both medical and non-medical domains (6,
3, 5. We have been working on the aspect of functional
representation, which is an expert's understanding of how

STM research 18 supported by Nsuonal Science Foundation grant
MCS-8305032 and A Force Office of Scientific Resesrch grant AFOSR
82-0255

'v Sembugamoorthy 15 currently at Schiumberger Well Service. PO
Bon 200015, Austin, Texas 78720 USA
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the functioning of 8 complex device results from its struc-
tural properties. Such 8 representation can then be
operated upon by device-independent compilers for
producing problem solving structures of various kinds. We
have actuaily built such a compiler which automatically
generates a diagnostic expert system from the functional
reprasentation of a device. In this report, we outline the
main ideas. The details are available in Sembugamoorthy
and Chandrasekaran [7)

The ides is that an agent’'s understanding of how a
device works is organized as a representation that shows
how an intended function is accomplished as series of be-
havioral states of the device, and how each behavior state
transition can be understood as either due to a function of
a component, or in terms of further details of behavior
states. This can be repeated at several levels so that ul-
timately all of the functions of a device can be related to
its structure and the functionality of the components in
the structure. For example, the function that we may cail
“buzz” of a household electric buzzer (an exampie system
used by de Kleer and Brown) may be represented as:

FUNCTION: Buzz : TOMAKE buzzing(buzzer)
IF pressed (switch)*
by behaviorl

and the relevant hehavior, behaviori, can be represented
as in figure 1.

BEHAVIOR: behavior1:

Pressed(switch)*

I
| BY behavior2
v
{Clapper electrical connection alternates}

: USING-FUNCTION mechanical OF clapper
Repea\tled-Hit(Clapper)

| llJSING-FUNCTION acoustical OF clapper
Buzzinvg(CIapper)

Buzzing(Buzzer)
Figure 1. Behavior1 of the buzzer

Intuitively what is being said is that the Buzz function
is accomplished when, if the switch is pressed, the buzzer
goes to a state called buzzing and this is accomplished
by a series of behavioral states that is named behavior?t.
Behavior! says that the buzzer, on the occasion of the
switch being pressed, goes to a state where the electrical
connections in the clapper alternately close and open,
which resuits in the state where the clapper is repeatedly
hit, which results in the buzzer being in the state of
buzzing. Each transition is further explained, either in
terms of further details in the state transition, or in terms
of the functions of the components. For example, the
transition from the clapper being alternately electrically
connected and disconnected, to its being in the
repeated-hit state, is explained by relating it to the
mechanical function ot the clapper.
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Laet us see how this fragment of functional represen-
tation can be used to generate a piece of diagnostic
knowledge that may be used by a diagnostic expert sys-
tem. A diagnastic compiler will function as follows. Sup-
pose a buzzer does not buzz when its switch is pressed.
In order to find out what malfunctions are causing this,
the diagnostic compiler will reason thus on the basis of
the functional specification and the behavior! specifica-
tion: The functional specification talls it that the problem
is in behavior!, since the Buzz function is failing.
Behaviori, on examination, can resuit in a series of
hypotheses, e.g.

* It switch is prassed, but the clapper is not aiternately
elactrically connected and disconnected. problem is
in behavior2.

* it switch is pressed, the clapper’'s electrical connec-
tivity ailternates, but the clapper doesn’t hit-
repeatedly, the cause of buzzer not buzzing is some
rechanical maltunction of the clapper.

The power of this method for reprasenting how a
device works is due in targe measure to explicitly distin-
guishing five aspects of an agent's understanding of the
device. and treating each aspect appropriately. The dis-
tinctions hoid at every level of organization on which the
device Is represented. The five aspects are:

* STRUCTURE - this specifies the relationships be-

tween components.

* FUNCTION - this captures the intended purpose ot a
device or component, specified as what the response
is to 2 stimulus.

* BEHAVIOR - this specifies how, given a stimulys. the
response is accomplished.

* GENERIC KNOWLEDGE - chunks of deeper causal
knowledge that have been compiled from various
domains to enable the specification of behavior.

* ASSUMPTIONS - other specifications of the con-
ditions under which various behaviors or conditions
occur.

In our research we have identified three dimensions
to a functional representation: causal, which accounts for
how function which arise from causal chains can be
reprasaented; temporal, which represents the temporal
relationships within and between each causal event; and
what we have called the communication dimension, which
accounts for information exchange from different subsys-
tems. So far we have only developed the representational
language tor the causal dimension, and we are currently
working on extensions to other dimensions.

A "deep” model, such as the one outlined above, will
be particularly persuasive if can support more than one
type of problem solving activity. We have briefly indicated
its usefuiness in supporting diagnostic reasoning. It can
also be used to support a torm of predictive raasoning of
the type: “What will happen if < >?” For example, if one
were to ask, in the buzzer case, “What will happen if the
clapper is maifunctioning acoustically?,” it is easy to iden-
tify behavior! as the one that will be atfected, in par-
ticular to infer that while the clapper arm will continue to
hit the clapper repeatedly, it will fail t0 make the buzzer
buzz.

Directions tor future research include the following:
We need to develop methods to check the
correctness/consistency of a given device representation.
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We need to investigate the design of the two other
dimensions of device representation Also the causal
dimension has to be integrated with the other two wn a
disciplined, practically useful, and cognitively meaningtul
framework. We need to identify the compilation processes
that come into play to generate other types of expert
problem solving structures, such as the predictive reason-
ing just discussed.

In broader terms, this work is part of our on-going
effort to uncover the mulitiplicity ot generic structures and
processes involved in knowledge-based problem solving
Whether or not one accepts the hypothesis that
homogeneous and unitary architectures such as produc-
tion systems are adequata at the level of symbol process-
ing in the mind. we nevertheless believe that n order to
account for knowledge-based problem solving activity at
the information processing level thare is a need to identify
a richer coliection of generic knowledge structures and a
correspondingly rich collection of knowledge-processing
machanisms that operate on them.

Qualitative Reasoning About Physical Systems

Tom By!ander and B. Chandrasekaran

A recent Al approach for reasoning about the be-~
havior of physical systems is qualitative simulation The
structure of the physical system, and knowledge about the
behavior of its components are uysed to derive a collection
of constraints. Using these constraints, the simulation s
performed and its resuits are intarpretad. This research
investigates a new method of reasoning for this problem
which we call consolidation. Again, only the main ideas
will be describad here. Further discussion can be found in
Bylander and Chandrasekaran {1).

The usefulness of invastigating this form of reasoning
can be seen within the context of diagnostic reasoning. as
follows. Often an agent does not have direct diagnastic
knowledge about a system In that case. he has to resort
to the deep knowledge structures both about the device
and about the physical world in order to answer question
of the form: “What behavior will follow it a particular
structural change (a malfunction) took place?” In the ab-
sence of compiied knowledge for this task, the agent will
need to put together, i@, derive. a bahavior from his
knowiedge of the behavior of the components

The major processing sequance of consalidation s to
hypothesize a composite component consisting of a
selected subset of components, and then to infer the be-
havior of the composite from the behaviors of the com-
ponents. Successful application of this sequence on in-
cressingly larger composite components results n infar-
ring the behavior of the whole system As a byproduct. a
hisrarchical behavior structure is produced which explains
how the overall behavior is caused by the components’
behavior. Also note that each reasomning step is localized
over a smail number of components and subsystems,
avoiding the global problem solving required for qualitative
simulation.

This research also proposes a novel representation
for behaviar. Current theorias describe behavior as con-
straints and operations on the components’ quantitias and
derivatives of quantities, which would imply that con-
solidation is mainly a matter of algebraic manipulation.
Instead, we describe the behavior of a component by the
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actions that the componént performs upon “substances,”
e.9. fluids, electric currents, control activations, or other
stuff that can potentially move. We claim that there is a
small set of behavior schemas which can directly
represant these actions, and which allow inferences about
the behavior of composite components. It is this interen~
tial capability which gives consolidation credibility since
otherwise, compiex algebraic problem solving is required.
Some of the schemas which we have identified so far are:

1. Allow. The component permits a specified kind of
substance to move from one piace to another.

2. influence. The component tries to move a specified
kind of substance. There are two subtypes accord-
ing to the spatial relationship of the influence with
potential sinks and sources.

* pump. The component tries t0 move a sub-
stance through it, e.g, a battery has a pump
electricity behavior from the negative to the
positive terminal. The sink and source are ex-
ternal to 8 pump behavior.

» gxpel. The component tries to move a sub-
stance from (or to) an internal container, eg., a
balloon has a expel air behavior.

3. Move. The component moves a specified kind of
substance from one container to another along a
specified path. Move behaviors are implicitly con-
strained by the amount and capacity of the con-
tainers.

4 Create The component creates a specified kind of
substance in a container, eg., a light bulb has a
create light behavior

5 Destroy The component destroys a specified kind
of substance in a container, e.g, an acoustic in-
sulator has a destroy sound behavior.

A behavior can be hypothesized based on causal patterns
of behavior and structure. Its existence is confirmed, and
its parameters are determined using knowledge about the
physics of the substance being acted upon. Consolidation
controls the inference of behavior by specifying the con-
text (the composite component) in which inference can
take place.

The causal patterns are similar to the process
descriptions developed by Forbus [4] Both identify the
conditions necessary for some behavior to happen. One
ymportant difference is that the causal patterns are generic
to all substances. While a process description can be
stated at a high level of generality, there is no commit-
ment by the theory to any particular level of generality.
Another difference 1s that process descriptions state only
how quantities change. while causal patterns apply to
situations, such as two batteries connected in series,
where no physical change takes place.

As an example, consider the device pictured in figure
2 The battery in the figure pumps electricity from one of
s terminals to the other. It also allows electricity to flow
between its terminals (otherwise the pumping action
would have no effect). The switch allows electricity to
flow through it when the state of the switch is closed.
The light buib also allows electricity to move through it
and creates light whenever electricity moves through it.
The details of the representation and other behaviors of
these components have been suppressed for explanatory
purposes.
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| |Pump electricity from - terminal
+----|-battery | to + terminal

| + | Altow electricity between -

$mcecnncaa + terminal and + terminal

| |Altow electricity between end1
| switch | and end2, state closed

|
|
i
|
i
I
!
|
|
I Y
|
!
|
!
L

| end2
|
lend1 allow electricity between)
#=cowe-----+ end] and end2
l Create light in light bulb,
+=--]1ight bulb]| dependency
end2| I[[move electricity between end1
b oottt and end2

Figure 2. Light Buib Device

During the consolidation process, a composite com-
ponent consisting of the light bulb and the switch may be
selected for processing. Because the switch’'s allow
electricity behavior has a serial structural relationship with
the light bulb’'s allow electricity behavior (satistying the
serial allow causal pattern), an allow electricity behawior
from endl of the switch to end2 of the light bulb is in-
terred. This allow behavior occurs only during the closed
state of the switch, so the composite also has states of
closed and open. General knowledge about electricity has
an important role to play in this inference, specificaily in
determining the values of relevant attributes, such as
electrical resistance, of the inferred allow electricity be-
havior. The switch-light bulb composite also has a create
light behavior, which is “copied” from the light bulb’s be-
havior description.

When this composite is combined with the battery. an
allow electricity behavior around the circuit is inferred.
Again, the allow behavior only occurs during the closed
state  This behavior and the battery’'s pump electricity
behavior satisfy another causal pattern, giving rise to a
move electricity behavior around the circuit during the
closed state. This move behavior satisfies the dependency
of the create light behavior, thus the process infers that
the device creates light while it is in the closed state.

In the inference of the creation of light, every be-
havior of the components and element of structure which
plays some role in the creation of light has been used in
the consolidation process. The explanation of this in-
ference provides a complete causal account of the crea-
tion of light in the light bulb system in terms of the
components’ behavior and the device's structure.

We are implementing a version of consolidation,
which will depend upon a few simplifying assumptions.
The structurat description will be limited to connection of
components and containment of substances, thus reducing
the amount of spatial reasoning required. Numerical at-
tributes of behaviors (such as amount of influence or rate
of movement) will be specified qualitatively. We hope to
discover the limits of consolidation under these assump-

STl T4 1 e TW T LW

‘4 v s s AN .2 8 A



;‘\.v'»g\ 2" v b ts Na ok . |l ta Vg 0 ‘e 94" .0 P FUTIR T ‘4 a2l a" A a2t m'h ath a”

. -

e, K

s

E The Ohio State University
Department of Computer and Information Science
g Laboratory for Artificial Intelligence Research

o> Technical Report
July, 1985
5

-.‘; GENERIC TASKS IN EXPERT SYSTEM DESIGN AND
| o THEIR ROLE IN EXPLANATION OF PROBLEM SOLVING
i B. Chandrasekaran
Laboratory for Artificial Intelligence Research
Department of Computer and Information Science
f;: The Ohio State University
-, Columbus, Ohio 43210
- )
‘l
W
, i‘s Invited presentation at the National Academy of Sciences / Office of Naval

Research Workshop on Al and Distributed Problem Solving, May 16-17, 1985. To
appear in the Proceedings of the Workshop.

Y|

o o«

n
P

f .~

DY)

.’,.

F@ e e s g .



Generic Tasks in Expert System Design and
Their Role in Explanation of Problem Solving!

B. Chandrasekaran
Laboratory for Artificial Intelligence Research
Department of Computer and Information Science
The Ohio State University
Columbus, Ohio 43210

Abstract

We outline the elements of a framework for expert system design that we
have been developing in our research group over the last several years. This
framework is based on the claim that complex knowledge-based reasoning
tasks can often be decomposed into a number of generic tasks each with as-
sociated types of knowledge and family of control regimes. At different stages
in reasoning, the system will typically engage in one of the tasks, depending
upon the knowledge available and the state of problem solving. The ad-
vantages of this point of view are manifold: (i) Since typically the generic
tasks are at a much higher .level of abstraction than those associated with
first generation expert system languages, knowledge can be represented
directly at the level appropriate to the information processing task. (ii)
Since each of the generic tasks has an appropriate control. regime, problem
solving behavior may be more perspicuously encoded. (iii) Because of a
richer generic vocabulary in terms of which knowledge and control are
represented, explanation of problem solving behavior is also more perspicuous.
We briefly describe six generic tasks that we have found very useful in our
work on knowledge-based reasoning: classification, state abstraction,
knowledge-directed retrieval, object synthesis by plan selection and refine-
ment, hypothesis matching, and assembly of compound hypotheses for abduc-
tion.

1Research supported by Defense Advanced Research Projects Agency, RADC Coatract
F30602-85-C—~0010, and Air Force Office of Scientific Research grant 82-0255.




1. Information Processing Tasks in Knowledge-Based Reasoning

I[ntuitively one thinks that there are types of knowledge and control
regimes that are common to diagnostic reasoning in different domains, and
similarly there would be common structures and regimes for say design as an
activity, but that the structures and control regimes for diagnostic reasoning
and design problem solving will be generally speaking different. However,
when one looks at the formalisms (or equivalently the languages) that are
commonly used in expert system design, the knowledge representation and
control regimes do not typically capture these distinctions. For example, in
diagnostic reasoning, one might generically wish to speak in terms of mal-
function hierarchies, rule-out strategies, setting up a differential, etc., while
for design, the generic terms might be device/component hierarchies, design
plans, ordering of subtasks, etc. Ideally one would like to represent diagnos-
tic knowledge in a domain by using the vocabulary? that is appropriate for
the task. But typically the languages in which the expert systems have been
implemented have sought uniformity across tasks, and thus have had to lose
perspicuity of representation at the task level. The computational univer-
sality of representation languages such as Emycin or OPS3 -- i.e., the fact
that any computer program can be written in these languages, more or less
naturally -- often confuses the issue, since after the systemn is finally built it
is often unclear which portions of the system represent domain expertise and
which are programming devices. In addition, the control regimes that these
languages come with (in rule-based systems they are typically variants of
hypothesize and match, such as forward or backward chaining) do not ex-
plicitly indicate the real control structure of the system at the task level.
E.g., the fact that Rl (12| performs a linear sequence of subtasks -- a very
special and -atypically simple version of design problem solving -- is not ex-

_plicitly encoded: the systemn designer so to speak ‘“‘encrypted” this control in

the pattern-matching control of OPSs.

These comments need not be restricted to the rule-based framework. One
could represent knowledge as sentences in a logical calculus and use logical
inference mechanisms to solve problems. Or one could represent it as a
frame hierarchy with procedural attachments in the slots. (It is a relatively
straightforward thing, e.g, to rewrite MYCIN [14] in this manner, see ;16i.)
In the former, the control issues would deal with choice of predicates and
clauses, and in the latter, they will be at the level of which links to pursue
for inheritance, e.g. None of these have any natural connection with the
control issues natural to the task.

2We also use the term primitives of the language in the rest of the paper to refer to the
vocabulary.
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Actually the situation is even worse: because of the relatively low level of
abstraction relative to the information processing task, there are control
issues that are artifacts of the representation, but often in our opinion misin-
terpreted as issues at the ‘knowledge-level.” E.g., rule-based approaches of-
ten concern themselves with conflict resolution strategies. [f the knowledge
were viewed at the level of abstraction appropriate to the task, often there
will be organizational elements which would only bring up a small, highly
relevant pieces of knowledge or rules to be considered without any conflict
resolution strategies needed. Of course, these organizational constructs could
be ‘“‘programmed” in the rule language, but because of the status assigned to
the rules and and their control as knowledge-level phenomena (as opposed to
the implementation level phenomena, which they often are), knowledge ac-
quisition is often directed towards strategies for conflict resolution. whereas
the really operational expert knowledge is at the organizational- level.

This level problem with control structures is mirrored in the relative
poverty of knowledge-level primitives for representation. E.g., the epistemol-
ogy of rule systems is exhausted by data patterns (antecedents or subgoals)
and partial decisions (consequents or goals), that of logic is similarly by
predicates, functions, and related primitives. [f one wishes to talk about
types of goals or predicates in such a way that control behavior can be in-
dexed over this typology, such a behavior can often be programmed in these
systems, but there is no explicit encoding of them that is possible. E.g.,
Clancey [8| found in his work using Mycin to teach students that for ex-
planation he needed to attach to each rule in the Mycin knowledge base en-
codings of types of goals so that explanation of its behavior can be couched
in terms of this encoding, rather than only in terms of ‘‘Because <..> was a
subgoal of <..>.”

The above is not to argue that rule representations and backward or for-
ward chaining controls are not ‘“natural” for some situations. If all that a
problem solver has in the form of knowledge in a domain is a large collec-
tion of unorganized associative patterns, then data-directed or goal-directed
associations may be the best that the agent can do. But that is precisely
the occasion for weak methods such as hypothesize and match (of which the
above associations are variants), and, typically, successful solutions cannot be
expected in complex problems without combinatorial searches. Typically,
however, expertise consists of much more organized collections of knowledge,
with control behavior indexed by the kinds of organizations and forms of
knowledge in them.

To summarize the argument so far: There is a need for understanding the

generic information processing tasks that underlie knowledge-based reasoning.
Knowledge ought to be directly encoded at the appropriate level by using
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primitives that naturally describe the domain knowledge for a given generic
task. Problem solving behavior for the task ought to be controlled by
regimes that are appropriate for the task. [f done correctly, this would
simultaneously facilitate knowledge representation. problem solving, and ex-
planation.

At this point it will be useful to make further distinctions. Typically
many tasks that we intuitively think of as generic tasks are really complez
generic tasks. I. e., they are further decomposable into components which
ar more elementary in the sense that each of them has a homogeneous con-
trol regime and knowledge structure. For example, what one thinks of the
diagnostic task, while it may be generic in the sense that the task may be
quite similar across domains, it is not a unitary task structure. Diagnosis
may involve classificatory reasoning at a certain point. reasoning from one
datum to another datum at another point, and abductive assembly of mul-
tiple diagnostic hypotheses at another point. Classification has a different
form of knowledge and control behavior from those for data-to-data reason-
ing, which in turn is dissimilar in these dimensions from assembling
hypotheses.

Thesss: Given a complex real world knowledge-based reasoning task, and a
set of generic tasks for each of which we have a representation language and
a control regime to perform the task, if we can perform an epistemic analysis
of the domain such that (i) the complex task can be decomposed in terms of
the generic tasks, (ii) paths and conditions for information transfer from the
agents that perform these generic tasks to the others which need the infor-
mation can also be established, and (iii) knowledge of the domain is avail-
able to encode into the knowledge structures for the generic tasks: then that
complex task can be ‘‘knowledge-engineered” successfully and perspicuously.
Notice that an ability to decompose complex tasks in this way brings with it
the ability to characterize them in a useful way. We can see, e.g., that the
reason that we are not yet able to handle difficult design problem solving is
that we are often unable to find an architecture of generic tasks in terms of
which the complex task can be constructed.

In the rest of this paper, we will briefly describe some of the elementary
generic tasks that we have had occasion to identify and use in the construc-
tion of expert systems. While we have been adding to our repertoire of
elementary generic tasks over the years, the basic elements of the framework
have been in place for a number of years. Our work on MDX (4, 5|, eg.,
identified classification, knowledge-directed information passing. and hypothesis
matching as three generic tasks, and showed how certain classes of diagnostic
problems can be implemented as an integration of these generic tasks. (We
have earlier referred to them as problem solving types, but in [6], we began
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to call them generic tasks.) Over the years, we have identified several
others: object synthesis by plan selection and refinement (1., state
abstraction 7], and abductive assembly of hypotheses (11|. There is no.claim
that these are exhaustive; in fact, our ongoing research objective is to iden-
tify other useful generic tasks and understand their knowledge representation
and control of problem solving.

2. Some Generic Tasks

2.1. Characterization of Generic Tasks

Each generic task is characterized by the following:

1. A task specification in the form of generic types of input and out-
put information.

2. Specific forms in which the basic pieces of domain knowledge is
needed for the task, and specific organizations of this knowledge
particular to the task.

3. A family of control regimes that are appropriate for the task.

From the nature of the control regime, we can determine the types of
strategic goals the problem solving for the task has. These goal types will
play a role in providing explanations of its problem solving behavior.

When a complex task is decomposed into a set of generic tasks, it will in
general be necessary to provide for communication between the different
structures specializing in these different types of problem solving. Note that
a decomposition does not imply that there is a.predetermined temporal ot-
dering on when the generic tasks are performed: typicalHy the agent for a
generic task is invoked when another agent needs information that the former
can provide. Further there is no implication that there is a unique decom-
position. Depending upon the availability of particular pieces of knowledge,
different architectures of generic tasks will typically be possible for a given
complex task.

