Completeness and Incompleteness of Trace-Based Network Proof Systems

Jennifer Widom, David Gries, Fred B. Schneider

Most trace-based proof systems for networks of processes are known to be incomplete. Extensions to achieve completeness are generally complicated and cumbersome. In this paper, a simple trace logic is defined and two examples are presented to show its inherent incompleteness. Surprisingly, both examples consist of only one process, indicating that network composition is not required for incompleteness. Axioms necessary and sufficient for the relative completeness of a trace logic are then presented. The axioms are substantially simpler than existing extensions intended to achieve the same goal.
Completeness and Incompleteness of Trace-Based Network Proof Systems*

Jennifer Widom
David Gries
Fred B. Schneider

TR86-766
July 1986

Department of Computer Science
Cornell University
Ithaca, NY 14853

Abstract. Most trace-based proof systems for networks of processes are known to be incomplete. Extensions to achieve completeness are generally complicated and cumbersome. In this paper, a simple trace logic is defined and two examples are presented to show its inherent incompleteness. Surprisingly, both examples consist of only one process, indicating that network composition is not required for incompleteness. Axioms necessary and sufficient for the relative completeness of a trace logic are then presented. The axioms are substantially simpler than existing extensions intended to achieve the same goal.

* This work was supported by the National Science Foundation under grant DCR-8320274
Schneider is also supported by Office of Naval Research contract N00014-86-K-0092
1. INTRODUCTION

Most formalisms for networks in which the specification of a network can be completely deduced from the specifications for its constituent processes are trace-based. In them, one specifies and reasons about traces (histories) of the values transmitted along the communication channels of the network. Trace-based proof systems are defined in [CH81, Ho81, Ho85, MC81], but unfortunately they exhibit incompleteness [BA81, Ng85]. Simple trace logics are modified to increase expressiveness in [Jo85, Pr82] and to obtain completeness in [BA81, HH83, NDGO86, ZRE84]. The modifications tend to be extensive and cumbersome; the simplicity of the underlying logic is lost.

This paper explores incompleteness in simple trace-based proof systems and identifies two extensions that are necessary and sufficient for achieving relative completeness. The first source of incompleteness is the inability to state and reason about constraints on the temporal ordering of network events. The second source is the inability to assert that the sequence of values transmitted along a communication channel is always a prefix of that channel's sequence at some later point. These two properties—the temporal ordering and prefix properties—must be available as reasoning tools in any (relatively) complete proof system.

The need for axiomatizations of these properties is illustrated using two examples, each consisting of a single process. The examples demonstrate that, while compositionality is an important feature of trace-based logics, incompleteness is caused not by network composition but by the inability to express the temporal ordering and prefix properties. We also prove that adding temporal ordering and prefix axioms to a trace logic suffices for achieving relative completeness.

Section 2 describes the class of synchronous process networks used in the remainder of the paper. In Section 3, we define Simple Trace Logic (STL), a formalism and proof system for network specification and verification that captures the essence of most trace-based systems. The incompleteness of STL is shown in Section 4. To reason about the proof system it is necessary to introduce a computational model; we do this in Section 5. The model is based on the computation tree, which captures all possible behaviors of a given process or network. In Section 6, the ideas discussed in Section 4 are formalized, providing axiomatizations of the temporal ordering and prefix properties, along with a proof of their necessity and sufficiency. Finally, in Section 7 we draw conclusions, explain how our results relate to existing proof systems, and discuss future work.
2. **Process Networks**

Consider networks of processes that communicate and synchronize solely by message passing. Processes and communication channels are uniquely named. Each channel is either *internal* or *external* with respect to a network. An internal channel connects two processes of the network; an external channel is connected to only one. Channels are unidirectional, and communication along them is synchronous, so both processes incident to an internal channel must be prepared to communicate before a value is actually transmitted. External channels permit communication with the environment of the network; input or output on an external channel occurs whenever the incident process is ready. Without loss of generality, we assume:

1. **Message transmission occurs instantaneously.**
2. **Two message transmissions cannot occur simultaneously.** Thus, there is a total order on the communication events of a given computation.
3. **There is a fixed domain of values that can be transmitted on communication channels.**

Processes send and receive values in this domain only.

A network made up of processes $P_1, P_2, ..., P_n$ is denoted by $P_1 \parallel P_2 \parallel ... \parallel P_n$, indicating the parallel execution of the component processes. Fig. 1 illustrates a network of three processes and eight communication channels.

![Figure 1. A network of processes](image)

1. Extension to asynchronous message-passing is straightforward, immaterial to the incompleteness problem, and therefore not discussed here.
3. **SIMPLE TRACE LOGIC**

Our formalism for specifying and verifying networks is called *Simple Trace Logic* (STL). It concisely captures trace-based reasoning.

3.1. Channel Traces

A *specification* is a first-order predicate that is satisfied by every possible execution of the process or network it specifies. The predicate is defined over *channel traces*—the sequences of values transmitted on communication channels during execution.

Let c be a channel. In a specification, c denotes a finite sequence, (c_0, c_1, \ldots, c_k), indicating the values transmitted along channel c, in order. We use the following notational conventions:

- (\cdot) denotes the empty sequence.
- $|c|$ denotes the length of sequence c.
- $c_1 \subseteq c_2$ denotes that sequence c_1 is a prefix of sequence c_2. Note that \subseteq is reflexive.

3.2. Process Specifications

A specification for a process P is a predicate S over the traces of P's incoming and outgoing channels. We say that P's behavior *satisfies* S, written $P \text{ sat } S$, if, at every point during any computation of P, the traces of the values transmitted on channels incident to P satisfy S. For example, suppose process P_3 of Fig. 1 repeatedly reads an integer from c_8 and writes its successor to c_4. We can formulate this in STL as

$$[3.2.1] \quad P_3 \text{ sat } (|c_8| - 1 \leq |c_4| \leq |c_8|) \land (\forall i: 0 \leq i < |c_4|: c_4[i] = c_8[i] + 1).$$

3.3. Network Specifications and Proof Rules

A specification for a network $N = P_1 \parallel P_2 \parallel \ldots \parallel P_n$ is also a predicate S over the traces of its (internal and external) channels. $N \text{ sat } S$ if, given any behavior of N up to any point in time, the traces of values transmitted along N's channels satisfy S.

