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EXECUTIVE SUMMARY

This report describes the results of a study of several
numerical methods for calculating points on the distribution of a sum
of statistically independent random variables. The report is directed
to practitioners of statistical and numerical methods. Immediate
motivation for the study arose in connection with the random time to
accomplish a collection of tasks. However, application to a variety
of problems is anticipated because of the generality of the metnods.

Study objectives are to investigate the relative accuracy and
computational effort, viz, run time, for eacan of the following methods:

(a) Evaluation of closed-form solutions for particular cases.
(b) Discrete numerical convolution of probability densities.
(c) Normal probability approximation to the distribution.

(d) Numerical inversion of the Laplace transform of the convolu-
tion. (Bellman's method).

(e) Erlang approximation for coavolutions of a two-parameter
Weibull distribution. (Johnson's method).

(f) Convolution of probability densities using the FFT algorithm
for calculating finite Fourier transforms.

(g) Monte-Carlo simulation.

Normal approximation for suss of Independent random variables
(RYs) i3 made in several areas, including quallty control and
analytic network theory. Because of the frequently uncritical
assunption of Normality, the error of this approximation is a
particular focus here.

Methods are sketched for deriving analytic expressions for
the distribution of the sum of RVs of certain distributions. Each
numerical method is described and illustrated using RVs from several
distributional forms, such as unifora, exponential, gamma, and
deibull, as well as mixture models. In terms of run time and
accuracy, some methods are particularly suited to certain distribu-
tional forms. If problem applications are quite special and if
the time for program ccding (as well as running) is a consideration,
Monte-Carlo 3imulation may be tne preferred method. All computer
source programns are listed in annexes.
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SUBJECT: Methods for Calculating the Probabil v Distribution of
Sums of Independent Random Variables
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2. Backgrouad

Problems associated with the distribution of sums of independent
random variables (RVs) occur in various analyses. Examples are:
(a) estimating the total cost of an end item or a project, given
component cost estimates; (b) estimating time to complete a series
of sequential tasks, (This problem can be generalized to estimating
the completion time for a series of networks.); (c) estimating
dimensional variability in an assembly of serially arranged parts;
and (d) estimating statistical confidence limits on the mean of a
random variable (RV). Changing problem context may obscure the math-
ematical identity of these familiar probiems. Often, the probabii-
ity distribution of the sum i{s assumed to be Noramal, since tne
central limit theorem guaraatees Normality as the nunber of RVs

in the sum becomes infinitely large. However, {f eitner tail of
tne distribution of the suz of a small number of independent RVs

i{s to be estimated with accuracy, {t I3 prudent to be cautious in
imnediately assuning Normility. Tni3s report addresses the i{ssue

of accuracy of a Noramal approximation and other {ssues assoclated
with gifferent methods of calculating the cumulative distribution
function (c.d.f.) of a sum of n random variavles (RVs), when

the RVs nave a varlety of distrioutional forams.

3. Study Jujectives

Specific objectives of the study reported here are: (a) {dentify
the error of approximation for the c.d.f. of an n-component sun 13

n increases; This error i3 examined for cases in 4nhich all of the
components have the same distribution and {or cases [n Jnlch tne
form of the Jdistribution i3 the same but in wnich tae parameters are
unique. (b) obtain closed-fora uvxpressions for the c.d.f. of the
sun for special cases, wnich 31y ve used to check varlious numerical
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metnods; (c) obtain measures of computational effort for several
numerical methods for comparative purposes; and (d) suggest which
methods are suitable for treating particular cases.

4, Discussion

The sum of two RVS has a distribution wnich is the mathematical
convolution of the component distributions. Thus, the sum of n

RVs has a distribution which is the n-fold (1) convolution of the
component distributions. The problem of calculating the dist-
ribution of the sum is, then, equivalent to obtaining an n-fold
convolution. Tnis fact can be exploited in calculating the c.d.f.

of the sum numerically and in obtaining a formula for the c.d.f. of
the sum. Consider the case of two continuous RVs, defined on 0 to
infinity. Call the variables x and y and call the sum z. The c.d.f.
of any RV will be denoted by F(.), with a subscript referring to the
variable of interest. Similarly, the notation for the probability
density fuaction (p.d.f.) of interest will be f(.), with a specifying
subscript. Thus, tne c.d.f. and p.d.f. of the RV x are, respectively,

F (x) nd £ (x). For this case, the convolution theorem yields:
x x

F (z) = Integral(0,z): F (z - t) £ (t) dt . (1)
z y x

Similarly, froa (1), the p.d.f. of 2 {s written as

f (z) = Integral(0,2): £ (z - t) f (t) at. (2)
z y x

For specific distributional foras the indicated {ntegration amay
be simple to carry out. If so, a closed form expression for the
desired convolution is obtalned. If not, one can use discrete
numerical convoiution, The numerical equation {s obtained (roa
equation (1) Ly discretizing the domains of the functions at, say,
w {dentical points: t(i), for V' le i le m. Then, the diferential
form f (t) dt is repiuaced by a probability difference and the

X
integral becomes a sum, as follows:

F (z(k)) = Sum t:1,ks F (2(k)-t(1)) (F (t(1)-F (t(1-1))). (3)
2 y x x

Tne accuracy of the numerical method improves by increasing the
nunoer (m) of discrete points, assuming that the range t(m) - t(1)
adequately covers the doamain of the c.d.f. of 2 {in the sense that

tne upper-tail probability beyond z(m) i3 negligidble--say, 1/100,000.
If numerical convolutions are to be perforaed recursively, it is
ngcessary to anticipate the domain of the highest-order coavolution
snen choosing z(m). Because of the need for a hign density of discrete
points, tue 3ize of a generally becoaes quite large for four or aore
convolutioas. Clearly, this situation produces a coaputational
purden wnich increases rapidly with the order (n) of coanvolution.

Fur n greater lnan, e.g. 4, other numerical sethods nmay be preferred
3n tne basis of efficiency.

(V] rder of convolution is defined nere as the number of distribu-
tions being convolved. This {s equal to the ¢ of RVs in a sum.
2
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5. Integral Transforms

In dealing with convolutions it is nelpful to use a theoren [1] from
the theory of integral transforms--either Laplace or Fourier. Tnat
theorem states that the transform of a convolution of two function is
the product (in the complex plane) of the transforms of the fuactions,
Following a UK convention, 1 denote the Laplace transform of a function
with the function symbol having an asterisk superscript. For example,
the Laplace transform of f(x) is f#(s), with complex argument s,

Thus, the p.d.f. of 2z in (2) can be characterized by the transform:

f4(s) = f®(s) f%(s) . (4)
2z y X

If the RV 2z is added to another RV w yielding the sum v, one can
immediately write the transform of the p.d.f. of v as

f#(s) = f%(s) f¥(s) f#(s) , (5)
v y x w

instead of convolving £ (y) with f (x), and the result with € (w).
y x w

Of course, it is necessary to be able to invert the transforam to
achieve the desirad result. More will be said about this later,

For many probabl'ity Jdistributions of interest, the Laplace transfora
can be written ‘. simple form. Examples are the unifora distribution
on (0,a), whicn has the Laplace transform of the p.d.f.:

£o(s) = (1 - exp(-as))/ass, (6)

and the exponential distribution with rate parameter r, whose p.d.f.
transform i3

F8(3) = /(3 o 1) (1)

If each of the n random varlables In the sum has the 3dane distribution,
the transform of the p.d.f. of the sum {s ‘ust the rntn power of tne
transformed p.d.f. For the sum of n uniform (0,1) deviates, yleidsing
tne RV t,

n n
£8(3) = (1 - exp(-3)) /3 . {(3)
L

The Laplace transfora of tne c.a.f. of t {3 odblained from Lhe
transforaed p.u.f. simply by dividing by 3, since tne c.d.f. i3
just the integral of the p.d.f. To faciliitate javersion, lhe
expression for the n th poder of 1 - exp(-3) {3 be espanded as
a 3us of binumlal terzs:
{
Sua over | {(0,n): J(n,i) (-1) expl(-i3),

where C{n,i) I3 tne # of couablnitions of n Objects taken | at a ia;c.

datts, D.g. Spectral Analysis, Holden-Day, c. 1948,
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Tne transformed c.d.f. of t can be readily inverted analytically:
i n
F (t) = Sum over { (0,n): (-1) Ci(n,{) u(t-1) (t-i) /n! , (9)
t

where u(t-x) is the unit step function at x. This expression is
quickly and accurately evaluated, even for large values of n (n > 10).
Calculation was performed by the routine NFOLD.U on the Prime 9955
minicomputer with a run time limited by the print buffer, i.e., in a
fraction of a second. This program {s listed ir Annex A.

6. If the RV of interest (t) is the sum of n identical exgonential
RVs, the Laplace transform of the p.d.f. of t {s, from (7),

n n
fo(s) =r /(s + r) . (10)
t

This expression also has a simple inverse:

n n-?
f(t)=r ¢t exp(-rt)/(n-1)? (1)
t

This is recognized as a gamma p.d.f. with shape parameter n and

rate parameter r. This result {llustrates the familiar theoream

that the sum of n identical exponential RVs has an Erlang distri-
bution, l.e., a gamma distribution with integer shape paraseter.

It follows immediately from (10) that the sum of N identical gamma
distributions, having shape parameter n, i3 also a gamma distribu-

tion with snape paraneter Nn, since the Laplace transfora of {ts p.d.fl.

Nn Nn
fo(s) = /(s + ¢} , (12)
t

nas the saze fora as the transforam of the gamasa p.d.f. in (10).

Aitho the Laplace transforas in these examples have simple inverses,
transforms are still useful in calculating convolutions of probability
distributions when this condition does not exist. The reasons for this
assertion aret (a) that the transforas of the distributions bdbeing
coavolved are often simple functions of s, (b) that the product of
jush transforms are easy to evaluate, and (c) that nuaserical methods
exist for calculating the {nverse Laplace transfora. One such method
“as developed by Ricnard Beliman (Ref {(la)). I have found this aethod
useful in several applications, 3uch as in solving integral equations
(Ref [Ib]) as well as for obtaining the distribution of suas of RVs.
Furtner dlascussion of Bellman's method (s deferred to 3 later point.
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7. Mc3su~es of Accuracy

Several acasures can de used in descriding the accuracy of numerical
metnads for approximating the c.d.f. of a sua of RVs. Two are used
nere: (a) the asximua adsolute error over a {inite set on the domain
of the c.4.f., and () the square root of the aean squared error or
R4S error, evaluited over the sane set of points. For aost methods
in tais stuly, [ nave used 20, equally-spaced pointa on the domain of
the ¢.6.f., 3uch that tail prodabilities are .ess than 0.01 beyond
tne range of points used. An exception to this selection of points
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is made when using Bellman's method. In that case 16, log-spaced
points are used to span the range of the sum. As an illustration

of these measures, consider the Normal approximation to the N-fold
convolution of a standard (0,1) uniform distribution. Using the
exact result, given in (9), the measures of error are calculated for
several choices of N. These are snown in Table 1.

TABLE 1
ERROR IN THE NORMAL APPROXIMATION OF CONVOLUTIONS OF N
STANDARD UNIFORM PROBABILITY DISTRIBUTIONS

N Max Abs Error "RMS Error
““““““““ 2 T U006 T TTTea0096 T T Tt
3 0.0097 0.0054
Y 0.0074 0.0038
5 0.0057 0.0029
10 0.0028 0.0013

—— - - - o - - - - - - — -

In many applications, the error associated with a very large (small)
value of the c.d.f. is more appropriate than either of the above
error measures., For 5 convolutions of a uniform distribution, tne
error of a Normal approximation is about 0.1% for values of the
c.d.f. > 0.95. By nearly any umeasure, 4 or 5 convolutions of a given
uniform dlstribution is well approximated by a Normal distribution
whose mean and variance are N times the uniform mean and variance.
However, not all distributions of sums of uniform RVs are this well
approximated by a Normal c.d.f. Tne case of sums of different
uniform RVs 1s considered below. One may ask If Monte-Carlo simul-
ation is competitive in terms of accuracy--if not in terms of run
time--with a Normal approximation. For the case considered above,
20 thousand Monte-Carlo replications produces a typical RMS error
of 0.002 to 0.003. Tnis is about the same accuracy as the Normal
approximation for N = 5. The run time for 20,000 replications on
the Prime 9955 is approximately a linear function of the number of
RVs in the sum. For this case, approximate run time T, in seconds,
i{s given by

T = 8(N - 2) + 30. (13)

For simple cases such as this, Monte-Carlo is quite expensive in
teras of run time. iowever, Monte Carlo becomes more attractive
wnen the problem becomes mathematically Intractable.

8. Sums of Non-identical Uniform RVs
The n-fola convolution of the standard uniform distribution was
obtalned in closed form (9) by inversion of the Laplace transform,

given in (8). Tala result 3 be generalized by permitting eacn

of the n uniform distributions Lo have a ditferent range, but with
common threzhold parameter. Thus, the «tn member of the set is
defined on, say, O to a(k). The Laplace transform of tne p.d.f. of
the sum (v) is, then,

f%(s) = Product over k:1 to a: (1 - exp(-a(k)s)/(a{k)s). (14)
t
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The inverse transform is somewhat complicated to obtain, and is
not derived here. Tne exact c.d.f. for the sum of n different
uniform RVs is simply presented, with the following definitions, as

"/",,,l_r n k
F (t) = 17/a/n'[t + Sum over k (1,n): (-1) Sum over § (1,C(n,k)):
t

n

u(t =S (M)t -8 ()], (15a)
kJ kJ
wnere
a = Product over k=1 to n: af(k)

and where

S (n) is the j th sum of the k tuple of n values of a(i), taken
KJj

k at a time. For example,

S {n) = a(j), t le j le n,
1J
“

g S (n) = a(1)+a(2) and S = a(n-1)+a(n). (15b)

;1'__-‘:::- 21 2C(n,2)

k‘n_‘.\:

e The implementing computer program, given in Annex B, calculates the
error of a Normal approximation for a larger class of sums of uni-
form RVs. Consider the following special case in which the range

‘iﬁ of the k th uniform RV in the sum of n is k. Normal errors in the

o c.d.f. of the sum are given in Table 2. Compare with Table 1.
N Note that the errors are about twice those in Table 1. However,
RN even these errors are relatively small (1% or less) for N = 5.

TABLE 2
ERROR IN THE NORMAL APPROXIMATION OF CONVOLUTIONS OF N
DIFFERENT UNIFORM PROBABILITY DISTRIBUTIONS ®
e

T N~ " "Max Abs Error  RMS Error T oTTTT

B 2 TR 0.032T—~""""00188 T T T T
3 0.0179 0.0104
4 0.0131 0.0071
5 0.0102 0.0054
10 0.0049 0.0024

For a somewnat different picture, consider the case of a sum of N
exponential RVs from the same c.d.f. The error of a Normal approxima-
tion s shown in Table 3 as a fuanction of N.

6
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TABLE 3
ERROR IN THE NORMAL APPROXIMATION OF N CONVOLUTIONS OF
AN EXPONENTIAL PROBABILITY DISTRIBUTION

—— ——— ———— - . A . W P — - —— " S D - —— " s

N Max Abs Error AMS Error
TR 0.0945  ~ T 0.0436 T T T TTTTTTTTTTTT
3 0.0769 0.0365
y 0.0648 0.0316
5 0.0596 0.0278
10 0.0416 0.0183
15 0.0340 0.0142

Tne errors shown in Table 3 are about one order of magnitude
greater than those in Table 1, indicating that sums of exponential
RVs approach Normality much more gradually than sums of uniform
RVs. For a sum of 15 exponentials, the Normal error is about 1%
or less for values of the c.d.f. > 0.98. Clearly, this example
indicates a need for caution in applying the Normal assumption,

10, Sums of Different Exponentials

The p.d.f., of the sum of exponential RVs from the same distribution
was shown (11) to have the Erlang form. If a set of n exponential

RVs from distributions with unique mean values are summed, tne form
of the c.d.f. is somewhat complicated. However, an analytic model

exists for this, more general case. The computer program which is

used for evaluating this distribution is found in Annex C. If the

rate parameter, r(k), of the distribution of an arbitrary kth RV is
unique, the c.d.f. of the sum of n RVs is given by

F (¢)
t

r Sum over 1 (1,n): A(i)(1 - exp(-r(i)t))/r(i), (16)

where r = Product over k=1 to n: r(k),

and where the vector A(*) Is the solution of a certain matrix
equationt M A = B. Elements of the B vector are all zero except
the nth (last). A typical element of M, m(i,j), involves the sum
of all (i-1) tuple products of r(k), with k not = to j. Thus, e.g.,

m(3,J) = Sum over k ne J (1,n): Sum over 1 > k, ne j: r(k)r(l).

The 1st row of M has elements = 1. Other rows are like tne one above.
Equation (16) can be used to calculate the Normal c.d.f. error for a
special case. In a set of n exponential RVs, let the range of the
mean values be fixed at 2. Let the kt RV have the mean value

1 + (k=1)/(n=1}. Tne Norwmal errors for the c.d.f. of tne sum of these
RVs are shown in Table 4. Comparison with the results of Table 3
indicates that greater errors of Normal approximation occur whan

the RVs in the sum have different mean values. For tnis example

the error 1s about 10% greater than for the n-fold convolutlon of

the same exponential distribution.
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TABLE 4
ERROR IN THE NORMAL APPROXIMATION OF CONVOLUTIONS OF
N DIFFERENT EXPONENTIAL PROBABILITY DTSTRIBUTIONS*

— - T — - ————— - - - - - - -

Max Abs Error RMS Error

S2 i
=

, 2 5.7036 0. 0477
s 3 0.0823 0.0393
o 4 0.0693 0.0338

5 0.0634 0.0297
10 0.0436 0.0195

In forming a sun of independent RVs, one may think of each RV as

the duration of a particular activity in a serial network of n
activities. Tne distribution of the sum is, then, the distribu-
tion of completion time for the network. A variation of this model
is one in which the nodes, separating activities, permit two exit
patns, each of which has a given probability of being taken. If
either activity can occur prior to the next network node, the foram
of tne probability distribution for the transit time to next node

is a mixture of the distributions for the alternate activity times,
with weights equal to the probability the activity is taken. This
model is a particular instance of a semi-Markov process, a type of
stochastic process frequently observed in industrial operations.

An interesting special case of a two-component mixture model is

one in whicn the components (alternate activities) are exponentially
distributed. Tne form of the c.d.f. for this inter-node duration is

F(t) = a(1 - exp(-r? t)) + (1-a)(1 - exp(-r2 t)), (17)

wier2 a 1s the weight associated «ith the first component, and
with rate parameters rl1 and r2 for the ist and 2nd component dist-
ributions, raspectively. The p.d.f for this mixture model is

f(t) = a r! exp(-r1 t) + (1-8) r2 exp(-r2 t). (18)

The sum of n such "activities" will have a distribution denoted
by g (¢), for the p.d.f., and by G (t), for the c.d.f. of time t,

n n
Jsing the convolution theorem of Laplace transforms, the transform

of g (t) can be written as
n

n
ZM3) = (a r1/(s + r1) + (1-2) r2/(s +» r2)) . (19)
n

Tu facllivtate obtalning an inverse, this cxpression 13 expanded
{n 1 power series of terms in

b n-i
1/7(3 « r1) 7(s + 2) .
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The mixed products in this series must, then, be expressed in a
continued fraction expansion. This result can be inverted term by
term. For example, for n = 2, the Laplace transform after the
indicated operations is

L
-

0 2 2
:::,‘ g*(s) = (a r1) /(s+rl1) + 2a(1-a)rir2/(ri1-r2)/(s+r2) +
1 2

2 2

((1-a)r2) /(s+r2) + 2a(1-a)rir2/(r2-r1)/(s+r1). (20)
The inverse transformation is obtained by inspection.

2 2
g (t) = (arl) t exp(-r1t) + ((1-a)r2) t exp(-r2 t)
2
+ 2a(1-a)rir2/(ri1-r2)(exp(-r2 t) - exp(-r1 t)) . (21)

Integrating g (t) produces the c.d.f.:
2

2 2
G (t) =1 -a (lerl t) exp(-ri t) - (1-a) (1+r2 t) exp(-r2 t)

- 2a(1-a)/(r1-r2)(r1 exp(-r2 t) - r2 exp(-ri t)). (22)

Closed-form expressions for G (t) for larger values of n are fouad

n
in the implementing computer program in Annex D. These expressions
are used to calculate the Normal approximation error for the c.d.f,
Results are shown in Table 5 for a numerical example in wnich tne
parameter a = 0.8, and the mean values of the first and second compon-
ents are in the ratio of 0.05 to 1.,0. Rate parameters il and r2 are
adjusted to always yleld a mean value of the sum equal to unity.
The last practice assures that the same points are evaluated in the
domain of the c.d.f. regardless of the value of n., Also note that
the computer program (LP.INV) uses 16 log-transformed points at whicn
the c.d.f. error {38 evaluated--not the usual 20,

TABLE 5
ERROR IN THE NORMAL APPROXIMATION OF N CONVOLUTIONS OF A
TWO-COMPONENT EXPONENTIAL MIXTURE PROB DISTRIBUTION

T N~ "Max Abs Error  RMS Ercor (16 points) T~
""""""" 27T 08T T T T Te e T T T
3 0.242 0.166
4 0.213 0.142
5 0.188 0.124
10 0. 117 0.074
15 0.082 0.052
9
e e e e e B N N B R A N L e NN



ik ¥ & ks 3
FABLTANTVMT UM IR L N VTTOA ML AT ANESNCIA TP TP TN 5.0 N BN W MR Y WM A ALY BST OGP NS WY R BTN TOIT RA SGTY ALE Y PUS VPR T I T PG LR Y Sk P LN VG L 7 2 Lt W LT LW S

The maximum absolute errors in Table 5 are nearly 3 times the
corresponding errors in Table 3, which referred to convolutions

of a single exponential component. Further, the RMS errors in

Table 5 are about 4.0 to 4.5 times the corresponding errors in
Table 3. These observations indicate that the sum of n RVs from

an exponential mixture distribution may converge VERY SLOWLY, with
increasing n, toward Normality. In fact, the approximation errors
in the ¢.d.f. of the sun may be much greater than comparable

errors in sums of exponential RVs, (which are even quite large).