We will now proceed to a brief characterization of these generic tasks.

e [. Classification

Task specification: Classify a (possibly complex) description of a
situation as an element, as specific as possible, in a classification
hierarchy. E.g, classify a medical case description as an element
of a disease hierarchy.
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Forms of knowledge: <partial situation description> --->
evidence/belief about confirmation or disconfirmation of clas-
sificatory hypotheses. E.g.. in medicine, a piece of classificatory
knowledge may be: certain pattern in X-ray & bilirubin in blood
---> high evidence for cholestasis.

Organization of knowledge: The above classificatory knowledge
distributed among concepts in a classificatory concept hierarchy.
Each conceptual “specialist”” ideally contains knowledge that helps
it determine whether it (the concept it stands for) can be
established or rejected  The form of the knowledge as stated
above is the form needed for this decision.

Control Regime: (Simplified form) Problem solving is top down.
Each concept when called tries to establish itself. [f it succeeds,
it lists the reasons for its success, and calls its successors. which
repeat the process. If a specialist fails in its attempt to establish
itself, it rejects itself, and all its successors are also automatically
rejected. This control strategy can be called Establish-Refine, and
results in a specific classification of the case. (The account is a
simplified one. = The reader is referred to 5/ for details and
elaborations.)

Goal types: E.g.,, Establish <concept>, Refine (subclassify)
<concept>

Example Use: Medical diagnosis can often be viewed as a clas-
sification problem. In planning, it is often useful to classify a
situation as of a certain type, which then might suggest an ap-
propna.te plan.

[I. State abstraction

Task Specification: Given a change in some state of a system,
provide an account of the changes that can be expected in the
functions of the system. (Useful for reasoning about consequences
of actions on complex systems.)

Form of knowledge: <change in state of subsystem> --->
<change in functionality of subsystem = change in state of the
immediately larger system>

Organization of Knowledge: Knowledge of the above form dis-
tributed in conceptual specialists corresponding to
system/subsystems. These conceptual specialists are connected in
a way that mirrors the way the system/subsystem is put together.
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Control regime: Basically bottom up, but follows the architecture
of the system,subsystem relationship. The changes in states are
followed through, interpreted as changes in functionalities of sub-
systems, until the changes in the functionalities at the level of
abstraction desired are obtained.

Goal Types: E.g., Abstract consequent state, Deduce change in
functionality.

Example Use: Answering questions of the form: “What will hap-
pen if this. valve is closed, while the turbine is running?” Generic
usefulness is in consequence finding.

[Il. Knowledge-Directed [nformation Passing

Task specification: Given attributes of some datum, it is desired
to obtain attributes of some other datum, conceptually related to
the original datum.

Forms of Knowledge: i Default value of <attribute> of
<datum> is <value> ii. <attribute> of <datum> is inherited
from <attribute> of parent of <datum> iii. <attribute> of
<datum> is related as <relation> to <attribute> of children of
<datum>. iv. <attribute> of <datum> is related as <relation>
to <attribute> of <concept>.

Organization of Knowledge: The concepts are organized as a
frame hierarchy. Default for slots corresponds to form i. above,
the IS-A or PART-OF links between parents and children deter-
. mine the types of inheritance in form ii. and iii. Procedural at-
tachments or ‘“demons’ are used to encode form iv. . Each frame
is a specialist in knowledge-directed data inference for the concept.

Control regime: A concept, when asked for the value of one of
its attributes first checks the data base to see if the actual value
is known, then uses inheritance relationships to determine if the
value can be obtained by inference from the values of appropriate
attributes of its parent or children, then uses any demons that
may be attached to the slot to query other concepts in other
parts of the hierarchy for values of their attributes. If none of it
succeeds and if it is appropriate the default value is produced as
the value.

This is basically a hierarchical information-passing control regime,
with demons providing an override of the hierarchical regime.
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Goal Types: E.g., Inherit value of <attribute>. Ask for <concept,
attribute value) to infer <attribute> by <relation:.

Example Use: Knowledge-based data retrieval tasks in wide
variety of situations. Inferring a medical datum from another,
when the latter is available but the former is needed for diagnos-
tic reasoning. E.g., diagnostic reasoning needs information about
whether the patient has been exposed to ‘‘anesthetics.”’ because it
has diagnostic knowledge that relates a diagnostic conclusion to
this datum, but the patient data do not include any reference to
‘‘anesthetics,” but mentions ‘‘major surgery a few weeks before.”
Assuming that the knowledge base for the data retrieval system
encodes the piece of knowledge that relates ‘‘surgery” and
“possible exposure to anesthetics,” performing the reasoning that
connects the two data items is an example of knowledge-based
data retrieval.

IV. Object Synthesis by Plan Selection and Refinement

Task Specification: Design an object satisfying specifications
(object in an abstract sense: they can be plans, programs, etc.).

Forms of knowledge: Object structure is known at some level of
abstraction, and pre-compiled plans are available which can make
choices of components, and have lists of concepts to call upon for
refining the design at that level of abstraction.

Organization of Knowledge: Concepts  corresponding to
‘‘components’’ organized in a hierarchy mirroring the object struc-
ture. Each concept. has plans which can be used to make com-
mitments for some ‘“‘dimensions’’ of the component, '

Control Regime: Top down in general. The following is done
recursively until a complete design is worked out: A specialist cor-
responding to a component of the object is called, the specialist
chooses a plan based on some specification, instantiates and ex-
ecutes some part of the plan which suggests further specialists to
call to set other details of the design. Plan failures are passed up
until appropriate changes are made by higher level specialists, so
that specialists who failed may succeed on a retry.

Goal Types: E.g., Choose plan, execute <plan element>, refine
<plan>, redesign (modify) <partial design> to respond to failure
of <subplan>S, select alternative plan, etc.

Example: Expert design tasks, synthesis of everyday plans of ac-
tion.
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V. Hypothesis Matching

Task Specification: Given a hypothesis and a set of data that
describe the problem state, decide if the hypothesis matches the
situation.

Form and Organization of Knowledge: (One form) A hierarchical
representation of evidence abstractions, top node is the degree of
matching of the hypothesis to the data, and nodes at a given
level are components of evidence for the evidence abhstraction at
the higher level. E. g., say the hypothesis of goodness of a posi-
tion in a game is the one to be matched against the data describ-
ing the board configuration. Goodness may be defined at the top
level in terms of two abstractions: defensibility and offensive
opportunities. Form of knowledge then for this must be such as
to enable mapping degrees of belief in each of these evidence
abstractions to degree of belief in the goodness abstraction. The
defensibility abstraction, e.g., may in turn be defined either by
direct data or intermediate abstractions. Samuel’s signature tables
can be thought of as performing this task.

Goal types: Evaluate evidence for hypothesis, evaluate evidence for
contributing abstraction .

VI. Abductive Assembly of Ezplanatory Hypotheses

Task Specification: Given a situation (described by a set of data
items) to be explained by the best explanatory account, and given
a number of hypotheses, each associated with a degree of belief
and each of which offers to explain a portion of the data (possibly
overlapping with data to be accounted for by other hypotheses),
construct the best composite hypothesis out of the given
hypotheses.

Forms of Knowledge: causal or other relations (such as incom-
patibility, suggestiveness, special case of) between the hypotheses,
relative significance of data items.

Organization of Knowledge:' For relatively small number of
hypotheses, this is a global process. For large numbers, some
form of recursive assembly will be called for, implying knowledge
organized at different levels of abstraction of the assembled
hypotheses.

Control Regime: (Simplified version; see {11] for a fuller
discussion.) Assembly and criticism alternate. [n assembly, a
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means-ends regime, driven by the goal of explaining all the sig-
a nificant findings, is in control. At each stage. the most significant
datum to be explained results in the best hypothesis that offers to
explain it being added to the composite hypothesis so far as-
g sembled. After each assembly. the critic removes explanatorily su-
perfluous parts. This loops until all the data are explained, or no
hypotheses are left.

2

‘f Goal Types: e.g, account-for <datum>, check-superfluousness-of
<hypothesis>.

W

‘ - Example Use: In medical diagnosis, the classification generic task
may produce a set of classifications, each of which accounts for

o~ some of the data. The best account needs to be put together.

Y The Internist system 13| and the Dendral system 2' perform this
type of task as part of their problem solving.

P‘

3. Encoding Knowledge at the Level of the Task

..
.l.l

For each generic task, the form and organization of the knowledge directly
sugg2st the appropriate representation in terms of which domain knowledge
for that task can be encoded. Since there is a control regime associated
with each task, the problem solver can be implicit in the representation lan-
guage. l.e., as soon as knowledge is represented in the shell corresponding
to a given generic task, a problem solver which uses the control regime on
the knowledge representation created for domain can be created by the inter-
preter. This is similar to what representation systems such as EMYCIN do,

e
.

.
»
.

Il‘l‘

= but note that we are deliberately trading generality at a lower level ta

v specificity, clarity, richness of ontology and control at a higher level.

R We have designed and implemented representation languages for a simpler

b versions of two of these generic tasks: classification 3], and object synthesis
by selection and refinement [l|. ' We plan io implement a family of such

N representation languages.

4. Generic Tasks and Explanation of Problem Solving

We have developed a framework for providing explanations for the decisions
recommended by expert systems, and this is the basis of a four-year research

¢

:: effort sponsored by the Defense Advanced Research Projects Agency. For
the purpose of this discussion, we can say that understanding the problem

' solving behavior of an expert problem solving system requires inspecting

'_ three structures, each corresponding to a type of explanation:
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Type 1l: trace of run-time, data-dependent problem solving behavior, viz..

which pieces of knowledge were used and how. E.g., Why do you say that ]
the patient has cholestasis? Ans: Because the patient has high bilirubin in 2
blood, and jaundice and Xrays suggest an obstruction in the biliary duct.

. . N . . L)
This is typically done by checking which data items in the current case 3 o
matched the piece of knowledge that enabled the system to make a par- : Yy
ticular decision. Al

8

Type 2: understanding how a piece of knowledge relates to the domain. < {3
how it can be justified. E.g., Why do vou say that high bilirubin in blood 2
suggests cholestasis? Here whatever answer is given, no data about the cur- N
rent case are being used. The system is really being called upon to justify 2l M
its knowledge. o

Type 3: understanding the control strategy used by the program in a par- oo
ticular situation. E.g. Why didn't you consider portal hypertension in this g

Ky

case? Ans: Because I had ruled out circulatory diseases, portal hypertension
is a special case of circulatory diseases, and my strategy is not to consider
special cases when [ have ruled out the general case.

The explicit encoding of the generic aspects of knowledge and control be-
havior for each generic task can be directly used to produce explanations of
Type 3. We will give some examples

‘5
he

Classification .

-y
o

v

Q: Why do you wish to know if the patient had been exposed to anes-
. thetig_s? : .

.
l' .

?
a

A: Because [ was trying to establish hepatitis..'

Ifee
N 2

Q : Why?

A: Because I had already established that the patient had liver disease.
Now [ am trying to subclassify the case, and hepatitis is one of the sub-
categories. If [ can reject hepatitis, I can reject all the following diseases
which are its subclasses.

oL

4

State Abstraction all
Let us assume that the user had asked the system, ‘“What will happen if ‘;1; ;5:
Valve A is closed?” o
£

Q: Why do wish to know the engine speed?
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A: Because | am trying to decide the change in functionality of the cool- Ny

! ing system when Valve A is closed, and engine speed is a datum [ need for .
this. 3
§|
i Q: Why are you considering the cooling syst~m? N
ll
e A: Because, Valve A is a component of the Cooling system.
o
&
Data Retrieval -~
o,
.d';‘ Q: Did the patient have exposure to anesthetics? ;
.. A: Did he have any surgery? n,
el -
A n
- Q: Why do you ask? -
N [
i A: I do not have direct record of anesthetic exposure. [ failed to inherit b 3
a value for this attribute from its parent -- no direct record of any drug not
s being given, [ also failed to infe.r No Exposure, by ruling out its children. E
:_".': Then the Anesthetic concept suggested that If surgery had been performed, o
- anesthetic can be reasonably inferred. t
! Hypothesis Assembly o
. Y
Q: Why was hypothesis part H’ included in the best explanation? :‘

X
o

A: In order to account-for <datum>

i
- -

':T ~ .Q: Why vx;a.sn’t H” chosen to explain D? ~
. A: Because assuming <pa.rti'a.lly assembled conclusion>, H is the best way 1.
N to explain <cluster of data>. N
F: Q: Why was hypothesis H accepted?

" A: Because it is the only plausible way to account-for <cluster of data.. iy
g Plan Refinement :
i Q: Why did you choose Plan A’? :
w :

A: Because, [ am trying to complete the specification for Plan A, for
refining which | need <subgoal> accomplished. The specialist for <subgoal> (
i selected Plan A’ due to <reasons>.
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Q: What will you do if you fail in Plan A'?

A: <Subgoal> specialist will select Plan A".

Q: What if it fails?

A: Parent specialist will redesign Plan A, by weakening <constraint>.

In the foregoing examples, the italicized terms represent the type of goal
that is being pursued. Points to be noted here are: this explanatory richness
(compared to the terminology of goal-subgoals) is made by possible by en-
coding the control regimes specific to each generic task; and, the explanation
is directly related to the problem solving of the system.

4.1. Comparison with Related Work

With respect to providing explanation there are two key ideas that we are
offering in this paper: one, explanation of problem solving strategies, which
are manifested as appropriate control behavior by the problem solver, can be
based on the generic task that a problem solver is engaging at a given stage
in problem solving; and two, which is implicit in what we have said so far,
is that control for each task be represented abstractly so that explanations
can ke couched in terms of these abstractions.

Swartout and Clancey _have done significant investigations of issues in ex-
planation generation by problem solving systems. The work of both authors
uses the .notion of abstract representation of control as a basic idea for ex-
planation. It will be useful to relate our ideas to those of these inves-

‘tigators.

4.1.1. The Work of Clancey’s Group:

Clancey has contributed several ideas that are relevant in this context:
one, in 9|, he discussed the advantages of abstract representation of control
in reasoning systems, and specifically pointed out their potential role in ex-
planation; two, in [8/, he proposed that, in order to give explanatory
capabilities to MYCIN for purposes of teaching (he created a system called
GUIDON based on MYCIN) an explanatory skeleton be attached to each
rule encoding the role of the rule in problem solving; and three, in his work
on NEOMYCIN (10|, he and his group represent.the diagnostic strategy ex-
plicitly (in terms of abstract subtasks and their relations to diagnosis on the
one hand and to the domain data on the other).

The most advanced work by Clancey’s group on explanation is that on
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NEOMYCIN, and thus we will concentrate on that in this section. Here
diagnostic strategy is represented explicitly as a collection of subtasks. with
conditions for moving from subtask to subtask also explicitly stated. This
representation enables an explanation of strategy to be produced at the task
and sub-task level of generalization.

This work is in many ways quite close in spirit to our approach. with the
following comments throwing light on the differences.

1. NEOMYCIN’s representation of abstract strategies is implemented
as a body of metarules in the rule-based paradigm. We would
note here that the rule paradigm plays no intrinsic role in this
and can be viewed as merely an implementation language. In our
approach we would advocate a representation language with
generic primitive terms for directly encoding control along the
lines discussed earlier in the paper.

. The above comment raises the question of the appropriate lan-
guage in which couch the tasks abstractly. In this paper we have
proposed a set of generic tasks and suggested that they (and
others to be added as needed on empirical grounds, but at about
the same level of grain size) comprise the elementary tasks in
terms of which complex (generic) tasks such as diagnosis be
decomposed. While we have been able to demonstrate this claim
to a certain extent for the diagnostic strategy employed by the
MDX system, it is a matter of further empirical research to see
whether and how NEOMYCIN's diagnostic strategy be so decom-
posed.

With respect to point 2 above, are there advantages from-an explanation
point of view for such a decomposition even if it were possible? At this
point we can only give the following tentative answers. To the extent that
the subtasks in NEOMYCIN were developed by a direct study of the diag-
nostic task, it is likely that some of these tasks (and consequently the terms
which they contribute to the explanation) are more informative at the diag-
nostic task level. But if our theory is right, the additional abstractions
specific to diagnosis can be obtained naturally from the abstraction at the
generic task level. The generic tasks in our sense will have the further ad-
vantage of providing the primitives for other "molecular” tasks in addition to
diagnosis.
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4.1.2. Swartout and the XPLAIN System:

Swartout’s XPLAIN system ;15| can be summarized for our purposes as fol-
lows. It has a component called Domain Principles. which is best thought of
as a base of control abstractions of the goal-subgoal type. They are of the
form, “If goal is G, and if <patternl>, ... <patternN> occur in the domain
knowledge base. set up subgoals SG1, ... SGN respectively.”” As a concrete
example, G might be ‘‘Administer <drug>."" patternl might be, “<finding>
and <drug> cause <bad side effect>.,” and SG1 might be. “Control toxicity
of <drug>." One can imagine an instructor teaching a group of students
about administration of drugs in general, and telling them that if, for a par-
ticular drug, there is a possibility of a bad side effect, then make sure to do
whatever will be needed to control the drug toxicity. Note that this has
some degree of generality in that it can be used to set up systems for a
number of different drugs: if a certain drug does not cause bad side effects.
then this particular subgoal will not be set up by the system. I[n general
one can best think of this approach as specification of an ezpert system
generator, in that the same Domain Principles base can be used to generate,
e.g., systems to recommend the administration of different drugs. The
Domain Principles then can be thought of as a collection of control abstrac-
tions. However, these control abstractions are domain-specific. Terms such
as administer and control tozicity in the example above are used to index
and name goals, but do not have general purpose problem solving relevance
across domains. The only elements in the above example that are generic in
our sense are, If goal, and set up subgoal...

As one would expect, the basis for the explanation capability of XPLAIN
arises from the goal-subgoal control abstractions in Domain Principles. The
generation of - explanation in XPLAIN is very similar to.that in rule-based
systems in that the goal-subgoal structure in Demain Principles is used for
the explanation in a way very similar to the rule-tracing in backward-
chaining systems such as Mycin. While explanation in Mycin is done using
the trace of the rules that fired in a particular problem, XPLAIN uses the
goal-subgoal relationships -that went into the construction of the expert sys-
tem, with very similar effects. XPLAIN can use the names of the goals and
subgoals and the terms in the patterns to provide a richer quality to the ex-
planation: ‘“‘Because goal is to administer digitalis, and digitalss causes dan-
gerous side effects, there is a need to control tozicity of digitalis.”

Where our work differs from this effort is in the power that is available in
the control abstractions that are indexed by generic tasks. This enlarges the
kinds of explanations that can be provided in a domain-independent way,
and that can arise directly from the control behavior in the problem solving
process.
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FROM NUMBERS TO SYMBOLS TO KNOWLEDGE STRUCTURES:
PATTERN RECOGNITION AND ARTIFPICIAL INTELLIGENCE PERSPECTIVES
ON THE CLASSIPICATION TASK

B. Chandrasekaran

Laboratory for Artificial [ntelligence Research
Department of Computer & [nformation Science
The Ohio State University
Columbus, OH 43210, USA

In this paper we consider a very general information processing
task: classification, and review the perspectives of the classical pat-
tern recognition approaches and the more recent artificial
intelligence/ knowledge-based systems point of view. As the com-
plexity of the problem increases, we trace the evolution of the al-
gorithms from numerical parameter setting schemes through those
using symbolic abstractions and then relations between symbolic en-
tities, and finally to complex symbolic descriptions which incorporate
explicit domain knowledge.

1. INTRODUCTION

In this paper we consider a very general information processing task: classification, and
review the perspectives of the classical pattern recognition approaches and the more
recent artificial intelligence/ knowledge-based systems point of view. As the complexity
of the problem increases, we trace the evolution of the algorithms from numerical
parameter setting schemes through those using symbolic abstractions and then relations
between symbolic entities, and finally to complex symbolic descriptions which incorporate
explicit domain knowledge. The paper can be viewed two perspectives: as a bridge-
building activity, describing the approaches of two different research communities to the
same general task; it can also be viewed as an attempt, by using the classification task
as a concrete example, to give an intuitivé account of how the information processing
activity underlying thought necessarily needed to evolve into complex symbolic processes
in order to handle increasing complexity of problems and requirements for flexibility.

3. THE CLASSIFICATION TASK

2.1. Ezpert Systems and the Classification Task

The area of expert systems, though of recent origin, is already a well-established subarea
of Artificial Intelligence. The essential idea of the field is an attempt to capture in
computer programs, explicitly and in symbolic form, the knowiedge and problem soli.ng
methods of human experts in selected domains and tasks; in fact, because of the central
role of explicit domain knowiedge, the field itself is often called inowledge-based systemas.
This is not an appropriate place to discuss the knowledge representation and problem
solving issues in the field of expert systems, many of which are thriving and open
research issues. There are many expert tasks that have been successfully emulated by
these systems, while there are an even larger number of things that human experts do
that are beyond the current state of the expert system technology. If one were to ex-
amine the intrinsic nature of the tasks of the current generation of expert systems, a
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surprising fact emerges: most of them solve variants of problems which are intrinsically
classificatory in nature. It is important to note that we are not claiming that the au-
thors of these programs recognized them as classification problems and used methods ap-
propriate to that task, but that, independent of how they were solved, the problems
solved by them have an intrinsically classificatory character.

Let us take some examples:

1. MYCIN [23i, in its diagnostic phase, has the task of classifying patient data
in an infectious agent hierarchy. [l.e., the diagnostic task is identification of
the infectious agent class as specifically as possible.

2. PROSPECTOR 10| classifies a geological descnptlon as corresponding to one
or more mineral formation classes.

3. MDX (4, 5| explicitly views a significant portion of the diagnostic task as
classifying a complex description (the patient data) as an element in a disease
classification hierarchy (e.g., liver disease, in particular hepatitis).

4. SACON [2| classifies structural analysis problems into classes for each of
which a particular family of analysis methods will be appropriate.

The above is by no means to imply that all problems are classification problems or that
can be usefully converted into such problems. R1 (17, e.g., performs a relatively simple
version of an object synthesis problem, i.e., a version of the design problem. RED
{13] Internist 21| and Dendral 3| are different systems all performing various versions
of assembly of composite hypothesis for abductive reasoming. [n (6, 7, 8/ we have given
taxonomies of such generic ltasks for which expert systems can be designed and we iden-
tified classification as one of the generic tasks. Recently Clancey (9 has made a similar
assessment of how several expert systems perform classificatory problem solving. Stick-
len, et al 25| discuss the control issues inherent in the task.