The axioms of STL consist of all formulas $P \text{ sat } S$, where S is a specification satisfied by every possible execution of process P. A specification of a network is to be based solely on specifications for its primitive component processes. How these primitive specifications are obtained—or even how processes are programmed—is not important. This puts STL at a level of abstraction that hides all details except those relevant to the question of completeness.

Specifications for networks can be derived from specifications for their component processes by using the following inference rule.
Network Composition Rule: \[(\forall i: 1 \leq i \leq n: P_i \text{ sat } S_i) \]
\[P_1 \parallel P_2 \parallel \ldots \parallel P_n \text{ sat } \bigwedge S_i \]

Conjoining specifications of processes using [3.3.1] results in "linking" any shared channels because in \(\bigwedge S_i \), all \(c \)'s (say) refer to the same channel trace.

In addition, we have the following inference rule:

Consequence Rule: \[N \text{ sat } S_1, S_1 \Rightarrow S_2 \]
\[N \text{ sat } S_2 \]

These two inference rules, or variants thereof, underlie all trace-based proof systems we know of, including [CH81, Ho85, MC81, NDGO86].

4. INCOMPLETENESS OF SIMPLE TRACE LOGIC

Specification \(S \) is valid for a process or network \(PN \) if every execution of \(PN \) (up to any point in time) yields channel traces that satisfy \(S \). We would like \(STL \) to be sound—i.e. if we use \(STL \) to prove \(N \text{ sat } S \), then indeed \(S \) is valid for network \(N \). A rigorous soundness proof requires a computational model [Ap81, CK73, Co78], which we give in Section 5.

We would also like \(STL \) to be complete—i.e. if, whenever some specification \(S \) is valid for network \(N \), then \(N \text{ sat } S \) is provable using \(STL \). However, a network specification is derived using [3.3.1] from specifications for its component processes. If these specifications are valid, but too weak, then we may not be able to prove a given valid network specification. Thus, what we really want to know is whether we can prove \(N \text{ sat } S \) when the specifications given for the primitive processes comprising \(N \) are as "strong" as possible.

Definition: A specification \(S \) is precise for a process or network \(PN \) iff:

(1) \(S \) is valid for \(PN \).

(2) Any computation that satisfies \(S \) is a possible computation of \(PN \).

A precise specification for a process or network, then, exactly characterizes its possible computations. Hence, for completeness, we are merely interested in the provability of \(N \text{ sat } S \) when \(S \) is valid and the specifications for the processes in \(N \) are precise.

\(STL \) specifications can involve elements of the data domain from which messages are drawn, sequences of such elements, and lengths of sequences. Since number theory itself is incomplete [S67], a valid assertion involving sequence lengths might not be provable in any system. When designing a programming logic, one actually aims for relative completeness [Co78]: Assuming that one can prove any valid statement of predicate logic, number theory.
and the data domain of the network being considered, is the proof system complete?\footnote{Most proof systems make assumptions about both the provability of predicate logic statements and the expressiveness of the specification language involved. This is sometimes referred to as \textit{Cook completeness}. Ap81, Ca78.} STL is not relatively complete, as we now show.

4.1. Temporal Ordering Property

Consider the single-process network of Fig. 2. As an informal description of process \(P \) we are given four facts: (1) \(P \) reads at most one value from channel \(i \); (2) \(P \) reads at most one value from channel \(j \); (3) \(P \) reads a value from \(i \) before reading from \(j \); (4) \(P \) reads a value from \(j \) before reading from \(i \). A formal specification is

\[
\begin{align*}
P \text{ sat } S1: & \quad \|i\| \leq 1 \land \|j\| \leq 1 \land \|i\| \leq \|i\| \land \|i\| \leq \|j\|.
\end{align*}
\]

Let the data domain for this network be \(\{a\} \). The following specification is valid for \(P \) and is equivalent to [4.1.1]:

\[
\begin{align*}
P \text{ sat } S2: & \quad (i = () \land j = ()) \lor (i = (a) \land j = (a))
\end{align*}
\]

\(P \) is always in one of two states: either no values have been read from \(i \) and \(j \) or one \(a \) has been read from each. However, \(P \) can reach a state in which \((i = (a) \land j = (a)) \) only if \(i_0 \) and \(j_0 \) are transmitted simultaneously. Since this cannot happen (by assumption [2.0.2]), \(P \) can never read a value from \(i \) or \(j \). Therefore, a third valid specification for \(P \) is

\[
\begin{align*}
P \text{ sat } S3: & \quad i = () \land j = ()
\end{align*}
\]

All three specifications are valid and, in fact, precise. Any computation satisfying \(S1, S2, \) or \(S3 \) is a computation of \(P \)—no values are ever read on \(i \) or \(j \). However, consider an attempt at proving [4.1.3] given precise specification \(S2 \) (say) of [4.1.2]. Since there is only a single process, the network composition rule is irrelevant, and the only inference we can use is the consequence rule. But \(S2 \Rightarrow S3 \) does not hold. Hence [4.1.3] is unprovable, even though it is valid.
We need a way to formalize the reasoning about event ordering used to obtain [4.1.3]. It must assert the following

[4.1.4] Temporal Ordering Property: Suppose cl and c2 are channels of a network N, cl, and c2, are transmitted as a result of distinct communication events, and in any computation of N

1. cl must be transmitted before c2, and
2. c2 must be transmitted before cl.

Then \(|c1| \leq x \land |c2| \leq y| holds throughout any computation of N—neither message will be transmitted.

Property [4.1.4] allows S3 to be deduced from S2, making [4.1.3] provable.