A frequently used rule of thumb for deciding what is a marginally
large sample size in many statistical applications is that n > 30

is "large". However, for the 30-fold convolution of the exponential
mixture c.d.f., one finds that the approximating Normal c.d.f. has

a max absolute error of nearly 0.057 and an RMS error of about 0.026.
When dealing with sums of RVs from a semi-Markov process, consider-
able inaccuracy can be encountered in taking a Normal approximation.
This is the lesson of this particular example,

12. Monte-Carlo Simulation
As is shown above, closed-form expressions can be obtained for
convolutions of an exponential mixture distribution by using Laplace
transform methods. However, the complexity of inverting G®*(s) grows
n
rapidly +ith n. In tnis case in particular, alternatives to eval-
uating “Jrmulas are sought for calculating points of G (t) for large
n
values of n. As suggested above in paragraph 7, p.5, Monte-Carlo
is a useful and quite general technique. For example, in the case
of the exponential mixture model, generation of one RV from the
mixture distribution involves: (a) drawing one uniform (0,1) deviate,
U; (b) drawing a RV from an exponential distribution with rate
parameter rl, if U < a; or (¢) otherwise, drawing a RV from an
exponential distribution having rate parameter r2. Tne sum of n
sucn random variables is, of course, the RV of interest., Run time
for generating an estimate of G (tv) by simulation {s actuvally found
n
to be somewhat less tnan that indicated by equation (13) for sums
of uniform RVs, due to a different choice of points in the domain
of the c.d.f. at which the distribution is evaluated. The particular
numerical example, introduced in paragraph 11, is used to compare
a onte-Carlo estimate witn a theoretical estimate and with a Normal
approximation of G (t). Results for two values of n are displayed
n
in Table 6. Tne theoretical estimate is obtained by formula eval-
uatioa for n = 3, and is obtained by Bellman's numerical inversion
metnod (to be discussed), for n = 15, For this problem the max abs-
olute error in Bellman's method Is quite small--typically < 0.001--
making tuls a good theoretical estimate, Exponential rate parameters
are scaled so that the mean of the sum is unity for both values of
n. The effect of the time ccaling makes the variance of the sum
inversely proportional to n. Thus, the standard deviation of the
sus {3 1,4158 for n:=3, and is 0.6332 for n=15, {n this example.
Note that tne Normal approximation i{s quite poor at low quantiles,
even for n as large as 15. Also note that the Monte-Carlo estimate
i3 quite good for 20,000 replications. Tne max abs error is nearly
0.005, and the RMS error is about 0.003 for one random number stream.

10

‘¥
- '.\': L .t".-. o X ... ‘:'.'- .w. "'y 8y W ': Lo, L RO -'. S AN P PG P Y . C N "o’ I
A A A e B N e oo o T o T N LA S L S e S S St A N S



TTHRETTUART TR AR v I O A TR LT TR TN PR NS T T A T ST W W WS W AT W ORT W AW E AW R W LS T TS LCW TR T T RS TR I WG 1 S T W/ D HENY

TABLE 6
SEVERAL APPROXIMATIONS OF THE C.D.F. OF THE SUM OF N RV'S
FROM A TWO-COMPONENT EXPONENTIAL MIXTURE PROB DISTRIBUTION

N=3 N = 15
Sum Theory Monte Norm Theory Monte Norm
Value Eval'n Carlo Approx Eval'n Carlo Approx

- . - - - -

0.0053 0.0000  0.0000 0.2812 0.0000  0.0000 ~0.0581"
0.0281 0.0044 0.0043 0.2462 0.0000 0.0000 0.0624
0.0695 0.0432 0.0438 0.2555 0.0002 0.0000 0.0708
0.1304 0.1577 0.1580 0.2696 0.0027 0.0030 0.0848
0.2120 0.3256 0.3292 0.2889 0.0371 0.0336 0.1067
0.3161 0.4740 0.4795 0.3145 0.1070 0.1036  0.1400
0.4450 0.5668 0.5696  0.3475 0.1956 0.1938 0.1904
0.6024 0.6218 0.6259  0.3894 0.3109 0.3088 0.2650
0.7930 0.6646 0.6676 0.4419 0.4473 0.4478 0.3718
1,0239 0.7073 0.7123 0.5067 0.5948 0.5929 0.5150
1.3057 0.7519 0.7542 0.5855 0.7360 0.7330 0.6854
1.6552 0.7981 0.7996 0.6782 0.8545 0.8571 0.8496
2.1013 0.8451 0.8473 0.7817 0.9370 0.9381  0.9590
2.7003 0.8918 0.8949 0.8851 0.9817 0.9811  0.9964
3.5859 0.9367 0.9394 0.9660 0.9974  0.9974 1.0000
5.2401 0.9771 0.9764  0.9986 1.,0000 1.0000 1.0000

P L X T R T

RMS errors in the Monte-Carlo c¢.d.f. estimate seem to vary inversely
as the square root of the sample size (S), over the range from 5 to 20
thousand replications, and do not vary statistically with the order
(N) of the convolution. Typical RMS errors for this example over thi:
~ange in S vary from 0.002 to 0.004, An approximation for Monte-Carlo
run time (sec) on the Prime 9955 is

T = S N/4, (23)

where S is given in thousands of replications, and with 2 le N le 20.
Run time--as opposed to ¢.p.u. time--is dependent on the number of
other users sharing the couputer and upon the nature of their jobs.
The value of T given here is representative of the active part of a

work day.
13, Bellman's Metnod

A numerical method i{s given in Ref la by Bellman for lnvurting
Laplace transforms. Derivation of the method proceeds {rom the
definition of the Laplace transform of an analytic function F(t):
Fo(s) = Integral(0,inf): exp(-st) F(t) dt. (24)
Tne variable of integration ls changed to x via the transformiation

t(x) = 1n (2/7(x + 1)). (23)
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Then, the real variable x is defined on (-1,1). Now, the trans-
form variable, s, is replaced with a discrete real variable ¢ k,
with ¢ constant and k integer, 1 le k le m., That is, the transform
is evaluated at discrete, evenly spaced points on the real line.
The var-iable of integration is also discretized ¢t m points, x(j),
1 lej lem. Tnus, the integration operation is replaced by a
sumnat on, Gaussian quadrature 1s chosen as the mean of evaluat-
ing the integral. The x(j) are chosen as the points of the
independent wvariable in an mth order quadrature. Notationally, let

g(J) = Ftx(3i, J=1, 2, «e.y m. (26)

Thne weight function [1] for gaussian quadrature is denoted by w(j), c
for1 lej len, With this notation, equation (24) becomes

ck=-1
F® (ck) = Sun over J (1,m): 0.5 w(J)((x(j)+1)/72) g(J), (@n

fork =1, 2, ..., m. Tnis equation is seen to be a matrix
eqguation, which can be written compactly as

F‘:Ag' (283)

where F® and g are n-component column vectors and where a
typical element a of the A matrix is
kJ

ck-1
a  :0.5w(J) ((x(3)e1)/2) . (28b)
kJ
Equation (28) is solved for g . Then, m points of F(t) are

abtained from (26), with associated values of the independent
variable, t , obtained from (25). For the best accuracy for

the c.d.f. on several sample problem® using Bellman's method,
{1t is found that the value of the constant ¢ should be unity
and that the problem scale parameters should be adjusted so

thit the nean value of the sum (t) {s approximately unity.

(I necessary, rescaling t can be done following the solution
of (28), in order to preserve original uaits of the independent
variable,) It is found that the matrix A becomes progressively
closer to being singular as m increases. For double-precision
ar{thmetic on tne Prime 9955, it is found that truncation error
liaits the maximwn value of m tc about 16, However, these 16
points of F(L) are calculated quite rapidly and accurately. For
example, the RMS error for 3 convolutions of an exponeantial {s
about 0.000004, and the RMS error for 3 convolutions of the above
<xponential mixture {s about 0.00027. Thus, when the Laplace
transform of a distribution of interest is easily and accurately
valculated, Bellman's method is the method of choice.

o
¢
d
v
d

Ui The veignts, w(j), and the points, x(j), for ath order gaussian
quadrature are listed in Handbook of Mathematical Functions,

AMS 55 (1966), on page 916, for values of m rrou 2 to 96.
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14, Convolutions of a Two-Parameter Weibull Distribution

Analytic methods and/or Bellman's inverse Laplace transform are

not well suited to obtain convolutions of certain types of prob-
ability distributions. Examples are: (a) a distribution with

a threshold parameter and 1 upper truncation limit, and (b) a
distribution whose Laplace transform is difficult to express or to
evaluate accurately. One probability distribution of practical (1)
interest which suffers from the last difficulty is the two-parameter
Weibull function, whose c.d.f. is given as

<<

b
F(x) = 1 - exp( -{x/a) ) , 0 le x < inf, (29)

o

g,

)
i

with scale parameter a and shape parameter b.

Altho the transform can be expressed as an error function of s,
the result is difficult to evaluate with accuracy sufficient for
inversion via Bellman's method. Further, closed-form expressions
for the n-fold convolution of (29) become quite complicated for

n large. The closed-form expression for n = 2, taken from Ref 1e¢,
for the special case in which the shape parameter, b, = 2, is

2
F (t) =1 - exp(-2 ) - sqrt(piz2) z (N(z) - N(-2)), (30a)
t
where N(z) is the standard Normal integral with argument z, and
with

A general formula which approximates the n-fold coavolution of
a two-parameter Weibull distribution was derived by Leonard
Johnson (2). The LJ approximation is an Erlang distribution in
the argument u, where

b
u = (ptra) . (31)

Tne parameter p is chosen so that the mean of the approximating
distribution matches its counterpart in ths convolution di{stribution.

p = gamma(n + 1/b)/gamaa(l + 1/b)/n! , (32)

with complete gamma function gamma(argument).

a good model for the life distribution of components or
systems subject to fatigue failure., For this i'cason {t {s
used extensively in the automotive industry. See Ref lc.

{2] Johasoan, L. GMR Rellablillity Manual, GMR-302,

General Motors Research Labs, 1960.
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Thus, the LJ approximation for the n-fold convolution c.d.f. is
i
F (t) = 1 - exp(-u) Sum over i (O,n-1): u /i! , (33)
t

From equations (31,32,33) it is seen that the LJ approximation
{s exact for n = 1. To see how the error of approximation grows
with the order of convolution, consider the following numerical
example. Let the scale parameter, a, = 6 and the shape parameter,
b, = 2. To compare the LJ approximation with other methods, this
problem is also solved using these other methods: (a) discrete
numerical convolution, using 1028 points on a domain that comprises
the Oth to the 99.97th percentiles, (b) Normal approximation, and
(c) Monte-Carlo simulation with a sample 3ize of 20,000 replications.
The RMS error, over 20 equi-spaced points, for each of these methods
is shown in Table 7. The error for the discrete-numerical (DN)
convolution is shown for n = 2, since an analytic expression exists
as a check, in this instance. Since this error is relatively quite
3nall, the DN solution is used to evaluate the c.d.f. errors for other
values of n., As expected, the Normal approximation decreases with n.
By contrast, the LJ approx error increases with n. For n greater
than or equal to 7, the Normal approximation has a smaller RMS error
tnan the LJ approximation, and hence is preferred to LJ there,
RMS errors of tne Monte-Carlo (MC) method are relatively independent
of convolution order. The values given here are the average produced
by two random number streaams.

TABLE 7
RMS ERRORS IN THE C.D.F. OF THE SUM OF N IDENTICAL
TWO-PARAMETER WEIBULL RV'S PRODUCED BY SEVERAL METHODS

- - - e o awase

Convol'n Method of Calculation

order (N) DN LJ NA Mc [1]

TTTTTTYTTTTTTG L0099 ""70.0000  0.0194 0.0013 -
004 0.0028 0.0145 0.0024

1 0.0

2 0.0

3 0.0 (2] 0.0036 0.0104 0.0022
4 0.9 0.0041 0.0081 0.0026
5 0.0 0.0045 0.0067 0.0026
6 0.0 0.0049 0.0060 0.0028
17 0.0 0.0054 0.0054 0.0036

P L L T L e T P T S T T P - - -

i1] Average value of the error over two rando@ number streams.
{27 Value of tne discrete numerical error is not evaluated for
n > 2, but i{s considered relatively small versus other errors.

1%. Run Time Comparisons

dnereas, tne discrete numerical method Is quite accurate, and is
reasonubly fast for n =z 2, run time for this method increases as a
power function of n - 2, with a power of about 1,25. Tnus, for a
coanstunt Jensity of 1024 puints on tna domiain of the convolution
c.¢.f., an approximate run time (sec) is given by
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1.25
T = 40 (0-2) . (3‘4)

For n = 2 only 20 points of the numerical convolution are evaluated.
For this reason run time is a fraction of a second for n = 2, whereas
for larger values of n, the maximun aumber of points (1024) are calc-
ulated for each of the convolutions except the last (nth). It is
emphasized that run time for any method strongly depends upon the
background activity of the (time-shared) computer. Equation (34) gives
nearly the maximum time experienced. Minimum run times are approx-
imately half of maximum. The form of equation (34) suggests that
computational overhead, e.g. paging, increases faster than n does.
When n is 3, the Monte-Carlo run time for 20,000 replications is

about the same as the run time for the DN method. However, for
higher-order convolutions, MC is faster. For example, for n = U,

DN requires 50% more time to execute than MC, For n = 5, DN

requires 75% more time to run than MC, i.e., the ratio of run times is
about 1.7%. For n = 8, this ratio is 2.6. Tnus, if one is satisfied
with an RMS error less than 0.3%, Monte-Carlo would be the preferred
of these two methods, for n > 3, Considering the errors of the LJ

and NA methods, these are not very attractive unless execution time

is a major consideration. If minimum run time is a2 primary consider-
ation for this type of problem, a hybrid method might be used in wnich
DN is used for n < 4, LJ used for 4 le n < 7, and NA used for n ge 7.
The computer source program (INT.TEST) used in making the comparisons
in Table 7 is found in Annex E.

16. Fourier Transform Method

As noted above (p. 3, pgf. 5), the product of an integral transform

of each of two functions corresponds to the transforms of the convol-
ution of the functions. This theorem has already been exploited [n
connection with the Laplace transform. Tnis paragraph ({3 conceraed
with an application of this theorem using the Fourier transfora.

An important and practical Fourier transform method uses an algoritnm
for calculating the finite Fourler transform (or Its inverse) due to
Cooley and Tukey, and called tha fast Fourier transform 2: FFT [1].
Tne speedy execution of the FFT makes practical the following method.
Two density functions are eacn evaluated at a particular number of
equi-3paced points on their Jdomains. Tnese data vectors are lnput to
tne FFT, which ylelds the complex-valued transforms. These transforas
are multiplied (observing the rules of complex arithmetic) to obtaln
the transform of the convolution density. Finally, the inverse FrT |s
performed on this function to yield the required density. In the
computer progran for performing these operations, found in Annex E, a
function f(x) is represented in complex form by a 3et of n points (n
which there are n/2 real components and n/2 imaginary components, Note
that n must be an integer power of 2 for this purpose. These real unag
complex components are stored in adjacent storage locations in tne
n-element vector., Of course, the densities being convolved have only
real components, so that all imaginary components of f(x) are assigned
0 value, Since tnhe transform occurs in place, the transfora of f(x),

{1) Bloonfield, P. Fourier Anilysis of Time Serles: An Introduction,

John Wiley, New York, MY, c. 1976,
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denoted as f#(w), ls also stored in the n-element vector with real and
imaginary components of the transform also located in adjacent posi-
tions. In general, the imaginary components of f®*(w) are non-zero,
The n/2 real frequency components of f®(w) are denoted by f#(w(k))
with k odd, and the n/2 imaginary frequency components are located

in elements of the vector f#(k) with k even, (k = 1, 2, ..., N).

In this formulation the transform and its inverse are duals related

by equations (35) ard (36):

fo(w(k)) = Sum over J (1,n): exp (-iw(k)(J-1)) £(x(J))/n, (35)
where w(k) is the kth complex frequency with

wik) = 2 pl (k=1)/n , k=1,2, «s0y 0,
and where i is the pure imaginary, sqrt(-1).
Then,

£{x(3)) = Sum over k (1,n): exp (iw(k)(J=1)) f#(w(k)). (36)

Recause of the dual nature of f(x) and f*(w), the same routine

that produces a transform can obtain an inverse transfora merely by
specifing which type of operation is wanted via "sign" = -1 for the
Fourier transform, and by sign = 1| for an inverse transform. The
coaputer code for this algorithm ls found in Annex F.

17. A serlies of numerical tests were performed for accuracy and

run time using the Fourier transfora method. These are compared
with Monte-Carlo tests using the same test functions. Probability
densities used as test functions have the standardized Erlang and
standardized Weibull forms. In both instances the scale parameter
is uaity, and the function is characterized by just a shape para-
meter. In the first numerical example with n Erlang densities

being convolved, n-1 of these have been assigned a shaps parameter
of 2 and one is assigned shaps paraneter 3. RMS errors are shown {n
Table 8, for selected values of n, for both the Fourier transfora (FFT)
method and for a Moate-Carlo simulation with 20,000 replications.,
Tne RMS error is obtained over 16 equi-spaced points on the domain.
The number of points (equivalently, real Fourier frequencies) used
to represent the densities i{s also a parazeter in these tests.

TABLE 8
RMS ERARORS IN THE C.D.F. OF THE SUM OF N RV'S FROM

TAO ERLANG DISTRIBUTIONS VIA FFT AND MONTE-CARLO METHODS

Convol'n FET with # real frequencies  Monte
Order (N) 1024 2048 4096 Carlo (20k reps)
"""" 2 TTTT0.00008 T 9.0006 T 0.6002 T T CC0.0022 T
3 0.0016 0.0008 0.0004% 0.0019
4 0.0023 0.0012 0.0006 0.0007
5 0.00 0.0016 0.0008 0.0010
10 0.0072 0.0036 0.0018 0.0008
20 0.0136 2.0092 0.00u 0.00M
16
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Using the FFT method with 2048 real frequencies, the run time for

any value of n varies from about 9 to 18 seconds. Run time for the
FFT method seems to be dominated by the time to obtain the Fourier
transforms and to obtain the inverse. Because relatively little time
is spent in multiplying transforms, run time is essentially independ-
ent of the convolution order for the values shown. By contrast, it is
seen that Monte-Carlo run time (T) increases nearly linearly with N:

T = 8(N-2) + 12, (37)

(This approximation is quite similar to that given in equation (13)
for evaluating the c.d.f. of the sum of N uniform random variables

at 20 points via Monte-Carlo.) Run time for the FFT method does
increase in a proportional manner with # of real Fourier frequencies.
For example, when 1024 real frequencies are used run time i{s about

S seconds., This time increases to 9 seconds for 2048 real frequencies
and to about 20 seconds for 4096 real frequencies, Thus, in terms

of run time, calculating the c.d.f. of the sum of 3 Erlang RVs is
nearly the same using either Monte-Carlo, with 20,000 replications,
or the FFT method, using 4096 real frequencies. It is noted that for
a high-order convolution integral--say, > 10--a very large number

of Fourier frequencies are required to make the accuracy of the FFT
method competitive with Monte-Carlo. This point is {llustrated by
the results in Table 8. It is also demonstrated by another numnerical
example. Consider the case in which all the distributions being
convolved are standardized exponential. The RMS errors for the FF7T
and Monte-Carlo nethods for this case are shown {n Table 9. Note
that these resul’s are substantially the same as those in Table 8,

TABLE 9
RMS ERRORS IN THE C.D.F. OF THE SUM OF N [DENTICAL
EXPONENTIAL RV'S USING FFT AND MONTE-CARLO METHODS

Coavol'n 77O Numerical Method & — ~  _ ~~~°°
Order (N) Fourier Transform Monte Carlo
R e TTTTTTTTTTTTT 06008506026
3 0.00045 0.0018
] 0.00064 0.0019
5 0.00082 0.0022
10 0.20178 0.0010
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® The FFT method implemented here has U0 real Fourier fraquenciea
(8192 element array). Simulation sanple is 20,000 replications.
Monte-Carlo results shown are averages for two random streams.

id. A rtaird numerical example was used to teat tne uccuracy of the
Fourier . ansfora method. In this case a standarcized Wdeibull
density - tn shape paramcter = 2 is convolved n times Lo yleld the
p.d.f. for  he sum of n such Weibull RVs. For the puarticular case
{n which n {3 2, the nuserical error In the c. Jd.f. {3 found by
cumparing the exact result from equatfon (30) with tne FFT approx-
fmation. The RMS error for this case i{s 0.00089, about three

times that for the previous two examples., Tnus, the nunericdl ercor
of the Fourier transform method {s rather sensitive to the fora Of
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the distributions being convolved. Simpson's rule is used to calc-
ulate mean and SD from a numerical c.d.f. for the sun of two Weibull
RVs from the distribution with shape parameter = 2. For the case of
4096 real Fourier frequencies, the error in the FFT mean is 0.186%.

By contrast, the error in the mean value using the discrete numerical
(DN) convolution with 1024 points is 0.09%. A comparable relationship
exists in the RMS error in the c.d.f. for the DN versus the FFT method.
RMS error in the convolution c.d.f. for this example is 0.00038, for
DN, versus 0.00089 for FFT. By either measure of error, the DN
method, applied on a set of 1024 points, incurrs less than half the
error of the FFT method, applied on a set of 4096 points. If

accuracy of results were tne sole criterion, discrete numerical
convolution would certainly be preferred to the FFT method. However,
for high-order convolutions, DN is computationally expensive relative
to FFT. For example, 5 convolutions of a Weibull distribution using
DN with this degree of discretization takes about 160 sec. (equa-

tion (34)). In a comparable run environment, FFT with 4096 real
Fourier frequencies requires about 50 sec for the same problem.

Thus, the FFT method executes this problem in one third the time
required by the DN wethod, given the specified density of points.