What is important to note from the above list is that classification seems to be a rather
ubiquitous problem solving process, and a number of real world problems including
medical diagnosis can be thought of as having a large classification component. Further,

classification has been one of the more tractable problems for the knowledge-based sys- -

temn technology to handle at this point in its development.

2.2. Classification in Pattern Recognition

There is another area of inquiry, which is now more than 20 years old, viz., pattern
recognition, which has also been intimately connected with problems of classification. In
fact, in the early days of the field the problem of recognition was formulated as a
problem of classification, in particular one of statistical classification of muitidimensional
pattern vectors into one of a finite number of classes, each class characterized by some
kind of probability distribution. In fact what started out as a useful formulation prac-
tically got to be so dominant that there was a need for a paper such as that by Kanal
and Chandrasekaran {14] pointing out that classification is only one of the formulations
for the more general recognition problem. Even when newer techniques such as syntactic
tecAniques came into the field, the problem was still often formulated as a classification
problem, this time into grammatical categories.
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2.3. Classtfication in Biology

Taxonomic classification has long been a significant methodology in biology. Linnaeus’s
classification scheme is very famous, and more recently, mathematical taxonomy has been
pressed into service for providing better classification in this area [24] The more recent
controversies regarding evolutionary biology (the claddists vs traditional evolutionary
theorists) revolve around implications of various theories for classification.

2.4. Why this Ubiquity? The Computational Power of Classification

Classification seems to be a powerful human method of organization for comprehension
and action. This tendency is so strong that people often feel they have accomplished
something by merely naming something as a class, even if they cannot do much about
it. Why is classification so powerful?

A simple computational explanation can be given for the importance of classification as
an information processing strategy. One can think of the task of an intelligent agent as
performing actions on the world for certain goals. But often the correct action
knowledge is a function of the state of the world. E.g., one can think of the general
problem facing the physician as having the following formal character: For each subset
of pomible symptoms (the state of the patient), find an appropriate therapeutic action.
But in general the cardinality of the relevant states of the world is too large: e.g., the
total number of states of a patient is the cartesian product of the distinct states of each
of the state variables (symptoms, laboratory values, manifestations of all kinds). A table
relating the subset of state variables to action is bound to be too large for construction,
looking up, and modification. This problem is made more tractable, however, if action
knowiedge can be indezed, not by the states of the worid, but by equivalence classes of
states of the world. Thus a physician’s therapeutic knowledge is not indexed directly by
the detailed values of the patient state variables, but by diseases each of which can be
thought of as defining an equivalence class of patient state variables. The medical
problem solving can then be organized first as mapping from symptoms to disease
classes (diagnosis as clamsification), and then from disease classes to therapeutic actions.
Since the number of equivalence classes is much smaller than the number of states, the
complexity of the mapping is now considerably reduced.

Thus: classification into categories provides a great computational advantage. Much of
human thinking is organizsed around classification, both in terms of creating useful clas-
sifications (comncept learning) and using existing categories to perform classifications.

However, the process of cresting useful classifications (concept learning) is a much harder
process than using a classification structure to do the actual classification. Thus in
medicine discovery of a disease (creation of a new class) is a relatively major event while
diagnosis is much more routine. In this paper we only deal with the process of assign-
ing an object to a class in a classification structure.

3. THE STATISTICAL CLASSIFICATION PARADIGM

The typical model in this paradigm is one where the aim is to arrive at a classification
of a muitidimensional vector (where each dimension is typically a aumerical variable,
even though ordinals are some times used) representing an object of unknown classifica-
tion into one of a finite number of classes. Each dimension typically represents an
attribute of the object that the system designer has had resson toc believe carries useful
information about class membership. Intuitively, one would try to choose attributes
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such that they have the potential to distinguish between classes. When the number of
dimensions is small, it is possible to design classification systems that outperform human
expert performance in that task domain. E.g.. if it is desired to distinguish between dis-
eases D1 and D2, and statistical evidence indicates that symptoms sl, s2, ..sN carry use-
ful information for this discrimination, careful statistical data gathering is often possible
such that a discriminant function of the variables sil... sN can often be a very accurate
classifier. Human reasoning with the same variables may be less efficient in information
extraction, and thus automatic procedures using the statistical model can be very power-
ful.

In this model. in spite of the enormous intrinsic interest of the mathematical problem of
designing and improving classification algorithms - virtually thousands of papers have
been written in the pattern classification literature on solutions to this problem -- Kanal
and Chandrasekaran (14] pointed out years ago that the real power often comes from
the careful choice of the variables themselves based on a good knowledge of the domain
rather than from the complexity of the separation algorithm.

What happens when the dimensionality of the vector gets to be very large, or the num-
ber of classes gets to be large? When the number of classes increases, in general, in or-
der to make more and more distinctions the number of measurements on the object, i.e.,
the dimensionality of the pattern vector, also will need to grow rapidly. When the
numbers of classes increases, the complexity of the algorithm to make the discrimination
grows much more rapidly, and correspondingly the average performance, i.e., correct clas-
sification rate, deteriorates quite rapidly. Sensitivity problems begin to become quite
severe: i.e., the required precision of the parameters in the classification algorithm be-
comes impractically high. Opacity problems result: it becomes increasingly hard to make
any kind of statement about what attributes are playing what role in the recognition
process. These problems exist whether statistical classification algorithms are used, or
perceptron-like linear threshold devices are used. Szolovits and Pauker 26| discuss some
of the problems with the Bayesian approaches, and Minsky and Papert [18| the problems
with the latter. '

4. ABSTRACTION BY INTERMEDIATE CONCEPTS

What is to be done when the number of classes is very large? Consider the following
pedagogically useful example: the design of recognition devices for automatic reading of
texts. Assume for the sake of discussion that the number of words in the language is
20,000, and we would like the words to be recognized. Consider solving the problem by
designing a discriminant function which directly maps a multidimensional vector into one
of 20,000 classes. One can sense that this is a pretty unworkable soiution: the number
of measurements that would need to be made on the words and the complexity of the
decision algorithm will be too large to permit this solution in practice. Intuitively one
would think that recognizing characters first, and then based on this recognition recog-
nizing words would be computationally more attractive. Why is this a much more
reasonable solution?

What is going on here is a two-fold strategy of symbolization and hierarchicalization. [n-
stead of doing the classification by a direct discriminant function-like mapping, inter-
mediate symbols are constructed, which are then used as attributes to a higher-level
classification process. (Note that this is not the same as hierarchical classification. which
if it were to be applied to this problem, will first involve classification of the words into
groups of similar-looking words, each class will be further subclassified, and so on. until
each word receives a classificatory status.) Symbols at each level are produced by a
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classificatory process using the symbols from the previous level as attributes. Each such
computational process is much more tractable.

LS

4.1. Signature Tables =
4

Consider another example: evaluation functions in chess. These functions usually yield a "4

number which is a measure of the *‘goodness” of the board. For most purposes, effec-

tive use of this information can be made if the goodness is classified into one of a small ‘e

number of categories. One of the first forms for the evaluatipn functions was a linear o~

polynomial of attributes of the board: both the attributes and their weights were chosen -~

in consultation with domain experts. Then in order to take into account interactions

between the variables in the evaluation function, higher order polynomials were iater ;~:

proposed. This of course resulted in a fairly rapid increase in the complexity of the -

function: if r-the order interactions were to be included and the number of attributes is ¢
n, then the number of terms was of the order of n**r. Samuel’s signature tables
[22] provided a solution which exemplifies the symbolization and hierarchicalization
ideas mentioned earlier. For the purposes of our discussion, Samuel's method can be
described as follows. ° h

1. Identify groups of attributes such that on the basis of domain knowledge . 2
there is reason to believe that they contribute to an intermediate abstraction
that can be used to construct the final abstraction, in this case, a measure of
the ‘“‘goodness” of the board. (Typically the attributes in a group may have
some dependencies and interactions, in order to capture which, in the more
traditional evaluation functions, polynomial term were included.) I[n chess,
“defensibility of king” and ‘“‘material advantage” may be such intermediate .
concepts, each of which can be estimated by a subset of board attributes, X

A

R 51. .-

group. (For the purpose of our discussion, the exact method is not
important— Samuel proposed a specific mechanism for this. The essence of :
his mechanism is a mapping from a multidimensional vector, each component R
of which can only be in one of a small number of distinct values, to a sym-

while the final decision about the goodness of a board configuration may be .*: )
made in terms these intermediate abstractions. noe

2. Find a method of classifysing the desirability of these intermediate concepts "
into a small number of categories from the values of the attributes in each ! ‘
>

ol.

bolic abetraction, which can also be in oaly one of a small number of distinct >
values. The mapping tumns out to be a fairly simple one.)
o B
3. The outputs of the classifiers for each group can themselves be thought of as Es:

qualitative attributes at the next level of abstraction. These can be grouped
and abstracted into higher level concepts as necessary until the top-level con- '
cept is a classification of the “‘goodness™ of the board in a qualitative way.

[

To repeat a point made earlier, by trading off the precision of anumbers for the
simplicity and robustness of a small aumber of symbolic states, and combining it with
hierarchical abetractions, significant computational advantage is being gained. It also R
points to the fact that often numbers are too precise for the task at hand. Robust e

symbolic abetractions of the appropriate kind can capture almost all of the relevant in- !

formation. , e
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5. SYNTACTIC OR STRUCTURAL APPROACHES

After about a decade of work within the statistical classification paradigm (the work on
the perceptron paradigm was going on in parallel in certain sections of the Al
community), Narasimhan (20 proposed what he called a syntactic approach to pattern
recognition. The idea was to describe classes of patterns, not in terms of probability
distributions in multidimensional spaces. nor in terms of hierarchic symbolic abstractions,
but in terms of relations between symbols, much as grammatical categories are described
in linguistic analysis. Most of the readership of this book will be familiar with the prin-
ciples behind and examples of syntactic methods for pattern recognition, so we forego a
description here, (By now there is a vast literature on the subject.) The following
point, however, can be noted: The ability to descridbe a class in terms of relations is a
move towards descriptions as the basis for class characterization.

Note that the idea of syntactic pattern recognition is really a special case of the more
general notion of structural relations as the basis of class characterization. (In (15| we
discuss the relationship of the structural paradigm to the statistical one.) Thus, even
when the idea of syntar is not appropriate ~- i is very doubtful that the notion of a
picture grammar is as general for the domain of visual objects as seems from a purely
formal perspective - the notion of structural relations ds the basis for characterizing
concepts and classes is a somewhat more general one.

With the introduction of syntactic/structural models for pattern recognition), the progres-
sion becomes:

numbers --> symbols —> relations.

The major research directions in pattern recognition for capturing structural relations in
general were formal, i.e., some sort of a mathematical system within which theorems
about relationships may be provable regarding the classification performance. [n fact,
this was the major reason for the original emphasis on syntactic methods, since there
was a well-developed theory of formal grammars already available. In any case, the em-
phasis on formalisms led to two constraints: one, often an attempt was made to force-fit .
available formalisms to the pattern recognition problem, generally with unsatisfactory
results; and two, because human classification performance was more heuristic in nature,
restricted formalisms could only capture the quality of human performance only fleet-

ingly.

If one is to use relations between symbolic attributes as the basis of class characteriza-
tion, why restrict oneself to syntactic relations? Why not bring to bear the full power,
to the extent possible or necessary, the semantics of the classes in forming class descrip-
tions? Asking this question prepares the way for the next step in the progression, the
Al/Knowledge-based paradigm:

numbers —> symbols —> relations —> complex symbolic descriptions.

These complex descriptions characterizing the classes are the relevant aspects of the
domain knowledge for the task.

6. AI/KNOWLEDGE-BASED REASONING: A NEW PARADIGM

It is not an exaggeration to say that the knowledge-based approach in general, and to
classification in particular, is a new paradigm in the sense that it emphasizes different
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issues, and poses them in a different language. E.g., instead of issues such as o~ X
“optimality” and “error rate,” which figure in the classical pattern recognition approach. o
Y

the Al paradigm emphasizes the issues of ‘“‘knowledge representation” and ‘‘control of
problem solving”. These relate to how the domain knowledge in explicit symbolic form
is represented (i.e, what language is used to encode the knowledge), organized and
accessed, and how the knowledge is used to arrive at classificatory conclusions.

¥y |

We have already used medical diagnosis as an example to illustrate some of the ideas in H
this paper. In discussing the Al approach, the medical diagnosis example is particularly ‘
useful, since a number of Al systems have been built in this domain, and also the com-
putational advantages of such an approach can be well motivated. We will briefly
describe a system called MDX (3] 12| which has been developed in our Laboratory over .

P

the past several years. Our description will necessarily be brief, since our aim is to _‘:- .
point to the role of knowledge structures and to give a feeling for what characterizes the o
Al approach. . .
6.1. The MDX System: Ezample of Knowledge-Based Approach to Classification ';.‘,': ,_
The MDX system performs medical diagnosis by essentially viewing the task as one of
classifying a complex case desacription as a node in a disease classification hierarchy. A C 5
number of caveats need to be kept in mind: no
1. Not all classification problems are necessarily solved as Aserarchical classifica- ~ 4
tion probiems. There are other AI systems that perform classification, but .
without using the hierarchical point of view: e.g., [1]. i
2. In general muitiple classification hierarchies may exist in domain. (E.g., in N
medicine, ‘‘viral hepatitis” is a classificatory coacept in the ‘‘infectious Y
disease”” hierarchy as well as in the “liver disease’ portion of the hierarchy.) &3
The general problem involves coordinating among the classifications by the 1';
different classification systems. ’ v
3. A particular case may not have a single classification, but instead have ' e
several classifications simultaneously applicable. (E.g., a patient may have 3-. y
both ‘‘cirrhosis” and ‘“‘portal hypertension,” and in addition, the two diseases - ::
may be causally related. This sort of situation may also arise in other s
domains: in character reécognition, the image may really be two characters q.‘ N
touching each other, e.g., rather than one character.) The MDX framework ‘& ‘
can deal with many of these complexities more or less well, but for the pur-
pose of this paper we will concentrate on the single classification situation. .« H
The control problem here can be stated as one that deals with what classificatory Y “
hypothesis to consider at what point in problem solving. In general we would like to 10
use domain knowledge to consider only a subset of all the hypotheses for probiem solv- N
ing efficiency, or we would like to consider some hypotheses which are more promising o
ahead of others. -
The MDX system is organized as a hierarchical collection of or ‘‘diagnostic concepts,” e
each of which has diagnostic knowledge that helps it make a determination about the S el
relevance of that hypothesis (at that level of abstraction) to the case at hand. This ol
hierarchy of specialists mirrors the diagnostic classification hierarchy. The total diagnos- A

tic knowledge is then distributed through the conceptual nodes of the hierarchy in a
specific manner to be discussed shortly. The problem-solving for this task will be per-

%

formed top down, i.e., the top-most concept will first get control of the case, then con- -

trol will pass to an appropriate successor concept, and so on. In the medical example, ., :
e )
- ’-:
|
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Internist

Liver Heart

Hepatitis Joundice
Figure 1: Fragment of a hierarchy

a fragment of such a hierarchy might be as shown in Fig. 1. More general classificatory
concepts are higher in the structure, while more particular ones are lower in the hierar-
chy. It is as if INTERNIST first establishes that there is in fact a disease, then LIVER
establishes that the case at hand is a liver disease, while say HEART etc. reject the
case as being not in their domain. After this level, JAUNDICE may establish itself and
s0 on.

Each of the concepts in the classification hierarchy has ‘“how-to’ knowledge in it in the
form of a collection of diagnostic rules (This is only one possible method by which the
specialists can make the determination about their fit with the data. In simple cases,
statistical classification algorithms can be used. In DART [11] the decision about the fit
of hypothesis to data is done by using theorem-proving techniques. In [19], we show
how the concepts can make their decisions based on a causal knowledge of the domain.
The point is that how the hypotheses are evaluated is somewhat independent of the flow
of control for the classificatory task as such, even though for complex problems, a rich
knowledge structure will be called for to make the decision about how well the
hypothesis matches the case at hand). These rules are of the form: <symptoms>
——> <concept in hierarchy>, e.g., “If high SGOT, add n units of evidence in favor of
cholestasis.” Because of the fact that when a concept rules itself out from relevance to
a case, all its successors also get ruled out, large portions of the diagnostic knowledge
structure never get exercised. On the other hand, when a concept is properly invoked, a
small, highly relevant body of knowledge comes into play.

The problem-solving that goes on in such a structure is distributed. The probiem-solving
regime that is implicit in the structure can be characterized as an establish-refine type.
That is, each concept first tries to establish or reject itself. If it succeeds in establishing
itself, the refinement process consists of seeing which of its successors can establish itseif.
Each concept lias several clusters of rules: confirmatory rules, exclusionary rules, and
perhaps some recommendation rules. The evidence for confirmation and exclusion can
be suitably weighted and combined to arrive at a conclusion to establish, reject or
suspend it. The last mentioned situation may arise if there is not sufficient data to
make a decision. Recommendation rules are further optimization devices to reduce the
work of the subconcepts. Further discussion of this type of rules is not necessary for
our current purpose.

The concepts in the hierarchy are clearly not a static collection of knowledge. They are
active in problem-solving. They ailso have knowledge only about establishing or rejecting
the relevance of that conceptual entity. Thus they may be termed ‘‘specialists.” in par-
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ticular, ‘‘diagnostic specxa.lm.s The entire collection of specialists engages in distributed
problem-solving.

The MDX system is a complex system that has been tested on a number of real-world
cases with a high match between its conclusions and that of specizlists. The number of
symptoms, signs, and laboratory values that it can handie is in the hundreds., and the
number of distinct hypotheses it has in its diagnostic hierarchy is also close to hundred.
Some of the laboratory results about images is in complex descriptive form. Hard prob-
ability numbers are nowhere used: what the specialists compute can be thought of as
qualitative probability values: ‘“‘definitely present,” “likely present,”... ‘‘definitely absent.”
This is the sort of problem for which a purely numerical mapping approach such as a
Bayesian one will have considerable computational problems, in addition to posing dif-
ficulties of knowledge acquisition. [t is often quite difficult to acquire probability dis-
tributions of the type needed for the classification algorithms from physicians, at least
for problems of this degree of complexity, while the sort of knowledge MDX uses is
directly available from domain experts.

7. CONCLUDING REMARKS

It is by now a truism that significant aspects of thinking can be modeled as symbolic
information processing: creation and manipulation of complex symbolic structures bearing
knowledge of various of types. Artificial intelligence deals with such models couched in
explicitly computational terms. We have noted that classification seems to be an ubiqui-
tous method used by human thought processes, and pointed out that the reason for cthat
is the significant computational advantages that arise from storing knowledge useful for
action by indexing it over equivalence classes of the states of the world rather than over
the states of the world themselves.

We have taken the reader through a progression of approaches for classification:
aumerical measures and formulae of various types, symbolic abstractions, hierarchical
symbol structures, structural relations between symbols, and finally to rich symbolic
knowledge structures. Each stage in the progression gave more power in controlling the
computational complexity by matching the structure of the classifier to the complex
structure of the task. At the level of knowledge, the power comes from task-specific
control regimes controlling access to appropriate chunks of knowledge. We motivated the
discumsion by using medical diagnosis as an example in various places, but the ideas are
more generally applicable.

The discussion in this paper can be viewed as a bridge-building activity between two
ressarch paradigms: pattern recognition and artificial inteiligence. Classification has been
s major concarn in the former, and an important task performed by many systems in
the latter and thus the task provides a good place to understand the distinctions be-
tweea the two research paradigms. For well-constrained clamsification problems with
relatively small number of categories, the statistical and other numerical algorithms con-
sidered in the field of pattern recognition can provide powerful classifiers which often
outperform human experts by extracting the last trace of information that the more dis-
crete human symbolic processes can only approximate. On the other hand for complex
problems involving many variables and classes the knowiedge-based approach trades off
the optimality of the best algorithms in pattern recognition for greater computational
tractability and better matching with human knowledge in the domain.

Many of the points made in this paper transcend the particular task of classification. In
that sense, this paper can be thought of as an attempt to point to the emergence of the
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g need and power of symbolic structures for control and prediction. Cybernetics showed the
- power and usefulness of the concepts of feedback and stability in understanding many

control and communication problems. But in classical control theory, numbers and func-

tions hold sway. Learning and control in this framework involves parameter modification
20 and signal propagation. The space over which parametric changes and numerical signals
. can provide control is limited. Symbolic models of the world provide greater leverage for
change and control and stiil keep computational costs within manageable bounds. Thus in
biological information processing, symbolization seems to have occurred very early in

;,: evolution: see {16| for an account of how early visual processing of the frog is symbolic
=) in nature. Once symbols were available as the language in which to perform information

processing, thought eventually evolved into more and more complex symbol structures.
;(. Thus the points in this paper can be viewed as an intuitive account of the emergence
f: and power of symbolic structures for complex information processing activities.

Our approach within artificial intelligence has been to identify other generic tasks similar
) to classification, but with similar characteristic of being a building block for complex in-
.‘ formation processing activities. In [8| we give an account of the latest repertoire of such
generic tasks we have identified.
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Abstract

To understand commonsense reasoning, we need to discover
what kinds of problems a commonsense reasoner should be
able to solve, what the reasoner needs to have in order to
solve those problems, and the relationships among the
various kinds of problem solving abilities. We examine
three methods for performing qualitative reasoning about
the behavior of physical situations. Two of the methods
perform qualitative simulation, which determines the
behavior of a situation by a qualitative version of
simulation methods. The other method is called
consolidation, which derives the behavior of a situation by
composing the behavior of the situation’s components. We
show that qualitative simulation and consolidation work on
different problems of qualitative reasoning, and that their
differences and similarities lead to several implications
about their role in qualitative reasoning.

1. Introduction

A recurring criticism of knowledge-based systems, expert
systems in particular, is that their knowledge is too
“shallow.” The criticism is directed at several symptoms
which arise when the decisions made by these systems are
based on rules of association instead of being based on a
model of the domain. For example in MYCIN, “head
injury” is used as evidence for “E. Coli causing
meningitis,” but MYCIN has no model of infectious
diseases which supports this association, vis., a head injury
exposss the meninges to bacteria in the environment,
E. Coli is a common bacterium in the environment, and
E. Coli in the meninges will often cause meningitis.
Without this model, MYCIN is unable to expiain the
causal relationships between data and hypotheses; is unable
to block asociations when they are not appropriate, e.g., if
the head injury ‘occurred in a sterile environment; and is
unable to give weight to hypotheses in slightly different,
but similar circumstances, e.g., if other pathways to the
meninges are available to E. Coli. Examples like these are
not just endemic to MYCIN, but occur whenever
amociational knowledge is not supported by domain
models.