4.2. Prefix Property

Consider a network with one process and one communication channel (see Fig. 3). Suppose the network has \([a, b]\) as its data domain. Let a precise specification for process P be

\[
\begin{align*}
P \sat S4: &\ i = () \lor i = (a) \lor i = (b, a). \\
\end{align*}
\]

Since P can send only one value at a time on channel i, \(i = (b, a)\) can never be attained—it would be reachable only from \(i = (b)\), which is prohibited by S4. Therefore, [4.2.1] can be simplified to

\[
\begin{align*}
P \sat S5: &\ i \subseteq (a). \\
\end{align*}
\]

However, S4 does not imply S5, and therefore [4.2.2] cannot be proved from precise specification [4.2.1]. Here, we need:

[4.2.3] Prefix Property: For any channel c and integers \(0 \leq x \leq y\), the trace of c after x values have been transmitted is always a prefix of the trace of c after y values have been transmitted.

By applying the prefix property to S4, we can eliminate the disjunct \(i = (b, a)\) and obtain [4.2.2]

4.3. Augmenting the Proof System

Consider any STL proof that establishes \(N \sat S\) for a network \(N = P_1 \parallel P_2 \parallel \ldots \parallel P_n\). As axioms, we are given \(P_1 \sat S_1, P_2 \sat S_2, \ldots, P_n \sat S_n\), where \(S_1, S_2, \ldots, S_n\) are precise. The
first rule to be applied in any such proof is necessarily the network composition rule, so we immediately obtain \(N \text{ sat } \land_i S_i \). (In Section 5 we show that \(\land_i S_i \) is in fact a precise specification for \(N \).) All remaining steps in the proof must then be applications of the consequence rule. Since any string of consequence rule applications can be collapsed into one, we see that \(N \text{ sat } S \) is provable if and only if \(\land_i S_i \Rightarrow S \), a formula of predicate logic. The two examples given, however, demonstrate that such an implication might not hold. By strengthening the antecedent, we can guarantee that the implication will be valid. Thus, we must find a set of axioms such that if \(A \) (say) is the conjunction of the axioms in the set, then \((\land_i S_i \land A) \Rightarrow S \) is valid whenever it should be possible to deduce \(S \) from \(\land_i S_i \). The temporal ordering and prefix properties are the basis for such a set of axioms.

The remainder of the paper is a formalization of the concepts and results presented thus far.

5. Computational Model

Proving soundness and (relative) completeness requires a model of network behavior [Ap81, CK73, Co78]. The model is used to formalize the notions of valid and precise specifications. We can then prove that STL is sound, we can show that the conjunction of precise process specifications results in a precise network specification, and, most importantly, we can formalize the temporal ordering and prefix properties, allowing us to prove that they are necessary and sufficient for relative completeness.

Our model is based on the computation tree. Every process or network is represented by one computation tree. The structure of the tree describes all and only potential execution sequences of the process or network; vertices, called trace-sets, are sets of communication channel traces, and edges represent a single step of execution. In all computation trees

[5.0.1] The root of the tree is the trace-set in which all channel traces are empty, corresponding to the initial state of a computation

[5.0.2] The children of a trace-set \(TS \) within the computation tree are exactly those trace-sets that extend one channel trace of \(TS \) by one element, where the extension corresponds to a communication event that might actually be performed

Internal computations of a process are irrelevant when reasoning about network behavior, except as they affect the values sent and received. Thus the tree does not include such changes of process state. Since our system allows for reasoning about both finite and infinite computations, trees can be of finite or infinite depth. The domain of communicable values corresponds to the breadth of a tree; it too can be finite or infinite. (There is some similarity here to the CCS synchronization tree [Mi80].)
We first describe computation trees for primitive processes and then show how a computation tree for a network is built from trees for its component processes.

5.1. Computation Trees for Processes

The behavior of a process \(P \) is modeled as a computation tree. As an example, consider the network of Fig. 4. MERGE repeatedly and nondeterministically reads a value from \(i \) or \(j \) and then writes it on \(k \). BUFFER simply copies values from \(k \) to \(j \), with an arbitrary amount of internal buffering. Let the data domain for the network be \(\{a, b\} \). The initial portions of the computation trees for MERGE and BUFFER are illustrated in Figs. 5 and 6.

![Figure 4. Example network](image)

5.2. Computation Trees for Networks

The computation tree for a network is defined in terms of the computation trees for the network's constituent processes. First, we define compatibility of trace-sets—the criteria for determining when a group of trace-sets from process computation trees can coexist and hence can be combined into a single trace-set of a network computation tree. Let \(TS_1, TS_2, \ldots, TS_n \) be trace-sets, one each from the computation trees for processes \(P_1, P_2, \ldots, P_n \) of a network. This group of trace-sets is compatible iff for all channels \(c \) such that a trace of \(c \) appears in both \(TS_i \) and \(TS_j \), the trace of \(c \) in \(TS_i \) is identical to the trace of \(c \) in \(TS_j \). Thus, trace-sets are compatible when the exact same transmissions have occurred on any channels they have in common. When an appropriate set of compatible trace-sets is identified (the identification procedure is described shortly), they are merged into a single trace-set of the network tree being constructed. Merging compatible trace-sets simply consists of forming their union.

Let \(T_1, T_2, \ldots, T_n \) be the computation trees for processes \(P_1, P_2, \ldots, P_n \) respectively, and let \(N = P_1 \parallel P_2 \parallel \ldots \parallel P_n \). The tree \(T \) for network \(N \) is defined by the following construction.