It is noted that the maximum number of real frequencies (4096) used
with FFT in the above examples is the maximum permitted on our Prime
computer. The computer system limit on the number of double-precision
words allocated to a vector is less than 16,384. If the nuaber of
r2al frequencies were doubled, to 8192, the dynamic storage required
for both real and {maginary frequency components would be 16,384.

19. Summary and Conclusions

This report has surveyed several methods for calculating probability
distributions of sums of independent random variables. Foraulas for
tne c.d.f. of the sun have been derived for several cases. These
cases include n randoa variables from: (a) a standard uniform dist-
ribution, (b) uniquely Jdifferent unifors distributions, (c) an Erlang
distridbution, i{ncluding the exponential as a special case, (d) dif-
ferent exponential distributions, (e) two-component exponential mix-
turas, and (f) a Weibull(2) distribution (two RVs only). The closed-
form solutions were used to evaluate the accuracy of various numer-
ical nethods, including approximations.

¢0. The sum of n RVs froa some distributions have a ¢.d.{. which
rapidly approaches Noraality with increasing n. Examples of this
sort are the uaifora distribution an! distributions which appear

ﬁ:i Normil, such as gamma with large shape parameter. Howevsr, other
g distributional forms exhibit relatively slow convergence. These
g'f include exponential and exponential mixture distributions. Tne last
Wy {3 particularly slow# in converging toward Xormality. For this case,
the sus of 15 RVs has a ¢c.d.f. whose Normal approximation nas a max

vy

aosolute error of more than 0.08, which {s intolerably large for most
purposes. Generally, the c.d.f. errors of a Noraal approximstion

are larger, for a2 given n, i{f the scaie (or rate-) paraseters of the
coaponent distridbutions exnidit a large range than {f all distributicns
are {dentical.

21, It is difficult to make unqualified statements concerning the
duperiority of any one of the nuserical methods. This situa-

tion is due {n part to the diversity of user requireaents for speed
and accuracy and, in part, to the fact that some aethods are parti-
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cularly suited to just some classes of distributions. For example,
Bellman's method requires that the Laplace transform of the probab-
ility density be easily and accurately calculated. The class of gamma
distributions and of mixtures of gamma distributions are, therefore,
well suited to this method. Because of superior run time and accur-
acy {1], Bellman's method is the method of choice for distributions

in the gamma class, when certain conditions are met. These are:

(a) the user must be satisfied with a sixteen-point characterization
of the p.d.f. and of the c.d.f., and (b) available macnine arithmetic
can operate on a floating-point word with 48 bit mantissa and 7 bit
(or more) exponent. (These requirements are met on th2 Prime 9955
minicomputer with double-precision arithmetic,) The last feature

is necessary to avoid truncaticn error, which is critical to Bellman's
method. In those instances where Bellman's method is inapplicable,
discrete numerical convolution of the component distributions offers
the greatest potential for accuracy, at a cost of run time. Where

run time is an important consideration as well as accuracy, use of tne
Fourier transform method with the FFT algorithm is attractive, pro-
viding the order of convolution does not exceed about ten, (This
statement presumes that the max vector dimension < 16,384,) Another
advantage of the Fourier transform method is that it is quite flexible
with regard to distributional forms that can be handled. Of course,
the Normal approximation is preferred in those instances wnere the
form of the compconent distributions assures rapid convergence itoward
Normality. For distributions on a bounded domain, such as the uniform,
relatively small RMS errors in the c.d.f. by Normal approximation are
incurred when the order of convolution i{s S or more. In case3 where
accuracy is not too stringent--say, an RMS error of 0.002--Monte-Carlo
simulation [2] is the most flexible and resonably efficient method
studied. A somewhat surprising finding is that Monte-Carlo is pre-
ferred, in many cases, to discrete numerical convolution when the
tclerable RMS error is about 0.2% and when the number (n) of random
variables in the sum is three or more. Monte-Carlo run time increases
linearly with n, but the rate of increase is not as great as that for
discrete numerical convolution. In comparing Monte-Carlo with FFT, it
{3 noted that the RMS errcr for Monte-Carlo does not increase with n,
as the FFT error does. When limited by computer storage to 4035 real
frequency components, the FFT method becomes less accurate than
Monte-Carlo for n greater than about ten. Also, time to code a gliven
application for a Monte-Carlo simulation is generally the least of any
method,

- ——— e - -

have errors via Bellman's metnod of the order of 10"-5

[2) A Moate-Carlo sample of 20,000 replications was used for nearly
all numerical tests., This sample size is a practical value in
view of tnese facts: (a) run time is proportional to sample size,
and (b) RMS error i{s inversely proportional to square root of tne
sample. Halving the RMS error would increase run time by a factor
of 4, For an RMS error in tne c.d.f. of much less than 0.2%, tae
required Monte-Carlo run time would make this method non-
competitive with othners.
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DISTRIBUTION

HQDA DAMO-ZA
WASH DC 20310

HQDA DALO-SMZ
WASH DC 20310

COMMANDER

USAMC

5001 EISENHOWER AVE.

ALEXANDRIA, VA 22333-0001

ATTN: AMCRE-IP
AMCPA-S
AMCDP

DIRECTOR, US AMSAA

ABERDEEN PG, MD 21005-5066

ATTN: AMXSY-DL
AMXSY-R
AMXSY-MP

COMMANDER USA

( MMUNICATIONS AND ELECTRONICS
COMMAND

FT MONMOUTH, NJ 07703-5304

ATTN: AMSEL~PL-SA

COMMANDER CFCOM (R&D)
FT MONMOUTH, NJ 07703-5304
ATTN: AMSEL-SAD

COMMANDER USAMICOM

REDSTONE ARSENAL,

AL 35809-5050

ATTN: AMSMI-DS

COMMANDER USATACOM
WARREN, MI 48090
ATTN: AMSTA-V

OFFICE OF PROJECT MGR

CANNON ARTY WPNS,DOVER

NJ 07801-5001%

ATTN: AMCPM-CAWS

COMMANDZR, US ARMY LOGISTICS CENTER
FORT LEE, VA 23801
ATTN: ATCL-S
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1 COMMANDER
DEFENSE LOGISTICS STUDIES
INFORMATION EXCHANGE
FORT LEE, VA 23801

COMMANDER

USA LOGISTICS EVAL AGENCY
NEW CUMBERLAND ARMY DEPOT
NEW CUMBERLAND, PA 17070

1 ATTN: DAL-LEM
COMMANDER
US MRSA
LEXINGTON, KY 40511-5101

1 ATTHN: AMXMD-ER

DIRECTOR, US ARMY
INVENTORY RESEARCH OFFICE
ROOM 800, CUSTOM HOUSE
2 ND & CHESNUT STREETS
PHILADELPHIA, PA 19106
1 ATTN: AMXM"-TIRO

COMMANDER USATECOM
ABERDEZEN PG, MD 21005-5055
1 ATTN: AMSTE-SY

12  DEFENCE TECHNICAL INFORMATION CENTER
CAMERON STATION
ALEXANDRIA, VA 22314

COMMANDER US ARDZC (D)

DOVER, NJ 07801-5001

ATTN: SMCAR- -LC (D)
-SC (D)
-SE (D)
-RAA (D)
-MSI (D)

- o o o

COMMANDER US AMCCOM (R)

ROCK IS, IL 61293-6000

ATTN: AMSMC- -AS (R)
-IR (R)
-QA (R)
-MA (R)
-0P (R)
-SA (R)
-IMP-L (R)

il ) md o b el —d
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DIRECTOR, AMCCOM
AMMO CENTER
SAVANNA, IL 61074
1 ATTN: SARAC-DO

COMMANDER
WATERVLIET ARSENAL
WATERVLIET, NY 12189-5000
1 ATTN: AMXMC-LCB-TL

COMMANDER
CHEMICAL R AND D CENTER
ABERDEEN PROVING GROUND
(EDGEWOOD AREA), MD 21010-5423
1 ATTN: AMSMC-CLJ-IA (A)

DIRECTOR US AMETA
ROCK IS, IL 61299-6000
1 ATTN: AMX0M-QA

DIRECTOR
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93940

1 ATTN: DEPT OF OPERATIONS ANAL.

1 DIRECTOR
ADVANCED RESEARCH PROJECTS AGENCY
1400 WILSON BLVD
ARLINGTON, VA 22209

DIRECTOR

USA TRASANA

WHITE SANDS MISSILE RANGE
WHITE SANDS, NM 88002-5502

1 ATTN: ATAA-SL
COMMANDER
USA COMBINED ARMS COMBAT
DEVELOPMENT ACTIVITY
FT LEAVENWORTH, KS 66207
1 ATTN: ATZL-CAM-M
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COMPUTER SOURCE PROGRAMS

Source programs listed in Annexes A-F are written In SIMSCRIPT 2.5
for the PRIME minicomputer, However, the source code does not employ
features peculiar to this computer. Each Annex contains a MAIN or ex-
ecutive program and several routines and functions. At the beginning
of each program Listing are found a functional description and an 1/0
list. All utility functions and routines are included among these
listings. Inputs to MAIN programs are read interactively, with prompt-
ing messages displyed at the terminal. No external files are used.
Since output is lengthy, it is necessary to set up a COM) file to
display all of it and to obtain a permanent copy. The functions of
the MAIN programs are summarized here:

RUN.NFOLD.U, in Annex A, obtains the probability density and cum-
ulative probability distribution of the n-fold convolution of a stand-
ard uniform distribution, Approximations to the p.d.f. and c.d.f. of
convolution based on a Normal probability function are calculated and
printed for comparison,

RUN.NFOLD.GU, in Annex B, calculates and prints the p.d.f. and
c.d.f. of the sum of a set of n uniform random variables drawn from
distributions having a common threshold parameter but with different
domains. Normal probability approximations to the p.d.f. and c¢.d.f,
are calculated and printed for comparison with exact results, The
maximum absolute error and the RMS error are calculated for the Normil
approximation to the c¢.d.f. Optionally, a Monte-Carlo simulation can
be performed and error statistics calculated and printed.

RUN.NFOLD.E, in Annex C, obtains the p.d.f. and c.d.f. of the
sum of n exponential random variables. Two options are available:
(a) all exponential random variables are from the same distribetion,
and (b) each exponential RV is from a uniquely different distribution.
The exact c.d.f. is compared with a Normal approximation on a finite
polnt set. Max abs and RMS 2rrors are calculated and printed.

LP.INV, in Annex D, obtains the p.d.f. and the c.d.f. of the
sun of n random variables from Erlang distributions and exponentiai
mixture distributions. A numerical method based upon the Laplace
transform {3 used to obtain approximate results. This method involves
calculating the inverse transforam via Bellman's method. A closed-form
solution to the problem {3 used to calculate the error in Beliman's
method and the errors of a Normal approximation and of a Maante-Carlo
estimate of tne c.d.f.

INT.TEST, in Annex E, tests a variety of methods for obtaining
convolution integrals of u two-paramcter Weibull Jdistribution., Tne
methods being compared are: (a) evaluation of an unilytic expression,
(b) Leonard Johnson's approximation based on the Erlang distribution,
(c) discrete numerical convolution, and (d) Munte-Carlo simulation.
The max absoiute error and the RMS error, over a finite set of points,
are calculated and printed for each numerical approximiation.

TEST.CONVOLV, In Annex F, obtains convolutions of either siundard-
fzed Erlang or Weibull distributions using a numerical method based oun
the finite Fourfer transform., Comparisons with exact results and,
optionally, with Monte-Carlo estimates are also given.
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ANNEX A

SIMSCRIPT SOURCE PROGRAM: RUN.NFOLD.U

1 PREAMBLE ''RUN.NFOLD.U

2 NORMALLY MODE IS REAL

3 DEFINE SNORM AS A REAL FUNCTION GIVEN 1 ARGUMENT
U DEFINE ERRFX AS A REAL FUNCTION GIVEN 1 ARGUMENT
5 END ''PREAMBLE

1 MAIN ''RUN.NFOLD.U

2 "

3 ''Driver program to obtain the probability density and cum probability
4 ''of the N-fold convolution of a standard, uniform dist. PDFs and CDFs
S5 ‘''of the Normal dist having same mean and SD is printed for comparison.
6 "

7 DEFINE I,N AS INTEGER VARIABLES

8 DEFINE ANSWER AS A TEXT VARIABLE

9 'LO'SKIP 1 LINE

0 PRINT 4 LINES THUS

This program calculates and prints the p.d.f. and c.d.f of the N-fold
convolution of a standard, (0-1) uniform probability distribution. User
inputs are the integer N and the upper probability limit (PMAX) to terminate.

15 PRINT 1 LINE THUS
INPUT THE VALUE OF N.
17 READ N
18 PRINT 1 LINE THUS
INPUT THE (MAX) VALUE OF THE CDF TO TERMINATE CALCULATIONS.
20 READ PMAX
21 LET AVG:=N/2.0
22 LET VAR=N/12.0
23 LET COND=1.0/SQRT.F(2.0"PI.C®VAR) ''FOR NORMAL DENSITY COEF
-1} LET STDV=SQRT.F(VAR)
25 LET LIM=AVG + 3.0%STDV
26 LET LIM=MIN.F(REAL.F(N), LIM)
27 LET DELT=LIM/20.0
28 LET LINES.V=9939
29 SKIP 2 LINES
30 PRINT 6 LINES WITH N
N THUS

PROBABILITY DISTRIBUTION OF A ®®_-FOLD CONVOLUTION OF A STD UNIFORM DISTRIBUTION

Indep  N-fold Convolution Normal Prob Distrib  Difference
Variable p.d.f. c.d.fl. p.d.f. c.d.f. c.d.f.
T3 LET MAE=0. e

39 LET RMS:0.0

40 FOR I=1 TO 20 DO

4 LET T-=I®DELT

42 CALL NFOLD.U (N,T) YIELDING PDF,CDF

43 LET ARG=(T-AVG)/STDV

44 LET NPDF=COND®EXP.F(-0.5%ARG®®?2)

us LET NCDF=SNORM(ARG)

46 LET DIFF=CDF-NCDF

A=)

s et pt g, .. LI ..‘.‘...-..--.' . -.'-_- ‘._- DI S S I ] [ I S L e LIPS T ] L ) -
o O St T DO WL P S0




TR NI LAV VN DWW TR TN WEE sy Sy @ i e o ZOR MR TN O WU TR Y PN T R U N Y WU W I AT WU U TN

47 LET MAE:=MAX.F(MAE,ABS.F(DIFF))

u8 ADD DIFF®#%2 TO RMS
49 PRINT 1 LINE WITH T, PDF, CDF, NPDF, NCDF, DIFF
50 THUS
IR I]] N_RRNERE R _ENRNRR ROARRERE R _RRRRRR R_ARERRR
52 IF CDF GE PMAX
53 GO TO L1
54 OTHERWISE
55 LOOP ''OVER I

56 'L1'PRINT 2 LINES THUS

59 LET AMS=SQRT.F(0.05%RMS)
60 PRINT 2 LINES WITH MAE,RMS
61 THUS

Max abs error in Normal approximation of c.d.f., _ ® weRass
R4S error in Normal approximation of c.d.f. _ LALLLL

ou PRINT 1 LINE THUS
DO YOU H{AVE OTHER VALUES OF N? (YES OR NO).
05 READ ANSWER
67 IF SUBSTR.F(ANSWER,1,1) = "Y"
H_ GO TO LO
69 JTHERWISE
70 STOP

71 END ''MAIN

1 ROUTINE NFOLD.U SIVEN N, T YIELDING PDF, CDF

2 e

3 ''Routine calculates tha probabllity density function (PD7) and the cum-
4 ‘''ulative distribution function (CDF) of the N-fold convolution of a
5 ''standard uniform (0,1) probability dist. Real-valued argument is T.
6 [N}

7 ''Witn the following notation for the CDF argument t: F(n,t), with
9 ‘*'the combination of n things taken i at a time denoted as C(n,i),
3 '‘and with the unit step fuaction a* x denoted by u(t-x),

10 L ]

1" " i n

12 F(n,t) = Sum (1=0 to n): (-1) C(n,i) u(t-l) (t-i{) /n!

13 e

14 DEFINE I,N AS INTEGER VARIABLES

L) IF T LE 0.0

14 LET PDF=0.0

17 LST CDF=0.0

19 IETURN

19 JTHERAISE

2 IF T GE REAL.F(N)

21 LET PDF:=0.0

22 LET CDF=1.0

23 RETURN

24 OTHERWISE

249 LET COMBIN:=Y

b LET FACT:1.0

27 FOR [=2 TO N, LET FACT:=FACT®*I *'FOR N FACTORIAL

hy. LT PDF:=TH®(N-1)

?2) LET CDF:=POF*T

30 «ET SIGN: -1.0

n FOX I=1Y TO X DO
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32 LET TI=I

33 IF T LE TI

34 GO TO L1

35 OTHERWISE

36 LET TERM=SIGN®COMBIN®(T-TI)®*(N-1)
37 ADD TERM TO PDF

38 ADD TERM*(T-TI) TO CDF

39 LET SIGN= -SIGN

4o LET COMBIN=COMBIN®(N-I)/(I+1)
LA LOOP ''OVER I

42 'L1'LET PDF=PDF®N/FACT

43 LET CDF=CDF/FACT

by RETURN

45 END ''NFOLD.U

1 FUNCTION SNORM(Z)
2 L]
3 ''ROUTINE CALCULATES THE STANDARD NORMAL PROBABILITY INTEGRAL.
4 ''REF: APPROXIMATION OBTAINED FROM AMS 55, ABRAMOWITZ AND STEGUN.
5 e
6 IF ABS.F(Z) > 7.0
7 GO TO L2
8 OTHERWISE
9 LET P=0.5+SIGN.F(Z)*0.5%ERRFX(ABS.F(Z)/SQRT.F(2.0))
10 RETURN WITH P
11 'L2'LET P=0.5+SIGN.F(2)%0.5
12 RETURN WITH P
13 END ''OF SNORM
1 FUNCTION ERRFX(X)
2 "
3 ''ROUTINE CALCULATES THE ERROR FUNCTION. THIS FUNCTION [S CALLED BY
4 '*SNORM(Z).
5 ''REFERENCE: AMS 55, 'HANDBOOK OF MATHEMATICAL FUNCTIONS', NAT. BUIEAU
6 ''OF STANDARDS, NOV. 1970, (P. 299).
7 L
8 LET S=SIGN.F(X)
9 LET X=ABS.F(X)
10 IF X<0.00000000001
n RETURN WITH 0.0
\ 12 OTHERWISE.
13 IF X>10.0
Eigz L RETUAN WITH S
20 15 OTHERWISE.
Ao 16 LET T=1.0/(1.040.3275911%X)
: 17 LET SUM=1.06140543%T
18 LET SUM= (SUM-1.45315203)#T
19 LET SUM=(SUA+1.42141374)9T
20 LET SUM=(SUM-0.284496735)%T
21 LET SUM=(S5UM+0.254829592)%T
22 RETURN WITH S®(1.0-SUM®EXP.F(-X*X))

23 END ''OF FUNCTIOH ERRFX
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ANNEX B
SIMSCRIPT SOURCE PROGRAM: RUN.NFOLD.GU

1 PREAMBLE ''RUN.NFOLD.GU

2 NORMALLY MODE IS REAL

3 DEFINE SNORM AS A REAL FUNCTION GIVEN 1 ARGUMENT

4 DEFINE ERRFX AS A REAL FUNCTION GIVEN 1 ARGUMENT

5 DEFINE ICOMBIN AS AN INTEGER FUNCTION GIVEN 2 ARGUMENTS

6 END ''PREAMBLE

1 MAIN ''RUN.NFOLD.GU

2 e

3 ''Driver program to obtain the probability density and cum prob of the
4 ''N-fold convolution of a set of uniform distributions having a common
5 ''lower domain limit (CL) and having different upper domain limits.