The reason why association-based systems continue to
abound is because robust models for domains as
complicated as MYCIN’s do not yet exist. One area of Al
research which is directed towards this goal is qualitative
ressoning, the ability to make decisions and soive problems
based on qualitative data and models. The goal of

qualitative reasoning is to achieve predictive and
explanatory power similar to that of quantitative and
analytical models while avoiding the need for precise
formulations of problems and computationally-intensive
methods. So in the situation where a flame is under a
pan of water, one can predict that the water will probably
heat up and boil. Even though only rough details of this
situation have been described, conclusions about likely
behavior can still be reached.

We will be concerned with qualitative methods for
inferring behavior in designed situations. Our long-term
interest is the inference of behavior in general physical
situations, but to simplify the problem somewhat, we will
restrict our focus to artifacts (devices) and situations which
are arranged to achieve (or not quite achieve) interesting
behavior. The intent is to first discover theories which
handile simpler situations, later extending successful theories
to more general situations.

One approach to this problem is qualitative simulation
(abbreviated QS from now on). Like simulation in general,
a description of the situation is used to determine the
relevant parameters (or quantities) and constraints of the
situation, a simulation is performed, and the results are
transformed into interpretations of the overall behavior..
Unlike quantitative simulation, specific values are not
assigned to quantities, but only their ordinal relationship
to important constants or other quantities are stated.
Also, constraints are  qualitatively stated. eg.,
proportionality may be amserted, but not a specific
function. QS then tracks the situation from one
qualitative state to another by predicting the changes in
the ordinal relationships of the quantities.

We have proposed a different approach called
consolidation (1|, which is a type of qualitative analysis.
The behavior of the situation is discovered by inferring the
behavior of selected substructures of the situation from the
behavior and structure of their constituents. Successive
application of this process on increasingly larger
substructures results in inferring the overall behavior of the
situation.

It would appear, then, that QS and consolidation are
rival methods for the same problem. We shall show.
though, that they apply to two different probiems of
behavior inference. The commonalities of the two
problems leads to interesting implications about the role of
consolidation within a complete theory of reasoning about
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behavior. Most of the implications described here concern
certain difficulties in QS, and how consolidation can be
used to handle them. An additional implication pertains
to the behavior representation that is used if both QS and
consolidation are integrated within a commonsense
reasoner.

Our discussion will be divided into three parts. First,
we will summarize two quite different approaches to QS,
namely those of Forbus ‘4 and de Kleer and Brown (3],
and also outline our consolidation approach. Second, we
will identify the different problems that QS and
consolidation attempt to solve. Third, we will examine the
implications that result from the problems that they work
on and the methods that are proposed for solving them.

2. Different Approaches to Inferring
Behavior
In addition to summarizing the basic ideas and methods
of each approach, we will show how they apply to the
example situation pictured in figure 1. In this situation, a
flame is under a pan which holds some water. Both the
flame and the pan are located in a room.

room

pan :

i m

Figure 1:

Example Situation

We will talk a great deal about quantities, so a
description of them is in order. Quantities are used to
represent the real-valued parameters of the QS. So at a
specific point of time in a specific situation, a quantity
within that situation has a particular real value. For
qualitative reasoning, though, always assigning a quantity
an actual number is forbidden. Instead important numbers
and ranges of numbers are identified as relevant to the
quantity (Forbus calls these sets of numbers and ranges
quantity spaces}, and the quantity's relationship within the
quantity space is its “value.” In addition, the quantity's
direction of change (up, constant, or down), i.., its
qualitative ‘‘derivative,” is maintained for the purposes of
the QS, in order to anticipate what its next value will be.

Each of the following descriptions is necessarily too brief
to completely describe each approach, 3o much
simplification has taken place. However, they should be
accurate enough for the purposes of this paper.

2.1. The Conflucnce Approach of de Kleer &
Brown

This approach models behavior using confluences.

Roughly, confluences are qualitative equations involving

quantities and their derivatives. For example, the

following confluence:

X+Y=0

indicates a constraint on the signs of the quantities X and
Y. For example, if X is positive, then Y cannot be positive
or zero because then X + Y would be positive, thus Y
must be negative. Confluences may also be applied to
derivatives of quantities (X denotes the derivative of X),
30 one can specify how quantities move up or down in
relation to other quantities. Confluences may refer to any
number of quantities or derivatives, and while it is
preferred that confluences use only simple addition or
subtraction, other operations are allowed.

No agent can be expected to have the set of confluences
for each situation that it will experience, so there is a
need to describe the structure of a situation, and the
behavior of each part of the structure. For de Kleer and
Brown, the elements of a situation map into disjoint
components, which are related to one another via
connections. Each component is modeled by a set of
quantities, and a_ set of qualitative states. "Each state
specifies when it is active, and a set of confluences which
hold when the component is in that state, ie., the way
the component behaves in that qualitative state.
Confluences and conditions on qualitative states only
reference the components’ quantities.

The connections indicate where material is permitted to
flow from one component to another. The components of
a connection specify which of their quantities are associated
with the connection, and the connections are used to
determine additional confluences which constrain these
quantities. These confluences are used to enforce
qualitative versions of general consetvation laws, and
provide the only means for interaction between
components.

The QS is done by a method cailed envisionment, which
is a combination of constraint propagation and constraint
satisfaction. It is important to note two aspects of
envisionment, one concerning the prediction of a temporal
sequence of events, and the other with the production of a
causal explanation for the values of quantities at each
moment of time. For predicting the sequence of events,
just constraint satisfaction will do, i.e.. begin by
determining values for all the quantities which satisfy the
confluences, determine which quantity or quantities will
next deviate from its current qualitative value, and repeat,
solving the confluences (which may have changed because
of a change in qualitative state) for the new values.’

Envisionment, however, does not simply satisfy the
confluences. Instead, an input disturbance is selected, and
its effects are propagated from component to component.
If there is not enough information to determine all the

“This is highly simplified since there can be many
possible solutions, and many possible “‘next deviations.”
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quantities' values, then an assumption about the value of a
quantity is made based on heuristics (which de Kieer and
Brown have derived from how people explain behavior).
and the propagation continues. The path of the
propagation and assumptions is wused as a causal
explanation of the quantitics’ values.

For figure 1, the flame, the pan, and the room would be
considered the components, and would be connected to one
another. The water in the pan is not modeled directly,.
but by appropriate quantities associated with the behavior
description of the pan. Heat and temperature are also not
directly modeled, but each component (in a more complete
model than the one below) would have appropriate heat
quantities. For simplification, we will not model boiling or
the water vapor that escapes from the pan.

Figure 2 is a simple model of this situation. The flame
and room have ideal models of unchanging temperatures
(8T, = 0). The temperature of the pan varies with the
amount of heat flow (represented by the pan's confluence).
The heat changes with respect to how much heat flows
into (or out of) the pan. Each connection specifies that
the amount that flows from one component is the opposite
of the amount that flows into the other component. The
amount of the flow has the same sign as the difference in
temperature.’

flame - quantities: T, (temperature),
Qf__’ (heat flow from flame to pan)
Q;_, (heat flow from flame to room)
confluences: 31: =0
pan - quantities: T, Q. _o Q__
confluences: STP‘:- Qp.pf “ Q=0

room - quantities: T, Q__p Qr—p
confluences: T = 0
each connection - confluences: Ql‘ +Q,=0
Q=T-T

Figure 2: Example Model Using Confluences

Suppose that the pan and the room initially have the
same temperature, which is lower than the flame’s
temperature. Taking the temperature of the flame as the
input disturbance (we can imagine that it has been just
turned on), from the confluences of the connections, heat
movement from the flame to the room and pan can be
inferred (e.g., T; - T  is positive, causing Q,_p to be
positive, and Qp_, to Tn negative). Since the room and
the pan are the same temperature, there is no heat flow
between them (T, - T, is zero, causing Qp_' and Q,__ to
be zero). Then from the pan’s second confluence, the
pan’s temperature must be increasing (Q__, is negative,
and Q’_' is zero, making aT P positive). At the next

‘This last confluence is not quite accurate since if both
temperatures are positive, nothing can be concluded about
heat flow, ie., positive minus positive is indefinite. We
will assume that it means, e.g., that Q, is positive when
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moment of time, the pan's temperature will be higher than
the room's, thus heat will flow from the pan to the room.
It is now unclear how long the pan’'s temperature will
continue to increase, and it appears possible that the pan's
temperature may start to decrease (since Qp_f is negative,
and QP_ positive, any sign of an satisfies the
conﬂuence.r) Adding more confluences can resoive this
latter difficulty. If and when an becomes zero, adding
aQ, = dT, - 3T, to the connections’ confluences will
predict that both p-f and an_r become zero. Now
adding 3T, + BQ’_, + 8Q, ., = 0 to the pan’s
confluences will predict that the pan’s temperature will
stabilize.

2.2. The Qualitative Process Approach of Forbus
Forbus introduces a notion cailed qualitative process to
account for change and explain why it occurs. Qualitative
processes (QP) perform a similar function as confluences,
i.e., they both specify behavior and interaction, but the
way QPs are defined and applied is very different. First,
we need to discuss some of the things that QPs refer to.

Situations are made up of objects, predicates on objects,
and relationships between them. Forbus does not provide
a specific set of relationships, leaving it to the implementor
to determine what relationships are relevant to the
situation. Additional “individuals™ and relationships may
be asserted by individual views, which consists of a set of
conditions, and the relationships which follow from them.
An individual view is used to ‘“view’ a group of objects as
Contained-Liquid individual view. As before, objects and
individuals are modeled by a set of quantities.

The only kind of behavior description which may be
directly associated with an individual is qualitative
proportionality between two of its quantities. This simply
indicates that a change in one quantity will affect the
value of the other quantity. The ‘'direction™ of the
proportionality is important, indicating which variable is
the dependent variable of the relationship.

QPs are the mechanism that determines when changes
occur. Unlike confluences, a2 QP is not part of a
individual's behavioral description, but is a general rule
which indicates the conditions which cause a quantity or
quantities to change in a certain direction. The conditions
may refer to any number of individuals. Neither a QP
nor a qualitative proportionality guarantees that a quantity
will actually change in a certain direction since there may
be several active QPs or proportionalities which affect the
same quantity. The actual change in a quantity will be
the sum of the effects on it.

The QS works as follows: find all the individual views
and QPs which are active (whose conditions are true);
determine the effects inferred by the QPs and indirectly by
any proportionalities; determine what the change(s) will be,
viz., a quantity or derivative changes to a new value a a
new QP becomes -u:tive. or a previous QP becomes
inactive; and repeat.

“Since many QPs can affect & single quantity, its
direction of change may be ambiguous.
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The
Preconditions, and QuantityConditions sections specify the

heat-flow
Individuals,

For figure 1, the primary QP will
process displayed in figure 3.

conditions for a heat-flow process to be active. A heat-
flow process requires two objects which can store heat, and
an object called a heat-path which connects them. It also
requires that the path be Heat-Aligned (meaning that there
is nothing blocking the flow of heat along that path), and
that the temperature of “sr¢” (“A" is a function which
refers to the amount of a quantity}) be greater than the
temperature of ‘‘dst’. The Relations section specifies
additional relations that hold while the process is active.
In this process, a quantity called ‘‘flow-rate” is created
which is greater than zero. The Influences section specifies
the effects on quantities. In this case, there will be a
negative effect on the amount of src’s heat, and a positive
effect on dst's heat. The amount of this effect is the
amount of flow-rate.

process heat-flow

Individuals:
src an object, Has-Quantity(src, heat)
dst an object, Has-Quantity(dst, heat)
path a heat-path, Heat-Connection(path, src, dst)

Preconditions:
Heat-Aligned(path)

QuantityConditions:
Altemperature(src)] > Ajtemperature(dst)

Relations:
Let flow-rate be a quantity
Aflow-rate. > ZERO

Influences:
I-(heat(src), A'flow-rate’)
[+(heat{dst), A flow-rate))

Figure 3: The Heat-Flow Qualitative Process

The situation in figure 1 can be modeled with the flame,
the room, the pan, and the water as objects with heat-
paths between the flame, room, and pan. The flame,
room, and water each has quantities of heat and
temperature. Again, assume that the temperature of the
room and the flame remains constant, the flame is hotter
than the room, and the room and water are initially the
same temperature. Also, the temperature of the water is
proportional to the amount of its heat. We will assume
that heat-paths to the water are inferred from the
Contained-Liquid individual view, or something similar.

Initially, two heat-flow processes are active, from the
flame to the room and from the flame to the water. The
amount of the water’s heat will increase, which because of
the proportionality, implies that the water's temperature
will increase. Since the temperature of the water and
rcom are now different, another heat-flow process from the
water to the room becomes active. Now the same
problems as before reappear. It is questionable how long
the water’s temperature will continue to increase (one heat-
flow process has an increasing effect, and the other has a

decreasing effect), or even decrease at a later point in
time. To avoid the latter problem, the heat-flow process
needs to be modified so that the flow-rate is proportional
to the temperature differcnce, and that the flow rate
approaches zero as the temperature difference approaches
zero. With this modification, if and when the derivative of
the water's temperature becomes zero, then the derivatives
of all the flow-rates will become zero, and the situation
will stabilize.

2.3. The Consolidation Approach

The consolidation approach uses a structural model
similar to de Kleer and Brown's, adding an additional
structural relationship called containment. Things like
water and heat are then modeled as substances which are
contained by the components of the situation, or perhaps
other substances, e.g., water contains heat.

Behavior is modeled by specifying the actions (themselves
called behaviors) that are performed on substances.
Possible actions include:

* Allow. Permits movement of a substance from
one place to ano.her

* Pump. Attempts t> move a substance through
a path.

* Expel. Attempts to move a substance from (or
to) a container.

* Move. A substance moves from one place to
another.

* Create. Creates a substance within a container.

* Destroy. Destroys a substance within a
container.

Each action specifies the kind of substance that is affected,
and the location(s) (containers and connections) where it
takes place. Each behavior may have a number of
parameters or quantities whose values may be real, but is
not restricted to be so, e.g., the “rate” of a move signal
behavior might be “on™ or “off.” A quantity may refer to
parameters of behaviors that need be inferred, indicating
that the behavior is dependent on other behaviors, e.g., the
amount of the create light behavior of a light bulb is
dependent on the rate of a to-be-inferred move electricity
behavior through the light buib.

A component is modeled by specifying its structure, i.e.,
its containers and potential connections, and the behaviors
which take place within that structure (loosely termed the
component’'s behaviors). A component may have several
behavioral states, each of which are associated with a
different set of behaviors. Each state indicates the
condition (a predicate on behaviors) in which the state is
active.

Consolidation gets its name from the processing that this

*It is not clear whether Forbus's system can currently
perform this analysis, but it is easy to imagine that it can
be modified to do so.
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approach proposes. The major processing sequence is to
instantiate a composite component consisting of a selected
subset of components (currently restricted to just two
components), and then to infer the behavior of the
. composite from the behavior of the components.
Performing consolidation om increasingly larger composite
components results in inferring the behavior of the whole
situation. As a byproduct, a hierarchical behavior
structure is produced which explains how the overall
behavior is caused by the components’ behavior.

Behaviors of composite components are hypothesized
based on causal patterns of behavior and structure. Their
existence is confirmed, and their parameters are determined
using knowledge about the physics of the substances being
acted upon. Roughly then, causal patterns are used to
infer behaviors which arise from combinations of other
behaviors, and once ‘a pattern is matched, substance-
specific knowledge is called upon to fill in the detaiis.
Figure 4 illustrates several causal patterns. For example,
the serial allow pattern states that if two allow behaviors
aré in series, then infer an allow behavior over the whole
path.

Allow S from A to B
Allow S from B to C
===> Allow § from A to C.

Serial Allow:

Pump S from A to B
Pump S from B to C

===> Pump S from A to C

Serial Pump:

Expel S from A

Expel § from B

Allow S from A to B
===> Move S from A to B

Expel Move:

Figure 4: Example Causal Patterns

The- components of the figure 1 would be the flame, pan,
and room, which would all be connected to one another.
The pan contains water which contains heat. Both the
flame and the room contain heat. Each component has an
expel heat behavior whose amount quantity corresponds to
the component’s temperature. Each component also has
allow heat behaviors from its heat container to its
connections, and vice versa. The amount of the pan’s
expel heat behavior is dependent on the amount of heat in
the water. The amounts of the other two expel heat
behaviors are constant.

Suppose that the pan and flame are initiailly considered
for consolidation. Using the serial allow causal pattern, an
allow heat behavior between the pan and the flame is
inferred from their individual allow heat behaviors. Using
the expel move causal pattern, a move heat behavior
between the flame and the pan is inferred from the two
expel heat behaviors and the just inferred allow heat
behavior. The rate of the move heat behavior corresponds
to the temperature difference between the flame and pan,
i.e., the difference in the amounts of the expel heat
behaviors. Combining the flame-pan composite with the
room results in similar use of the serial allow and expel
move patterns. The result of consolidation is that there

are move heat behaviors between all of the heat containers.
and their rates depend on the temperature differences
between them.

3. Differences in Information Processing

Consolidatics, unlike either QS approach, does not
produce a sequence of events as its output, yet all three
approaches claim to derive the behavior of a situation.
Each approach starts from similar modeis of the situation,
and makes inferences about behavior, so how can the final
resuit, conclusions about the situation’s behavior, be
different? The not-so-earthshattering answer is that
consolidation provides a different sort of conclusion about
behavior then QS does. QS and consolidation solve two
different problems.

3.1. Two Types of Behavior

Part of the confusion comes from the fact that
‘“behavior” is an ambiguous word, and that QS and
consolidation pinpoint two of its meanings. The behavior
that QS outputs is a temporal sequence of events or states
that are predicted to occur in the physical situation.
Starting from some knowledge about initial state of the
situation, QS attempts to determine a qualitatively
complete description of the quantities in the initial state.
Using this description, it predicts what the next. change
(quantities or derivatives changing qualitative value) will
be, and determines what the next state will be based on
the previous state and the predicted change. By repeating
this process, QS pred'tcts the sequences of events that the
situation goes though.

Consolidation outputs what we will call the potential
behavior of the situation. For example, the move heat
behavior between the flame and the pan does not
specifically assert when or if heat moves, but that the
situation is ripe for heat movement to occur, and that the
rate of heat movement can be calculated if some other
facts are known, in this case, the temperatures of the
flame and pan. The behavior is an indication of what
potentially may happen, and points to other information
on which this potential is dependent.

3.2. The Information Processing Tasks

The information processing task of a problem is a
functional specification of the problem in information
terms, i.e., the information that the input and output
represent. The previous paragraphs have aiready identified
what the outputs of QS and coasolidation are, so here we
will attempt to characterize the inputs.

All the approaches require a structural model of the
situation as part of their input. The careful reader will
have noticed that ail the approaches also require some
description of how the elements of a situation will behave.
In de Kleer and Brown's approach, each element
(component and connection) has a behavioral model. In
Forbus’s approach, each element is modeled by a set of
quantities and relations and the interactions among

‘It must be remembered that the sequence of events is a
qualitative description, so it represents a wide range of
actual sequences. Still, the form of the output is temporal
and event-based.
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elements are described by QPs. In the consolidation
approach, each element has a bchavioral model, but some
general knowledge about the behavior of substances is kept
elsewhere.

We have already noted that ‘behavior” is an ambiguous
word with at least two meanings. Does each approach
require a new meaning of behavior to describe its input?
Our answer is that the. input behavior (the behavioral

description that is input) of each approach corresponds to.

the sense of potential behavior as described above.

Our argument is as follows. None of the approaches
model input behavior as a sequence of events, so that
meaning of behavior doesn't apply. The input and output
behavior in the consolidation approach are couched in the
same representation language, so the input behavior is of
the same type as the output. For the QS approaches, the
quantities of the situation’s elements and their
corresponding quantity spaces specify what may potentially
happen. Dependencies between quantities are represented
by confluences and qualitative states in de Kleer and
Brown’s approach, and by proportionalities and QPs in
Forbus's approach.

Thus the information processing task of QS is:

structure of situation + potential behavior of elements
==> sequence of events

For consolidation, the information processing task is:

structure of situation + potential behavior of elements
==> potential behavior of situation

3.3. Understanding Physical Behavior

What does it mean to understand the behavior of a
situation? The two tasks have different views, and would
appear to argue against each other as follows. The QS
task would say that understanding behavior means being
able to determine temporal relations between events. A
model of behavior is useless unless it can be used to
predict or explain what happens.

The consolidation task would grant that determining the
events is important, but would note that QS works
because the elements of a situation are well understood,
i.e., QS is given a model of their potential behavior.
However, QS doesn't provide a true understanding of the
situation because it doesn’t produce a like model of the
situation’s potential behavior.

Both sides of this debate miss a plausible compromise.
Neither task represents a complete understanding of
physical behavior, e.g., neither task takes on the problem
of designing devices. Understanding, then, does not consist
of being able to solve a single information processing task,
but in applying a range of problem solving abilities to
complex problems. Both QS and consolidation can be
viewed as different modalities of understanding behavior.
For some problems, QS will be the primary modality,
while in others, consolidation will be, while still yet in
others, both QS and consolidation will be secondary,
perhaps not even needed at all.

4. Implications

Most of the implications in this section identify areas
where consolidation can play an’ important role in
reasoning about behavior. Since consolidation takes the
same input as QS, it directly competes with QS for certain
kinds of reasoning problems. However, to determine what
the sequence of events are, QS of some kind is definitely
needed, but as argued below, consolidation can still be
used to simplify the work of QS.

4.1. Initial Conditions

Suppose that in figure 1, no initial conditions (initial
values of quantities) were known, but some statement
about the situation's behavior is still desired. Without
initial conditions, QS is unable to start. The best that
could be done would be to enumerate all the possible
initial conditions and perform QS on each possibility. An
enumeration of initial states might be small in this simple
case, but in more complex situations, there would be many
possible initial states.