3 We could alternatively—and equivalently—have chosen to define network trees independently of the component process trees, but the constructive definition given here is both illustrative of the model and useful in subsequent proofs.
Figure 5. Computation tree for process $MERGE$

Figure 6. Computation tree for process $BUFFER$

[5 2 1] $Combine (T_1, T_2, \ldots, T_n) =$

the root of $T =$ the result of merging the roots of T_1, T_2, \ldots, T_n.

for each T_i, $1 \leq i \leq n$.

let G_i be the group of trace-sets consisting of the root of T_i and all the root's children.

consider every possible group of trace-sets G, where G is constructed by choosing

one trace-set from each G_i. G is usable if

(1) the trace-sets in G are compatible, and

9
(2) merging the trace-sets in \(G \) results in a new trace-set that extends exactly one trace of \(T \)'s root by exactly one element:

for each usable \(G \):

add a child to the root of \(T \), letting this trace-set be the root of the tree defined by \(\text{Combine}(\text{set of subtrees whose roots are the trace-sets in } G) \).

In each invocation of \(\text{Combine} \), one set of process tree trace-sets is merged into a single network tree trace-set, followed by the identification of all possible trace-sets the network can achieve in some "next step". The recursive definition then results in the complete network tree, even if some or all of the process trees are infinite (the resulting network tree need not also be infinite). Fig 7 shows the initial part of the network tree for \(\text{MERGE} \parallel \text{BUFFER} \), obtained by combining the process trees pictured in Figs 5 and 6.

\[\ldots \]

Figure 7 Computation tree for \(\text{MERGE} \parallel \text{BUFFER} \)

5.3. Valid and Precise Specifications

We are now ready to define the relationship between \(\text{STL} \) and the computation tree model. Define a \(\text{path} \) in a computation tree to be any connected sequence of trace-sets beginning with
the root and descending through the tree until a trace-set with no children is reached. (If no
terminal trace-set is reached then the path is an infinite sequence.) A path corresponds to a
computation of the process or network being modeled by the computation tree. For any process
or network \(PN \), define \(\text{Comps}(PN) \), the set of possible computations, to be the set of all paths in
the computation tree for \(PN \).

Denote any sequence of trace-sets by \(a = (a_0, a_1, a_2, \ldots) \). A specification \(S \) is valid for a
process or network \(PN \) if

\[
(\forall a: a \in \text{Comps}(PN)): (\forall i: 0 \leq i < |a|): a_i \models S).
\]

That is, \(S \) is valid for \(PN \) if every trace-set of every sequence in \(\text{Comps}(PN) \) satisfies \(S \). For
notational convenience we define an "always" operator \(\square \):

\[
(\forall a \models \square S) \iff (\forall i: 0 \leq i < |a|): a_i \models S).
\]

Definition [5.3.1] of validity can now be written as \((\forall a: a \in \text{Comps}(PN)): a \models \square S) \), and we can
establish the soundness of \(STL \).

[5.3.3] Theorem (soundness of \(STL \)): Let \(N \) be a network and \(S \) a specification such that
\(N \models S \) is provable using \(STL \). Then \(S \) is valid for \(N \).

Proof: See appendix.

A sequence of trace-sets is well-formed if it could appear as a path in the computation tree
for some process or network because the sequence does not violate [5.0.1] or [5.0.2]. More
formally:

[5.3.4] Definition: \(a \) is well-formed if:

1. All channel traces in the initial trace-set of \(a \) are empty, and
2. Each trace-set in \(a \), except the first, extends exactly one trace of the preceding
 set by exactly one element.

We can now formalize Definition [4.0.1] of a precise specification.

[5.3.5] Definition: A specification \(S \) is precise for a process or network \(PN \) if:

\[a \models S \] holds if the channel traces in \(a \) satisfy specification \(S \).

\[\square \] This version of \(\square \) is consistent with the operator \(\square \) ("henceforth") in temporal logic, see e.g. [MP81]. The temporal
logic operator is defined as: \(a \models \square S \iff (\forall i: 0 \leq i < |a|): (a_i, a_{i+1}, \ldots) \models S) \), but when \(S \) itself contains no temporal
operators, then \((a_0, a_1, \ldots) \models S) \iff (a \models S)\).
(1) S is valid for PN, and

(2) Any well-formed sequence of trace-sets σ satisfying $\Box S$ is in $Comps(PN)$.

(In part (2) of [5.3.5] we tacitly assume that the trace-sets of σ do not include extraneous channel traces—i.e. that all traces in σ are histories of channels actually appearing in PN.) It turns out that the composition of precise process specifications results in a network specification that is also precise.

[5.3.6] Theorem (preciseness preservation): Let S_i be a precise specification for P_i, $1 \leq i \leq n$, and let $N = P_1 \parallel P_2 \parallel ... \parallel P_n$. Then $\land_i S_i$ is a precise specification for N.

Proof: See appendix.

6. THE TEMPORAL ORDERING AND PREFIX AXIOMS

Consider a network $N = P_1 \parallel P_2 \parallel ... \parallel P_n$. Given precise specifications $S_1, S_2, ..., S_n$ for the component processes, N sat S is provable if and only if $\land_i S_i \Rightarrow S$. We now know, by preciseness-preservation theorem [5.3.6], that $\land_i S_i$ is a precise specification for N. Therefore, STL would be relatively complete if $S_1 \Rightarrow S_2$ whenever S_1 is a precise specification for a network N and S_2 is a valid specification for N. The examples of Section 4 showed that the implication does not always hold and suggested that we define a set of axioms whose conjunction A guarantees that $(S_1 \land A) \Rightarrow S_2$. We will prove that axiomatizations of the temporal ordering and prefix properties (from Section 4) are necessary and sufficient for such an A.