6 ''PDFs & CDFs of Normal dist having same avg and s.d. are also printed.
7 "

8 DEFINE FLAGM,I,J,K,M,N,NCELLS,NREPS,SEED AS INTEGER VARIABLES

9 DEFINE ANSWER AS A TEXT VARIABLE
10 DEFINE NCV,HISTV AS INTEGER, 1-DIMENSIONAL ARRAYS

n DEFINE AV,XV,CDFV AS REAL, 1-DIMENSIONAL ARRAYS
12 DEFINE SM AS A REAL, 2-DIMENSIONAL ARRAY

13 LET LINES.V=9999
1 LET RT12=SQRT.F(12.0)

15 LET NCELLS=10
16 RESERVE CDFV(®) AS NCELLS
17 'LO'SKIP 1 LINE
18 PRINT 7 LINES THUS

This program calculates and prints the p.d.f. and c.d.f of the N-fold con-
volution of a set of N uniform probability distributions, each of which is
defined on its own, possibly, unique interval--CL to upper limit. Inputs are
integer N, upper c.d.f. value to terminate calculation (PMAX), common lower
argument value (CL), and N upper limits of the uniform ranges. Max value of N
permitted by the program {s 20. Optionally, a Monte-Carlo histogram can be

obtained.
26 SKIP 2 LINES
27 PRINT 1 LINE THUS
INPUT THE VALUE OF N.
29 READ N
30 LET N:=MIN.F(N,20)
N RESERVE AV(®) AS N
32 RESERVE NCV(®) AS N
33 LET NCV(1)=N
34 LET NCV(N)=1
35 FOR Kz2 TO N-1, LET NCV(K)=ICOMBIN(N,K)
36 e
37 ''RESERVE MATRIX OF N-TUPLE SUMS OF AV(*).
38 e
39 RESERVE SM(=,%) AS N BY #
uo FOR I=1 TO N, RESERVE SM(I,®) AS NCV(I)
41 PRINT 1 LINE THUS
INPUT THE (MAX) VALUE OF THE CONVOLUTION CDF TO TERMINATE CALCULATIONS.
43 READ PMAX
4y PRINT 1 LINE THUS
INPUT THE COMMON VALUE OF THE ARGUMENT LOWER LIMIT (OR THRESHOLD).
u6 READ CL
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u7 LET AVG=0.0

48 LET VAR=0.0
49 LET ACON=1.0
50 FOR I=1 TO N DO
51 PRINT 1 LINE WITH I
52 THUS
INPUT THE UPPER LIMIT OF THE ARGUMENT RANGE FOR UNIFORM VARIABLE # #%,
54 READ AU
55 IF AU LE CL
56 PRINT 1 LINE WITH AU,CL
57 THUS
INPUT ERROR. UPPER ARG LIM .(ceceeveseces IS LESS THAN LOWER .cceocecccsse
59 STOP
60 OTHERWISE
61 LET AV(I)=AU-CL
62 LET ACON=ACON®AV(I)
63 ADD 0.5%AV(I) TO AVG
64 ADD AV(I)®#®2/12,0 TO VAR
65 LOOP ''OVER (I) UNIFORM COMPONENTS
66 LET COND=1.0/SQRT.F(2.0%PI.C*VAR) ''FOR NORMAL DENSITY COEF
67 LET STDV=SQRT.F(VAR)
68 LET LIMzAVG + 3.0%STDV
69 LET LIM=MIN.F(LIM, 2.0%AVG)
70 LET DELT=LIM/20.0
n PRINT 1 LINE THUS
DO YOU WANT A MONTE-CARLO SIMULATION? (YES OR NO).
73 READ ANSWER
74 IF SUBSTR.F(ANSWER,1,1) = "Y"
75 LET FLAGM=1
76 PRINT 1 LINE THUS
INPUT THE INDEX (1 TO 9) OF THE RANDOM NUMBER SEED.
78 READ SEED
79 PRINT 1 LINE THUS
INPUT THE NUMBER OF REPLICATIONS WANTED.
81 READ NREPS
82 PRINT 1 LINE WITH NREPS
83 THUS
A Monte-Carlo simulation of ##8&R replications has begun.
85 LET NCELLS=z10
86 LET DELXz2.0%DELT
87 RESERVE Xv(®) AS NCELLS
38 RESERVE HISTV(®) AS NCELLS
8y FOR Kz1 TO NCELLS, LET HISTV(K)s:0
30 LET AVGX:0.0
N LET VARXz0.0
92 FOR Kz1 TO NCELLS, LET XV(K)aN®CL+K®DELX
93 b
94 *'SIMULATE FOR NREPS REPLICATIONS.
95 L ]
96 FOR I:=! TO NREPS DO
7 LET SUMz0.0
98 FOR J21 TO N DO
99 ADD UNIFORM,F(CL,CL+AV(J),SEED) TO SUM
100 LOOP °**OVER J
101 ADD SUM TO AVGX
102 ADD SUMR®2 TO VARX
103 e
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104 ''DETERMINE CELL OF HISTOGRAM AND ADD TO CELL COUNT.

105 '

106 FOR K=1 TO NCELLS DO

107 IF SUM LE XV(K)

108 ADD 1 TO HISTV(K)

109 GO TO K2

110 OTHERWISE

1M LOOP ''OVER K

112 'K2’ LOOP ''OVER (I) REPLICATIONS

13 LET AVGX=-AVGX/NREPS

114 LET VARX=VARX/NREPS-AVGX##2

115 PRINT 1 LINE THUS

Monte-Carlo simulation has been completed,

. 17 OTHERWISE

118 LET FLAGM=0

119 ALWAYS

120 "

121 "'FILL RAGGED TABLE SM WITH N-TUPLE SUMS OF THE ELEMENTS OF AV.

122 !

123 CALL STUPLES (N, AV(®), sM(e,®))

124 SKIP 2 LINES

125 PRINT 7 LINES WITH N

126 THUS

(v
PROB DISTRIBUTION OF A ®8_FOLD CONVOLUTION OF A SET OF UNIFORM FUNCTIONS

Indep N-fold Convolution Normal Prob Distridb  Difference
Variable p.d.f. c.d.f. p.d.f. c.d.f. c.d.fl.
134 LET RMS.DIFF=0.0
135 LET MAE.DIFF=0.0
136 LET K=0 ''TO COUNT PAIRS
137 FOR I=1 TO 20 DO
138 LET T=I®DELT
139 CALL NFOLD.GU (N, ACON, SH(®,®) T) YIELDING PDF, CDF
140 IF MOD.F(I1,2)=0
141 ADD 1 TO K
142 LET CDFV(K)=CDF
143 ALWAYS
144 LET ARG=(T-AVG)/STDV
145 LET NPDF=COND®EXP.F(-0.5%ARG®#2)
146 LET NCDT=SNORM(ARG)
147 LET DIEF:=NCDF-CDF
148 ADD DIFF®®2 TO RMS.DIFF
149 LET MAE.DIFF=MAX.F(MAE.DIFF,ABS.F(DIFF))
150 PRINT 1 LINE WITH T.N®CL, PDF, CDF, NPDF, NCDF, DIFF
19 THUS
ﬁ.'...". & _snasas ........ ....l'.. ...'.... ...'....
153 IF CDF GE PMAX
154 GO TO L
15% OTHERWISE
156 LOOP ''OVER I

157 °'L1'PRINT 2 LINES THUS

A © A — - - - - -en o w - — - s Gt B - @ W - -

160 LET RMS.DIFF=SQRT.F(0.05%RMS.DIFF)
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N - - 7
ggg
_ 161 PRINT 2 LINES WITH MAE.DIFF,RMS.DIFF

162 THUS
Max abs error between c.d.f. and the Normal c.d.f. approx % Sskees

RMS difference between c.d.f. and the Normal c.d.f. approx # ssksss
165 PRINT 3 LINES WITH AVG+N*CL,STDV
166 THUS
Mean value of the convolution is S#8#a #n88d8 yith std dev #Eiss sssex,
(1) Mean and Std Dev of each of the Uniform distributions:

Component Mean Value Std Deviation

170 FOR I=1 TO N DO
17 PRINT 1 LINE WITH I, CL+0.5®AV(I), AV(I)/RT12
172 THUS

e SRNNN anase SEBAR _ssaes
174 LOOP '*OVER (I) UNIFORM DISTRIBUTIONS
175 SKIP 2 LINES
176 IF FLAGM NE 1
177 GO TO £3
178 OTHERWISE
179 PRINT 7 LINES WITH N,NREPS
180 THUS

MONTE-CARLO SAMPLE DISTRIBUTION OF THE SUM OF ®® UNIFORM RANDOM VARIABLES

NUMBER OF REPLICATIONS: ®essas

Indep Histo Sample Sample DIfT Versus
Variable Frequency p.d.f. c.d.f. analytic c.d.f.
— 188 CET XCDF=U.0
189 LET RMS.DIFF=z0.0
150 LET Ms0
N FOR K=1 TO NCELLS, ADD HISTV(K) TO M
192 FOR K=1 TO NCELLS DO
193 LET XPDF=HISTV(K)/M
194 LET XCDF=XCDF+XPDF
195 LET DIFF=XCDF-CDFV(K)
136 ADD DIFF®*®2 TO RMS.DIFF
197 PRINT 1 LINE WITH XV(K),HISTV(K),XPDF,XCDF,DIFF
198 THUS
I..l.llll (11211} I_'.II. I.IIIII I.DDDDDI
200 LOOP ''OVER (K) HISTO CELLS
201 PRINT 2 LINES THUS
3 204 LET RMS.DIFF=SQRT.F(RMS.DIFF/REAL.F(NCELLS))
"y 205 PRINT 1 LINE WITH RMS.DIFF
~: 206 THUS
"~ R4S difference: sample c.d.f. - analytic c.d.f. @& ,esesas
~ 208 LET SDX=SQRT.F{VARX)
;" 209 LET SEX=SDX/SQRT.F(REAL.F(NREPS))
b 210 PRINT 3 LINES WITH AVGX,SDX,AVGX-1.96%SEX,AVGX+1.968SEX
;.:: 2n THUS
g‘- Saaple Average Value ##388 _sssss  Saaple Standard Deviation ®esss easse
P 95 percent confidence interval in mean: ®S082 28RS  S8000 08a8
: 215 *K3'RELEASE NCV(®)
216 RELEASE AV(®)
FaN| RELEASE SM(®,.®)
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i 218 PRINT 1 LINE THUS

X DO YOU HAVE OTHER PROBLEMS OF THIS KIND? (YES OR NO).

o 220 READ ANSWER

an 221 IF SUBSTR.F(ANSWER,1,1) = "Y*

g 222 GO TO LO

oty 223 OTHERWISE

- 224 STOP

o 225 END '°'MAIN

gy

a ﬂ 1 ROUTINE NFOLD.GU GIVEN N, ACON, SM, T YIELDING PL.’, CDF

Sy 2 "

E& 3 ''Routine calculates the prob density function (PDF) and the cum-

N 4 ‘''ulative dist function (CDF) of the N-fold convolution of a set of
g 5 ''N unique uniform distributions. The range of the i th distribution
ot 6 ''is (0, a(i)). The product, over N, of the a{i) is the argument ACON.
‘gé‘. 7 ''All n-tuple sums of elements a(i) are entered in the ragged table SM,
5@&‘ 8 ‘''where the k th row and j th column element is the j th k-tuple sum.
%%. 9 ''E.g., the first row of SM contains a(j). Real-valued argument is T.

10 ''Num of combinations of N objects taken K at a time is DIM.F(SM(K,®)).

AT 11 ''With the following notation for the CDF, with argument t: F(n,t),
Aty 12 ''with the J th k-tuple sum for the n th convolution denoted by
Ky 13
';3; W s (n),
1 15 " kJ
:sg 6
}~4 17 ‘‘and with the unit step function at x denoted by u{t-x),
g 18
Fia 19 n
_ ‘ﬁ 20 F(n,t) = (1/ACON/n!)(t + Sum over ks:! to n and j=1 to C{n,k):
1 ‘,. 21 [ ]
. 2 " k n
- 23 " (-1) u{t =8 (n))(t =8 (n))),
28 3k 3k
25 te
26 ‘'‘where C(n,k) is the # combinations of n things taken k at a time.
27 e
j 28 DEFINE I,J,K,N AS INTEGER VARIABLES
e 29 DEFINE SM AS A REAL, 2-DIMENSIONAL ARRAY
I 30 IF T LE 0.0
oo N LET PDF=0.0
5 32 LET CDF=0.0
2 33 RETURN
by - 34 OTHERWISE
35 IF T GE SM(N,1)
S 36 LET PDF=0.0
R 37 LET CDF=1.0
e 38 RETURN
S 39 OTHERWISE
40 LET FACTz1.0
Sk 4 FOR Iz2 TO N, LET FACT=FACT®I ''FOR N FACTORIAL
N 42 LET PDF=T®®(N-1)
'y 43 LET CDF:=POF®T
- ha LET SIGN: 1.0
AN 45 FOR K=1 TO N DO
46 LET SIGN:= -SIGN
X 47 FOR J=1 TO DIM.F(SM(K,®)) DO
; 48 IF T > SM(K,J)
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49 LET TARG=T-SM(K,J)
50 LET INCR=SIGN®TARG#®N
51 ADD INCR/TARG TO PDF
52 ADD INCR TO CDF
53 ALWAYS
54 LOOP '*OVER (J) COLUMNS
55 LOOP ''OVER (K) ROWS
56 LET PDF=PDF#N/FACT/ACON
57 LET COF=CDF/FACT/ACON
58 RETURN
59 END ''NFOLD.GU
1! FUNCTION ICOMBIN (N, K)
2 "
3 *'INTEGER-VALUED # OF COMBINATIONS OF N OBJECTS TAKEN K AT A TINE.
u [N )
5 DEFINE C,I,K,N AS INTEGER VARIABLES
6 IFK=0
7 RETURN WITH 1
8 OTHERWISE
9 LET Cz1
10 FOR I=1 TO K DO
1" LET C=zC%(N-I+1)/1
12 LOOP '*OVER I
13 RETURN WITH C
14 END '°'FUNCTION ICOMBIN
1 ROUTINE STUPLES (M, AV, SM)
2 [N ]
3 ‘''Routine fills the elements of a ragged table, SM, having N rows.
4 ''The k,J element of this table consists of the j th k-tuple sum of the
S '‘elements of the vector AV. Routine is called by NFOLD.GU.
6 "e
7 DEFINE I, IV,12,13,I4,15,16,17,18,19,110,111,112,113,114,115,116,
8 117,118,119,J,K,N AS INTEGER VARIABLES
9 DEFINE JV AS AN INTEGER, 1-DIMENSIONAL ARRAY
10 DEFINE AV AS A REAL, 1-DIMENSIONAL ARRAY
1} DEFINE SM AS A REAL, 2-DIMENSIONAL ARRAY
12 IF N> 20
13 PRINT 1 LINE WITH N
L] THUS
NUMBER OF VARIABLES (= ®®) EXCEEDS THE CAPACITY OF 20 IM ROUTINE STUPLES.
16 STOP
17 OTHERJISE
18 RESERVE JV(®) AS N *'*'LOCALLY
19 LET SM(N,1):0.0
20 FOR J:1 TO N, ADD AV(J) TO SM(N,1)
a1 FOR Iizs1 TO N DO
22 LET St:AV(IYV)
a3 LET SM(1,11):5"
24 IFNC3
by GO0 TO
26 OTHERWISE *'gen 2 tuples
21 FOR [2:11¢1 TO N DO
28 ADD 1 TO JV(2)
29 LET S23S1.AV(I2)
30 LET SM({2,JV(2))a282
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3 IF N < 4

32 GO TO L2

33 OTHERWISE ''gen 3 tuples

3y FOR I3=I2+1 TO N DO

35 ADD 1 TO JV(3)

36 LET S3=S2+AV(I3)

37 LET SM(3,JV(3))=S3

38 IFNCS

39 GO TO L3

40 OTHERWISE ''gen U4 tuples

" FOR Iu=I3+1 TO N DO

42 ADD 1 TO JV(4)

43 LET SU4=S3+AV(Il4)

4y LET SM(4,JV(4))=SuU

45 IF N <6

46 GO TO LU

47 OTHERWISE '‘gen 5 tuples

48 FOR I5=I4+1 TO N DO

49 ADD 1 TO JV(5)

50 LET S5=S4+AV(I5)

51 LET SM(5,JV(5))=85

52 IF N<T

53 GO TO L5

54 OTHERWISE ''gen 6 tuples

55 FOR 16=I5+1 TO N DO

56 ADD 1 TO JV(6)

57 LET S6=S5+AV(16)

58 LET SM(6,JV(6))=S6

59 IFNCS8

60 GO TO L6

61 OTHERWISE ''gen 7 tuples

62 FOR I7=I6+1 TO N DO

63 ADD 1 TO JV(T)

64 LET S7=S6+AV(I7)

65 LET SM(7,JV(7))=S7

66 IFN<C9

67 GO TO L7

68 OTHERWISE ''gen 8 tuples

69 FOR I8:=I7+1 TO N DO

70 ADD 1 TO JV(8)

T LET SB8=S7+AV(18)

72 LET SM(8,JV(8))=S8

73 IF N < 10

> T4 GO TO L8

o 75 OTHERWISE '‘'gen 9 tuples
AN 76 FOR 19:18+1 TO N DO
oA 77 ADD 1 TO JV(9)
A 78 LET S9=S8+AV(I9)
- @2 79 LET SM(9,JV(9))=59
R0 80 IFN <N
s 81 GO TO L9
&3: 82 OTHERWISE ''gen 10 tuples
S0 83 FOR I10=19+1 TO N DO
NNy 84 ADD 1 TO JV(10)

85 LET S10:S9+AV(I10)

I 86 LET $#(10,JV(10))=510

Y 87 IF N < 12
2
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GO TO L10
OTHERWISE ''gen 11 tuples
FOR I11=I10+1 TO N DO
ADD 1 TO Jv(11)
LET S11=S10+AV(I11)
LET SM(11,JV(11))=S11
IF N < 13
GO TO LN
OTHERWISE ''gen 12 tuples
FOR I12=I11+1 TO N DO
ADD 1 TO Jv(12)
LET S12=S11+AV(I12)
LET SM(12,JV(12))=S12
IF N <14
GO TO L12
OTHERWISE ''gen 13 tuples
FOR I13=I12+1 TO N DO
ADD 1 TO JV(13)
LET S13=S12+AV(I13)
LET SM(13,JV(13))=S13
IF N < 15
GO TO L13
OTHERWISE ''gen 14 tuples
FOR I14=I13+1 TO N DO
ADD 1 TO JV(14)
LET S14=813+AV(I14)
LET SM(14,Jv(14))=S14
IF N < 16
GO TO L14
OTHERWISE ''gen 15 tuples
FOR I15=I14+1 TO N DO
ADD 1 TO JV(15)
LET S15=S14+AV(I15)
LET SM(15,JV(15))=815
IF N < 17
GO TO L15
OTHERWISE ''gen 16 tuples
FUR I16=I15+1 TO N DO
ADD 1 TO JV(16)
LET S16=S15+AV(I16)
LET SM(16,JV(16))=S16
IF N < 18
GO TO L16
OTHERWISE ''gen 17 tuples
FOR I17=I16+1 TO N DO
ADD 1 TO JV(17)
LET S17-S16+AV(I17)
LET SM(17,JV(17))=817
IF N < 19
GO TO L17

OTHERWISE '‘'gen 18 tuples

FOR I18=I17+1 TO N DO
ADD 1 TO JV(18)
LET S18zS17+AV(I118)
LET sM(18,Jv(18))-S818
IF N < 20
GO TO L18
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145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
m

— il
WM = 0OWWOoO~NOTUNEWIN =

NIAR A

OTHERWISE ''gen 19 tuples
FOR I19=I18+1 TO N DO

ADD 1 TO JV(19)
LET S19=S18+AV(I19)
LET SM(19,JV(19))=519

'L19! LOOP ''OVER I19

'‘Lg LOOP ''OVER 118

BANA LOOP ''OVER I17

'L16" LOOP ''OVER I16

‘L15! LOOP ''OVER I15

'Ly LOOP ''OVER I4

'L13 LOOP ''OVER I13

'‘Li2! LOOP ''OVER I12

‘LI LOOP ''OVER I11

'L10 LOOP ''OVER I10

'L9’ LOOP ''OVER I9

‘L8 LOOP ''OVER I8

LT LOOP ''OVER I7

‘L6 LOOP ''OVER I6

'L5! LOOP ''OVER IS5

Ly LOOP ''OVER Ii

‘L3 LOOP ''OVER I3

'L2' LOOP ''OVER I2

'L1'LOOP ''OVER IM

RELEASE JV(®)
RETURN
END ''STUPLES

FUNCTION SNORM(Z)
L]
'*ROUTINE CALCULATES THE STANDARD NORMAL PROBABILITY INTEGRAL.
''REF: APPROXIMATION OBTAINED FROM AMS 55, ABRAMOWITZ AND STEGUN,
te

IF ABS.F(Z) > 7.0

GO TO L2

OTHERWISE

LET P=0,5+SIGN.F(Z)*0.5*ERRFX(ABS.F(Z)/SQRT.F(2.0))

RETURN WITH P
'L2'LET P=0.5+SIGN.F(Z)%0.5

RETURN WITH P
END ''OF SNORM
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ANNEX C
SIMSCRIPT SOURCE PROGRAM: RUN.NFOLD.E

PREAMBLE ''RUN.NFOLD.E

NORMALLY MODE IS REAL

DEFINE SNORM AS A REAL FUNCTICON GIVEN 1 ARGUMENT
DEFINE ERRFX AS A REAL FUNCTION GIVEN 1 ARGUMENT
END ''PREAMBLE

MATN ''RUN.NFOLD.E
"
''Driver program to obtain the probability density and cun prob of the
''"N-fold convolution of a set of N exponential dist's. Two options
''‘are available: (a) all exponential dist's in the set to be convolved
''are identical, (b) all of the exponential dist's are uaique. PDFs
'*and CDFs of a Normal dist with the same mean and variance Is printed
"'"for comparison with the convolution,
)

DEFINE I,J,K,L,M,N,NCELLS AS INTEGER VARIABLZTS

DEFINE ANSWER AS A TEXT VARIABLE

DEFINE INDZX AS AN INTEGER, 1-DIMENSIONAL ARRAY

DEFINE AV,LAV AS REAL, 1-DIMENSIONAL ARRAYS

DEFINE MAT AS A REAL, 2-DIMENSIONAL ARRAY

LET NCELLS=20
'LO'SKIP 1 LINE

PRINT 7 LINES THUS

This program calculates and prints the p.d.f. and c.d.f of the N-fold
convolution of a set of N exponential distributions. Two progam options exist
for these distributions: (a) all distributions have the same mnean value, and
(b) all aistributions nave unique (or different) means. User inputs are tne
number (N) of distributioas to be convolved, the upper c.d.f. liait to tera-
{nate calculations, and the mean values of these exponential distiibutions.

25

PRINT 1 LINE THUS

INPUT THE VALUE OF i

a7
28

READ N
PRINT 1 LINE THUS

INPUT THF (MAX) VALUE OF THE CDF TO TESRYINATE CALCULATIONS.

30
31
32

33
2

READ PMAX

RESERVE AV(®),LAV(*) AS N
RESERVE INDEAL(*) AS N-1
RESERVE MAT(",*) AS N BY N
PRINT 1 LIME THUS

DO ALL FEXPONENTIAL DISTRIBUTIONS HAVE TilE SAME PARAMETFR? (Y Ok N).

36
37
38

READ ANSWER
IF SUBSTR.F(ANSARR,1,1) = "Y"
PRINT 1 LINE THUS

TIPJT THE COMMON HZAN VALUE.