Consolidation can proceed without assuming any initial
conditions, and in fact, the processing described earlier did
not do so. If we examine more closely what the final
result looked like (figure 5), it is not hard to see why this
is the case. Each quantity is defined not in terms of
specific values at specific moments of time, but in terms of
how it is dependent on other quantities. Thus if the pan
happened to be hotter than the flame, then the rate of
heat flow from the flame to the pan would be negative,
indicating that heat would flow from the pan to the flame.
Figure 5 is a condensed representation of potential
behavior which can be directly used to answer questions
and for other purposes, including QS.

rate/move heat from flame to pan
= proportional( amount expel heat from flame’
- amount expe!l heat from pan)

rate{move heat from flame to room|
= proportional( amount expel heat from flame!
' - amount expel heat from room;)

rate{move heat from pan to room|
= proportional( amount/expel heat from pan|
- amount{expel heat from room!)

amount|expel heat from pan]
= proportional( amount’heat within pan )

amount(expel heat from flame] = constant

amount|expel heat from room' = constant

Figure 5: Results of Consolidation

4.2. Open Systems

A similar problem for QS is deriving the behavior of
situations which are open systems, i.e., there is interaction
between the situation and the outside world. Without
knowledge of what these interactions are. the value of each
quantity that can be affected becomes indeterminable.
Enumeration of all conceivable outside interactions is not,
in general, a feasible solution since the number, kind, and

."' DR L RX By b ¥'. L Y . ..'f.."\-“.‘i’._-'._-' .'f‘~-..,'-_‘-’s-_:.f‘;-'_;.‘_:-'_;q'.‘.'_'{ _'.“;.- '.\l': \-".._.. :~".‘~,‘ _. KA _-' ‘..~. ‘.: . ‘-_ .. ’..: > 2t e



Sl A

Sy i Yoo Y W

g

1
"i'
order of interactions can vary greatly. However, the on their representations, while Sembugamoorthy and
ability to reason about open systems seems to be necessary  Chandrasekaran generate a diagnostic system from theirs), :ﬁ
for understanding behavior since most situations that an they have the common feature of hierarchical ,&'_f
agent could be expected to encounter are open systems, representation of structure and behavior. Consolidation is
and parts of situations are by definition open systems. potentially applicable for generating, explaining, and
verilying behavioral descriptions at each level of the i
By providing & condensed representation of potential  hierarchy. Since qualitative simulation is not suited to A
behavior, consolidation gives a solution to describing the  hierarchical descriptions, it is hard to see how it can
behavior of open systems. If we changed the model of the applied. .
room in our example so its temperature could fluctuate, K
and it had a potential *“heat connection” to the outside, The behavioral structure that consolidation produces o
the result of consolidation would not be fundamentally could also be used for diagnostic reasoning. There are two
changed. The only difference is that the room could gain  possibilities. The first is if an inferred behavior does not
or lose heat through other interactions. Heat will move occur when predicted. In this case, there must be some "
among the room, flame, and pan in pretty much the same change in what was supposed to cause the behavior to LA
way. occur. The second, more difficult case, is if some some
behavior occurs when it is not predicted. Since this ~
4.3. Causal Explanation behavior must have been caused, every causal pattern *g
Two types of causal explanation correspond to the two  which can imply this behavior becomes a potential LN
types of behavior defined earlier. QS emphasizes the hypothesis. The possible ways that this pattern can be
causality of temporality and propagation, i.e.,, the current satisfied are subhypotheses. For example, if substantial R
state of the situation leads to the next, and the value of heat is unexpectedly moving from one place to another, ‘;
one quantity changes (via some confluence or QP) the one possibility is that the expel move pattern was satisfied. e
value of another quantity. Consolidation emphasizes the This pattern (with knowledge about heat) requires that the
causality of composition, i.e., the behavior of a group of two places have different temperatures, and that there is ‘.
components arises from the behavior and structure of the some path between them along which heat can flow. 'i
individual components. Another debate like the device Different possible heat paths constitute different
understanding debate could be promulgated at this point subhypotheses. This kind of reasoning could also serve as
with probably the same resuit. Neither type of causality is  the basis for learning how things behave. e
necessarily superior to the other, but their usefuiness o
depends on the particular problem to be solved. It is  4.6. Representation i
worthwhile to note that there is obvious causality ia Both consolidation and QS have the same kind of input,
situations with unknown initial conditions and in open so representations of potential behavior should be amenable =
systems (consider two batteries connected in series). to both kinds of problem solving. From the consolidation !
Consolidation can be used to point out this aspect of point of view, representations should facilitate the
causality. composibility of behaviors. The representations of the QS -
approaches do not have this property. e
4.4. The Complexity of Qualitative Simulation 0
QS is a global reasoning process. To perform the In de Kleer and Brown's representation, consolidation
simulation for a particular moment in time and to check if would need to derive the confluences and quantities of -
it has been done consistently, all the elements of the composite components from the confluences and quantities I
situation must be taken into account. For example, the of individual components. Simply appending the models of e
derivative of every quantity must be examined to update the confluences and their connections together into one
the quantities’ values. This is true no matter the number  description doesn't provide any additional information at
of quantities and confluences (or active QPs) the situation all and would eventually make composite components too D
model has. The nature of QS prevents a hierarchical complex for comprehension, 30 these confluences need to be .Y
breakdown since any part of a situation is very likely to  simplified. Unfortunately, equation operations like
be an open system, and also becauss the information gubstitution do aot apply to confluences. For example, the =
processing task of QS is not recursive. The output is not  following deduction is incorrect for confluences. =
the same kind of information as the input. A
W=Y+2Z and X=Y+2Z ==> W=X
ml:mﬂgycm;lxam no:“:‘an Q:. ﬁdwhe;p llki;l:‘: gn‘v ist n'.'m"‘t hu\d Zis pou;t.':.o, w ‘:dmrx cn“n. llm;: e
potential behavior description of the situation or disjoint d:n:“n t"?nl.l W o?;h.m y c‘:’: tction, ¢ e.f ore a = -
parts of it, and QS can then be applied to the reduced not loflow. s ins ility to simplify contuences
. . . ) would make it extremely difficult to use consolidation on .
situation. In other words, even if a sequence of events is this representation “
the desired output, consolidation can be used to reduce the rep ‘ "_\
apparent complexity of QS. The initial difficulty for consolidation with respect to
. . Forbus's representation is that composing behaviors doesn't -
4.5. Diagnosis ™ : .
. . make any sense. Individuais do not have behaviors; i
The introduction suggested that robust domain models . .
would lead to better diagnostic reasoning. Some recent :::::EWQP; m‘fy .‘f" :;:“ '.?:“' that "‘:‘ plu&o.t g;'
research is based on diagnosing from a representation of il e ¢l pefuy p:n components 3o that Qt's
the structure and function of the domain 3, 2, 6. While = COTCLY SRR to tlem. e EWING  composite
this research varies on a number of details (e.g., both :::”:ﬁ?"m:i:‘ ':'::‘:i':"”h:;or;:mx ":l.ne “‘::':l ]
Genesereth's and Davis's systems perform diagnosis based 0" 1nd the substance knowledge that consolidation ]
n
N
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currently uses. For example, to derive the voltage
quantity for two batterics in series, we need to know that
the two batteries will have its own voltage quantity (a
pump electricity behavior is caused by two pump
electricity behaviors in serial), arnd that in this kind of
configuration, voltage is additive (the electrical knowledge
that is invoked when the serial pump pattern is satisfied).
So Forbus's representation has no special advantages, and
would actually obscure the underlying regularity (the serial
pump causal pattern). Another difficulty is when a
process occurs inside the composite component, e.g.. heat
moves within the flame-pan composite.

4.7. Caveats

Currently, consolidation is not able to model all the
phenomena that the QS approaches are abie to. Also.
there may be certain kinds of situations in which
consolidation would not work very well.

Forbus's approach is able to handle spatial reasoning
that is more complex than the connection and containment
variety. For example, he can model, to a limited extent,
motion and collision of objects. Forbus can also model
properties of material, changes in material, and changes in
structure. Consolidation has not been extended to cover
these phenomena.

One possible problem for consolidation is constructing a
plan for composing components in a sensible way. We are
developing general heuristics for making this decision, eg.,
select composite components with as few outside
connections as possible. Also, domain knowledge couid
provide additional heuristics. In some cases, this won't be
an issue because a structural hierarchy will be imposed by
an outside agent.

The analysis that consolidation provides holds only as
long as the components remain connected in the same way.

- If a connection (or a component, for that matter) is

created or destroyed, then much of the analysis will be
invalid and must be redone. This need for reanalysis
would make consolidation poor on situations where the
structure frequently changes.

Currently, consolidation is heavily tied to dividing the
elements of a situation into components and substances.
In some situations, this division cannot be strictly applied.
It is usually reasonable to model a light bulb, for example,
as a component, but to be able to reason about a ball
colliding with the light bulb, the light bulb would need to
be modeled as a substance which is contained by the space
it is in, and the ball is trying to get into the same
“container.”  Since this will probably affect the light
bulb’s behavior, the two perspectives need to interact. A
change of perspective is also necessary for substances which
can viewed in different ways. For example, Davis (2] notes
that the bits within a digital circuit also need to be
analyzed as electricity in order to wunderstand certain
problems such as power failure.

5. Conclusion

In the previous section, we have stressed the merits of
consolidation in comparison to qualitative simulation. To
understand what we wanted to accomplish by this, the full
context of the discussion must be considered. We have
carefully, although briefly, summarized three methods that
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perform qualitative reasoning about physical behavior. We
have shown that one of these methods, consolidation,
solves a different information processing task than the
other two methods, which both perform qualitative
simulation. Thus consolidation cannot directly substitute
for qualitative simulation. However, all the methods
accept the same kind of input, and their output is about
behavior, albeit different aspects of behavior. It is possible
that this difference is uninteresting, e.g., it might be that
wherever consolidation can be used, qualitative simulation
can be used to achieve the same effect. Therefore to
understand the role of consolidation and the relationships
between these tasks, we have shown where consolidation
play a major role in qualitative reasoning.
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Abstract

In this paper, we wish to make three coatributions to Naive
Physics in the coatext of reasoming about devices. (1) We
discuss some limitations of curreat qualitative simuiation
approaches with regard 0 a aumber of isswes in understaading
device behavior and point %0 the aeed for additional processes.
(2) We introduce & mew approach to deriving the behavier of
devices called comsolidation. [n this approach, the behavior of 3
device is derived from the behavior of its compoments by inferring
the behavior of selected subetructures of the device. (3) We
preseat an oatology of behavior and structure which s well-
suited to the comsolidation process. This omtology makes i
possible to mate rules of behavior composition, iLe., simple
patterns of behavior and structure are used to infer additiosal
behaviors.

1. Introduction

Naive Physics is the commonsense kaowledge that people have
about the world. This knowledge includes the ability to
qualicasively uaderstand the behavior of physical systems. Ouwr
investigation is presestly comcermed with a subset of physical
systems, (ocusing on designed artifacts or devices. Ultimately, we
are interested in developing 2 represeatation which is applicable
to a wide variety of understanding probleme. However, the
cesearch described here is comducted specifically om the problem of
deriving the behavior of a device given its structural descriptioa
and the behavior of its components.” We hope to integrate the
results of this research with other work concerning the fumctional
representation and diagnosis of complex devices [8}.

One recent approach to this problem is  guelitative
simulation ‘2, 3, 3. The description of the device determines the
relevant quantities and coastraints of the simulation, a simulation
is performed, aad the results are tramsformed into interpretations
of the device’s overall behavior.

This differs from quaatitative simulation in several ways.
Instend of assigning specific values to a quamtity, oaly its ordimal
reistionship to importaat cosstants or other quaatities is stated.
Comstraints are also qualitatively stated, ¢.g., proportiomality may
be asserted, but not a specific function. [a additioa to comstraiat
satisfaction (the anmalogwe of simulation by semerical methods),
the techniques of qualitative simulation isclede comstraing
propagation, amd matching descriptions of poteatial processes.
The process of interpretation extracts state tramsitioa information,
sammarising the possible behaviors and inferring causal
relationships between device states.

‘Other problems iaclude desiga, diagnovis, planaing (using
devices to accomplish a goal), esc

We proposs aa altermative aspproach that is a type of
qualitative amalysis. The behavior of the device is discovered by
inferring the behavior of selected substructures from the behavior
and structure of their compoments. Successful application of this
process oun increesingly larger substructures resuits in inferring the
behavior of the device. Thin approach, called consolidetion, has a
aumber of desirable properties, including localised reasonming stepe,
caussl aaalysis of behavier, and comsistency of represeatatios.
Coasolidation is not intended to be a complete solution to the
inference—of~behavior problem, but where & can applied, we
believe that it is & bester altarmativ: for amalysing and explaining
behavior. We wish 0 emphasise a8t this point that an
implementation of this approach is currestly ia progress.

The notica of reducing complexity by resscaing about a gromp
of subcomponents 20 a single abstract composent is shared by the
work of Sussman and Jtesle (7| and s embodied ia their notion
of “slices.” However, the aims aud methods of their proposal
make the details very differemt.

First, we argue that qualitative simulatioa has several
undesirable characteristica as a Naive Physics theory. Next, we
introdece comsolidesion, dividing the discussion into the
description of compoments and the imferemcs of behavior. A
difficuis exampie is thea amalysed. Pimally, unresoived issues are
discuseed.

2. Critique of Qualitative Simulation

2.1. Complexity

One desirable property of a Naive Physics theory is smplicaty
of compuistion. While curreat theories of qualitative simulation
(QS) may be wseful for providing upper bounds on the
competence of qualitatively reasoning agents, they are
unsasisfactory to accouat for human reasoming behavior due o
the following two reasoas.

Fust, QS is a global ressoning process. To perform the
simulation for a particular point in time and to check if it has
been dome comsistently, all the quaatities and constraints must be
taken into account. To go from ome time poiat to amother, the
derivative of every quastity must be examined to update the
quantities’ valwes. This is true no master the oumber of
quantities and coastraints the device has. A hierarchical
breakdown is difficult becawse QS relies on nearly—closed systems
(boundary conditions muwst be kmowam or eaumerable) and onm
comstraiat propagation.  Forbus's notion of p—components (3|
provides a method for subdividing a sitwation into independ
parts. However, when the parts are more mutually dependent as
in a device, additional techniques are called for.

Second, some theories of QS involves substential mathematical
ies and their derivatives must be carefully
hmdlod 10 tllu comstraints are aot violated, and comtinuity is
maintained. Siace the coastraints are stated in terms of
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arithmetic and differential relationships, constraint propagation
and checking for i y require a considerable amount of
mathematical reasoning. [t must be stated, however, that
Forbus’'s approach avoids much of the complexity of coastraint
propagation by restricting the paths over which propagation can
occur.

2.2. Causality

Another desirable property is explaining the device's behavior in
terms of the behavior and structure of its components; we want
to know the camsse of the device’s behavior. Causality in some
theories, especially the confluence theory of de Kleer & Brown (2|,
is identified mainly with the propagation of values through
constraints.

The major problem with this posicion is that causality is
viewed as a ‘last straw’' phenomenon, ie., the saying ‘‘the last
straw broke the camel's back’” would be translated, in this view,
to “‘the last straw was the cause of the camel's broken back’.
De Kleer & Brown admit that their version of QS does not
identify ‘‘the support which enables the causal action path to
exist” {1]. However, it seems wromg to omit the support from a
causal account, since the support may include the primary causal
processes of the effect (e.g., most of the weight is already on the
camel’s back).

2.3. Representation

QS theories require descriptions of components to specify their
outward structure, the quantities that are involved in interaction
with other components, the constraints on those quantities, and
the behavioral states.” This description may be thought of as
the behavioral laws of the component. On the other hand, the
representation of device behavior does not describe its behavioral
laws, but is 3 network which shows the temporal {and causal)
sequence of the components’ staces. {f this process were to be
repeated one more level (i.e., where the device at this level
becomes a component at the next level), QS is not helpful, since
&t needs to have the behavioral laws of the device. This twin
representation of behavior together with the global nature of QS
limits the applicability of this approach.

Another problem with current representations is the ontological
impoverishment of a theory primarily based on quantities and
constraints. [t is the burden of the modei-builder to insure that
the right types of quantities and constraints are represented and
consistently defined. While there are guidelines for how to do
this, these guidelines are outside the representational system. For
example, Ohm’s law is very significant for describing the behavior
of electrical components. However, Ohm's law itself is aot
represented in QS, but s compied imto each component
description that depends on it.

3. Consolidation: Description of Components

Components interact with other components. The interaction is
not just about components, but about the ‘“‘scuff or substances
which potentially move between components and affect their
behavior. What does a component have so that interactions can
occur? We believe that a3 commonsense answer has two parts.

"Different “‘behavioral states” are associated with different sets
of constraints. The total state of a component is its behavioral
state and the values of its quantities.

“"This criticism doesn't apply to Forbus's Qualitative Process

theory 3, ie.. a single qualitative process description can be
used to represent Ohm's law.

X

One thing a component has is structure. On its exterior, it has
places which are used to connect it to other components. Ou its
interior, it has places which hold or contain substances. The
other thing a comp has is beh ., how it acts and is acted
upon by substances. This section discusses how we represent the
structure and behavior of components; the following section
describes what inferences this representation supports.

3.1. Structural Primitives

Like de Kleer & Brown, we will use connection to signify that
one component is attached to another component or is otherwise
in meaningful spatial comtact with it. An  example of
“meaningful spatial contact” is the relationship of the surface of
a light bulb with the space around it, which in turn, might be in
contact with something that the light affects. Note that we also
include empty space as a type of component. This is essential
for reasoning about movement cthough space, and about
magnetism and gravity.

We also use contasnment as a structural relationship to
represent the places inside compoments that substances can move
from, move into, and be at rest. These places may or may not
have significant capacity. The importance of this concept for
Naive Physics theories was emphasised by Hayes [4].

For example, the light buib in figure 1 has three connections:
two electricity connections called “endl1’ and ‘‘end2”, and a light
connection called “surface”. [nside of the light¢ bulb, there are
places where electricity passes through, and where light is
produced. To model this, containers called ‘“electrical” and
“light sowrce’” are attributed to the light bulb, and are used in
the behavioral description on the right.

3.2. Types of Component Behavior

Components act upon substances. We propose to describe these
actions by a small set of relationships, using them as a
foundation for representing  additional knowledge about
components and substances. They are:

o Allow. The component permits a specified kind of
substance to move from one place to another.

Influence. The component tries to move a specified kind of
substance. There are two subtypes according to the spatial
relationship of the influence with potential sinks and
sources.

o Pump. The component tries to move 3 substance
through it, e.g., a battery has a pump electricity
behavior from the negative to the positive terminal.
The sink and source are external to a pump behavior.

o Expel. The component tries to move a substance from
(or to) an internal container, e.g., a balloon has a
expel air behavior.

e Move. The component moves a specified kind of substance
from one container to another along a specified path.
Move behaviors are implicitly constrained by the amount
and capacity of the containers.

o Create. The component creates 2 specified kind of
substance in a container, e.g., a light bulb has a create
light behavior.

o Destroy. The component destroys a specified kind of
substance in a container, e.g., an acoustic insulator has a
destroy sound behavior.

For example, the light bulb in figure 1 has allow electricity,



avadl

€ . e @

s s 8 o s e a8 & &N

»
o
.

4

N O R PO P PO L RS
SES G CS CRA N T N S S S S DTN

GYLAVOER
gatei
I allow electricity between endl end end2
#omseccae . thru electrical,
ond2| | reswtance 0, stets closed

s=e=| gwitch | allow sigaal from gate to seaser
| | change state to closed
when [(move signal from gate
| endl to semser. rets oa]

Prccacccas

|

|

|

|

|

| eececcccas + pump electricity frem segative teraisal
| te pesitive termimal thre electrical,
I | bassery emeunt pesitive

(I - | allow electricity between negative term.
I and pesitive termimal tArs electrical,
| t resustance pesitive

|

|

|

I

lend2 allow electricity between endl end end2

taccaa PR thre electrical. resmstance pesitive
[ | allow light between light semrce
+---| light | ead surtace
endl| buld | create light i light seuxce,
| | rets [propertional (magnitude (rets
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Ngure 1: Light Bulb Device

allow light, and create light behaviors (for the parposes of this
discussion, other behaviors of the light buld and other
components have not beem displayed). There are coaditions on
some of these behaviors, which are specified in the details of the
description. For example, the create light behavior is dependent
on movement of electricity. There is more discussion om this
later.

Some componments, such as the switch, have differens behavioral
states, where each state is associated with different behaviors.
An additional type of behavior, change state, specifies a predicate
oa behavior and the next state of the component. For example,
the switch im figure | has two states, opes and closed, where the
closed scate has an allow electricity behavior, and the opem state
does not. The switch also has aan allow iignal behavior, and it
will change state depending om the conatrol signal thas it
ceceives.

3.3. Quantities

We use quantities to describe additional detail about behaviors
and contaimers. Most of the behaviors have a natural
measuremeat: move by rate of movemens, creste by rate of
creation, destroy by rate of destruction, aad influenee by
amount of influence. Also, some behaviors, especially allow
behaviors, may have special quantities which are specific to the
substance. Resistance, capacitance, and inductaace are examples
from electricity. The allow electricity behavior of the light bulb,
for example, has a positive resistance.

Each comtainer has quantities which describe its capacity aad
amouat. The coatainers of the components in figure 1 caa be
modeled with infinitesimal capacity, 30 interesting issues
concerning these quaatities do aot arise. [a section 5, we will
discusse am example in which these quaatities have significaat
behavioral consequences.

Quantities can he used to express how some behaviors are
dependent on other behaviors, i.e., how the component is acted

3

upon by substamces. For example, the rate quaatity of the
create light behavior of the light bulb is described a8
peoportional to the rate of a move electricity behavior which
goes through the light buib.

4. Consolidation: [nference of Behavior

We propose to infer the behavior of a device by a form of
composition. The behavior of selected sub or pont
compongnts of the device is inferred from the behavior aad
stractare of the sabcomponents. Composites are used as
contests for formiang intermediate points of uaderstanding about
the device. This composition is possible because the behaviors of
compoasats as represented above are themselves composable;
cortain behavioral and structwral patterns give rise to additional
behaviors. These cawsal petterns are also used to index into
knowledge about the behavior of substances, i.e., knowledge about
substances is organised around the possible gemeric situations in
which behaviors are inferred.