There is a fundamental difference between any axiomatization of temporal ordering and specifications S_1 and S_2, because event ordering is always with respect to an entire computation—a sequence of trace-sets—while S_1 and S_2 are with respect to individual trace-sets. We employ \Box to convert a specification to being on entire computations and introduce

[6.0.1] Revised Consequence Rule: N sat $S_1, \Box S_1 \land A \Rightarrow \Box S_2$

N sat S_2

6.1. The Temporal Ordering Axiom

Our first axiom characterizes temporal ordering property [4.1.4]. If some communication c_1 happens before some c_2, then $|c_2|$ cannot exceed y until $|c_1|$ exceeds x. This can be expressed as $\Box (|c_2| > y \Rightarrow |c_1| > x)$. Note that this assertion captures temporal precedence for any channels c_1 and c_2 and any indices x and y, even if $x = y$ or c_1 and c_2 are the same channel. We are only interested in temporal ordering of distinct events, so the case in which c_1 and c_2, are produced by the same event (i.e. $x = y$ and c_1 and c_2 are the same channel) is excluded. Now,
if \(\Box (|c_1| > x \Rightarrow |c_2| > y) \) as well, then neither \(c_1 \) nor \(c_2 \) can ever happen, equivalently:

\(\Box (|c_1| \leq x \land |c_2| \leq y) \).

The formalization differs slightly from the preceding discussion, however. All \(> \)'s are changed to \(\geq \)'s in the antecedent of the rule and all \(\leq \)'s are changed to \(< \)'s in the consequent. Doing so allows channel traces of length 0 in the antecedent, thereby asserting that an empty channel trace temporally precedes all communication events on that channel. Hence we state the temporal ordering axiom as

\[[6.1.1 \text{ ORDERING: If } c_1 \text{ and } c_2 \text{ are channels, } x \geq 1 \text{ and } y \geq 0 \text{ are indices, and either } x \neq y \text{ or } c_1 \text{ and } c_2 \text{ are distinct, then } \Box (|c_1| \geq x \Rightarrow |c_2| \geq y) \Rightarrow \Box (|c_1| < x \land |c_2| < y). \]

We require \(x \geq 1 \), rather than \(x \geq 0 \), because allowing \(x = y = 0 \) results in a pathological situation in which the antecedent is trivially true (since trace lengths are always at least 0), but the consequent is trivially false (since lengths cannot be less than 0).

We must prove that the axiom is sound.

\[[6.1.2 \text{ Theorem (soundness of ORDERING): } \sigma = \text{ORDERING for any well-formed sequence of trace-sets } \sigma. \]

\textbf{Proof:} See appendix.

\[6.2. \text{ The Prefix Axiom}\]

An additional bit of notation is necessary in order to formulate an axiom for prefix property \[4.2.3 \]. For any \(i \geq 0 \) and trace-set sequence \(\sigma \), let \(\sigma_c \) ("the next value of c") be defined with respect to trace-set \(\sigma \), as the trace of channel \(c \) in trace-set \(\sigma_i+1 \).\(^6\) If \(\sigma \) is finite, in the last trace-set let \(\sigma_c = c \) (since there is no next trace-set). In effect, we convert finite sequences to infinite ones by repeating the final trace-set. Thus, for any sequence \(\sigma \), every channel \(c \) appearing in \(\sigma \) has a corresponding and well-defined value \(\sigma_c \) in each trace-set of the sequence. Intuitively, the value of \(\sigma_c \) at any given time is the value that channel trace \(c \) will have after the next computation step.

We now state the prefix axiom.

\[[6.2.1 \text{ PREFIX. If } c \text{ is any channel, then: } \Box (c \subseteq \sigma_c). \]

The axiom asserts that the value of a channel trace \(c \) at any point in time is a prefix of \(c \)'s trace at any later time. The axiom is thus equivalent to the prefix property as stated in Section 4.2.

\(^6\) Operator \(\sigma_c \) corresponds to the "next" operator of temporal logic \([\text{MP81}]\). Do not confuse this with a second use of \(\sigma \) in temporal logic, where \(\sigma \) operates over formulas: \(\sigma \models OS \iff \sigma \models S \).
[6.2.2] Theorem (soundness of PREFIX): \(\sigma \models \text{PREFIX} \) for any well-formed sequence of trace-sets \(\sigma \).

Proof: Let \(\sigma \) be any well-formed sequence of trace-sets. \(\sigma \models \text{PREFIX} \) follows directly from the definition of well-formedness: Since \(\sigma_{i+1} \) extends exactly one trace of \(\sigma_i \) by exactly one element (for all \(0 \leq i < |\sigma| - 1 \)), every channel trace \(c \) in \(\sigma_i \) is a prefix of the corresponding trace in \(\sigma_{i+1} \). If \(i = |\sigma| - 1 \), then by definition \(c = o_c \). Therefore \(\text{PREFIX} \) is a sound axiomatization of the prefix property.

6.3. Necessity and Sufficiency of the Axioms

By letting \(A = \text{ORDERING} \land \text{PREFIX} \), we can prove that if \(S_1 \) is a precise specification for network \(N \) and \(S_2 \) is a valid specification for \(N \), then \(\Box S_1 \land A \models \Box S_2 \). In addition, we will argue that \(\text{ORDERING} \) and \(\text{PREFIX} \) are necessary axioms for this—if either axiom is removed from \(A \) then we can find a network \(N \) with precise and valid specifications \(S_1 \) and \(S_2 \) (respectively) such that \(\Box S_1 \) and \(A \) do not imply \(\Box S_2 \). We begin with a key lemma.

[6.3.1] Lemma (well-formedness): A sequence of trace-sets \(\sigma \) is well-formed if and only if \(\sigma = \text{ORDERING} \land \text{PREFIX} \).

Proof: See appendix.

With this lemma in hand, we can easily prove that our two axioms are sufficient for relative completeness.

[6.3.2] Theorem (sufficiency of the axioms): If \(S_1 \) is a precise specification for network \(N \) and \(S_2 \) a valid specification for \(N \), then \(\Box S_1 \land \text{ORDERING} \land \text{PREFIX} \models \Box S_2 \).