40
M
42
i3
ud
.'],5
46
.'J']

IEAD AVG
FOR I=1 T2 M, LET LAV(I)=1.0/AVG
LET VAR=(I®AVGHN2
LET AVG:=NRAVG
OTHFAWISE
LET AVG=0.9
LET VAR=0.0C
LET LAMBDA=1.0
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48 IF N > 15

49 PRINT 1 LINE THUS
MAX # OF CONVOLUTIONS IS LIMITED TO 15 FOR THIS OPTION. CHOOSE THE 15.
51 RELEASE AV(*),LAV(®),INDEX(*)
52 RELEASE MAT(®,*)
53 LET N=15
54 RESERVE AV(*),LAV(*),INDEX(®*) AS N
55 RESERVE MAT(*,*) AS N BY N
56 ALWAYS
T FOR I=1 TO ¥ DO
58 PRINT 1 LINE WITH I
59 THUS
INPUT THE MEAN VALUE OF THE #* Tii EXPONENTIAL DISTRIBUTION.
61 READ THETA
62 ADD THETA TO AVG
63 ADD THETA®®*2 TO VAR
hY LET LAV(I)=1.0/THETA
65 LET LA“BDA-LAMBDA®LAV(I)
65 LOOP ''JVER (I) EXPONENTIAL DISTRIBUTIONS
6, 'e
62 ''OBTAIN THE COEFFICIZNTS AV(*) FOR THE CONVOLUTION DENSITY.
69 [N ]
70 IFN=2
A LET AV(1)=LAMBDA/(LAV(2)-LAV(1))
12 LET AV(2)= -AV(1)
73 G0 TO L2
T4 OTHERWISE
75 FOR J=1 TO N, LET MAT(1,J)=1.0
76 FOR I=2 TO N-1, FOR J=1 TO N, LET MAT(I,J)=0.0
177 FOR J=1 TO N DO
73 LET PNJ=1.0
77 FOR K=1 TO N DO
80 IF KX NE J
81 LET PNJ=PNJ®LAV(K)
82 ALWAYS
83 LOOP ''OVER K
84 LET MAT(N,J)=PNJ
85 LOOP '*OVER (J) COLUMNS
gﬁ CALL NTUPLES (N, LAV(®), MAT(®,%)) *'FILL EL'MTS OF MAT(",%)
7 e
§3 ''O3TAIN THE INVERSE OF MAT(®,").
ga
90 CALL AT.INVERSE (N, MAT(®,%))
91 FOR I=1 TO N, LET AV(I)=LAMBDA®MAT(I,N)
)2 ALWAYS
23 'L2'LET COND=1,0/SQRT.F(2.0%PI.C*VAR)
gh LET STDV=SQiT.F(VAR)
25 LET LIMzAVG + U4,0%STDV
95 LET DZLT=LIM/NCELLS
"7 LET LINES.V=99Y65
a5 SKIP 2 LINES
" PRINT T LIUFS WAITi N
100 THUS

(1)

PROH DISTRIBUTION Q7 THE CONVOLUTION OF A SET OF ®## EXPONENTIAL DISTRIBUTIONS
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Tndep N-fold Convolution No:'mal Prob Distrib Difference

Variable p.d.f. c.d.f. p.d.f. c.d.f. c.d.f.
108~ LET MAE-0.0 T T -
109 LET RMS=0.0
110 FOR I=1 TO NCELLS DO
11 LET T=I®*DELT
112 CALL NFOLD.E (N, AV(®), LAV(*), T) YIELDING PDF,CDF
113 LET ARG=(T-AVG)/STDV
114 LET NPDF=zCONDMEXP.F(-0.5%ARG*#2)

115 LET NCDF=SNORM(ARG)

116 LET DIFF=CDF-NCDF

117 LET MAE=MAX.F(MAE,ABS.F(DIFF))

118 ADD DIFF**2 TO 3MS

119 PRINT 1 LINE WITH T, PDF, CDF, NPDF, NCDF, DIFF
' 120 THUS

*!l.!ll l.lll!!! I.ll*llﬂ l.llllli I.ll!lll n_anunnno
122 IF CDF GE PMAX
123 GO TO L1
124 OTHERWISE
125 LOOP ''OVER I

126 'L1'PRINT 2 LINES THUS

- - T D A A D P - D D D U P A ——-——

129 LET RMS=SQRT.F(RMS/REAL.F(NCELLS))
130 PRINT 2 LINES WITH MAE,RMS
131 THUS

Max abs error in a Normal approximation of sum c.d.f, % %Ruxsx
RMS error of a Norimal approximation of the sum c.d.f. : oRNRRER
134 PRINT 3 LINES WITH AVG, STDV
135 THUS
(1) Mean Value of the Convolution .eeeeeseeeees Std DEV civvieveneeens
Mean Values of each of the exponential distributions

R OR R R R R D TR IR P T D TR P TR TR TR TR TR TR TR TR TR O D i TR Y S T D R R R R R R R W

139 FOR I=1 TO N DO
140 PRINT 1 LINE WITH I, 1.0/LAV(I)
14 THUS
Number #*%* Mean ...ccccesce0c0e
143 LOOP '"'OVER 1
iy SXIP 2 LINES
145 RELEASE LAV(™)
146 RELEASE AV(*)
7 RELEASE MAT(%,®)
148 PRINT 1 LINF THUS
DO YOU HAVE SIMILAR PROBLEMS TO SOLVE? (YES 0% NO).
150 READ ANSAER
151 IF SUBSTR.F(ANSWER,1,1) = "Y"
. 152 GO TO .0
153 OTHERWISE
1y STOP

155 EHD ' MATN
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%a'. 1 ROUTINE NFOLD.E GIVEN N, AV, LAV, T YIELDING PDF, CDF

2 L)
X i 3 ''Routine calculates the probabllity density function (PDF) and the cum
? ﬁ 4 r'distribution function (CDF) of the N-fold convolution of a set of
A 5 ''exponential dist's. Two options are provided: (a) each of the N
’ 6 ''dist's nas the sane mean, and (b) each dist has a unique mean.
hthy 7 ''If the mean values of tne exponential dist's are all unique, the
% / 8 ‘''convolution can be expressed as a weighted sum of the exponential
b 9 ‘''dist's., Taese weignts are passed to the routine in the vector AV(M®),
?{;_ 10 ''Rate parameters of the N expon dists are given in the vector LAV(*).
L, 11 ''The real-valued argument of the convolution is T.

1 2 [
$}W 13 ''If each of tne dist's has the same rate parameter, a, (option (a)),
W 14 ''tne p.d.f. and c.d.f. of the n-fold convolution are given,
;} i 1S ‘''respectively, by these Zrlang functions:
KW L
e 17 n-1
18 ' f(n,t) = a (at) exp(-at)/(n-1)! t > 0.
5 19
X 20 v i
“4 O
s 21 't F(n,t) = 1 - exp(-at) Sum(i=0 to n-1): z / i!
‘:II': 22 1
ML 23 DEFINE I,N AS INTEGER VARIABLES
I U DEFINE AV,LAV AS REAL, 1-DIMENSIONAL ARRAYS

Y 23 IF T LE 0.0
0 26 LET POF=0.0
PR 27 LET CDF=0.0
Pl 2 RETURN
L 24 OTHERWISE
. 30 If LAV(1)=LAV(2) ''ALL RATE PARMS ASSUMED EQUAL
e 31 LET Z=LAV(1)*T
R 32 LET EXPZ=EXP.F(-Z)

l\‘
\I
o LET FACT=1.0
Léb 34 LET 2I=1.0
i)

(VS
w

! 35 LET SU4=1.0
W 36 FOR I=1 TO N-1 DO

5 37 LET FACT=FACT*I

., 38 LET ZI=2%Z1
3 39 ADD ZI/FACT TO SUM
(P 40 L00P ''OVER I

o 41 LET PDF=LAV(1)®#ZI/FACT®EXPZ
i 42 LET CDF=1.0-EXPZ*SUM

e 43 RETURM

‘;R Ll OTHERWISE
gi%ﬁ us LET PDF=0.0
Lhg 46 LET CDF:0.0
e 47 FOR I=1 TO N DO
0 48 LET EXPT=%XP.F{-LAV(I)*T)
X 49 ADD AV(I)®EXPZ TO PDF
;§§ 50 ADD AV(I)/LAV(I)*(1,0-EXPZ) TO CDF

o 0 LOOP **OVER T
\’\ 67 RETURN

- 53 END ''NFOLD.CE
Lo
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1 ROUTINE FOR MAT.INVERSE (N, AM)
2 LN ]
3 ''ROUTINE TO OBTAIN THE INVERSE OF THE N BY N MATRIX AM VIA THE
4 "'COMPACT FORM OF THE GAUSS-JORDAN METHOD. INV IS RETUSNED IN AM.
5 v
6 DEFINE I, J, K, i AS INTEGER VARIABLES
7 DEFINE AM AS A REAL, 2-DIMENSIONAL ARRAY
8 FOR I=1 TO N DO
9 LET P=AM(I,I)
10 IF P=0.0
11 PRINT 2 LINES WITH I THUS
ERROR IN ROUTINE MAT.INVERSE. THE ** TH DIAGONAL ELEMSNT IS ZERO.
THE MATRIX CANNOT BE INVERTED.
4 STOP
15 OTHERWISE
16 LET AM(I,I)=1.0
17 FOR J=1 TO N DO
18 LET AM(I,J)=AM(I,J)/P
19 LOOP ''OVER J
20 FOR J=1 TO N DO '"'THE SECOND J-LOOP
21 IF J=1
22 GO TO EOJ ''END OF J-LOOP
23 OTHERWISE
24 LET P=AM(J,I)
25 LET AM(J,I)=0.0
26 FOR K=1 TO N DO
27 SUBTRACT P*AM(I,K) FROM Ali(J,K)
28 LOOP ''OVER K
29 'EQJ' LOOP ''OVER J
30 LOOP ''OVER I
31 RETURN
32 END ''ROUTINE MAT.INVERSE
1 ROUTINE NTUPLES (li, LAV, MAT)
2 re
3 ''Routine fills N-2 row elements in the MAT(",*) which arc contributed
4 ''by n-tuples associated with variable LAV(®*). Routine is called by
5 ''RUN.NFOLD.E.
6 DEFINE I,I1,I2,13,1I4,15,16,17,18,19,110,I11,112,J,K,N AS INTHZ3EL
VARIABLES
7 DEFINFE INDEX AS AN INTEGER, 1-DIMENSIONAL ARRAY
8 DEFINE LAV AS A REAL, 1-DIMENSIONAL ARRAY
9 DEFINE MAT AS A REAL, 2-DIMSNSIONAL ARRAY
10 IF ¥ > 15
1 PRINT 1 LINE WITH ¥
12 THUS
INPUI FRROR TO ROUTINS NLIUPLES. HUMBER OF CONVOLUTIONS, *», 1S FXCESSIVE.
1 STOP
1y OTUERWISE
14 RESERVE INDEXA(®) AS N-1 ''LOCALLY
17 FOR J=1 TO N DO
18 LET K=0
19 FO0R I=1 TO N DO
20 IF I NEJ
21 ADD 1 TO K
22 LET INDEX(K)=I
23 ALWAYS

R,
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24 LOOP ''OVER (I) PARAMETERS

25 IF N < 3
24 RELEASE INDEX(*)
27 RETURN
28 OTHERWISE
29 FOR I1=1 TO N-1 DO
30 LET LA1=LAV(INDEX(I1))
N ADD LA1 TO MAT(2,J)
32 IF N <Y
33 GO TO 1
34 OTHERWISE ''gen 2 tupies
35 FOR I2=I1+1 TO N-1 DO
36 LET LA2=LAT*LAV(INDEX(I2))
7 ADD LA2 TO MAT(3,J)
38 IF N <5
39 30 TO L2
40 OTHERWISE ''gen 3 tuples
41 FOR I3=I2+1 TO N-1 DO
42 LET LA3=LA2™LAV(INDEX(I3))
43 ADD LA3 TO MAT(4,J)
4y IF N <6
45 GO TO L3
a4 OTHFRWISE ''gen 4 tuples
u7 FOR IU=I3+1 TO N-1 DO
48 LET LAY=LA3®LAV(INDEX(IH))
49 ADD LAY TO MAT(S,J)
50 IF N T
51 GO TO L4
52 OTHERWISE ''gen 5 tuples
53 FOR I5zI4+1 TO N-1 DO
54 LET LAS:=LAUYMLAV(INDEX(IS))
55 ADD LAS TO MAT(6,J)
b1 IF N <8
57 GO TO LS
53 OTHERWISE ''gen 6 tuples
59 FOR I6zI5+1 TO N-1 DO
60 LET LA6zLAS®LAV(INDEX(I6))
61 ADD LA6 TO MAT(7,J)
h2 IF N <9
63 GO TO L6
61 OTHERWISE °''gen 7 tuples
65 FOR I7=16+1 TO N-1 DO
. 66 LET LAT=LA6G%LAV(INDEX(IT))
0y 67 ADD LA7 TO MAT(8,J)
& 68 IF N <10
e 59 GO TO L7
N 70 OTHERWISE '‘gen 8 tuples
2 ) n FOR I8:=I7+1 TO N-1 DO
o 72 LET LA8:=LAT®*LAV(INDEX(I8))
j?: 73 ADD LA8 TO MAT(9,J)
e T4 IFN <N
& 79 GO TO LB
I 76 OTHERWISE ''gen 9 tuples
77 FOR 19=I8+1 TO N-1 DO
78 LET LA9=LAB®LAV(INDEX(I9))

79 ADD LA9 TO MAT(10,J)




80 IF N < 12

81 GO TO LY
82 OTHERWISE ''gen 10 tuples
83 FOR I10=I9+1 TO N-1 DO
84 LET LA10=LA9®LAV(INDEX(I10))
85 ADD LA10 TO MAT(11,J)
86 IF N < 13
87 GO TO L10
88 OTHERWISE ''gen 11 tuples
89 FOR T11=I10+1 TO N-1 DO
90 LET LA11=LATORLAV(INDEA(I11))
N ADD LA11 TO MAT(12,J)
n 92 IF N < 14
93 GO TO LN
94 OTHERWISE '‘gen 12 tuples
95 FOR I12=I11+1 TO N-1 DO
96 LET LA12=LA11%LAV(INDEX(T12))
97 ADD LA12 TO MAT(13,J)
98 ‘'Li12' LOOP ''OVER I12
99 ‘'L LOOP ''OVER 1IN
100 ‘'L10' LLOOP ''OVER I10
101 'L9! LOOP ''OVER 19
102 'L8! LOOP ''OVER I8
103 ‘LT LOOP ''OVER I7
104 'Lé' LOOP ''OVER Ib6
105 'L5' LOOP ''OVER I5
106 ‘L4 LOOP ''OVER I4
107 'L3' LOOP ''OVER I3
108 'L2' LOOP ''OVER I2
109 'L1'LOOP ''OVER It
110 LOOP ''OVER (J) COLUMNS
m RELEASE INDEX(%)

112 END ''ROUTINE NTUPLES
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e ANNEX D
ey
:§§k SIMSCRIPT SOURCE PROGRAM: LP.INV
¥
e 1 PREAMBLE ''LP.INV
2 NORMALLY MODE IS REAL
3 DEFINE A1,A2 AS REAL VARIABLES
4 DEFINE SNORM AS A REA', FUNCTION GIVEN 1 ARGUMENT
5 DEFINE ERRFX AS A REAL FUNCTION GIVEN 1 ARGUMENT
6 DEFINE LTRNS.FUN AS A REAL FUNCTION GIVEN 3 ARGUMENTS
7 END ''PREAMBLE
1 MAIN '‘LP.INV
2 "
3 '‘Obtains the inverse Laplace transform at a set of discrete points via
4§ '"'Bellman's method. This method approximates an integral by gaussian
S ‘''quadrature, The quadrature formula leads to a matrix eq'n whose
6 ''sol'n defines the inv in terms of the transform evaluated at M points.
7 ''An example of this method is provided on pp 14 thru 18 of "Numerical
8 ''Methods in Renewal Theory," (AD 828276), Feb 1968.
9 "e
10 DEFINE FLAGE,FLAGM,FLAGMX,I,J,K,L,M,N,NREPS,SEED AS INTEGER
VARIABLES
" DEFINE ANSWER,FILNAM,TITLE,DIST.NAME AS TEXT VARIABLES
12 DEFINE IPVT,HISTV AS INTEGER, 1-DIMENSIONAL ARRAYS
13 DEFINE DET,TV AS REAL, 1-DIMENSIONAL ARRAYS
14 RESERVE DET(®) AS 2
15 DEFINE DSTARV,DV,GSTARV,GV,LAV,WV,XV,CDFV AS REAL, 1-DIMENSIONAL
ARRAYS
16 DEFINE AM AS A REAL, 2-DIMENSIONAL ARRAY
17 LET Mz16 ''TERMS IN THE GAUSSIAN QUADRATURE
18 RESERVE CDFV(®) AS M
19 LET FILNAM = "GAUSS.Q16.DATA"
20 *' LET DIST.NAME = "Gamma(3)"
21 LET DIST.NAME = "Expon Mix"
22 LET FLAGMX:1
23 LET Kz1
24 RESERVE TV(®),HISTV(®) AS M
25 LET CON.AVGzK ''CONSTANT RELATING AVG TO RATE PARM
26 RESERVE Wv(®), Xv(®), IPVT(®) AS M
217 RESERVE DSTARV(®),DV(®),GSTARV(®) ,GV(®) AS M
28 RESERVE AM(®,®) AS M BY M
29 [ ]
30 ''READ THE QUADRATURE POINTS AND WEIGHTS FROM THE FILE: FILNAM.
31 (X
32 LET EOF.Vz)
33 LET LINES.V:9999
34 OPEN UNIT 4 FOR INPUT,
35 oLD,
36 FILE NAME IS FILNAM
37 RECORD SIZE IS 120
38 USE UNIT 4 FOR INPUT
39 READ TITLE USING UNIT 4
40 PRINT 2 LINES WITH FILNAM,TITLE
41 THUS

Data flle 0©0S0EESEE08008 {3 read for D00GGEGEE0EERNNENEREN0E000000RRERR00000
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uy FOR I=1 TO M DO

45 READ XV(I),WV(I) USING UNIT 4

u6 LOOP ''OVER (I) QUADRATURE POINTS

47 CLOSE UNIT 4

48 USE UNIT 5 FOR INPUT

49 FOR I=1 TO M, LET TV(I)=LOG.E.F(2.0/(XV(M-I+1)+1.0))
50 PRINT 7 LINES WITH DIST.NAME

51 THUS

This program calculates and prints the c.d.f. of an N-fold convolution of
a set of N HeRaEReRess distributions with different mean values. This c.d.f.
is obtained by numerically inverting the Laplace transform of this function at
a discrete set of points on the real line. Required inputs are: N and the
mean values of each of these distributions. Mean values of these dist-
ributions should be scaled so that the sum of the means is near 1.
Optionally, a comparative Monte-Carlo simulation may be performed.

59 'LO'SKIP 2 LINES

60 PRINT 1 LINE THUS
INPUT THE VALUE OF N.
62 READ N
63 RESERVE LAV(®) AS N
64 LET AVG=0.0
65 LET VAR=0.0
66 LET FLAGE:=0
67 ' IF FLAGMX NE 1
68 GO TO L3
69 '' OTHERWISE
70 IF N LE 3
n LET FLAGE:=1
72 ALWAYS
73 PRINT 1 LINE THUS
INPUT THE PROPORTION OF THE 1ST EXPONENTIAL COMPONENT.
75 READ A
17 LET FLAGMXz0
78 GO TO L3
79 OTHERWISE
80 PRINT 1 LINE THUS .
INPUT THE MEAN VALUE OF THE 1ST EXPONENTIAL COMPONENT.
82 READ THETA
83 LET LAY:1.0/THETA
84 PRINT 1 LINE THUS
INPUT THE MEAN VALUE OF THE 2ND EXPONENTIAL COMPONENT.
86 READ THETA
87 LET LA2:21.0/THETA
88 LET A2:1.0-AY
89 LET LAV(1):=LA1
90 LET LAV(2):zLA2
91 LET AVG1zA1/LAYeA2/7LA2
92 LET VAR122.0%(AV/LATOO2,A2/LA2982) . AVG1082
93 LET AVG:zN®AVGH
94 LET VAR:=N®YAR?
95 GO TO L4
96 °'L3I'LET FLAGE=0
97 FOR I=1 TO N DO
98 PRINT 1 LINE WITH I
99 THUS
INPUT THE MEAN VALUE OF THE ®® TH RANDOM VARIABLE.
D=2
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101
102
103
104
105
106
107
108
109
110
m
1ne
13
14
ns
116
117
18
19
120
121
122
123

READ THETA
ADD THETA TO AVG
LET LAV(I)=CON.AVG/THETA
ADD CON.AVG®(CON.AVG+1.0)/LAV(I)®**2 - THETA®®2 TO VAR
IFI >
IF LAV(I)=LAV(I-1)
ADD 1 TO FLAGE
ALWAYS
ALWAYS
LOOP ''OVER (I) COMPONENTS
LET LA1=LAV(1)
IF FLAGE =
LET FLAGE=1
OTHERWISE
LET FLAGE=0 ''NOT ALL DISTS ARE THE SAME
ALWAYS

'L4'LET COND=1.0/SQRT.F(2.0%PI.C®VAR)

"

L

LET STDV=SQRT.F(VAR)

PRINT 1 LINE THUS

INPUT THE SCALE FACTOR (1 GE GAMMA LE 1.2) IN LAPLACE TRANSFORM.
READ GAMMA

LET GAMMA=1.0

PRINT 1 LINE THUS

DO YOU WANT TO PERFORM A ONTE-CARLO SIMULATION? (YES OR NO).

125
126
127
128

READ ANSHWER

IF SUBSTR.F(ANSWER,1,1) =
LET FLAGM=1
PRINT 1 LINE THUS

INPUT THE INDEX (1 THRU 9) OF THE RANDOM ¢ SEED.

130
N

READ SEED
PRINT 1 LINE THUS

INPUT THE NUMBER OF REPLICATIONS WANTED.

133
134
135

READ NREPS
PRINT 1 LINE WITH NREPS
THUS

A Monte-Carlo simulation of #8888 replications has begun.

137
138
139
140
L}
142
143
144
- 145
146
147
148
149
150
151
152
153
154
155
156
157

e

FOR Lz1 TO M, LET HISTV(L)z0
LET AVGT=0.0
LET VART=0.0

‘*SIMULATE FOR NREPS REPLICATIONS.