4.1. Causal Patterns of Behavior and Structure

A causal pasters describes a situation in which a behavior may
ocewr, asserting that if certain behaviors satisfy a specific
strectural relationship, them another behavior of a specified type
may be cawsed.” For example, the propagate pump pastern
specifies that 3 pump behavior in a serial relationship with an
allow behavior will poteatially cause another pump behavior,
eg., & pump electricity behavior between A and B, and an
allow electricity behavior between B aad C may cawse a pump
behavior between A and C. Whether this pump behavior
actually occurs depends o the physics of the substance aad the
details of the sub-behaviors. The following are the causal
patterns that we have discovered so far:

o Seriai/paraliel allow. An allow bebavior caused by two
serial or parallel’” allow bebaviors.

o Parallel pump. A pump bebavior caused by two pump
behaviors ia parallel

o Propagate pump. A pump behavior caused by a pump
and aa allow behavior in serial.

o Propagate expel. An expel behavior caused by as expel
behavior and allow behavior i serial.

o Serial/pacsliel move. A move behavior caused by two
serial or parallel move behaviors.

e Pump move. A move behavior caused by 3 pump
behavior aad aa allow behavior, both om the same path
from ome comtainer to amother. [n this pastern, the source
and sink may be the same comtaimer in which case the
movement is around a circait.

o Expel move. A move behavior caused by aa allow
behavior which ‘‘comnects” an @xpel behavior to another
container.
We do not claim that this list is plet Additional patterns
may be required to reasom about pts like m m, in
which movemeat leads to additional iafluences. However, we
believe that the number of additional patterns will be small.

‘Currently, owr theory does not handle situations in which the
behaviors satisfying a pattern refer to different substances, e.q.,
oil and water.

“"Roughly, two behaviors are “serial”  they share an
endpoint; two behaviors are ‘‘parallel” if they have the same
endpoints.
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Suppose that a composite of the battery and the switch in
figure | is chosen for processing. Behaviors are inferred based on
the causal patterns as follows:

e Using the serial allow paltern, an allow behavior between
the aegative terminal of the battery and end2 of the switch
is inferred. The resistance is determined to be positive from
knowledge about electricity. Since the switch's allow
behavior is active only during the closed state, the same is
true of the inferred behavior. Jince the states of the switch
result im different bebhavior of the battery—switch, the
bastery —switch also has open and closed states.

e Using the propagate pump pattern, a pump behavior
from the negative terminal of the battery to end2 of the
switch is inferred. The amount is determined to be
poeitive.

The causal patterns do not take into account that the battery-
switch will also have the allow signal and change state
behaviors of the switch. In general, those behaviors which affect
the outward behavior of the composite, and which are not
subsumed by an inferred behavior need to be copied to the
composite. Also, note that nome of the causal patterns refer to
create and destroy behaviors. These kinds of behaviors are
transfertcd to the composite if they are connected to the
“‘outside’’ by allow behaviors.

The causal patterns are similar to Forbus’s process
descriptions [3|. Both describe the conditions necessary for some
behavior to happen. One important difference is that the causal
patterns are generic to all substances. While a process
description can be stated at a high level of generality, there is no
commitment by the theory to aay particular level of generality.
In practice, there are different process descriptions for different
types of substances such as liquid, gas, heat, etc. Also, the
process descriptions can be used only when changes occur, while
the causal patterns cam handle situations, such as two bactteries
connected serially, in which no physical change takes place.

4.2. Simplification of Structure

[f a composite simply inherited the structure of its
subcomponents, the description of larger composites would become
increasingly complex, making it harder to reason about them.
This is allayed in two ways. First of all, only the external
connections of the composite become part of its behavioral
description.  For example, the positive terminal of the battery
and endl of the switch would not be referenced in the battery—
switch's description.”

S d posite  comt s may be instantiated as
combinations of several other containers. [n the battery—switch,
the electrical containers of the battery aad switch are bined

quantities. Each substance has procedures which are associated
with the causal patterns, and with other known situations such as
dependencies and the inference of composite containers. For
example, when the serial allow pattern matches on behaviors
involving electricity, the resistance of the caused behavior is
determined by summing the resistances of the causing behaviors.

The reasoning is more complicated when dependencies are
invoived. Suppose that we chose a composite consisting of the
light bulb and switch. This composite will also have a create
light behavior, which should have a rats quantity specified as:

proportional (megnituds (rate
(move electricity detween endl of the switch
and end2 of the light bulb)))

The places mentioned by the dependency must be part of the
simplified structure of the composite. To do this, there must be
knowledge of what paths through the composite will also go
through the light bulb, and the dependency must be modified
accordingly.

4.4. Light Inference

The primary effect of the light buib system is that light is
produced when the switch is closed. Consider now a composite
which comsists of the battery-switch and the light bulb. This
inference can proceed as follows:

o The allow electricity behaviors of the battery—switch aad
light bulb satisfy the serial allow pattern, resuiting in an
allow electricity behavior around the electrical circuit. The
resistance is positive. The behavior is active only during the
closed state.

The pump electricity behavior of the battery—switch and
the allow electricity behavior of the light bulb satisfy the
propagate pump pattern, from which a pump electricity
behavior around the circuit is inferred. The amount of the
behavior is positive. The behavior is active only during the
closed state. .

The two behaviors inferred above satisfy the pump move
pattern, so 3 move behavior around the circuit is inferred.
The rate of the move is positive. The direction depends on
how electricity is modeled.

o This move behavior satisfies the dependency expressed in
the create light behavior of the light bulb. The rite of
creation is calculated as positive.

In the inference of the rate of creation, every behavior of the
components and element of structure which plays some role in
the creation of light has been used in the consolidation process.
The explanation of thius inference promdes a complete causal

to form a single electrical container. The creation of composite
containers is governed by the iaference of behaviors, under a
constraint that restricts bebaviors to reference only a limited
number of comnections and comtainers. For example, the “thru’
attribute of the inferred allow electricity behavior of the
battery—switch may only reference ome container, thus a
composite container is instantiated.

4.3. Physics of Substances
The physics knowledge contains the procedures that are used to
validate inferred behavioes and determine the values of their

Connectinns  which coanect two o more components are
assumed to he internal to the device, unjess declared otherwise.

t of the creation of light sn the light bulbd system n terms
of the components’ behawior and the dewice’s structure.

Also note that all the electrical connections are internal to the
device. Thus no electricity behavior becomes part of the final
description of the device’s behavior. The dewice’s behavioral
description states only what the outward behawor of the device 13,
not how 1t 13 accompirshed.

5. Another exampie

To further illustrate how consolidation works and to explain
additional features of this analysis, consider the situation in figure
2. The source and sink components have containers of water of
differing temiperacures. The source component has an expel
water behavior. There is a connection between the components
which permits the flow of water.
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Pigure 2: Water Containers

A difficulty ia modeling this device is represeating temperature.

ia
We will say that the water within the a and b comtainers contasn
heat, and that water has 3 @xpel heat behavior. The amouat of
the expel behavior correspoads to the water's temperature. This
extended i

Whea water movemens is inferred, heat movement should also
be inferred. The movement of heat will not only affect the
amount of heat, but will affect the amount of the expel heat

e A move behavior of a substance S1 whick comtains a
¢ substance S2 camses a move 32 behavior along the same

path.

e A move behavior of a substamce S1 which contains a
substance S2 and which has an expel S2 behavior affects
the expel S2 behavior at the sink of the move.

For heat, the effect is that the expel heat amount of the sink
will: tend towards the expel heat amouat of the source, i.e., the
temperature of the sink will move towards the temperature of the
source.

With these additional patterns, the inferemnce of the move water
behavior will lead to inferring 2 move heat behavior, and to
comsideration of the effect wpon the expel heat behavior of the
sink. [(n this case, the capacities of and amounts withia the two
water containers will affect what will actually happen. When
initial values for these are chosem, the behavioral description cam
thea be rusm to determine what sequence of events will occur.

6. Summary

In Sectioa 2, we discussed several problems with qualitative
simulatioa in understanding devics behavior. Here, we discuss
how comsolidation overcomes some of those difficuities.

[a coasolidation, the reasoming occurs in well defined, locally
contained  steps. Mashematical ability determines the
sophisticasion of analysis, but is sot required to perform it. To
claim simplicity, aa implementation is necsssary to demonsrate
that the asalysis can be dome efficiently in real situations. The
primary complication s deciding what composites should be
analysed. We are developing gemeral hewristics for making this
decision. Also, domais kaowledge could provide additional
heuristics, such as a libeary of p piled posites that are
instanciaterd when they are recogmised.

Causality is directly linked to the idea that the components of
the device cause the behavior of the device. Reasoning about
behaviors using the causal patterns leads to aa inference structure

[y
showing the behavioral relationships b the p aad
the device. A complete account inciudes the dependencies

between behaviors, and how they are satisfied.

The representation distinguishes between different types of
quantisies and comstraints. Differeat quantities are associated
with the behaviors and substances that they describe.
Coastraints are embedded within dependencies aad the physics
knowiedge of sebstances. The device’s behavior is represented in
the same maaner as a compoaent’s behavior.

A possible problem is that states of compoments almost always
become state of composites. A combinastorial problem might
occur whes several compoments have muitiple states. One
alternative is to use simulation in this kind of sitwation. A more
interesting alternative is to simplify the description of composites
using various meams such as inferring that certain states are
impossible, combining related states into a single state, etc.

Coasolidation is but ome of the multiplicity of processes and
representations that are a part of Naive Physics reasoniag.
Further research is called for in describing the relationship
between comsolidatioa sad qualitssive simulation, in expanding the
richness of the structural primitives, aad in represeatating aad
integrating, for example, discretensss of motioa, temporality. and
mixing of substances.
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Abstract
CSRL (Conceptual Structures Representation
Language) is a language for implementing the

classification portion of an expert diagnostic system.
Our approach to classification calls for a problem
solving structure that is organised as a classification
hierarchy (e.g, & classification of diseases). Each
hypothesis in the hierarchy is associated with a
“specialist” which performs the decision-making
activity for the hypothesis. A top-down strategy
called establish-refine is used in which either a
specialist establishes and then refines itself, or the
specialist rejects itseif, pruning all the specialists below
it. CSRL is a language for representing the specialists
of a hierarchy, and the knowledge embedded within
them. This paper discusses how medical knowledge
should be applied to the two critical design problems
of CSRL: forming a hierarchy which is compatible
with the establish-refine strategy, and implementing

-specialists that accurately evaluate the plausibility of

their corresponding hypotheses.

1. Introduction

CSRL (Conceptual Structures Representation
Language) is a language for implementing classification
problem solvers. Our approach to classification is an
outgrowth of our group’s experience with MDX, a
medical diagnostic program {6}, and with applying
MDX-like problem solving to other medical and non-
medical domains. CSRL facilitates the development of
diagnostic systems by supporting constructs which
represent classificatory knowledge at appropriate levels
of abstraction. The intent is to allow the system
implementor to more directly encode the knowledge
acquired from domain experts, and to avoid much of
the detail associated with general purpose languages.

We will focus on how to use CSRL to construct
diagnostic expert systems in the medical domain. Our
motivation for doing %0 is because CSRL’s intended
use, like every other language, cannot be expressed
solely by describing its syntax and semantics. For
example, how one diagnostic representation shouid be

R T P gt e T, e Ry Sy, G, L

Jack W. Smith, Jr., M.D.
Laboratory for Knowledge-Based Medical Systems
Department of Pathology
The Ohio State University
Columbus, Ohio 43210

compared with another, or how the knowledge should
reflect how a physician thinks or the way the body
functions are questions which are not resoived by the

language.

We will discuss how medical knowledge interacts
with the constraints of CSRL to influence the design
of an expert system. In particular, two critical design
problems must be faced:

" o forming a classification of hypothéu which
is compatible with the basic establish-refine
strategy of classification; and

o encoding knowledge for each disease so that
the plausibility of the disease is accurately
evaluated.

Before we enter this discussion, however. we will
introduce our approach to diagnostic problem solving
and the main features of CSRL.

2. Introduction to Diagnostic Problem
Solving '

An important part of diagnosis is the classification
of case data into plausible malfunctions. Classification
is a specific type of problem solving in our approach,
meaning that a special kind of organization and
special strategies are strongly associated with it. In
this section, we will briefly review the theory of
problem solving types as presented by
Chandrasekaran (3, 4, 5|, the structure and strategies
of the classification task, and the role of classification

in diagnosis.

2.1. Problem Solving Types

We proposs that expert problem solving is composed
of a collection of different problem solving abilities.
The Al group at Ohio State has been working at
identifying well-defined types of problem solving (called
generic tasks), one of which is classification. Other
examples include knowledge-directed data retrieval,
consequence finding, and a restricted form of design.
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Each generic task calls for a particular organizational
and problem solving structure. Given a specific kind
of task to perform, the idea is that specific ways to
organize and use knowledge are ideally suited for that
task.

Even when the specification of a problem is reduced
to a given task within a given domain, the amount of
knowledge which is needed can still be enormous (e.g.,
classifying diseases). In our approach, the knowledge
structure for a given task and domain is composed of
specialists, which correspond to different concepts of
the domain, and perform the decision-making activity
associated with that concept. Domain knowledge is
distributed across the specialists, dividing the problem
into more manageable parts, and organizing the
knowledge into pieces which become relevant when the
corresponding concepts become relevant during the
problem solving.

Decomposing a domain into specialists raises the
problem of how they will coordinate during the
problem solving process. First, the specialists as a
whole are organized, primarily around the
‘“‘subspecialist-of”’ relationship. Each task may supply
additionai relationships that may hold between
specialists. Second, each task is associated with a set
of strategies which take advantage of these
relationships and the problem solving capabilities of
the individual specialists. The choice of what strategy
to follow is not necessarily a global decision, but can
be determined by the specialists in the hierarchy.

2.2. Classification Problem Solving

The classification task is the identification of a case
description with a specific node in a pre-determined
classification hierarchy. Each node in the hierarchy
corresponds to a hypothesis about the state of the
situation under consideration. Nodes higher in the
hierarchy represent more general hypotheses, while
lower nodes are more specific. In medicine, a case
description is the manifestations and background
information of a patient, and the hierarchy is a
classification of diseases and disease classes. For
example, the diagnostic expert system MDX [6}
attempts to classify a medical case into a hierarchy of
cholestatic diseases. Figure 1 illustrates a fragment of
MDX's hierarchy. The most general disease,
cholestasis in this example, is the head node of
hierarchy. More specific cholestatic diseases such as
extra-hepatic cholestasis are classified within the
hierarchy.

Each disease in the hierarchy is associated with a
specialist which contains the decision knowledge to
evaluate the plausibility of the disease from the case
description, specifically the specialist can produce a
measurement  (called its  ‘‘confidence  value”)
representing the degree of plausibility of the disease.

Cholestasis

Extra-hepatic
Cholestasis

Intra-hepatic
Cholestasis

EBC Due to EHC Due to
Bile Duct Stone Bile Duct Tumor

Figure 1: Fragment of MDX's diagnostic hierarchy

If this value is high enough, the specialist is said to
be established, i.e., the disease is established as
relevant to the case. Each specialist is a problem
solver with its own knowledge base.

The basic strategy of classification is a process of

hypothesis refinement, which we call establish-refine.
In this strategy, if a specialist establishes itself, then it
refines the disease hypothesis by invoking its
subspecialists, which also performm the establish-refine
strategy. If the confidence value is low, the specialist
rejects the disease hypothesis, and performs no further
actions.  Note ‘that when this happens, the whole
hierarchy below the specialist is eliminated from
consideration. Otherwise the specialist suspends itself,
and may later refine itself if its superior requests it.

With regard to figure 1, the following scenario might
otcur. First, the cholestasis specialist is invoked, since
it is the top specialist in the hierarchy. Cholestasis is
then established, and the two specialists below it are
invoked.  Extra-hepatic cholestasis is rejected, also
eliminating EHC due to stone and bile duct cancer
from further consideration. Finally, intra-hepatic
cholestasis  establishes ~ itself. and invokes its
subspecialists.

This simple version of classification does not specify
additional specialist-specialist relationships, use
recommendation rules, or employ additional control
strategies to handle complex situations (e.g. when
several nodes are in a suspended state). For
discussion on these topics, see Gomez and
Chandrasekaran (8] and Sticklen et.al. 13|

2.3. The Role of Classification in Diagnosis
Diagnosis in general is a complex task which requires
other kinds of problem solving in addition to

* classification. One important companion to the

classification hierarchy is an intelligent database
assistant which organizes the case description, answers
queries from the classification specialists, and makes
simple inferences from the data [11|. For example,
the database should be able to infer exposure to
anesthetics from major surgery or exposure to
halothane. The classificatory specialists are then
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relieved from determining how a particular datum
could be inferred from another datum.

Another important part of diagnosis is accounting for
the patient's manifestations, and producing composite
hypotheses when one disease cannot account for all
the findings. Josephson et.al. (10| have proposed a
method (called hypothesis assembly) to perform these
actions in coordination with a classification problem
solver. Roughly, the classification problem soiver
generates plausible hypotheses, and determines the
data they can account for. The hypothesis assembler
builds and critiques composite hypotheses.

There are several other issues relevant to diagnostic
problem solving which we will not consider here. such
as test ordering, causal explanation of findings, and
therapeutic action. Fully resolving all of these issues
and integrating their solutions into the diagnostic
framework are problems for future research.

3. CSRL

CSRL is a language for representing the specialists
of a clasification hierarchy and the knowledge within
them. This section briefly describes what CSRL looks
like, and the actions that the language can specify. A
more detailed description of CSRL can be found in
Bylander et.al. [2].

3.1. Specialists ‘

In CSRL, a classificatory expert system s
implemented by individually defining its specialists.
These definitions include the specialist’s relationship to
neighboring  specialists in the hierarchy (its
superspecialist and subspecialists), and the knowledge
that the specialist uses during the classification
process. Figure 2 is a skeleton of a specialist
definition for the Extra-hepatic Cholestasis node in
figure 1. The declare section specifies its
relationships to other specialists. The other sections
are examined below.

(Specialist Extra-Hep
(declare (supecrspecialist Cholestasis)
(subspecialists Stone BDTumor)
o0 )
(kgs ...)
(nessages ...))

Figure 2: Skeleton specialist for Extra-Hepatic
Cholestasis

3.2. Knowledge Groups

The kgs section contains a list of knowledge groups,
which are used to determine the confidence value of a
specialis' from the case description. A knowledge
group (kg) can be thought of as a group of rules

which map a list of values (based on queries to the
data base. boolean combinations of queries, other kg's)
into a value on a small discrete scale. The knowledge
in a specialist can be factored into several kg's. whose
values are input to other kg's.

Figure 3 illustrates a table kg named physical
(other types of kg's in CSRL are comparable to tables
and will not be of concern here). The conditions
following match query the data base, which is
independent of CSRL, for whether the patient has
cholaagitis, colicky pain in the liver, or has been
vomiting. Each rule following the with is evaluated
until one matches. The value corresponding to this
rule becomes the value of the kg. For example. the
first rule matches if the first and second conditions
are true (the “?" means doesn't matter). If so. then
3 becomes the value of the knowledge group.
Otherwise, successive rules are evaluated. The value:
of the physical kg can be a condition in another
table, whose match section might contain tests like
(GE 2) or (LT 0) with the obvious meaning.

(physical table
' (match. (Present? Cholangitis)
’ (Pain? Abdomen Colicky)
(Present? Vomiting)
with

(it T T ? then
elseif 2 T T then
elseif 2 T ? then
elseif T ? ? then
elseif 2 ?2 2 then ~1)))

Figure 3: Example of a knowledge group

3.3. Message Procedures of a Specialist
The messages section of a specialist defines a list
of message procedures, which specify how the specialist

will respond to different messages from its
superspecialist. Figure 4 is a message procedure which
indicates what to do when a Establish-Refine
message is received. The SetConfidence statement
sets the confidence value of the specialist containing
this procedure to the value of the summary kg. [n
CSRL, confidence values are taken from a seven-point
scale. For convenience we use the integers from -3 to
+3. If the specialist establishes itseif (+? is a
predicate which is true if the confidence value of its
argument is 2 or 3), then the for statement is
executed. This statement invokes each subspecialist
with an Establish-Refine message. “Self” and
“subspecialists’ are keywords which evaluate to
the name of the specialist and its subspecialists,

respectively.
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(Establish-Refine
(SetConfidence self summary)
(if (+2 self)
then (for sub in subspecialists
do (Call sub with
Establish-Refine))))

Figure 4: Example of a message procedure

3.4. Levels of Abstraction

These constructs can be used to implement a
multilayer evaluation of a disease. At the lowest
levels, rules test the values of database queries, and
are grouped into kg's. Following this, there can be
any number of levels in which several kg's are
suwmarized by another kg. At the highest level,
CSRL statements can be used to test the values of
kg’s and to set the confidence value of the specialist.
These levels of abstraction allow a large number of
findings to be combined by factoring them into
meaningful chunks, evaluating each chunk, and then
summarizing the results. This method of combining
evidence is borrowed from MDX (7).

3.5. Status

CSRL is implemented on a LISP machine using the
INTERLISP-D language (9] and the LOOPS object-
oriented programming tool (1. Each specialist s
implemented as a LOOPS class, which is instantiated
for each case that is run. The LOOPS class hierarchy
is used to specify default message procedures and
shared knowledge groups, making it easy to encode a
default establish-refine strategy, and letting the user
incrementally modify this strategy and add strategies
as desired. A graphical interface displays the
specialist hierarchy, and through the use of a mouse,
allows the user to easily access and modify any part
of the hierarchy.

4. Forming a Classification Hierarchy

This section discusses criteria for building a
classification hierarchy in the medical domain. An
initial difficulty is that a CSRL hierarchy is required
to be a tree structure, i.e., a specialist can only have
one superspecialist. For medicine this appears to be
overly restrictive, since it prevents the implementation
of alternative classifications of diseases, e.g., viral
hepatitis is an infection, as well as a liver disease.
However, there are some advantages for making this
restriction in this language.

This restriction simplifies the implementation of the
language, as well as the implementation of expert
systems in the language. In a “tangled” hierarchy,
additional strategies would be required, e.g., when
viral hepatitis appears to be relevant during the
problem solving, all the superspecialists of the viral
hepatitis specialist need to be considered, and if none

of them are rejected. then the viral hepatitis specialist
needs to take the results of its superspecialists into
account. This would increase the complexity of the
language, and make it more difficult to use.