Proof: We show that that any sequence of trace-sets \(\sigma \) satisfying \(\Box S_1 \), \(\text{ORDERING} \), and \(\text{PREFIX} \), also satisfies \(\Box S_2 \). Since \(\sigma \models \text{ORDERING} \land \text{PREFIX} \), by Lemma [6.3.1] we know that \(\sigma \) is well-formed. Now recall from the formal definition of preciseness ([5.3.5]) that any well-formed sequence satisfying a precise specification is a path in the computation tree for the corresponding process or network. Since \(\sigma \) is well-formed and \(\sigma \models \Box S_1 \), by the preciseness of \(S_1 \) we conclude that \(\sigma \in \text{COMPS}(N) \). Finally, by the validity of \(S_2 \), every sequence in \(\text{COMPS}(N) \) satisfies \(\Box S_2 \), so \(\sigma \models \Box S_2 \).

Thus with \(\text{ORDERING} \) and \(\text{PREFIX} \), we ensure that any valid network specification follows from a precise specification for the network. (In fact, by preciseness-preservation theorem [5.3.6], only precise specifications for the component processes are needed.) Both axioms are necessary for the implication to always hold, as well as sufficient, as is shown in our final theorem.
[6.3.2] **Theorem (necessity of the axioms):** There exist networks N_1, N_2, and N_3, with precise specifications $S_1 p$, $S_2 p$, $S_3 p$ (respectively) and valid specifications $S_1 v$, $S_2 v$, $S_3 v$ (respectively), such that:

1. $\neg (\Box S_1 p \land \text{ORDERING} \Rightarrow \Box S_1 v)$
2. $\neg (\Box S_2 p \land \text{PREFIX} \Rightarrow \Box S_2 v)$
3. $\neg (\Box S_3 p \Rightarrow \Box S_3 v)$

Proof: (1) Let N_1 be the example network of Section 4.2. (2) Let N_2 be the example network of Section 4.1. (3) Follows directly from (1) and (2). \Box

7. **Conclusions, Comparisons, and Future Work**

STL is a simple trace-based proof system for networks of processes, with specification language and inference rules similar to those in most existing trace logics [Br84, CH81, HH85, Ho81, Ho85, Jo85, MC81, Mi80, NDGO86, ZRE84]. Like other simple trace logics [CH81, Ho81, Ho85, MC81], STL is incomplete, and we have proved that axiomatizations of the temporal ordering and prefix properties are necessary to achieve relative completeness. Since these two axioms are essential components of a relatively complete proof system, it is interesting to look at existing complete systems and identify how the axioms are represented.

Several proof systems involve explicit reasoning about every possible interleaving of communication events [Br84, HH83, Mi80], within the system all possible computations must actually be listed. It is clear that such a logic will be complete, since an exhaustive list of potential computations is an exact characterization of process or network behavior, including (implicitly) the constraints of the temporal ordering and prefix properties. Naturally, the difficulty is the exponential number of possible computations. Verifying the specification of any but very simple networks could be a formidable task with such a formalism.

The proof system in [ZRE84] is designed both for the specification of sequential processes and for the verification of their behavior when connected into a network. Thus, Hoare-style triples and inference rules are given (in the style of [AFR80, LG81]), as well as a means for reasoning about specifications over channel traces. The logic includes a statement of the prefix property, written essentially as $(\text{Tr} = c) \ Pgm \ (\text{Tr} \subseteq c)$, where Pgm is any program segment. (The interpretation is: If execution of Pgm begun in any state in which channel trace c has value Tr terminates, then upon termination Tr is a prefix of c.) Reasoning about the temporal ordering property, however, is achieved only by enumerating all possible interleavings of the communication events of interest. Again, this can result in an exponential number of cases to consider.
In [ZRE84], the authors also discuss the incompleteness of [MC81] and suggest a rule that would render it relatively complete. (A similar rule is proposed in [Ng85].) Informally, the rule asserts the following: Let S be a valid specification for network N and t be an interleaved trace of all communication events during any computation of N. Then every prefix of t satisfies S.

This rule certainly captures the prefix property, and the temporal ordering property is encoded as well. To see this, suppose specification S constrains two communication events c_{1x} and c_{2y} (say) to occur simultaneously. Any trace t including only one of c_{1x} and c_{2y} will not satisfy S, and thus cannot be a computation of N. Suppose, then, that both events are included in t. Consider any prefix p of t that contains one event but not the other. (Such a prefix must exist.) Then p will not satisfy S, since only one of c_{1x} and c_{2y} appears in p. Hence no computation of N can include either event.

In [Jo85], the fact (and problem) that valid specifications do not always follow from precise specifications is identified, but no actual solution is proposed. The author suggests adding a proof rule of the form

\[N \text{ sat } S_1 \]
\[\frac{}{N \text{ sat } S_2} \]

which can be used whenever S_1 and S_2 are such that any network satisfying S_1 will also satisfy S_2. With a rule of inference like this, the issues of behavioral properties such as temporal ordering can essentially be ignored, but consequently there is no formal method for deciding when a pair of specifications is a candidate for an application of the above rule.

The proof system of [NDGO86] is based on temporal logic, so it is straightforward to formulate ordering constraints between network events in the logic. In addition, a number of axioms for behaviors are defined, including assertions that all traces are initially empty, that only one communication event can occur in a single time-step, that the prefix property holds, etc. These axioms for behaviors are also stated in temporal logic.

Our ORDERING and PREFIX axioms could be formulated in temporal logic, since the operators \Box and \Diamond are subsumed by the corresponding operators of temporal logic. However, we have actually drawn upon only a relatively small subset of temporal logic. In particular, we use $\Diamond c$, but do not need the formula version of \Diamond: we use $\Diamond S$, but only in the special case when S is non-temporal. Although temporal logic is a convenient language in which to perform the types of reasoning needed for our axioms, temporal logic may be far more powerful than is necessary. Our contribution here is to identify the subset of temporal logic needed to achieve relative completeness.

The next step in our work is to extend the language of STL to enable our two axioms to be expressed. Our goal is to create as simple a trace logic as possible, but one that is still relatively
complete. Since we have shown that ORDERING and PREFIX are necessary and sufficient
property axiomatizations, they will be our guide in devising such a proof system.

Appendix

[5.3.3] Theorem (soundness of STL): Let \(N \) be a network and \(S \) a specification such that
\(N \text{ sat } S \) is provable using STL. Then \(S \) is valid for \(N \).