FOR I=1 TO NREPS DO
LET SUM=0.0
FOR J=1 TO N DO
ADD ERLANG.F(CON.AVG/LAV(J),K,SEED) TO SUM
IF UNIFORM.F(0.0,1.0,SEED) LE A}
ADD EXPONENTIAL.F(1,0/LA1,SEED) TO SUM
OTHERWISE
ADD EXPONENTIAL.F(1.0/LA2,SEED) TO SUM
ALWAYS
LOOP ''OVER J
ADD SUM TO AVGT
ADD SUMP®2 TO VART
FOR L=1 TO M DO
IF SUM LE TV(L)
ADD 1 TO HISTV(L)
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158 GO TO K2

159 OTHERWISE
. 160 LOOP ''OVER (L) CELLS
161 'K2' LOOP **OVER (I) REPLICATIONS
162 LET AVGT=AVGT/NREPS
163 LET VART=VART/NREPS-AVGT#%2
164 PRINT 1 LINE THUS
Monte-Carlo simulation has been completed.
166 LET CDF.MC=0.0
167 FOR L=1 TO M DO
168 LET PDF=HISTV(L)/NREPS
169 ADD PDF TO CDF.MC
170 LET CDFV(L)=CDF.MC
1NA LOOP ''OVER (L) CELLS
172 OTHERWISE
173 LET FLAGM=0
174 ALWAYS
‘75 e
176 ''GET T'FORMS OF PDF AND CDF AT M POINTS. PLACE IN DSTARV & GSTARV.
177 [ X}
178 FOR I=1 TO M DO
179 LET SzGAMMA®I
180 LET GSTARV(I)zLTRNS.FUN (N, LAV(®), S)
181 LET DSTARV(I)sGSTARV(I)®S
182 LOOP ''OVER (I) POINTS ON THE REAL LINE IN THE S-PLANE
183 [ ]
184 ''FILL THE ELEMENTS OF AM(®,®),
‘85 L]
186 FOR I=1 TO M DO
187 FOR Js1 TO M DO
188 LET EaGAMMA®] - 1,0
189 LET AM(I,J)20.5%WV(J)®(0.5%(XV(J)+1.0))0eE
190 LOOP *'OVER (J) COLUMNS
9N LOOP *'OVER (I) ROWS
‘92 (K]
193 ''SOLVE THE EQUATION: AM ® GV s GSTARV.
19' “e
195 LET J=0
196 CALL SGEFA (AM(®,®) IPVI(®), J)
197 IF J NE O
198 PRINT 1 LINE WITH J
199 THUS
TROUBLE FRACTORING THE MATRIX AM IN PROGRAM LP.INV. J a L
20 STOP
202 OTHERWISE
203 CALL SGEDI (AM(®,®), IPVT(®), DET(®), 11)
204 IF DET(2) < -82
205 SKIP 2 LINES
206 PRINT 2 LINES WITH DET(1), PET(2)
207 THUS

DETERMINANT OF MATRIX AM : ®,0000 X 10 EXPON (®988), WHICH IS ALMOST
SINGULAR. ACCURACY OF INV(AM) IS QUESTIONABLE.

210 ALWAYS

211 '* CALL MAT.INVERSE (M, AM(® . ®))

212 CALL MAT.VEC.MPY (AM(®,®) GSTARV(®), M) YIELDING GV(®)
213 CALL MAT.VEC.MPY (AM(®,®), DSTARV(®), M) YIELDING DV(®)
214
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215
216
217
218
219

'*PRINT OUTPUT C.D.F.
e
SKIP 2 LINES
PRINT 7 LINES WITH N,DIST.NAME
THUS
(1)

PROB DISTRIBUTION OF THE CONVOLUTION OF A SET OF %% Ra#nusunss® DIST'S

N-fold Convolution Norm Prob Distrib Difference

Indep
Variable p.d.f. c.d.f. p.d.f. c.d.f. c.d.f.
227 LET MAE.DIFF=0.0
228 LET RMS.DIFF=0.0
229 LET MAE.MC=0.0
230 LET RMS.MC=0.0
23 LET MAE.NI=0.0
232 LET RMS.NI=0.0
233 FOR I BACK FROM M TO 1 DO
234 SKIP 1 LINE
235 LET T=TV(M-I+1)
236 LET PDF=DV(I)
237 LET CDF=GV(I)
238 LET NPDF=COND®EXP.F(-0.5%((T-AVG)/STDV)##%2)
239 LET NCDF=SNORM((T-AVG)/STDV)
240 LET DIFF=CDF-NCDF
241 LET MAE.DIFF=zii:X.F(MAE.DIFF,ABS.F(DIFF))
242 ADD DIFF®*%2 TO RMS.DIFF
243 PRINT 1 LINE WITH T,PDF,CDF,NPDF,NCDF,DIFF
2uy4 THUS

BOE_SENE B SERERE B NEREEE B NERERE % _NRRERE N _BRESNE

2u6 IF FLAGE=1 *''ALL RATE PARMS ARE THE SAME
auT CALL NFOLD.U GIVEN N, O.S#LAV(1)*T YIELDING EPDF,ECDF
248 IF A1 =1,0
249 CALL ERLANG (K®N, LA1, T) YIELDING EPDF,ECDF
250 OTHERWISE
251 CALL NFOLD.MIXE (N, A1, LA1, LA2, T) YIELDING EPDF,ECDF
252 ALWAYS
253 LET RESID=CDF-ECDF
254 LET MAE.NI=MAX.F(MAE.NI,ABS.F(RESID))
255 ADD RESID##2 TO RMS.NI
256 'LV’ PRINT 1 LINE WITH EPDF,ECDF,CDF-ECDF
257 THUS
Exact fun % sskass & _E88RE%  Dif rel to exuct cdf # RRRENN
259 OTHEAWISE
260 LET ECDF=CDF
261 ALWAYS
262 LET DIFF.MC=CDFV(M-I+1) - ECDF
263 LET MAE.MC:=MAX.F(MAE.MC,ABS.F(DIFF.MC))
264 ADD DIFF.MC®#®2 TO RMS.MC
265 LOOP ''OVER (I) CDF POINTS
266 PRINT 2 LINES THUS
269 LET AMS.DIFF=SQAT.F(RMS.DIFF/REAL.F(M))
270 LET RMS.NI=SQRT.F(RMS.NI/REAL.F(M))
2n LET RMS.MC-=SQRT.F(RMS.MC/REAL.F(M))
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272 PRINT 2 LINES WITH M,MAE.DIFF,M,RMS.DIFF

AAY 273 THUS

4j§ Max abs error in Normal approx (over #%; to c.d.f. " SRunne
;£§ RMS difference in c.d.f. and Normal approx (over #%) # sisnss
?id 276 PRINT 2 LINES WITH MAE.NI,RMS.NI

K 217 THUS

Max abs error in num inverse est of the c.d.f. & enannn

Ko RMS error in the num inverse est of the c.d.f. LB bt/
e 280 IF FLAGM:1

sl 281 PRINT 2 LINES WITH MAE.MC,RMS.MC

N 282 THUS

Al Max abs error in Monte-Carlo estimate of the c.d.f., # wwwsas
: RMS error of the Monte-Carlo estimate of the c.d.f., ¥ #uksss
B 285 ALWAYS
j{}é 286 PRINT 3 LINES WITH AVG,STDV,DIST.NAME

W 287 THUS ,

rk Mean of Convolution Distribution ®##as #s#®  Std Dev ®EEN _RERR
i (1) Mean of each of the Wamsssnuwss djstributions:

:vﬂ 291 FOR I=1 TO N DO

o 292 IF FLAGMX=1

~y 293 LET AVGXI=A1/LAV(1)+A2/LAV(2)

o 294 OTHERWISE

100 295 LET AVGXI=CON.AVG/LAV(I)

(> 296 ALWAYS

A 297 PRINT 1 LINE WITH I,AVGXI
£ 298 THUS

B ‘..:,: Number #% Mean ###% SR8

s 300 LOOP ''OVER (I) COMPONENT COMPONENTS

A 30 SKIP 2 LINES

k 302 IF FLAGM NE 1

e 303 GO TO L2

v 304 OTHERWISE

'S 305 PRINT 7 LINES WITH N,DIST.NAME,NREPS
i g 306 THUS

w SAMPLE PROB DIST OF THE SUM OF A SET OF ®% ssunmanssdd RANDOM VARIABLES
A

N Monte-Carlo Sample ®#%as

"y

«:: Indep Histo “Sample ~ Sample
o Variable Frequency p.d.f. c.d.f,

SR
i T310 LET XCDF=0.0

o 315 FOR I=1 TO ™ DO

Pl 316 LET XPDF=HISTV(I)/NREPS

o0 317 ADD XPDF TO XCDF

e 318 PRINT 1 LINE WITH TV(I),HISTV(I),XPDF,XCDF

S 319 THUS

& NN BEER  BERRe " senne T

) 321 LOOP ''OVER (I) HISTO CELLS

ib 322 PRINT 2 LINES THUS

- ——— —_—

o

o 325 LET SDT=SQRT.F(VART)

L o 326 LET SET=SDT/SQRT.F(REAL.F(NREPS))

n 327 PRINT 3 LINES WITH AVGT,SDT,AVGT-1.96%SET,AVGT+1.96%SET
bl 328 THUS

L
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Sample Average Value #e## ###% Sample Standard Deviation #en _&aee
95 percent confidence interval in mean: ®RRR _REAR_ SRRk REke

332 'L2'PRINT 1 LINE THUS
DO YOU HAVE SIMILAR PROBLEMS TO SOLVE? (YES OR NO).

334 READ ANSWER

335 IF SUBSTR.F(ANSWER,1,1) = "Y"
336 RELEASE LAV(")

337 GO TO LO

338 OTHERWISE

339 STOP

340 END ''LP.INV

1 ROUTINE FOR MAT.VEC.MPY (AM, BV, NELMTS) YIELDING CV
2 L ]
3 ''ROUTINE TO MULTIPLY THE SQUARE MATRIX AM , OF NELMTS BY NELMTS,
4 ''BY THE VECTOR BV (NELMTS BY 1), YIELDING THE VECTOR CV (NELMTS BY 1).
5 e
6 DEFINE I, J, K, NELMTS AS INTEGER VARIABLES
7 DEFINE BV, CV AS REAL, 1-DIMENSIONAL ARRAYS
8 DEFINE AM AS A REAL, 2-DIMENSIONAL ARRAY
9 RESERVE CV(%*) AS NELMTS
10 FOR I=1 TO NELMTS DO
1 LET CV(I)=0.0
12 FOR K=1 TO NELMTS DO
13 ADD AM(I,K)®*BV(K) TO CV(I)
L] LOOP ''OVER K
15 LOOP ''OVER I
16 RETURN
17 END ''ROUTINE MAT.VEC.MPY
1 FUNCTION LTRNS.FUN (N, LAV, S)
2 e
3 ''Obtains Laplace transform of a convolution of N prob dist functions
4 ‘'‘having rate parameters LAV(*), Complex argument (S) is evaluated
S ''‘only on the real line, The inv t'form of this function is the c¢.d.f.
6 ''This function must be particularized for the desired form of the prob
7 ‘''functions. The form used here is indicated by the comment statements.
8 L]
9 DEFINE I,N AS INTEGER VARIABLES
10 DEFINE LAV AS A REAL, 1-DIMENSIONAL ARRAY
11 LET F=1.0/S
12 e
13 ''CODE FOR UNIFORM WITH MEAN = 1/LAV(1).
TR
15 *'* FOR I=1 TO N, LET F=F/S%(1.0-EXP.F(-2,0%S/LAV(I)))
16 [
17 ''CODE FOR EXPONENTIAL.
18 e
19 '' FOR I=1 TO N, LET F=F®LAV(I)/(S + LAV(I))
20 L ]
21 ''CODE FOR GAMMA(2).
P <
' ;{: 23 '' FOR I=1 TO N, LET F=FRLAV(I)®%*2/(S + LAV(I))%®2
e 2
S 25 ''CODE FOR GAMMA(3).
:ﬁ; 26 '
A
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** FOR I=1 TO N, LET F=F®LAV(I)®*#3/(S + LAV(I))®#3

"*CODE FOR EXPONENTIAL MIX.
*e
FOR I=1 TO N DO
IF A1 = 1.0
LET F=F®LAV(1)/(S+LAV(1))
OTHERWISE
LET F=F¥(A1SLAV(1)/(S+LAV(1))+A28LAV(2)/ (S+LAV(2)))
ALWAYS
LOOP ''OVER I
RETURN WITH F
END '*FUNCTION LTRNS.FUN

ROUTINE SGEFA ( A, IPVT, INFO)

e

''FACTORS THE MATRIX A(®,®) INTO UPPER (U) AND STRICTLY LOWER (L)
' *'TRIANGULAR MATRICES SUCH THAT A(®,®) - U(®,®)L(®,8), ROUTINE
'*IS INTENDED FOR USE WITH OTHER ROUTINES OF THE LINEAR OPERATIONS
' *PACKAGE--LINPACK. THIS VERSION IS A CONVERSION OF THE FORTRAN
'*'ROUTINE WRITTEN BY CLEVE MOLER, U. OF N.M. AND ARGONNE NAT LAB.

' ' ARGUMENTS s
' ' NAME MODE ENTRY VALUE RETURN VALUE

e

R REAL(N, N) SQUARE MATRIX.  UPPER TRIANGULAR MATRIX AND
' MULTIPLIERS WHICH WERE USED TO
" TO OBTAIN IT. ARE STORED IN L.
r'N INTEGER ORDER OF THE MATRIX A. DIMENSION OF A(®,®).

*YIPVT INTEGER(N). VECTOR OF PIVOT INDICES.

'+ INFO INTEGER INDICATOR. = 0 FOR NORMAL VALUE.

' = K IF U(K,K) EQ 0.0, THIS
' INDICATES THAT SGESL OR SGEDI
' WILL DIVIDE BY O IF CALLED.

DEFINE I,INFO,J,K,KP1,L,N,NM1 AS INTEGER VARIABLES

DEFINE IPVT AS AN INTEGER, 1-DIMENSIONAL ARRAY

DEFINE A AS A REAL, 2-DIMENSIONAL ARRAY

**GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING.
ve
LET N=DIM.F(IPVT(%))
LET INFO:0
LET NMi=N-1
IF NM1 < 1
GO TO L7
OTHERWISE
FOR K=1 TO NM! DO
LET KP1:Ke1

'*FIND L. = PIVOT INDEX IN THIS COLUMN.
LET SMAX=ABS.F(A(K,K))
LET L:=K
FOR I=K+1 TO N DO
IF ABS.F(A(I,K)) > SMAX
LET L=I
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Uy LET SMAX=ABS.F(A(I,K))
us ALWAYS
U6 LOOP '‘'FOR MAX ELEMENT
47 LET IPVT(K)=L
ug
49 '*ZERO PIVOT IMPLIES THIS COLUMN ALREADY TRIANGULARIZED.
50 !
51 IF A(L,K) = 0.0
52 GO TO L4
53 OTHERWISE
5“ [X]
55 ''INTERCHANGE IF NECESSARY.
56 e

IF L =K

GO TO L1
OTHERWISE

LET T=A(L,K)
LET A(L,K)=A(K,K)
LET A(K,K)=T
'L LET T=-1.0/A(K,K)
FOR I=K+1 TO N, LET A(I,K)=T®A(I,K)

'*ROW ELIMINATION WITH COLUMN INDEXING.
L)
FOR J=KP1 TO N DO
LET T=A(L,J)

arcToNnoonoohOhoOhoh OV UV WD
W OoO=-aONsEWwh =00 m-3

70 IF L=K

il GO TO L2

72 OTHERWISE

73 LET A(L,J)=A(K,J)

74 LET A(K,J)=T
75 ‘L2 FOR I=K+1 TO N, LET A(I,J)=T®A(I,K)+A(I,J)

76 LOOP ''OVER (J) COLUMNS
177 GO TO L5

78 ‘L4 LET INFO=K

79 °'LS'LOOP '°'OVER K

80 'LT'LET IPVT(N)=N

81 IF A(N,N)=0.0

82 LET INFO=N

83 ALWAYS

84 RETURN
85 END ''SGEFA

1 ROUTINE SGEDI (A, IPVT, DET, JOB)

e

:

4 ''SGEDI COMPUTES THE DETERMINANT AND INVERSE OF A MATRIX USING THE
S '*RESULTS PRODUCED BY SGEFA.

6 e

7 ''ARGUMENTS:

8 ‘''A(®,%) THE REAL FACTORED MATRIX FROM SGEFA ON INPUT. ON OUTPUT THE
9 ' ~ ARRAY CONTAINS THE MATRIX INV, IF REQUESTED. ELSE, UNCHANGED.
10 '*IPVT(®) THE INTEGER PIVOT VECTOR FROM SGEFA.

11 *'JOB AN INTEGER SWITCH.

12 ¢ T~z 11 FOR BOTH DETERMINANT AND INVERSE.

13 = 01 FOR INVERSE ONLY.

1w = 10 FOR DETERMINANT ONLY.
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15 ''DET(®) CONTAINS THE DETERMINANT OF THE MATRIX, IF REQUESTED. ELSE,

16 T IS NOT REFERENCED. DETERMINANT = DET(1)%10.0%®DET(2), WITH
17 DET(1) BETWEEN O AND 10, AND WITH DET(2) A FLOATED INTEGER.
‘8 (]

19 ''NOTE: A DIVISION BY ZERO WILL OCCUR IF THE INPUT FACTOR CONTAINS A
20 ''ZERO ON THE DIAGONAL AND THE INVERSE IS REQUESTED.

21 (K]

22 DEFINE I,J,J0B,K,KB,KP1,L,N,NM1 AS INTEGER VARIABLES

23 DEFINE IPVT AS AN INTEGER, 1-DIMENSIONAL ARRAY
24 DEFINE DET, WORK AS REAL, 1-DIMENSIONAL ARRAYS

25 DEFINE A AS A REAL, 2-DIMENSIONAL ARRAY

26 LET N=DIM.F(IPVT(®))

27 RESERVE WORK(®) AS N ''LOCALLY

28 1

29 ''CALCULATE THE DETERMINANT IF REQUESTED.
30

3N IF DIV.F(JOB,10) =

32 GO TO L6

33 OTHERWISE

34 LET DET(1)=1.0

35 LET DET(2)=0.0

36 LET TEN=10.0

37 FOR I=1 TO N DO

38 IF IPVT(I) NE I

39 LET DET(1) = -DET()1)

40 ALWAYS

i LET DET(1)=A(I,I)®DET(1)

u2 IF DET(1)=0.0

43 GO TO L6

uy OTHERWISE

4s 'L IF ABS.F(DET(1)) GE 1.0

u6 GO TO L2

47 OTHERWISE

u8 LET DET(1)=TEN®DET(1)

49 SUBTRACT 1.0 FROM DET(2)

50 GO TO L1

51 ‘L2’ IF ABS.F(DET(1)) < TEN

52 GO TO L4

53 OTHERWISE

54 LET DET(1)=DET(1)/TEN

55 ADD 1.0 TO DET(2)

56 GO TO L2

57 °'LU4'LOOP ''OVER I

58 (]

29 ''GET INVERSE OF UPPER TRIANGULAR MATRIX U(®,®),
o

61 'L6'IF MOD.F(JOB,10)=0

62 RELEASE WORK(®)

63 RETURN

64 OTHERWISE

65 FOR K=1 TO N DO

66 LET A(K,K)=1.0/A(K,K)

67 LET T=z-A(K,K)

68 FOR I=1 T0 K- i, LET A(I,K)=T®A(I,K)

69 LET KP1:=Ke1

70 IF N < KP

n GO TO L9

~w,n,
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T4
75
76
17
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

102

103

104

105

106

107

108

-
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OTHERWISE
FOR J=KP1 TO N DO
LET T=A(K,J)
LET A(K,J)=0.0
FOR I=1 TO K, LET A(I,J)=T®A(I,K)+A(I,J)
LOOP ''OVER J
'L9'LOOP ''OVER K

''FORM INVERSE(U)®INVERSE(L)
te
LET NM1=N-1
IF NM1 < 1
RELEASE WORK(™®)
RETURN
OTHERWISE
FOR KB=1 TO NM1 DO
LET K=N-KB
LET KP1=K+1
FOR I-KP1 TO N DO
LET WORK(I)=A(I,K)
LET A(I,K)=0.0
LOOP ''OVER I
FOR J=KP1 TO N DO
LET T=WORK(J)
FOR I=1 TO N, LET A(I,K)=T®A(I,J)+A(I,K)
LOOP ''OVER J
LET L=IPVT(K)
IF L NE K ''SWAP ELEMENTS OF VECTORS K AND L
FOR I=1 TO N DO
LET T=A(I,K)
LET A(I,K)=A(I,L)
LET A(I,L)=T
LOOP ''OVER I TO SWAP
ALWAYS
LOOP ''OVER KB
RELEASE WORK(®)
RETURN
END ''SGEDI

ROUTINE ERLANG GIVEN N, R, T YIELDING PDF, CDF
e
‘'Calculates the probability density function (PDF) and cum distribu-
*'tion function (CDF) for an Erlang function with integer shape para-
‘'meter N, with rate parameter R, and with real argument T.
Tt
DEFINE I,N AS INTEGER VARIABLES
LET Z=R*T
LET EXPZ=EXP.F(-2)
LET FACT=1.0
LET ZI=1.0
LET SUM=1.0
FOR I=1 TO N-1 DO
LET FACT=FACT*I
LET ZI-Z1%2
ADD ZI/FACT TO SUM
LOOP ''OVER I
LET PDF=R®*ZI/FACT®EXPZ