[t should be pointed out that we are not against
tangled hierarchies, per se, but we are against
increasing complexity and ‘“knowledge”  without
achieving a corresponding gain in problem solving
ability. CSRL hierarchies are not intended to encode
all the “facts” of a domain, but to encode an efficient
problem solving structure. There is a need to
carefully choose those facts which [facilitate
classification rather than hinder it. By restricting the
structure to a tree, the user is required to face these
unpleasant, but necessary decisions. In practice we
have found that tree structures are sufficiently
powerful for many classification problems. Also. our
group is exploring methods which control tangled .
hierarchies effectively.

4.1. Choosing Between Different Hierarchies

To illustrate the criteria for choosing a CSRL
hierarchy, we will present two hierarchies which
include viral hepatitis and then evaluate them. The
hierarchy in figure 35 differentiates all illnesses. into
infection, cancer, trauma, etc. Infection is further
subclassified into viral, bacterial, and fungal infections.
Viral infection has viral hepatitis, viral meningitis,
viral encephalitis, etc. as subspecialists. In general,
the names of the nodes are abbreviations of more
compiex statements. The ‘“‘viral” node in the figure.

‘for example, stands for ‘‘viral type of infection.”

“Viral hepatitis’ stands for ‘‘hepatitis due to viral
infection.”

illness
cancer infection trauma ...
bacterial viral fungal

viral hepatitis v. encephalitis

v. meningitis

A diagnostic hierarchy containing viral
hepatitis

Figure 8:

The second hierarchy (figure 6) divides illness into
liver, kidney, brain, etc. (location of disease). Liver
is subdivided into hepatitis, cirrhosis, cholestasis, etc.
(condition due to liver disease). Hepatitis s
subclassified into viral and toxic hepatitis (cause of
hepatitis).
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illness

kidney liver brain ...

cirrhosis hepatitis cholestasis ...
viral hep. toxic hep.
Figure 8: Another hierarchy containing viral
hepatitis

We will call the first hierarchy the Infection
Hierarchy (IH) and the second the Liver Hierarchy
(LH). No claim is made that either one represents
the best (or worst) disease hierarchy.

Given the situation where a CSRL knowledge
engineer was deciding whether [H or LH' was more
appropriate, a main consideration is the ability to
achieve enough coanfidence in the presence or absence
of a specialist to lead the establish-refine process in
the right direction.  This property is especially
important for higher level specialists. If there is high
confidence in such a specialist, it provides focus for
further exploration. If a high level specialist can be
confidently rejected, a large portion of the hierarchy
can be eliminated from consideration. We will call
such a specialist an “anchor” specialist.

A specialist is an anchor specialist if there is
sufficient evidence to distinguish the specialist from
other specialists. Specialists in LH are better than [H

_in this regard. The presence or absence of liver

disease can be evaiuated by laboratory tests of the
serum and urine, and by clinical symptoms such as
jaundice and liver size. Hepatitis can be specifically
determined via biopsy. Although there is evidence
which is suggestive of infection (such as fever,
abnormal white blood count, high percentage of band
cells) and viral infection (low white blood count, high
percentage of lymphocytes), the evidence does not
clearly distinguish infection or viral infection from
other diseasss. Also, even if these patterns don't
exist, infection and viral infection are still reasonabile
hypotheses. Thus unlike liver and hepatitis, it is
difficult to achieve high or low confidence in infection
or viral infection.

Evidence for or against a specialist is not very useful
if it is not likely to be available to the system when
it is running. For example, aithough a liver biopsy
can indicate hepatitis reliably, it is relatively risky and
time-consuming to perform, so it is not typically done
on patients early in the diagnostic process. Hepatitis
then would be a poor anchor specialist if a biopsy was

necessary to obtain a reliable decision. Fortunately
though, signs, symptoms, generally available laboratory
data, and combinations thereof can also reliably
indicate the presence or absence of hepatitis.

Since a specialist is not evaluated if any of its
superiors have been rejected, the specialist can be
implemented assuming that its superiors are plausible.
For example, the viral hepatitis specialist in LH could
be implemented assuming that the plausibility of
hepatitis has already been established. Besides being
an efficiency measure (the viral hepatitis specialist
doesn’t have to redo the work of the hepatitis
specialist), this context allows evidence which
distinguishes viral hepatitis from toxic hepatitis to be
used to increase confidence in viral hepatitis. For
example, if we know that hepatitis is plausible and
that the patient has not been exposed to any

hepatotoxins, then viral hepatitis will be implicated.

One desirable quality of a CSRL hierarchy then is
that its specialists provide good differential contexts.
The specialists in LH are better than [H in this
regard.

The existence of a specialist should imply the
existence of its superspecialist. Normally this is not a
problem (cases of viral hepatitis, for exampie, are by
definition cases of infection), but in some instances
this is meaningful to consider. Suppose that we
propose jaundice as a subspecialist of liver (to be
precise, ‘“jaundice due to liver disease™). Since
hepatitis can cause jaundice, it might be appropriate
to propose hepatitis as a subspecialist of jaundice.
However, problems will occur because there are a
significant number of hepatitis cases in which jaundice
never appears, or appears late in the process. This
hierarchy will misdiagnose these cases simply because
the hierarchy is improperly formed. To remedy this
problem, the hepatitis specialist should be renamed
“hepatitis causing jaundice,” and there should be
other specialists elsewhere under liver which
correspond to other “kinds” of hepatitis.

Finally, a hierarchy is usually designed to make
certain diagnostic statements. If you intend to
develop an expert system which can directly conclude
infection, then [H better satisfies that purpose. [f you
need a system which has hepatitis and cirrhosis as
specialists, then LH is better.

From these criteria, the kinds of questions that one
should ask about a CSRL hierarchy are:

“This type of redundancy is inevitable in any CSRL
hierarchy. [H, for example, must contain liver
diseases across separate branches of the hierarchy,
while LH must contain infections in separate branches.
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e Are the specialists anchor specialists?

e [s the evidence that is needed for a
confident decision normally available to the
system in the early stages of its problem
solving?

e Do the specialists provide good differential
contexts?

o Does the presence of each specialist logically
imply the presence of its superspecialist?

e Does the hierarchy make the diagnostic
statements that it is intended to?

4.2. How a Specialist Decomposes

The basic relationship between a specialist and any
of its subspecialists is that the subspecialist represents
a more specific hypothesis about the diagnostic state
of the patient. The hierarchies in figures 5 and 6
exemplify this relationship. A simple method to
subclassify or decompose a specialist into its
subspecialists is to ask the domain expert what should
be considered next after that specialist is established.
For example, a physician who is asked what should be
done after establishing hepatitis might say to then
differentiate between viral and toxic hepatitis.

A more careful approach would also look at what
kinds of additional information can be used to
decompose a specialist. By considering these, one can
determine what decompositions are possible and
evaiuate them using the criteria discussed above.
Another motivation is to more precisely define what a
specialist can be, i.e,, it represents a diagnostic
statement that specifies one or more of the following
attributes.

o A specialist can indicate the location of a
disease. For example, in figure 6, illness is
decomposed into the location of illness —
liver, kidney, brain, etc.

o The system that the disease affects can be
specified.  [liness, for example, could be
alternatively decomposed into circulatory
system, urinary system, nervous system, and
so on,

e A specialist can specify the pathologic
condition or syndrome associated with the
disease. For instance, liver in figure 6 is
decomposed into various conditions of liver
disease - hepatitis, cirrhosis, cholestasis,
etc.

o The underlying process of the disease can
be indicated. Liver could be decomposed
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instead into liver infection. liver cancer.
toxic liver, etc.

e A specialist can state the type of cause
that is involved with the disease. This is
the parameter used to decompose infection
into viral, bacterial, and fungal infection.

e A specialist can also point out the specific
entity which is involved. Viral hepatitis
could be decomposed according to specific
viruses, e.g., hepatitis A and B, Epstein-
Barr, mumps, etc.

The last three attributes could be grouped as
etiological factors.

This is not intended to be a complete list of
ciassification attributes. Other possibilities include
temporal factors (e.g., acute vs. chronic) and physical
distribution (e.g., focal vs. diffuse). Also we have not
precisely indicated the causal relationships are possible
among these attributes. e.g., inflammation {a
condition) could be viewed as either causing disease,
or being caused by disease.

As a result of our experience, we suggest that a
diagnostic hierarchy should be formed according to the
following heuristics.

e The top levels of the hierarchy should
specify the locations or systems containing
the diseases.

e The middle levels should specify the
conditions caused by the diseases, the
syndromes associated with the diseases,
and/or the underlying processes causing the
diseases.

e The bottom levels should identify the
specific etiological agents of the diseases,
such as the microorganism causing the
infection.

5. Establishing a Specialist

The rmost important part of implementing a
specialist in CSRL is the knowledge base that
determines the specialist’s plausibility. CSRL uses a
7-point scale of -3 to +3 to indicate the relative
confidence in the specialist. -3 means that the
specialist is not plausible. +3 means that the
specialist is highly plausible. 0 means that the
evidence is neutral with respect to plausibility. The
rest of this section discusses the criteria for selecting
the evidence that a specialist uses, and for using
knowledge groups to determine the specialist’s
confidence value. We will use a specific example, in
this case cholestasis, to help clarify the discussion.
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3.1. Selecting Evidence
We have already mentioned in passing the kinds of

evidence that are desirable to have. The best
evidence is specific or sensitive to the specialist. From
a finding that is specific to the specialist, the
specialist can be definitely established. If a sensitive
finding is not present, the specialist can be definitely
rejected. These conclusions can also be inferred from
specific and sensitive combinations, or patterns, of
evidence.

Next to consider are patterns of evidence which
differentiate the specialist from its siblings in the
diagnostic hierarchy. If a pattern is specific in
relation to other siblings of the specialist, then the
confidence in the specialist will be increased. We gave
an example earlier for differentiating viral hepatitis
from toxic hepatitis. For cholestasis, lack of liver cell
damage can differentiate it from other liver conditions
at the same level in our example hierarchy.

Finally, the expected patterns of the specialist should
be considered. Confidence in the specialist should
increase or decrease depending on whether the
expected pattern is present or not. The amount of
confidence (either for or against) will depend on the
degree that the pattern is sensitive to the specialist
and unexpected in other specialists.

Each kind of evidence above is used to differentiate
the specialist from other specialists. Evidence which
does not satisfy this function should not be used. For
example, each kind of cholestasis (e.g., bile duct stone
causing cholestasis) will have the expected patterns of
cholestasis, but these patterns are useless for
differentiating among different causes of cholestasis.
See Price and Viahcevic [12| for additional discussion
on the ‘use of evidence in medical reasoning.

5.2. Knowledge Groups

Each important pattern of evidence associated with a
specialist should be represented by a knowledge group
which indicates how well the findings fit the pattern.
We suggest the following process for implementing a
set of CSRL knowledge groups. Fimst, the patterns of
evidence which wiill be implemented as knowledge
groups should be decided upon. Next, for each
knowledge group, the findings that it will evaluate
should be selected. A coafidence value should then be
assigned to each pattern of findings. Like any
program, knowledge groups shouid be tested and
debugged on sppropriate data, i.e., actual cases. The
following sections examine the steps of this process
(except for test and debug) for cholestatic disease.
We will assume that cholestasis is a subspecialist of
fiver disesse (as in figure 6).
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5.3. Determining the Set of Knowledge

Groups
The important part of this step is to determine
patterns of evidence which correspond to intermediate
hypotheses related to the diagnosis of the disease. The
result from the knowledge group which evaluates this
kind of pattern should be the level of confidence in
the intermediate hypothesis.

A common pattern for most specialists is whether it
can be directly obeerved (for example by some
visualization process). For cholestasis, observation of
biliary tree obstruction or bile stasis is possible by
evaluating relevant xrays or liver biopsies.

We recommend that the other knowledge groups of a
specialist be related to the primitive processes of the
disease. For cholestasis, we would examine the major
consequences of bile obetruction, and propose
knowledge groups for each of the following:

1. Are normal amounts of bile reaching the
duodenum? This  knowledge group
determines if bile is perfonnmg its role in
‘the digestive process.

2. Is bile accumulating in the liver and
bloodstream? When the bile cannot be
excreted via the biliary tree, it accumulates
in the liver, and its constituents enter the

3. Is there bile duct damage? The kind of
bile duct damage which is associated with
obstruction is evaluated.

4. Is there liver cell damage? Lack of liver
- cell damage can differentiate cholestasis
from other subepecialists of liver disease.

In addition, characteristics which predispose the
patient to the disease should be evaluated. This is
aot very relevant in the diagnosis of cholestasia (for
specific causes of cholestasis though, this becomes
more important). However, for most kinds of
infections, e.g., determining whether the patient has
been ezposed to the microorganism or is susceptible to
the infection are important factors to consider in

diagnosis.

Another method for dividing a specialist into
kiiowledge groups is to have each knowledge group
evaluate a particular kind or source of evidence.
Using this method, cholestasis could be broken up into
knowledge groupe for physical, laboratory, and «xray
evidence. These would respectively evaluate the signs
and symptoms, laboratory data, and radiographic data.
This often corresponds to the sequence of evidence
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physicians
patients, and is useful for diseases whose processes are
not clearly delineated. or when these processes are not
known to the physician acting as the domain expert.

collection that

5.4. Determining the Findings of a Knowledge

Group

Once the knowledge groups have been selected, the
findings that each knowledge group will evaluate must
be determined. Here, we will concentrate on
knowledge group 2 from the list above, which
examines the findings when bile accumulates in the
liver and blood. Findings which are related to this
decision are jaundice, elevated serum bilirubin,
conjugated serum bilirubin, bilirubinuria, pruritis,
elevated serum lipids, xanthoma. and large, smooth
liver,

When the bile is unable to flow into or through the
bile ducts, it accumulates in the liver, and enters the
bloodstream. Conjugated bilirubin and lipids are
major components of bile, so elevated serum bilirubin
and serum lipids occur. When serum bilirubin is
highly elevated for a period of time, it accumuiates in
skin tissue, resuiting in jaundice. Since conjugated
bilirubin is water-soluble, the kidneys filter it out and
excrete it, resulting in bilirubinuria. Pruritis is
usually attributed to elevated serum bile salts, and
their deposition in skin tissue. Xanthoma is a result
of the excess lipids which accumulate in the skin over
a period of time. A large, smooth liver is a
consequence of the bile accumulating within the liver.

The next stage is to combine findings which are
closely related into a single condition. This will
reduce the number of conditions of the decision table,
and simplify the process of filling it in. Jaundice is
an indication of elevated serum bilirubin and thus can
be combined with elevated serum bilirubin. Similarly,
bilirubinuria is an indication of elevated conjugated
bilirubin. Also, elevated serum lipids and xanthoma
are both results of bile fats accumulating in the blood,
so these can be combined. Thus the conditions of
this knowledge group will be:

e [s jaundice or elevated serum bilirubin
present?

o Is bilirubinuria present or is the conjugated
percentage of serum bilirubin high?
lipids

o Is xanthoma or elevated serum

present?

e Is pruritis present?

e [s the liver large and smooth?

3.5. Assigning Confidence Values

The last step we will discuss is assigning confidence
values for each combination of the values of the above
conditions. We will assume that the possible values
of each condition is true, false. or unknown (T, F, or
U). [t is important that the meaning of the
knowledge group's result be clear. I[n this knowledge
group, we want the result to indicate the level of
confidence in the hypothesis ‘‘bile is accumulating in
the liver and blood.” How this value affects
confidence in cholestasis is determined by another
knowledge group, and will not be discussed here.

Essentially, this is a process of aski.ng the domain
expert for the level of confidence for each combination.
and insuring that the overall knowledge group is
consistent.  This initially appears intimidating since
there are 35=243 possible patterns for this knowledge
group. However, the number of rows in a decision
table will be much smaller since the values of some
conditions will not matter for some patterns. Also.
this problem can be easily handled by dividing the
patterns into separate cases according to the value of
a particular condition. For example, figure 7 could be
the segment of the table where the first condition
(elevated bilirubin) is false. Note that the meaning of
the last row, which just checks to see if the first
condition is false, depends on what conditions have
been taken care of in the previous rows. Also, this
figure assumes the 7-point confidence scale described
above. Finally, note that except for coding the
conditions properly, which depends on how the data
base is implemented, it is trivial to translate the table
into CSRL.

large
elev. conj. elev. smooth | confidence
bili. bili. fats prur. liver value
F T ? T T -1
F F ? ? ? -3
.F ? F ? ? -3
F ? ? F ? -3
F ? ? ? F -3
F ? ? ? ? -2
Figure 7: Fragment of table determining bile

accumulation

6. Conclusion

Designing a diagnostic system in CSRL requires
emphasis on organizing knowledge to reflect the
structure of diagnostic reasoning. Knowledge is
represented at various levels of abstraction -- from the
classification hierarchy to rules within knowledge
groups. This is in contrast to MYCIN and similar
rule-based systems which are constructed as collections
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of rules without any higher organizing constructs. A
classification hierarchy is designed so that establish-
refine problem solving performs well on it. The
knowledge base of a specialist is organized according
to how groups of evidence support- - or refute
intermediate hypotheses which affect confidence in the
specialist.
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PLAN SELECTION IN DESIGN PROBLEM-SOLVING

David C. Brown B. Chandrasekaran
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Abstract

The AIR-CYL expert system for mechanical design 1is
based on a hierarchy of active design specialists, each of
which solves part of the design problem and cooperates with
the other specialists. Every specialist wuses a small
collection of preformed plans that represent ways to achieve
the subproblem for which that specialist is responsible.
When a specialist is asked to design, it selects a plan from
its <collection in a situation dependent manner. We discuss
this plan selection process, and the types of knowledge
used,

Keywords:

Expert Systems, Plans, Design, Plan Selection, Problem-solving.

1 INTRODUCTION

This research is concerned with the design of mechanical
components, and views design as a problem-solving activity.
We will present a theory of design that explains the
activity of a human designer when solving a problem that
falls into a particular subclass of mechanical design. This
paper concentrates on oune aspect of design activity, that of
selecting preformed design plans.

Design activity in general has many components; such
as planning, the use of prestored plans, refinement of
descriptions, and the use of large amounts of knowledge.
Not all designing involves all of these. We have identified
three classes of design activity which vary according to
their problem-solving components [CHAN83]. Our work refers
only to the third class, where the designer knows in advance
exactly what knowledge and what type of problem-solving will
be required during the design. An important piece of
knowledge 1s that at every stage of the design the designer
knows what sequences of design steps are appropriate. Class
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3 design occurs when a specific object has been designed
many times before, each time with different requirements.
Other «classes of design are more general and involve other
types of problem-solving, such as planning.

In order to manage the complexity the design is broken
into roughly independent subproblems [SIMO69]. The
hierarchy reflects the way that the designer thinks about
the object during design, and, consequently, it shapes the
design process. Our theory hypothesizes that design
activity 1is organized around this conceptual hierarchy,
where each concept is active 1in the design, and may be
considered to be a specialist about some portion of the
design. Each specialist does the same kind of design
problem-solving but uses different knowledge.

SR sxZ (B 4 W

»
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For every subproblem in a class 3 design the designer
has a small set of Plans that can be followed to produce a
X piece of the design. Consequently, each specialist has {its
own set of plans from which to select depending on the
current stage of the design. The plans may request portions
of the design from other specialists lower in the hierarchy.
Thus the specialists solve the problem cooperatively.
Tasks, which are pieces of design knowledge local to a
specialist, can be used in plans to make small additions to
the design. Tasks use Steps to decide the value of each
attribute for which it 1is responsible. For example, a hole
might be designed by a Task, while a Step would decide the
radius, Constraints are placed at various places throughout
the design knowledge to check the progress of the design and
ensure 1its wvalidicty. A Design Data-Base contains the
current state of the design.
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* The complete design process proceeds by first obtaining
and checking requirements for <consistency. It then does
rough-design to establish whether full design 1s worth
pursuing. If the rough-design succeeds, then the full
design is attempted by requesting a design from the top-most
specialist. Communication between active design agents is

;‘v 'l.

.’ﬂ

ﬁ; done by passing messages that give instructions and report
on success or failure.,-

3? If a design agent fails, a redesign phase 1s entered

i until the problem <can be fixed and design can continue.
Different types of agents have different failure Trecovery

- strategies. These result 1in backing-up over prior design

o decisions in a manner which is dependency-based.

o To demonstrate and test our theory of design, we have

) developed a working expert system, AIR-CYL, that does

T Air-cylinder design [BROW8S83, BROW84A, BROW8B84B]. The systenm
closely mirrors the activity of a human designer solving the

i same problem., The system will design a particular type of
Air-cylinder according to some set of wuser given
requirements. The system takes about 5 minutes to design an

-
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Air-cylinder given about 20 requirements using a
DECsystem-20.

To facilitate the building of the AIR-CYL system, and
class 3 design problem-solvers in general, a language called
DSPL (i.e., Design Specialists and Plans Language) has been
designed and implemented. DSPL has been used to capture the
Alr-cylinder design knowledge. Close attention has been
paid to the many different types of knowledge that are used
during a design of this kind. DSPL allows different types
of design knowledge to be described separately. This 1is in
contrast to design systems based on more uniform
representations [MCDE82, STAL76, MOST83, KOWA83].

2 SPECIALIST ACTION

A specialist is responsible for supervising some portion of
the design, Specialists consider design situations and
produce courses of action which lead to changes in the state
of the design. Specislists are responsible for the flow of
control during design problem~solving. The selection and
execution of plans provide these control decisions.

In contrast, tasks supervise the design activity
carried out by steps. A task makes no control decisions
that affect the overall problem-solving flow and always
attempts to carry out the same series of actions. The main
role of the task in the system is an organizational one --
that of grouping some related steps and executing them in

order.

2.1 Plan Action

A plan is the result of past planning by a human designer.
It 1is the result of prior decisions about the flow of
control in a portion of the design for a given situation. A
plan could, for .an _auto example, specify that the engine
should be designed first, followed by the suspension and
then the body, with each possibly being preceded by a rough

design.

A plan 1is executed by testing its applicability
conditions and then executing each plan itea in turn. A
plan item can be a task, the testing of some constraint, a
design or rough-design request of a specialist, or an
indication that some specialists should be used in parallel.

By selecting a plan the specialist is refining the plan
that calls ({t. The specialists 1in the hierarchy act
together as if they were gradually "inserting" plans 1into
other plans in order to "construct"™ the plan that will
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produce a successful design, Figure | demonstrates this and
shows the plan that has been selected by specialist SO being
refined by specialists S1, and S2, while S3 refines the plan
in S2. The Ti are tasks.