Proof: Since we're assuming validity of process specifications, proving this theorem consists of
showing that whenever the antecedent of an STL inference is valid, so is the consequent.

[3.3.1] Network Composition Rule:
\[
(\forall i: 1 \leq i \leq n: P_i \text{ sat } S_i) \\
\Rightarrow P_1 \parallel P_2 \parallel \ldots \parallel P_n \text{ sat } \wedge_i S_i
\]

Assume each \(S_i \) is valid for \(P_i \), so \((\forall o: o \in \text{Comps}(P_i): o \models \Box S_i)\). We must show that \((\forall o: o \in \text{Comps}(N): o \models \Box \wedge_i S_i)\), where \(N = P_1 \parallel P_2 \parallel \ldots \parallel P_n \). Consider an arbitrary conjunct \(S_i \) and
an arbitrary \(o \in \text{Comps}(N) \). Let \(o_j \) be any trace-set of \(o \). If we construct \(o_j' \) by removing from \(o_j \)
all traces of channels that are not incident to process \(P_i \) then—by the method of constructing
network trees from component process trees—we obtain a trace-set that must appear
in some \(o \in \text{Comps}(P_i) \). Therefore, \(o_j' \equiv S_i \), because \(S_i \) is valid, and \(o_j \equiv S_i \) as well, since the traces that
were removed from \(o_j \) cannot appear in \(S_i \). Since \(o_j \) is an arbitrary trace-set of an arbitrary
sequence in \(\text{Comps}(N) \), we know \((\forall o: o \in \text{Comps}(N): o \models \Box S_i)\) The conjunct \(S_i \) was also chosen
arbitrarily, so we can conclude that \((\forall o: o \in \text{Comps}(N): o \models \Box \wedge_i S_i)\). Thus \(\wedge_i S_i \) is valid for \(N \).

[3.3.2] Consequence Rule:
\[
N \text{ sat } S_1, S_1 \Rightarrow S_2 \\
\Rightarrow N \text{ sat } S_2
\]

Let \(S_1 \) be valid for \(N \). From \((\forall o: o \in \text{Comps}(N): o \models \Box S_1)\) and \(S_1 \Rightarrow S_2 \), by predicate logic we
conclude \((\forall o: o \in \text{Comps}(N): o \models \Box S_2)\). Therefore \(S_2 \) is also valid for \(N \). \(\Box \)

[5.3.6] Theorem (preciseness preservation): Let \(S_i \) be a precise specification for \(P_i \), \(1 \leq i \leq n \), and
let \(N = P_1 \parallel P_2 \parallel \ldots \parallel P_n \). Then \(\wedge_i S_i \) is a precise specification for \(N \).

Proof: We must show that \(\wedge_i S_i \) satisfies both parts of Definition [5.3.5].

(1) \((\wedge_i S_i \text{ is valid for } N.)\) Since the \(S_i \) are precise specifications for their respective \(P_i \), they are
valid. We must then show that \(\wedge_i S_i \) is valid for \(N \). This was proven in part (1) of Theorem
[5.3.3] (the soundness theorem).

(2) (If \(\sigma \) is any well-formed sequence of trace-sets such that \(\sigma \models \Box \wedge_i S_i \), then \(\sigma \in \text{Comps}(N) \).)
For any process \(P \), define \(\text{Project}\sigma, P \) to be the sequence of trace-sets \(\sigma' \) that results from
restricting the trace-sets in \(\sigma \) to those channels that are incident to \(P \) and then eliminating all
trace-sets that duplicate their immediate predecessor in the sequence. Using \(\text{Project}(o, P) \) we can take a path representing a computation of a network and extract the trace-set sequence that shows how a single process behaved during this computation. Now, let \(o \) be any well-formed sequence of trace-sets such that \(o \models \Box A \). We must show that \(o \in \text{Comps}(N) \). Let \(o_1 = \text{Project}(o, P_1) \), \(o_2 = \text{Project}(o, P_2) \), etc. By definition, \(o_i \models \Box S_i \), \(1 \leq i \leq n \). Thus, by the preciseness of each of the \(S_i \), \(o \in \text{Comps}(P) \). Lastly, we use the algorithm for network tree construction to conclude that \(o \in \text{Comps}(N) \). \(\Box \)

[6.1.2] **Theorem (soundness of ORDERING):** If \(o \) is any well-formed sequence of trace-sets, then \(o \models \text{ORDERING} \).

Proof. Let \(o \) be an arbitrary well-formed sequence of trace-sets. We must show that if \(o \models \Box (|c1| \geq x \land |c2| \geq y) \) then \(o \models \Box (|c1| < x \land |c2| < y) \). Assume that \(\Box (|c1| \geq x \land |c2| \geq y) \) holds for \(o \), and suppose, for the sake of a contradiction, that \(\Box (|c1| < x \land |c2| < y) \) does not. Thus, there is a trace-set of \(o \) in which \((|c1| \geq x \lor |c2| \geq y) \). Let \(i \) be the smallest index for which this is true: \((|c1| \geq x \lor |c2| \geq y) \) is true in \(o_i \), but does not hold in any \(o_j \) for \(j < i \). Since \((|c1| \geq x \lor |c2| \geq y) \) is true in \(o_i \), by \(o \models \Box (|c1| \geq x \land |c2| \geq y) \) we know that \((|c1| \geq x \land |c2| \geq y) \) holds in \(o_i \). By \(x \geq 1 \) (recall Definition [6.1.1]), \(i > 0 \), since all traces in \(o_0 \) are empty. So consider trace-set \(o_{i-1} \). By the definition of a well-formed sequence, \(o_i \) extends exactly one trace of \(o_{i-1} \) by exactly one element. Therefore since \((|c1| \geq x \land |c2| \geq y) \) holds in \(o_i \), \((|c1| \geq x \lor |c2| \geq y) \) must hold in \(o_{i-1} \). This contradicts the assumption that \(i \) is the smallest index for which \(o_i \models (|c1| \geq x \lor |c2| \geq y) \). Thus, \(o \models \Box (|c1| < x \land |c2| < y) \) and \(o \models \text{ORDERING} \). \(\Box \)

[6.3.1] **Lemma (well-formedness):** A sequence of trace-sets \(o \) is well-formed if and only if \(o \models \text{ORDERING} \land \text{PREFIX} \).