D-1
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19 LET CDF=1.0-EXPZ®%SUM
20 RETURN
21 END ''ROUTINE ERLANG

1 ROUTINE NFOLD.MIXE (N,A1,LA1,LA2,T) YIELDING PDF,CDF
2 ve
3 ''Routine produces the probability density function (PDF) and cum-
4 ‘‘'ulative distribution funetion (CDF) for an N-fold convolution of a
5 ''two-component exponential mixture function having first proportion of
6 ''Al and with rate parameters LA! and LA2. Real-valued argument is T.
7 e
8 DEFINE I,J,K,N AS INTEGER VARIABLES
9 LET A2=1.0-A1
10 LET E1=EXP.F(-LA1%*T)
1 LET E2=EXP.F(-LA2%T)
12 IF N=1
13 LET PDF=a1®LAT®E1+A2#LA2RE2
14 LET CDF=A1%(1.0-E1)+A2%(1.0-E2)
15 RETURN
16 OTHERWISE
17 IF N=z2
18 LET XCOEF=2.0%A1®A2%LA1®LA2/(LA1-LA2)
19 LET PDF=(A1%LA1)W®28TRE1, (A2#LA2)RR2WTRE2, XCOEF* (E2-E1)
20 LET CDF=1,0-A1#828E1#(1,04LAI®T)-A28428E28(1,04LA2"T)
21 -XCOEF®#(E2/LA2-E1/LA1)
22 RETURN
a3 OTHERWISE
24 IF N=3
25 LET ARG1=LA1%T
26 LET ARG2=LA2"T ,
217 LET F13=1,0-E1#(1.0+ARG1+0.5%ARG 1882)
28 LET F23=1.0-E2%(1.0+ARG2+0.5%ARG2##2)
29 ! LET F12=1.0-E1%(1.0+ARG1)
30 " LET F22=1.0-E2%(1.0+ARG2)
3n o LET F11=1.0-E1
32 " LET F21=1.0-E2
33 LET A=1.0/LA1/(LA1-LA2)
34 LET B=1.0/LAV/LA2 - LA1/LA2/(LA2-LA1)®®2
35 LET APB:=A+B
36 LET C=1.0/(LA2-LA1)%®2
37 LET AP=1.0/LA2/(LA2-LA1)
38 LET BP=1.0/LA1/LA2 - LA2/LA1/(LA2-LA1)%82
39 LET APP=AP+BP
40 LET PDF=0.5%A18R3INLATRARG 1RR20E]40, SRARNINRLA2NARG2HN2VER,3, 0FAY
41 RRORA2R (APBRE1RLAI1RN2RL AL ARLAT1R3NARG2RECRLA1RR20LA28E2)+3.0
42 BATRARE2R (APPRENLAISLA2WN2_APRLA2BRINARG 1RE24CHLA1RLA#R2RE )
43 LET COF=A1R83RF13,A20030F23,3,0A 18828120 (1,0-E28LA1%%2/ (LAY~
4y LA2)#%2- (ARG1#LA2/ (LA2-LA1)+(LA2-2.0%LA1)®LA2/ (LA2-LA1)8%2)8E1)
4s +3.00A1RA28828 (1, 0-E18LA2##2/ (LA2-LA1)"#2
46 -(ARG2%LA1/(LA1-LA2)+(LA1-2.0%LA2)®LA1/(LA1-LA2)#82)%E2)
47 RETURN
48 OTHERWISE
49 PRINT 1 LINE WITH N
50 THUS
INPUT ERROR TO ROUTINE NFOLD.MIXE. N = @
52 STOP

53 END ''NFOLD.MIXE
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ANNEX E
SIMSCRIPT SOURCE PROGRAM: INT.TEST

1 PREAMBLE ''INT.TEST

2 NORMALLY MODE IS REAL

3 DEFINE SNORM AS A REAL FUNCTION GIVEN 1 ARGUMENT

4 DEFINE ERRFX AS A REAL FUNCTION GIVEN 1 ARGUMENT

S DEFINE FACTORIAL AS A REAL FUNCTION GIVEN 1 ARGUMENT

6 DEFINE COMPLETE.GAMMA AS A REAL FUNCTION GIVEN 1 ARGUMENT

7 DEFINE NUM.CNVL AS A REAL FUNCTION GIVEN 3 ARGUMENTS

8 END ''PREAMBLE

1 MAIN '°*INT.TEST

2 "

3 ''Program tests a variety of methods for obtaining convolution integrals
4 'of a two-parameter Weibull distribution., Program compares Leonard

5 ''Johnson's approx for the 2nd order failure distribution with an exact
6 ‘'‘expression when time to fail i3 a Weibull RV. Ref: Reliability and
7 ''Maintainability of the MU8A1 Tank, p.26 ff.

8 DEFINE ANSWER AS A TEXT VARIABLE

9 DEFINE FLAGM,I,J,K,KORD,M,N,NCELLS,NREPS,SEED AS INTEGER
10 VARIABLES
n DEFINE HISTV AS AN INTEGER, 1-DIMENSIONAL ARRAY

12 DEFINE TV,FYV,FZV,DELFXV AS REAL, 1-DIMENSIONAL ARRAYS
13 LET N=1024 ''ELEMENTS IN FYV(®)

14 RESERVE FYV(®),FZV("),DELFXV(®) AS N

15 LET LINES.V=9999
16 LET NCELLS=20
17 RESERVE HISTV(®),TV(®) AS NCELLS
18 PRINT 5 LINES THUS

Program calculates the convolution integral of N (N le 8) identical Weibull
distributions via several methods. This convolution distribution is the c.d.f.
of the sum of N, identical Weibull random variables. Methods include:
(a) evaluation of an analytic expression, (b) Leonard Johnson's (L-J) approxi-
mation, (¢) finite numerical convolution, and (d) Monte-Carlo simulation.

24 'LO'SKIP 2 LINES

25 PRINT 1 LINE THUS
INPUT THE SCALE PARAMETER OF THE WEIBULL DISTRIBUTION.
27 READ ETA
28 LET C=2.0/ETA®®2
29 PRINT 1 LINE THUS
INPUT THE WEIBULL SHAPE PARAMETER.
31 READ SHAPE

32 °'L1'PRINT 1 LINE THUS
INPUT THE NUMBER (LE 8) OF CONVOLUTIONS OF THIS DISTRIBUTION WANTED.

34 READ KORD

35 IF KORD > 8

36 GO TO LY

3?7 OTHERWISE

38 LET ORDER=KORD

39 ¢

40 ''FILL THE ARRAYS OF DISCRETE VALUES OF THE C.D.F.
4y

42 LET FX0:=0.0

43 LET ERR=0.00001
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4y LET TMAX-ETA®(-LOG.E.F(ERR))%*®*(1,0/SHAPE)

us LET AVG1=ETA®COMPLETE.GAMMA(1.0+1.0/SHAPE)
46 LET VAR1=ETA®#2RCOMPLETE.GAMMA(1.0+2.0/SHAPE) - AVG1%e2
47 LET STDV1=SQRT.F(VAR1)
ug LET TMAX=MAX.F(TMAX,ORDER®AVG1+3.5%SQRT.F(ORDER®VAR1))
49 LET DELZ=TMAX/N
50 FOR I=1 TO N DO
51 LET X-I®DELZ
52 LET FX=1.0 - EXP.F(-(X/ETA)*®SHAPE)
53 LET FYV(I)=FX
54 LET DELFXV(I)=FX-FX0
55 LET FX0=FX
56 LOOP ''OVER (I) DISCRETE POINTS OF THE CDF
57 IF KORD > 2
58 PRINT 1 LINE WITH N
59 THUS
Starting numerical convolution with ®%#8 pojints,
61 FOR K=1 TO KORD-2 DO
62 fOR I=1 TO N, LET FZV(I)=NUM.CNVL (I, FYV(®), DELFXV(®))
63 FOR I=1 TO N, LET FYV(I)=FZV(I)
64 LOOP ''OVER (K) CONVOL ORDERS
65 PRINT 1 LINE THUS
Numerical convolution completed.
67 ALWAYS
68 LET PSI=COMPLETE.GAMMA(ORDER+1.0/COMPLETE.GAMMA(1.041.0/SHAPE)/
69 SHAPE)/FACTORIAL(KORD)
70 LET DELT=TMAX/NCELLS
n FOR K=1 TO NCELLS, LET TV(K)=K"DELT
72 PRINT 1 LINE THUS
DO YOU WANT A MONTE-CARLO ESTIMATE OF THE CONVOLUTION C.D.F.? (Y OR N).
T4 READ ANSWER
75 IF SUBSTR.F(ANSWER,1,1) = "Y"
76 LET FLAGM=1
77 PRINT 1 LINE THUS
INPUT THE INDEX OF THE RANDOM ¢ SEED.
79 READ SEED
80 PRINT 1 LINE THUS
INPUT THE NUMBER OF REPLICATIONS WANTED.
82 READ NREPS
83 PRINT 1 LINE WITH NREPS
84 THUS
A Monte-Carlo simulation of #8888 preplications has begun.
i 86 FOR K=1 TO NCELLS, LET HISTV(K):=0
e 87 LET AVGT=0.0
e 38 LET VART:=0.0
<
": 59 [N ]
q; 90 ‘''SIMULATE FOR NREPS REPLICATIONS.
9‘ e
19 92 FOR I:1 TO NREPS DO
2% 93 LET SUM:0.0
P 1] FOR J=1 TO XORD DO
{7 95 ADD WEIBULL.F(SHAPE,ETA,SEED) TO SUM
:ﬁ: 96 LOOP *°'OVER J
et 97 ADD SUM TO AVGT
e 98 ADD SUM®®2 TO VART
e 99 FOR K:1 TO NCELLS DO
E‘:; 100 IF SU4 LE TV(K)
2 E-2
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101 ADD 1 TO HISTV(K)

102 GO TO K2

103 OTHERWISE

104 LOOP ''OVER (K) CELLS

105 ‘'Ke' LOOP ''OVER (I) REPLICATIONS

106 LET AVGT=AVGT/NREPS

107 LET VART=VART/NREPS-AVGT®®2

108 PRINT 1 LINE THUS
Monte-Carlo simulation has been completed.

110 OTHERWISE

m LET FLAGM=0

112 ALWAYS

113 SKIP 2 LINES

14 PRINT 1 LINE WITH KORD,SHAPE,ETA

115 THUS

CONVOLUTION C.D.F. OF ORDER ®*% OF A WEIBULL DIST: SHAPE #®& . ® AND SCALE ®ea saa
17 PRINT 5 LINES THUS

Indep Exact L-J Aprx  Numerical Normal  Histo _ Sampie
Variable c.d.f.(1) c.d.f. c.d.f.(2) Aprx Freq c.d.f.
23 LET CDFX=0.0 - ===

124 LET MAELJ=0.0 ''FOR MAX ABS ERROR IN C.D.F. FOR L-J APPROX

125 LET MAEDN:=0.0 ''FOR MAX ABS ERROR IN C.D.F FOR DISCRETE NUM APPROX

126 LET MAEMC=0.0 ''FOR MAX ABS ERROR IN C.D.F. FOR MONTE CARLO

127 LET MAENA=0.0 ''FOR MAX ABS ERROR IN C.D.F. OR NORMAL APPROX

128 LET RMSLJ=0.0

129 LET RMSDN=0.0

130 LET RMSMC=0.0

131 LET RMSNA=0.0

132 LET AVGzORDER®AVG1

133 LET VARzORDER®VAR1

134 LET STDV=SQRT.F(VAR)

135 FOR K:1 TO NCELLS DO

136 LET T=TV(K)

137 LET M= (T+0.4999*DELZ)/DELZ

138 LET X=(PSI®*T/ETA)®®SHAPE

139 LET SUMz1.0

140 LET FACT=1.0

14 LET XI=1.0

142 FOR I:1 TO XORD-1 DO

143 LET FACT:FACT®I

144 LET XI=XI®*X

145 ADD XI/FACT TO SUM

146 LOOP ''OVER I

147 LET QK=1.0 - EXP.F(-X)*SUM

148 IF KORD:1

149 LET FZ:FYV(M)

150 OTHERWISE

151 LET FZ:NUM.CNVL (M, FYV(®), DELFXV(®))

152 ALWAYS

153 IF SHAPE:=2.0 AND KORD:2

154 LET ARG:T®SQRT.F(C/2.0)

155 LET INTG:=EXP.F(0.5%ARG®#2)®(SNORM(ARG )-SNORM(-ARG ) )®ARG®

156 SQRT.F(PI.C/2.0)

157 LET Q2:1.0 - EXP.F(-ARG®®2)®(1,0+INTG)

E-3

D I I T i S T S P S O q "
L G A A N AT R A A R R T RIS
Pt 3N VA D S R T YA A R R I SO

‘re o.‘,.b‘.b..‘l

kY
T WSS |



158 OTHERWISE

159 LET Q2=F2
160 ALWAYS
161 LET MAELJ=MAX.F(MAELJ,ABS.F(Q2-QK))
162 LET MAEDN=MAX.F(MAEDN,ABS.F(Q2-F2))
163 LET FN=SNORM((T-AVG)/STDV)
164 LET NERR=FN-Q2
165 LET MAENA=MAX.F(MAENA,ABS.F(NERR))
166 ADD NERR®®2 TQ RMSNA
167 ADD (Q2-QK)®®%2 TO RMSLJ
168 ADD (Q2-FZ)®*®2 TO RMSDN
169 IF FLAGM=1
170 LET PDFX=HISTV(K)/NREPS
M ADD PDFX TO CDFX
172 LET MAEMC:=MAX.F(MAEMC,ABS.F(Q2-CDFX))
173 ADD (Q2-CDFX)®®2 TO RMSMC
174 PRINT 1 LINE WITH T,Q2,QK,FZ,FN,HISTV(K),CDFX
175 THUS
WRD _BEE 0 _RRRERR 0 _GRRGEE ¥ _0S0eRe 0. 000000 S8008  #_osssed
177 OTHERWISE
178 PRINT 1 LINE WITH T,Q2,QK,FZ,FN
179 THUS
BER _SED B _SEOEER 0 _RENNER W _ONBeee 8 snsaen
181 ALWAYS
182 LOOP '*OVER (K) VALUES OF TIME
183 LET RMSLJ=SQRT.F(RMSLJ/REAL.F(NCELLS))
184 LET RMSDN=SQRT.F(RMSDN/REAL.F(NCELLS))
185 LET RMSMC=SQRT.F(RMSMC/REAL.F(NCELLS))
186 LET RMSNA:=SQRT.F(RMSNA/REAL.F(NCELLS))
187 PRINT 4 LINES WITH N
188 THUS

Ti7 " The d{screte numerical approx is treated as exact I{ elther the
Weibull shape parameter is not 2 or the number of convolutions is not 2.
(2) Number of discrete points in numerical convolution ®ese

193 PRINT 4 LINES WITH MAELJ,RMSLJ,MAEDN,RMSDN ,MAENA,RMSNA ,MAEMC ,RMSMC
194 THUS
Max abs error and RMS error in c.d.f. of L-J approximation @ tessss o sdssse
Max abs error and RMS error in c.d.f. of diacrete nuaerical 9. 00ssss o sssvss
Max abs error and RMS error in c.d.{. of Normal approx 8, 000000 0 snsene
Max abs error and RMS error in c.d.f. of Monte-Carlo sia 8,000000 & sneame
193 PRINT 2 LINES WITH AVG,STDV
200 THUS
Mean of tne convolution distribution 9888 8888 Std Dev #eee sees
203 IF FLAGM:1
204 LET SET-SQRT.F{VART/REAL.F(NREPS))
205 PRINT 3 LINES WITH AVGT,SQRT.F(VART),AVGT-1.96®SET,AVGT+1.96%SET
296 THUS

Saaple average of sum of Weibull RVs 8800 8888 gStd Dev ®e0e aeed
95 percent confidence interval in mean 2008 2389 B0 3300

210 ALWAYS
21 PRINT 1 LINE THUS

DO YOJ WANT TO CONTINUE? (YES OR NO).
213 READ ANSWER
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214 IF SUBSTR.F(ANSWER,1,1) = "Y"

215 GO TO LO
216 OTHERWISE
217 STOP
218 END ''INT.TEST
1 FUNCTION FACTORIAL(N)
2 "
3 '"'CALCULATES THE FACTORIAL OF INTEGER N.
u "
S DEFINE I AND N AS INTEGER VARIABLES
6 IF NLE O
7 RETURN WITH 1.0
8 OTHERWISE
9 LET F=1.0
10 FOR I=1 TO N, LET F=F®I
N RETURN WITH F
12 END ''FACTORIAL
1 FUNCTION COMPLETE.GAMMA(XX)
2
3 ''CALCULATES THE COMPLETE GAMMA FUNCTION WITH SINGLE REAL ARGUMENT XX.
4 ''METHOD: THE RECURSION RELATION AND POLYNOMIAL APPROXIMATION IS TAKEN
5 ''FROM: C, HASTINGS, JR, 'APPROXIMATIONS FOR DIGITAL COMPUTERS,'
6 ''PRINCETON UNIV. PRESS, 1955.
7 L ]
8 IF XX > 57.0
9 GO TO L130
10 OTHERWISE
11 'Lé’ LET X = XX
12 LET ERR = 0.00000
13 LET GAMMA = 1.0
14 IF X LE 2.0
15 GO TO LS50
16 OTHERWISE
17 GO TO L1§
18 'L10 IF X LE 2.G
19 GO TO L1110
20 OTHERWISE
21 'L15'  SUBTRACT 1.0 FROM X
22 LET GAMMA = GAMMA & X
23 GO TO L10
24 'Ls50 IF X = 1.0
25 GO TO L120
26 OTHERWISE
27 IF X > 1.0
28 GO TO L1110
29 OTHERWISE
30 ‘'Lé0* IF X > ERR
N GO TO L8O
32 OTHERWISE
33 LET Y = REAL.F(TRUNC.F(X))-X
34 IF ABS.F(Y) LE ERR
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35 GO TO L130

36 OTHERWISE

37 IF Y+ERR GE 1.0

38 GO TO L130

39 OTHERWISE

40 °'L70' IF X > 1.0

L GO TO L1110

42 OTHERWISE

43 'LB0' LET GAMMA = GAMMA / X

4y ADD 1.0 TO X

45 GO TO L70

46 'L110* LET ¥ = X - 1.0

47 LET GY = 1.0+Y#(-0.57710166+Y#(0.98585399+Y#(-0.876U2182+Y%
48 (0.83282120+Y#(-0.56847290+Y%(0.25482049+Y#(-0.05149930)))))))
49 LET GAMMA = GAMMA ®* GY

S0 °L120' RETURN WITH GAMMA
51 'L130* PRINT 1 LINE WITH XX THUS
ERROR IN COMPLETE.GAMMA. ARGUMENT = #00 _ssane
53 STOP
S4 END ''COMPLETE.GAMMA

1 FUNCTION NUM.CNVL (N, FYV, DELFXV)

2 (]

3 *'Function calculates a value of the c.d.f. of the sua of two randoa

4 ‘'‘variables-- x and y--whose c¢.d.f.'s are evaluated at a discrete #

S ''of points on their domains. This distribution of the suam i3 the con-
6 ''‘volution of the dist's of x and y. The convolution discribution is

7 ‘'‘evaluated for the N th discrete argument. The set of c.d.f. values

8 ‘''‘of y are given by the vector FYV, and the first backward differences
9 ''in the c.d.f. of x, defined on the same finite domain, are given in
10 *''DELFXV.

N DEFINE I,N AS INTEGER VARIABLES

12 DEFINE FYV,DELFXV AS REAL, 1-DIMENSIONAL ARRAYS
13 LET GN=0.0

1] FOR Iz1 TO N-1, ADD FYV(N-I)®DELFXV(I) TO GN

15 RETURN WITH GN

16 END ''FUNCTION NUM.CNVL
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ANNEX F

SIMSCRIPT SOURCE PROGRAM: TEST.CONVOLV

PREAMBLE ''TEST.CONVOLV

NORMALLY MODE IS REAL

DEFINE SNORM AS A REAL FUNCTION GIVEN 1 ARGUMENT

DEFINE ERRFX AS A REAL FUNCTION GIVEN 1 ARGUMENT

DEFINE COMPLETE.GAMMA AS A REAL FUNCTION GIVEN 1 ARGUMENT
DEFINE WZ2WFUN AS A REAL FUNCTION GIVEN 1 ARGUMENT

DEFINE EFUN AS A REAL FUNCTION GIVEN 2 ARGUMENTS

DEFINE WFUN AS A REAL FUNCTION GIVEN 2 ARGUMENTS

END ''PREAMBLE

QW OO WU Wi

—_—

MAIN ''TEST.CONVOLV
"
''Program to run routine CONVOLV. This program generates 2 p.d.f.'s
'*defined on a discrete point set, from prob dist's to be numerically
*'convolved via Fourier transformation, multiplication of transforms,
'*and inversion. The # of real (as opposed to imaginary) points in
''*the transform and its inverse must be a power of 2 in order to use
'*the Cooley-Tukey FFT algorithm. Comparisons with exact results and,
''optionally, Monte-~Carlo results are also given.

10 te

"1 DEFINE FLAGE,FLAGM,FLAGW,I,J,K,L,M,MINCR,N,NFOLD,NCELLS,NREPS,SEED AS

12 INTEGER VARIABLES

13 DEFINE ANSWER,FUN.NAME AS TEXT VARIABLES

14 DEFINE HISTV AS AN INTEGER, 1-DIMENSIONAL ARRAY

15 DEFINE TV,XV,YV,PDFV,CDFV AS REAL, 1-DIMENSTONAL ARRAYS

16 PRINT 11 LINES THUS

This program calculates the probability distribution of the sum of a
set of random variables of a particular type, such as Erlang or Weibull.
This is equivalent to obtaining the N-fold convolution of the probability
functions of the set of N. For a given type of random variable, two sets
of parameters are permitted. Distributions having the 1st parameter set are
convolved N-1 times with the distribution having the 2nd parameter set.
Where available, exact results are calculated and displayed. A numerical
method for obtaining convolution integrals based on the Fourier transform
is used in all cases to obtain an approximation of the convolution p.d.f.
and c.d.f. Optionally, Monte-Carlo simulation is used for sample estimates.

ONON EWh -

O

28 PRINT 3 LINES

29 THUS
The current program version treats convolutions of an Erlang or a Weibull
distribution in standardized form, i.e., characterized by a shape parameter.