< s1 ; Tl ; s2 >
/A [\
/ \ / \
/ \ / \
< T2 ; T3 < 83 ; T4 >
/N
/ \
/ \

Figure 1: Plan Refinement

3 PLAN SELECTION

Plan selection depends on three types of inlormation: the
qualities of the plans themselves, the requirements from the
user and the design and its history). We propose a general
method of plan of selection that responds to all factors.

A designer may have very simple selection criteria,
such as "if there is a plan that hasn”“t been tried yet then
try {t", or they may be very complex. For example, "if
there are some plans that look perfect for the situation
then if plan X is amongst them then use it, otherwise pick
the one that has been the wmost reliable in the past, unless
it contains the item that failed in the 1last plan". In
general, complex analysis of prior failures may precede a
plan selection, but at present we do not have enough
understanding of these processes to be certain that we have
provided the language necessary to express them.

The selection process will select one plan from
several, Some plans will not be suitable for consideration.
Others will, but with various degrees of suitability.
Selection then will occur after the 1individual plans
available 1in the specialist have been evaluated for
suitabilicty. Consequently, we will divide the whole
selection process into evaluation and selection processes,
each with its own knowledge. It may be that the processes
of evaluation and selection are intermixed. For this to
occur there would have ¢to be knowledge 1in the form of
"suggestions" about which evaluations to do before others.
We have <currently made the simplifying assumption that all
plan evaluations are made prior to selection.
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First we will discuss the process of selection and then
the knowledge that can be used during plan selection. An
example of the system doing plan selection can be found 1in
Appendix A and the reader is urged to follow that example to
obtain a Dbetter understanding of the problem-solving
involved. A more detailed explanation of DSPL can be found
in {BROWS8S].

3.1 The Selection Process

Selector

/ \

/ \
/ \
/ \

Sponsor Sponsor Sponsor

PLAN1 PLAN2 PLAN3)

Figure 2: Plan Selection

Plan selection divides into two parts -- first the
recommendation of those plans that are candidates for use,
and second the selection of a plan from the set of
candidates, Each plan has associated with it a Sponsor and
some information about the qualities of the plan. It is the
job of the plan“s sponsor to use its current situation, the
qualities of the plan, the user’s preferences about
qualities, and speclal case information to make an
evaluation of whether its plan is a suitable candidate for
selection. It will give an estimation of the plan-”s
suitability. The Selector has the job of collecting the
responses from the sponsors, promoting or relegating 1if
necessary, and selecting one plan for use.

Sponsors will respond with some scale of suitabilities
such as (Perfect, Suitable, Don“t-know, Not-suitable,
Rule-out). Those ruled out will never get used, unless the
knowledge encoded in the Selector gives strong reasoms to do
so. If more than one plan is Perfect then the selector will
pick one. If none are Perfect, then a Suitable plan might
be wused. The Selector can, depending on {its stored
knowledge, do plan suitability relaxation in order to select
from amongst the lower rated plans,

In many situations, there will be few ©plans, or the
suitabilities will always be the same, and, consequently,
this kind of effort during plan selection 1is not always
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warranted, In
AIR-CYL implementation,
designer prefers.

3.1.1
a Sponsor.

(SPONSOR
( NAME Sponsorl)
(USED-BY ExampleSelector)
(PLAN Planl)
(COMMENT "Sponsor returns
(BODY
COMMENT "rule out plan 1if
REPLY (IF (ALREADY-TRIED?
COMMENT "rule out plan if
REPLY (IF (ALREADY-TRIED?
COMMENT "use qualities to

A I S i e it 2 20 YAt B0l e 38t e i han P 4

these cases the order can be fixed.
plans are selected in the order

Sponsors - Figure 3 shows the DSPL for an example of 1

suitability")

already tried"

PLAN) THEN RULE-~OQUT)
plan Plan3 failed"
“Plan3) THEN RULE-OUT)
get suitability”

R A Al i AR R A Sk Sl HE Lk v
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In the
the

Qualities
(TABLE (DEPENDING-ON
(RELIABILITY-REQS){COST-REQS))
(MATCH
(IF (Reliable Cheap)THEN PERFECT)
(IF (Medium ? )THEN SUITABLE))
(OTHERWISE RULE-OUT))
COMMENT "was Task2 the last failure?"
Agent (EQUAL “Task2 LAST-FAILING-ITEM)
COMMENT "now use vbls to get suitability"
REPLY
(TABLE (DEPENDING-ON
Agent Qualities)
(MATCH
(IF ( T ? )THEN RULE-QUT)
(IF ( ? PERFECT )THEN PERFECT)
(IF ( ? SUITABLE )THEN SUITABLE))
(OTHERWISE DONT-KNOW))
))

Figure 3: Sponsor "Sponsorl”

Each sponsor will be associated with only one plan as
it will have knowledge about the applicability of that plan
to different situations. Every plan has a sponsor. The
output of a sponsor is a classification, fi.e., one of the
categories from the scale of suitabilities. The inputs to a

spoansor are the wvarious sources of knowledge already
outlined above. Notice though that some knowledge, for
example plan complexity, will belong only in the selector,

as it will be used to choose between equally suitable plans.
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In a spoansor, evidence needs to be accumulated about
the plan“s suitability for use. Some information can be
used to determine the suitability of a plan quite quickly,
while other pieces of information need to be put together to
build a picture of suitability. Consequently, two kinds of
expressions of knowledge are needed: one with immediate
result and one that accumulates a result.

The immediate form of knowledge 1is a rule -- for
example "if this plan has already been executed during this
use of the specialist then it must have failed and should
not be considered at this point"; that is, 1its
suitability 1s "Rule-out". The accumulated form of
knowledge will weigh the answers to several "questions”,
such as "is a COST=Cheap required?”, and combine them to
produce a suitability value according to some
designer-dependent logic. This is not meant to imply that
predicate calculus is wused, but rather that under some
circumstances the designer will make "suitable" AND
"perfect”" produce "perfect", while in others it will produce

"suitable".

As there are several different types of knowledge we
will propose that evidence 1is accumulated for each type,
e.g., qualities, and then these pieces of evidence are
combined to form an overall suitability to represent the
plan. This approach has already been demonstrated in the
CSRL language [BYLA83]) where diagnostic knowledge 1is
factored into knowledge groups.

3.1.2 The Selector - Figure 4 shows the DSPL for an example
of a Selector.

(SELECTOR
( NAME ExampleSelector)

(USED-BY Example)

(TYPE Design)

(USES Sponsorl Sponsor2 Sponsor3)
(COMMENT "Selector, returns name of plan")
(BODY

COMMENT "i1f Plan2 is perfect use it"
REPLY (IF (MEMBER “Plan2 PERFECT-PLANS)
THEN “Plan2 )
COMMENT "if there are perfect plans
use them in preferred order
REPLY (IF PERFECT~-PLANS
THEN (DESIGNER-PREFERENCE
PERFECT-PLANS)
ELSE NO-PLANS-APPLICABLE)
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Figure 4: Selector "ExampleSelector"

Each selector will be associated with a specialist and
will have a collection of subordinate sponsors. A selector
contalns specialist dependent knowledge. The 1input to a
selector 1s the collected outputs from all of the sponsors
that report to it, and the state and history of the design.
A sponsor”s output consists of the name of its plan and a
suitability. So, for example, the information received
might be:

(planl, perfect) (plan2, suitable) }.
The output from the selector consists of either the name of
the plan selected for execution by the specialist, a failure
due to there being no plans appropriate, or a failure due to
all plans having been tried already.

The exact operation of a selector will depend on the
personal preferences and experiences of the designer whose
knowledge we are trying to capture. The "normal™ knowledge
would take the plans ranked as "perfect" and choose one. 1If
there are no perfect plans then "suitable" ones will be
considered, and so onm. Exactly how many of the suitability
categories will be considered as acceptable can be made to
depend on any appropriate factor: for example, on the
position of the specialist in the design hierarchy. A
speclialist at the 1lowest extremes can afford to try plans
that are less appropriate, as not much effort 1is being
wasted 1f they fail (i.e., there aren“t many agents below).
However, at higher levels there are many specialists below
and any relaxation of standards could be very costly.

If several plans appear to equally suitable the
designer 1s most likely to pick the one that has performed
the best in the past. That is, the designer has an order of
preference., Another approach 1is to compare some quality
(for example COST) and pick those with the best value
(COST=Cheap). This can be repeated with other qualities
(such as WEIGHT=Light) until one plan remains. Notice that
there 1is =uo need to prescribe a global ordering for
qualities using this method, as orderings will be 1local to
specialists and sensitive to the situation.

Knowledge that can be used duaring selection 1includes
plan complexity, existing preference, position 1in the
hierarchy, special rules about the use of particular plans
(e.g., "if plan A is perfect and it hasn“t been used before
then use it before any others"), dependencies between
attributes of the design, and knowledge about past plan
failures.
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3.1.3 Additional Strategies - One option available ¢to a
designer during plan selection is Plan Reordering. 1If there
is evidence to suggest that the first part of the plan will
succeed, but some subsequent item may fail, then less effort
would be wasted if that dubious plan fitem could be executed
earlier. Another technique 13 to not immediately discard
the partial design achieved by the successful part of the
last failing plan. By reasoning about the dependency
relations carefully it 1is possible to selectively discard or
keep parts of the design done by the previous plan so that
that work need not be repeated.

3.1.4 Plan Selection In AIR-CYL - It may be that plan
selection really i1isn“t that much of a problem as it
immediately appears. Due to the decomposition into
specialist. If there are few ©plans to choose from then
selection mnot be very cof there are few plans to choose
from then selection may not be very complex.

Suppose that there are two plans in every specialist in
a fully specified AIR-CYL systen. Given the current
specialist hierarchy, there would be about 130 different
sequences of plans that can be followed in order to achieve
the design. A very large number of actual designs can arise
depending on the actual values chosen. So even with a samall
hierarchy and a small number of plans at each point there
are still a very 1large number of designs captured. The
human designer will gradually form preferences and may
actually do very little work during plan selection.

3.2 Qualities Of Plans

It is not possible to prescribe 1in advance exactly which
pleces of knowledge will be used in which cases. We are
arguing that these types of knowledge exist, that an Expert
System builder should be provided with language in which to
express them, and that.this knowledge must all be available
to be wused by . the plan selection mechanism. The theory
acknowledges that there are these types of knowledge but
does not and cannot describe exactly how each will be used,
as it will vary depending on the domain and specialist

involved.

Plans can have qualities associated with then. These
qualities can refer to some attribute of the plan, some
attribute of the design, or some attribute of the object
being designed. A similar set of qualities were used by
Friedland [FRIE79] in his version of the MOLGEN system.
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Precision: A plan with precise measurements 1is more
expensive 1in manufacturing terms, and may be harder to
design as there is less "slack" in the plan.

Convenience: Convenient plans will have easier
calculations, 1less difficulty with tolerances, fewer
elements, fewer other specialists wused, and less

anticipated trouble.

Reliability of design: Some plans will be associated
with reliable products as they capture methods that
produce reliability.

Reliability of plan: A designer will know the
likelihood of success for a plan. This will have a
general component, (i.e., works fairly often), and a
context dependent component, (L.e., fails often ({f
Aluminium is the material). A plan that works often
will be considered reliable.

Cost: An expensive plan produces an expensive product.

Designer”s time: If the plan takes a 1long time to
follow due to many calculations, many steps, many
questions of the user, or many catalogue lookups it will
be noted as taking a lot of the designer”s time.

Manufacturer”s time: A note is made 1f a plan takes a
lot of the manufacturer”s time.

Plan Complexity measures:

- Length of Plan: If all else 1is equal then the
designer can be expected to choose the shortest
plan.

- Complexity from Structure: Assuming that it 1is
preferable to select a plan that is in some way
"simpler" than another, a "cheap" estimate of
complexity is useful. It is possible to obtain some
crude measure of the complexity of a plan by wusing
just 1its. surface syntax -- i1.e,, without detailed
knowledge of the structure or action of the
components of that plan.

- Complexity from Dependencies: Another measure
takes into account the designer“s knowledge of
agent-agent dependencies. Suppose specialist S1 has
a dependency measure of 5 (i.e., five attributes
depend on it), S2 has a measure of 3, task Tl has 2
and T2 has 1. Consider two plans, < S1 ; T1 > and <
$2 ; T2 >. The first plan, using a simple sum, has
a measure of 7, while the second has a measure of 4.
Thus the first plan has more ramifications ({f
adopted, and might therefore be worth avoiding.
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This, and surface complexity, are presented in more -.
detail below. S
i o3
* Manufacturability: If the processes 1involved require Y
much skill, unusual machines, special techniques, - i
special materials, and unusual attention to detail then !_. :
the plan would be <classified as difficult to $
manufacture. R ¢
N
* Weight: If the manufactured product falls toward the N
high end of the range of reasonable weights the plan
would be classified as heavy. >
\.'_: :
o~
[
AT
'\1 &,
3.3 Situation Factors o
In addition to plan qualities, selection depends on the ;f ;
situation at the time of selection. Informationm that may be .
relevant includes :- .
o ol
l. Plan selection information from above or below. é
2. Which plans were selected already by this specialist and - ;
how they failed. RPN
3. The current state of the design (i.e., values chosen). . b
Ne
=
A specialist can select a plan according to some A
preferred quality. In this situation it is good to have - Q
specialists below select plans - that are 1in some way AN
compatible - there is lictle point selecting a Y
COST=expensive plan inside a COST=cheap plan. A specialist F
in a plan may be passed information on activation to allow -
this strategy. There may also be wmore subtle plan ’ )
interactions, where from experience it has been discovered ‘S
that while in plan x selection of plan y is to be preferred. N o)
.\‘ )
The history,of”the selection preocess is 1important for v
subsequent selections. Oue does not wish to select the same =
plan again, or one that 1is similar to others that have OO
failed. The structure and properties of plans that failed - :{
should be abstracted out and used to indicate which others R
to avoid. <
T
The way plans failed is also of |use. Not only can >
there be knowledge such as "If plan A failed then so will AL
plan B", but also more subtle knowledge such as "If plan A -$ )
failed due to task 1 then plan B will fail", or even "If g‘
plan A failed due to xyz being too large then plan B will o 4
fail". Knowledge can also be in a positive form so that -

failure of a plan suggests the selection of another. All of

N
N
~
A
o
!.'
»n




e -

B R

I Nt o vy
LA
LN

*

rl
.l

- b

[N o aireg ¢

B

"
<N

1o g'e 2y o ERtadat it v et ot Pav et ol Aol Bt e e e Aia i A LA RN AN ANt mdin At sl My g3y ) |

Page 12

this needs a representation of reasons for a plan“s failure
to be associated with the plan. The plan item that caused
the failure and an abstracted form of 1its reasons for
failure should be available.

Plan selection may also depend on the past choice of
values. For example, "If xyz < 0.5 then use plan B". As
small variations in the component <can be 1introduced by
different tasks, selection can depend on this too -- "If
cross section of connecting rod is rectangular then try plan
A otherwise try plan B",., These kinds of selection rules
could actually be expressed as constraints in the plan, so
that the wuse of a plan would be accepted or rejected on
entry. However, after continued use this knowledge would
migrate 8o that it «could be wused during the selection

process.

3.4 Plan Complexity

The complexity of a plan can be known and associated with
the plan. It can be accessed and used during plan

selection.

3.4.1 Plan Complexity From Structure - The components of a
plan are tasks, constraints, or specialists. If we take the
constraint as the major cause of problems {in the system,
then we can assign a rough complexity to each type of agent
depending on how many constraints we expect to fiand in each
on average. Assume that on average failures will occur in
the middle of a plan. This means that 1items towards the
beginning of the plan will on average be more often involved
in failure handling and redesign. 1f we use
position-in-plan as weights then some rough measure of the
influence of position in the plam can be 1included. This
measure 1s a surface indication of complexity taking into
account design and redesign. This method also builds in the
length of the plan _as a factor. Longer plans are more

complex.

3.4.2 Dependency As A Measure Of Plan Complexity - A plan
has a dependency measure. That is, some estimate of the
number of attributes that depend on the attributes for which
this plan decides values. Thus a plan might be worth
avoiding 1if it has more affect on the design. Just as with
the surface structure measure of complexity we want to
include the possibility of failure and its implications. 1If
we assume that on average fallure occurs in the middle of
the plan then we know that agents towards the beginning of
the plan will tend to be involved in redesign more often. A
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redesign will affect more of the design 1f the agents wused
in redesign have a high dependency measure. As before, we
can calculate a weighted dependency.

It must be stressed that it 1is not being suggested that
numerical measures such as these actually exist, but rather
that, with experience, some feeling for the complexity of a
particular plan can be formed based merely on general
knowledge about plans, and that these complexities can be
used and compared. Plan selection can wuse symbolic
complexity measures as one of the available sources of
knowledge. A designer will probably have "worked out" some
“value" for the complexity over a period of time and will
use that without regard to how it was originally obtained.

4 SUMMARY

This paper has presented an analysis of plan selection in
design problem-solving. Plan selection is a knowledge-based
process involving two different types of knowledge. A
Sponsor uses its knowledge to estimate a suitability for the
plan it represents given the current situation. A Selector
uses the information from its sponsors and its knowledge to
select the plan to be tried next,. Collections of plans,
their sponsors and their selector are associated with a
specialist., Selection takes place 1in the coatext of a
particular subproblem in the design. This theory has been
included in the DSPL 1language which 4is currently wunder
development. A version of DSPL has been used to implement a
problem-solver to design a swmall air-cylinder. More
research 13 needed to identify exactly what kinds of
knowledge are consistently used by designers to select their

plans.
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5 APPENDIX A

This is an edited form of a trace generated by an example
written in DSPL. This trace shows a specialist SpA
selecting amongst two plans Pl and P2. Each plan has two
tasks. A constraint in task Tl always fails.

AhARA ATR-CYL Air-cylinder Design System *a#n#
#%#% yversion date: (Dec 85)

2

»
:b.' ¢

« -
oo

,4, A
EXAGEEN CAOM

]
.

~a
& .

’
'
'

ot
A

X
4 >

* "‘-“‘ .

-

P
LA

Al



~a

o
g

R L

%1

*** Todays date: (18 Feb 84)
*x* User: DCBROWN

* Standard test/demo requirements to be used
**% Requirements Input Complete

--- Entering Specialist
.-.SPA... MOde = Design

11! Note:

The specialist needs a plan.
Ask the sponsors for opinions
about each plan,

————— Entering Sponsor
.-.Plsponsor...Plan = Pl

----- Leaving Sponsor
eessPlSponsor...Result= SUITABLE

----- Entering Sponsor
+s.P2Sponsor...Plan = P2

----- Leaving Sponsor
eessesP2Sponsor...Result= PERFECT

11! Note:

The opinion of the sponsors is that

there is a suitable plan and a perfect one,
The selector will pick one.,

----- Entering Selector
«e«SpASelector

————— Leaving Selector
esesSpASelector...Result= P2

11! Note:

The selector”s knowledge specifies to

pick P2 if it is perfect and hasnt been tried.
----- Entering Plan
eeeP2..s Type = Design

------- Entering Task...Tl

11! Note:

Plan 2 uses Task 1 which uses
Constraint ] which has been
fixed to always fail.

--------- Entering TEST-CONSTRAINTS...(Cl)

--------- Leaving TEST-CONSTRAINTS....(Cl)
«esResults=
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- -

(Msg Msg:MsgType Failure
Msg:MsgSubType Constraint

Msg:FromName Cl
Msg:FromType Constraint
Msg:Message "Constraint failure"”
Msg:Explanation "Cl forced failure"
Msg:InPlan P2
Msg:InMode Design

)

------- Leaving Task....Tl

«esResults=

(Msg - Msg:MsgType Failure .....)

----- Leaving Plan....P2
«eosRegsult=

(Msg Msg:MsgType Failure .....)

11! Note:

These agents know anothing about
failure recovery. The task fails and
the plan failure follows. A new plan
must be found. Ask the sponsors,

----- Entering Sponsor

essPlSponsor...Plan = Pl
------ Leaving Spounsor
eeessPlSponsor...Result= PERFECT

----- Entering Sponsor
eesesP2Sponsor...Plan = P2

----- Leaving Sponsor
....PZSponOOtﬁ..Result- RULE-0OUT

1!! Note:

Note that both Pl and P2 have changed
their answvers. This is possible as the
situation has changed.

----- Entering Selector
essSpASelector

----- Leaving Selector
....SpASQlector...Result- Pl

11! Note:
The selector picks the perfect plan,




;\:': ----- Entering Plan...Pl... Type = Design

A P Entering Task...T3

! --------- Entering TEST-CONSTRAINTS...(C2)

1 --------- Leaving TEST-CONSTRAINTS....(C2)

§ ...Result= Success Msg :

------- Leaving Task....T3
...Result= Success Msg

A

------- Entering Task...Tl

11! Note:
Cl fails again, leading to
plan failure.

o

SIS

;;3 --------- Entering TEST-CONSTRAINTS...(Cl)

p

b .. memem=mme- Leaving TEST-CONSTRAINTS....(Cl)
a «ssResult=

(Msg Msg:MsgType Failure .....)

L an g g e o

- e > - - Leaving Task....TI
+s.Result=

lm

(Msg Msg:MsgType Failure ...... )

<
>
Y emeee Leaving Plan....P3
«eesResult=
K
E (Msg Msg:MsgType Failure ..... )
r ;
~ 11! Note:
k. Ask the spounsors again,
-
~ :
AN eeeme- Entering Sponsor

«ssPlSponsor...Plan = Pl

----- Leaving Sponsor
es..PlSponsor...Result= RULE-OUT

oYy

7

----- Entering Sponsor
«ssP2Sponsor...Plan = P2

2

»
&

----- Leaving Sponsor
es+.P2Sponsor...Result= RULE-OUT

A
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11! Note:
The selector gives up.

----- Entering Selector
«ss+SpASelector

------ Leaving Selector....SpASelector
«soResult= ApplicablePlanNotFound

11! Note:
With no more plans to try .
the specialist will fail.

-== Leaving Specialist....SpA
«esResult=s

(Msg Msg:MsgType Failure c.cco )

#*% Design attempt fails

a*%* Version date: (Dec 85)

*#%% Todays date: (18 Feb 84)

*#** User: DCBROWN

A#kdd*® AIR-CYL Air-cylinder Design System ##**%%
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