Proof: \(\Rightarrow \) (If \(o \) is well-formed then \(o \models \text{ORDERING} \land \text{PREFIX} \).) This is simply a statement that axioms \text{ORDERING} and \text{PREFIX} are sound, which was proven in Sections 6.1 and 6.2.

\(\Leftarrow \) (If \(o \models \text{ORDERING} \land \text{PREFIX} \) then \(o \) is well-formed.) Consider any \(o \) that satisfies \text{ORDERING} and \text{PREFIX}. We must show that \(o \) is well-formed. We prove the (equivalent) contrapositive: If \(o \) is not well-formed, then \(o \) does not satisfy \text{ORDERING} \land \text{PREFIX} \). Let \(o \) be any sequence of trace-sets that is not well-formed. By Definition [5.3.4] of well-formedness, \(o \) then must exhibit at least one of the following conditions:

[A.1] In the initial trace-set all channel traces are not empty.

[A.2] Some channel trace decreases in length.

[A.3] Some channel trace increases in length by more than 1.

[A.4] Two channel traces increase in length at the same step.
Some channel trace element takes on more than one value. (A value changes spontaneously between trace-sets on a path.)

(The negation of well-formedness condition (1) from Definition [5.3.4] is [A.1], while negating condition (2) results in [A.2] through [A.5].) We must show that in every case, one of ORDERING and PREFIX is violated. The proof proceeds by induction on the length of σ.

Base case: $|\sigma| = 1$. Since σ has only one trace-set, σ must be ill-formed due to case [A.1]—all channel traces are not empty in σ_0. Let $|c| = x$ in σ_0 for some channel c and some $x \geq 1$. Then $\sigma \vdash \Box (|c| \geq 0 \Rightarrow |c| \geq x)$. Trivially, $\sigma \vdash \Box (|c| \geq 0 \Rightarrow |c| \geq x)$. By ORDERING we conclude $\sigma \vdash \Box (|c| < x \land |c| < 0)$. This last assertion is not true, and thus ORDERING does not hold for σ.

Induction: $|\sigma| = n + 1$, $n \geq 1$. Suppose, as the induction hypothesis, that any σ' of length n that is not well-formed violates ORDERING and/or PREFIX. Now consider σ. If $(\sigma_0 \ldots \sigma_{n-1})$ is not well-formed, then by the induction hypothesis we are done. So assume that $(\sigma_0 \ldots \sigma_{n-1})$ is well-formed. Then the ill-formedness of σ must occur between trace-sets σ_{n-1} and σ_{n} and must be of type [A.2], [A.3], [A.4], or [A.5] above. By cases:

[A.2] (Some channel trace decreases in length.) Let $|c| = x$ in σ_{n-1} and $|c| = y$ in σ_{n}, for some c and $x > y$. Then $c \subseteq \sigma c$ does not hold in σ_n, $\Box (c \subseteq \sigma c)$ is not valid for σ, and hence PREFIX is violated.

[A.3] (Some channel trace increases in length by more than 1.) Suppose $|c| = x$ in σ_{n-1} and $|c| = x + y$ in σ_{n}, for some c, x, and $y \geq 2$. Recall that $(\sigma_0 \ldots \sigma_{n-1})$ is well-formed (by hypothesis), so we know $(\sigma_0 \ldots \sigma_{n-1}) \vdash \Box (|c| \leq x)$, since $|c| \leq x$ in σ_{n-1}. Therefore $\sigma \vdash \Box (|c| \geq x + 1 \Rightarrow |c| \geq x + y)$. Now since $\Box (|c| \geq y \Rightarrow |c| \geq x + y)$ holds trivially, we obtain $\sigma \vdash \Box (|c| \geq x + 1 \Rightarrow |c| \geq x + y)$. It is not the case, however, that $\sigma \vdash \Box (|c| < x + 1 \land |c| < y)$. Thus ORDERING does not hold.

[A.4] (Two channel traces increase in length at the same step.) Let $|c| = x$ and $|c| = y$ in σ_{n-1}, and let $|c| = x + 1$ and $|c| = y + 1$ in σ_{n-1}, for some c, c_2, x, and y. Since $(\sigma_0 \ldots \sigma_{n-1})$ is well-formed, $\sigma \vdash \Box (|c| \geq x + 1 \Rightarrow |c| \geq x + y)$. Then by ORDERING it should be the case that $\sigma \vdash \Box (|c| < x + 1 \land |c| < y)$. This assertion is not valid, so ORDERING is violated.

[A.5] (A channel trace element takes on more than one value.) Suppose there is a channel trace element c_x such that $c_x = a$ in σ_{n-1}, $c_x = b$ in σ_n, and data items a and b are not identical. Then $c \subseteq \sigma c$ does not hold in σ_n, $\Box (c \subseteq \sigma c)$ is not valid for σ, and PREFIX does not hold.

We have shown that if σ exhibits one of the five cases above, then σ does not satisfy both of ORDERING and PREFIX. Suppose that in fact σ is ill-formed in more than one way. Then consider a condition that involves a single channel—only case (4) involves two channels—and
reasoning as above guarantees that one of ORDERING and PREFIX is still violated. Thus we have shown that any s satisfying ORDERING and PREFIX is well-formed. Together with the first half of the proof: a sequence of trace-sets s is well-formed if and only if $s = ORDERING \land PREFIX$.

Acknowledgment

We are grateful to Abha Moitra and Prakash Panangaden for valuable discussions.

References

END

DTIC

9-86