33 PRINT 1 LINE THUS

IF THE FRLANG FORM IS WANTED, INPUT AN E; OTHERWISE, INPUT A W,
35 READ ANSWER

36 IF SUBSTR.F(ANSWER,1,1) = "E"

37 LET FLAGW=0

38 LET FLAGE=1 ''TRIGGER FORMAT FOR EXACT RESULTS

39 LET FUN.NAME: "Erlang"

40 OTHERWISE

41 LET FLAGW=1
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. u2 LET FUN.NAME= "Weibull"
4 43 ALWAYS
.333 4y PRINT 1 LINE THUS
g INPUT THE NUMBER OF CONVOLUTIONS WANTED.
2 46 READ NFOLD
RO 47 ** LET N=4096
¥ 48 LET N=8192
e 49 LET M=DIV.F(N,2) ''NUMBER OF REAL POINTS IN THE SERIES
o 50 RESERVE XV(®), YV(*) AS N
K 51 LET MINCR=256 ''SKIP INTERVAL FOR PRINTING
" 52 LET NCELLS=DIV.F(M,MINCR)
0 53 LET NCELLS=MAX.F(16,NCELLS)
’ 54 LET MINCR=DIV.F(M,NCELLS)
S 55 RESERVE HISTV(™) AS NCELLS
g 56 RESERVE TV(*) AS NCELLS ''FOR INDEPENT VAR IN A HISTOGRAM
Lo 57 RESERVE PDFV(*),CDFV(*) AS NCELLS
b 58 LET LINES.V=9999
1% 59 LET ETA1=1.0
60 LET ETA2:1.0
61 IF FLAGW=1
i 62 GO TO L7
e 63 OTHERWISE
oo 64 'LO'PRINT 1 LINE WITH FUN.NAME
e 65 THUS
£» INPUT THE INTEGER SCALE PARAM OF THE 1ST STD #wss#s## DISTRIBUTION.
E. 67 READ K
S8 63 IF K < 1
oL 69 PRINT 1 LINE THUS
j‘ Try again using a positive integer.
R 7 GO TO LO
72 OTHERWISE
§ ) [EI
e ;u ''CALCULATE MEAN AND VARIANCE OF 1ST DIST.
‘.,.:‘v 5 ’ e
- 76 LET AVG1:=K
N 77 LET VAR1:=K
J 78 'L1'PRINT 1 LINE WITH FUN.NAME
L 79 THUS
;:i: INPUT THE INTEGER SCALE PARAM OF THE 2ND STD #####as% DISTRIGUTION.
-2 81 READ L
pos 82 IFL <1
g 83 PRINT 1 LINE THUS
" Try again using a positive integer.
A 85 GO TO LI
QS:ﬁ gs OTHERWISE
R .
.jlj 88 ''CALCULATE MEAN AND VAR OF 2ND DIST AND OF CONVOLUTION DIST.
i 89
L2 90 LET AVG2:L
o N LET VAR2:-L
e 92 LET AVG=AVG1®*(NFOLD-1)+AVG2
- 93 LET VAR=VAR1*(NFOLD-1)+VAR2
SN 94 LET STDV=SQRT.F(VAR)
iy 95 LET STDV1=SQRT.F{(VAR1)
4 9% LET STDV2=SQRT.F(VAR2)
97 SKIP 2 LINES
W 98 PRINT 7 LINES WITH FUN.NAME,K,L,M
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99 THUS
EXACT CONVOLUTION OF TWO #*#mau#® DENSTTIES WITH SHAPE PARAMS ®# AND *#
Number of real points in the Fourier transform #%##

Indep st ist 2nd 2nd Conv Conv “"Normal
Variable p.d.f. c.d.f. p.d.f. c.d.f. p.d.f. c.d.f. c.d.f.
T107 T LET RANGE=AVG+3.7%SQRT.F(VAR) T TTTTTTTTTTTTTTTTTr

108 'LY4'LET DARG=RANGE/M

109 re

110 ''CHECK RANGE AND MODIFY, AS NECESSARY.

1M1

. 112 IF EFUN((NFOLD-1)®*K+L,RANGE) < 0.9999

113 ADD DARG TO RANGE

114 GO TO L4

115 OTHERWISE

116 GO TO L8

117 e

118 ''GET INPUTS FOR WEIBULL DISTRIBUTION.

119 (X}

120 'L7'PRINT 1 LINE WITH FUN.NAME

121 THUS

INPUT THE SHAPE PARAMETER OF THE 1ST ##aaax# DISTRIBUTION.

123 READ SHAPE?

124 PRINT 1 LINE WITH FUN.NAME

125 THUS

INPUT THE SHAPE PARAMETER OF THE 2ND *##saa# DISTRIBUTION.

127 READ SHAPE2

128 LET ERR=0.00001

129 LET TIMAX=ETA1%(-LOG.E.F(ERR))**(1,0/SHAPE1)

130 LET T2MAX=ETA2*(-LOG.E.F(ERR))**(1,0/SHAPE2)

131 LET AVG1=ETA1#COMPLETE.GAMMA(1.0+1.0/SHAPE1)

132 LET AVG2:=ETA2*COMPLETE.GAMMA(1.0+1.0/SHAPE2)

133 LET VAR1=ETA1##2%COMPLETE .GAMMA(1.0+42.0/SHAPE1) - AVG1%#2

134 LET STDV1:=SQRT.F(VAR1)

135 LET VAR2-ETA2%#2%COMPLETE.GAMMA(1.0+2.0/SHAPE2) - AVG2R®?

136 LET STDV2=SQRT.F(VAR2)

137 LET AVG=(NFOLD-1)®AVG1+AVG2

138 LET VAR=(NFOLD-1)®*VAR1+VAR2

139 LET STDV=SQRT.F(VAR)

140 LET RANGE=MAX.F(T1MAX,T2MAX)

141 LET RANGE=MAX.F(RANGE,AVG+3.7%*SQRT.F(VAR))

1“2 [ ]

143 ''PRINT HEADINGS FOR INPUT DISTRIBUTIONS.

1wy

145 SKIP 2 LINES

146 PRINT 3 LINES WITH FUN.NAME,SHAPE1,SHAPE2,M

147 THUS

EXACT CONVOLUTION OF TWO ®#muwu® DENSITIES WITH SHAPE PARAMS ##% # AND ## &

Number of real points in the Fourler transform #E#s

151 IF SHAPE1-2.0 AND SHAPE2-2.0
152 IF ETAl1 NE ETA2 OR NFOLD NE 2
153 GO TO L9
154 OTHERWISE
155 LET FLAGE=1
156 PRINT 4 LINES THUS
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Tndep ~— ~ Tst™— —~ st 777~ 2nd end Conv Conv Normal
Variable p.d.f. c.d.f. p.d.f. c.d.f. p.d.f. c.d.f. c.d.f.
6T TTTTeoToLs T T T T
162 OTHERWISE
163 'L9'LET FLAGE=0
164 PRINT 4 LINES THUS
Indep st FC 2nd 2nd
Variable p.d.f. c.d.f. p.d.f. c.d.f.
7169 'LBLET ARG0=0.0 ''FIXED T T “‘
170 LET RANGE=RANGE-ARGO
171 LET DARG=RANGE/M
172 LET AVGTD=0.0 ''THEORETICAL, DISCRETIZED
173 LET VARTD-=0.0
174 LET XSUM=1.0
175 LET XXSUM=0.0
176 LET F10=0.0
177 LET F20=0.0
178 LET F30-=0.0
179 LET J=0 ''TO COUNT CELLS
180 LET MAENA=0.0
181 LET RMSNA=0.0
182 !
183 ''GET TEST FUNCTIONS.
184
185 FOR I=1 TO M DO
186 LET ARG=I®DARG+ARGO
187 IF MOD.F(I,2)=0
188 LET COEF=2.0
189 OTHERWISE
190 LET COEF=4.0
191 ALWAYS
192 IF FLAGW=0
193 LET F1=EFUN(K,ARG)
194 LET F2=EFUN(L,ARG)
195 LET F3=EFUN((NFOLD-1)%K+L,ARG)
196 OTHERWISE
197 LET F1=WFUN(SHAPE1,ARG)
198 LET F2:=WeUN(SHAPE2,ARG)
199 IF FLAGE:1
200 LET F3=W2WFUN(ARG)
201 ALWAYS
202 ALWAYS
203 LET XV(2%I-1)=F1-F10
204 LET YV(2%*I-1)=F2-F20
205 LET CDENS:zF3-F30
206 ADD CDENS®ARG TO AVGTD
207 ADD CDENS®ARG®*®*2 TO VARTD
208 LET F10:=F1
20y LET F20:F2
210 LET F30:=F3
2N LET UPPER=1.0-F3
212 ADD COEF®UPPER TO XSUM
213 ADD COEF®ARGWUPPER TO XXSUM
F-4
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214

248
249
250
251
252
253

257
258
259

263
264
265
266
267
268

215 '*'FILL IMAGINARY COMPONENTS WITH ZEROS.
216 !
217 LET XV(2*I)=0.0
218 LET YV(2®"1)=0.0
219 IF MOD.F(I,MINCR)=0
220 ADD 1 TO J
221 LET TV{(J)=ARG
222 IF FLAGE=1
223 LET PDFV(J)=CDENS
224 LET CDFV(J)=F3
225 LET FN=SNORM((ARG-AVG)/STDV)
) 226 LET NERR=FN=-F3
227 LET MAENA=MAX.F(MAENA,ABS.F(NERR))
228 ADD NERR##2 TO RMSNA
229 PRINT 1 LINE WITH ARG,XV(2%I-1),F1,YV(2%*I-1),F2,CDENS,
230 F3,FN THUS
LL L L L l.l!!lll l.llllil l.llllll !.llllll % RRERRN l.ll!lll I_l!!lll
232 OTHERWISE
233 PRINT 1 LINE WITH ARG,XV(2%*I-1),F1,YV(2%*I-.1),F2
234 THUS
'l.l.l' I.Il!lll l.llllll l.llllll l.l!llll
236 ALWAYS
2317 ALWAYS
238 LOOP ''OVER (I) DATA POINTS
239 PRINT 2 LINES THUS
242 PRINT 4 LINES WITH FUN.NAME,AVG1,STDV1,FUN.NAME,AVG2,STDVC,.AVG,STDV
243 THUS
Mean and standard deviation of the 1st ##aRuu® diast'n: LLL IS LLL B L LS LA
Mean and standard deviation of the 2nd ###®u#% digt'n: LLLIS LLL B LIS 220

Theoretical mean and SD of the convolution distribution: ##% _RER% %&ER _%Ese

IF FLAGE:=1
LET VARTD=VARTD-AVGTD##*2
LET XSUM=XSUM®DARG/3.0
LET XXSUM=z2.0%DARG/3.0®XXSUM - XSUMR®2
PRINT 3 LINES WITH AVGTD,SQRT.F(VARTD),XSUM,SQRT.F(XXSUM)
THUS

Avg and SD of theoretical, discretized convolution dist: R _RERA  BRR _RERS
Alternate (2nd order) calculation of average and std dev: #&E _REEN NER SRR

LET RMSNA=SQRT.F(RMSNA/REAL.F(NCELLS))
PRINT 3 LINES WITH MAENA,RMSNA
THUS

Max abs error and RMS error in c.d.f{. of Normal approx: R OERENRR B BERORN

ALWAYS

*'*TAKE NUMERICAL CONVOLUTION.
PRINT 2 LINES WITH NFOLD,H
THUS

Starting "* convolutions using FFT with ®#®#% real points.

F-5

<" $- AR

PO L R LG U

\\_.'_‘ -\-=..-.'..-_{ < . "o =
' ! h . e, L) LT, Y AT DALY
Amm\n.&.\‘_&m‘:& ARG AP TR VAT A T



21 CALL CONVOLV (NFOLD, XV(®*), YV(®))

272 SKIP 1 LINE
273 LET SUM= 0.0
274 FOR I=1 TO M, ADD YV(2%*I-1) TO SUM
275 PRINT 1 LINE WITH 2.0%SUM/N
276 THUS
Cumulative of numerical convolution density Is ..c.iceeesacns
278 SKIP 2 LINES
279 PRINT 6 LINES WITH NFOLD,FUN.NAME
- 280 THUS

EXACT VERSUS NUMERICAL CONVOLUTION OF % ®ssx®x® pROB DISTRIBUTIONS

Indep Theory Theory Numer Numer  Diff
Variable p.d.f. c.d.f. p.d.f. c.d.f. c.d.f.
28T LET CDF.FT=0.0 TTTTTTTTTTTTTTTT T
288 LET J=0
289 LET AVGFT=z0.0
290 LET VARFT=0.0
291 LET MAEFT=0.0
292 LET RMSFT=0.0
293 LET XSUM=1.0
294 LET XXSUM:=0.0
295 FOR I=1 TO M DO
296 LET ARG=I®DARG+ARGO
297 IF MOD.F(I,2):=0
238 LET COEF=2.0
299 OTHERWISE
300 LET COEF=4.0
301 ALWAYS
302 LET PDF.FT=YV(2*I-1)%2,0/N
303 ADD ARG®PDF.FT TO AVGFT
304 ADD ARG®®28PDF .FT TO VARFT
405 ADD PDF.FT TO CDF.FT
300 LET UPPER:1.0-CDF.FT
307 ADD COEF®UPPER TO XSUM
308 ADD COEF®ARGRUPPER TO XXSUM
309 IF MOD.F(I,MINCR)=0
310 ADD YV TC J
m IF FLAGE:=1}
32 LET PDF:=PDFV(J)
313 LET CDF=CDFV(J)
¢ (L) OTHERWISE
? 315 LET PDF:PDF.FT
316 LET CDF=CDF.FT
N 317 LET PDFV(J):zPDF
4 318 LET CDFV(J)=CDF
319 ALWAYS
320 LET DIFF:=CDF.FT-CDF
321 LET MAEFT:=MAX.F(MAEFT,ABS.F(DIFF))
322 ADD DIFF®®2 TO RMSFT
323 PRINT 1 LINE WITH ARG,PDF,CDF,PDF.FT,COF.FT,DIFF
3 4 THUS
&0 _RERe & _snpess I.IIIQII I.IIIIII I.Iiilil I'II||.l
326 ALWAYS
327 LOOP '*OVER (I) POINTS
F-6
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328 PRINT 2 LINES THUS

331 LET VARFT=VARFT-AVGFT##*2

332 LET XSUMz=XSUM®DARG/3.0

333 LET XXSUM=2.0®DARG/3.0%XXSUM - XSUM®*¥2

334 LET RMSFT=SQRT.F(RMSFT/REAL.F(NCELLS))

335 PRINT 5 LINES WITH NFOLD,FUN.NAME,AVGFT,SQRT.F(VARFT),XSUNM,
336 SQRT.F(XXSUM) ,MAEFT ,RMSFT

337 THUS

Mean value and standard deviation of the swa of #%® ®#RRRER RYs via FFT:
Calculated mean ®®% _®EE%  Std Dev SRR _sawx
Alternate mean ®#R _RERER  Std Dev REN _EREe
Max abs error and RMS error in convol c.d.f. via FFT ®# REREER & *¥ekxs

343 PRINT 1 LINE THUS
DO YOU WANT TO PERFORM A MONTE-CARLO SIMULATION? (YES OR NO).
345 READ ANSWER
346 IF SUBSTR.F(ANSWER,1,1) NE "Y"
347 GO TO LS
348 OTHERWISE
349 '* LET FLAGM:=1
350 PRINT 1 LINE THUS
INPUT THE INDEX (1 THRU 9) OF THE RANDOM # SEED.
352 READ SEED
353 PRINT 1 LINE THUS
INPUT THE NUMBER OF REPLICATIONS WANTED.
355 READ NREPS
356 PRINT 1 LINE WITH NREPS
357 THUS
A Monte-Carlo simulation of ##%%% preplications has begun.
359 LET AVGT=0.0
360 LET VART=0.0
361 FOR I=1 TO NCELLS, LET HISTV(I)=0
362
363 ''SIMULATE FOR NREPS REPLICATIONS.
364 '
365 FOR I=1 TO NREPS DO
366 LET SUM=0.0
367 FOR J=1 TO NFOLD-1 DO
368 IF FLAGW=0
X 369 ADD ERLANG.F(AVG1,K,SEED) TO SUM
Qo 370 OTHERWISE
Y 3T ADD WEIBULL.F(SHAPE1,ETA1,SEED) TO SUM
AN 372 ALWAYS
o 373 LOOP ''OVER (J) RV'S
i 374 IF FLAGW:=0
O 375 ADD ERLANG.F(AVG2,L,SEED) TO SUM
g 376 OTHERWISE
o 377 ADD WEIBULL.F(SHAPE2,ETA2,SEED) TO SUM
>, 378 ALWAYS
s 379 ADD SUM TO AVGT
% 380 ADD SUM®®2 TO VART
381 FOR J=1 TO NCELLS DO
R}‘S 382 IF SUM LE TV(J)
095 283 ADD 1 TO HISTV(J)
N 384 GO TO X2
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385 OTHERWISE

386 LOOP ''OVER (J) CELLS

387 'K2'LOOP ''OVER (I) REPLICATIONS

388 LET AVGT=AVGT/NREPS

389 LET VART=VART/NREPS - AVGT#*%*2

390 LET SET=SQRT.F(VART/REAL.F(NREPS))

391 PRINT 3 LINES WITH NREPS,AVGT,SQRT.F(VART),AVGT-1,.96%*SET,AVGT+1.96%*SET
392 THUS

Sample mean from ##%## reps of Monte-Carlo sim ##¥% #%%% gStd Dey #a% #iun
95% statistical confidence interval in mean:  #%% ¥AEs_ %N wukw

396 SKIP 2 LINES
397 PRINT 6 LINES WITH NFOLD, FUN.NAME
398 THUS

SAMPLE PROB DIST OF THE SUM OF A SET OF %% #ekssk® RANDOM VARIABLES

. A A A —————— - ——— - e W = — D S WP = WP W = W - AR - -

Indep Histo Sample Sample Theory Differ
Variable Frequency p.d.f. c.d.f. c.d.f. c.d.f.
TEOS T CET XCDF-0.06 ~~ ~~~ T TTTTTTTTTTTTeTTTTTTTTTTTTTTTTTTTTTTTT
406 LET MAEMC=0.0
407 LET RMSMC=0.0
408 FOR J=1 TO NCELLS DO
4093 LET XPDF=HISTV(J)/NREPS
410 ADD XPDF TO XCDF
41 LET CDF=CDFV(J)
u2 LET DIFF=XCDF-CDF
413 LET MAEMC=MAX.F(MAEMC,ABS.F(DIFF))
4y ADD DIFF®%2 TO RMSMC
41s PRINT V LINE WITH TV(J),HISTV(J),XPDF,XCDF,CDF,DIFF
u1e THUS
TR TITYY ] R ITTTY N RRERER W TTITY) N ANBREE
u18 LOOP ''OVER (J) HISTO CELLS
419 PRINT 2 LINES THUS
e LET RMSMC=SQRT.F(RMSMC/REAL.F(NCELLS))
423 PRINT 2 LINES WITH MAEMC,RMSMC
u24 THUS

Max abs error and RMS error in convol c.d.f, via Monte-Carlo #, ##sEis & SESNRS

427 'L5'STOP
428 END ''TEST.CONVOLV

FUNCTION EFUN (K, X)

''Test cum prob function used in TEST.CONVOLV. Function shown belc
'*is a Erlang distribution with (integer) shape parameter K and stand-
**ardized argument X.

DEFINE I,K AS INTEGER VARIABLES
LET EX=EXP.F(-X)

IF K=

10 RETURN WITH 1.0-EX

1" OTHEHRWISE

12 LET FACT=1.0

IO W) -
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14
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LET XI=1.0
LET SUM=1.0
FOR I=1 TO K-1 DO
LET FACT=FACT®*I
LET XI=XI*X
ADD XI/FACT TO SUM
LOOP '"'OVER I
RETURN WITH 1.0-EX®*SUM
END *'FUNCTION EFUN

FUNCTION WFUN (SHAPE, ARG)
e
''"Function calculates the cumulative probability function for a
''*"Weibull distribution having shape parameter SHAPE and standardized
'*independent variable ARG.
1
RETURN WITH 1.0 - EXP.F(~-ARG*®*SHAPE)
END ''FUNCTION WFUN

FUNCTION W2WFUN (ARG)
e
''Calculates the convolution c¢.d.f. with argument ARG of 2 standardized
''"Weibull probability distributions, each having shape parameter 2.
vt
LET INTG=EXP.F(0.S"ARG®**2)®(SNORM(ARG )}-SNORM(-ARG))*ARGH*
SQRT.F(PI.C/2.0)
RETURN WITH 1.0 - EXP.F(-ARG*®2)%(1,0+INTG)
END ''FUNCTION W2WFUN

ROUTINE CONVOLV (NFOLD, XV, YV)

e

'*Routine for calculating the result of a sequence of convolutions on
''2 probability density functions (p.d.f.'s). The 1st density (XV) is
‘*convolved with the 2nd (YV), and the result is recursively convolved
'*NFOLD-1 times with the 1st p.d.f. The program returns the NFOLD-con-
''*convoluted p.d.f. (in complex form) in the vector YV. Method: The
''program obtains the Fourier transform (FT) of the X-series in XV(%),
''and the Y-series in YV(®). Then, a complex product is calculated and
‘*nlaced in YV(®), NFOLD-1 additional complex products are taken
‘*between YV(®) and XV(*). This final product is inverted in place
'*in YV(').

‘' NAME TYPE ENTRY VALUE RETURN VALUF
' Xv REAL ARRAY COMPLEX X-DENSITY FT OF X-DENSITY
U v REAL ARRAY COMPLEX Y-DENSITY CONVOLUTION DENSITY

''*NOTE: THE DIMENSION OF ARRAYS MUST BE AN INTEGER POWER OF 2.
te

DEFINE I,IMAX,K,N,NFOLD,NP2 AS INTEGER VARIABLES

DEFINE XV, YV AS REAL, '-DIMENSIONAL ARRAYS

LET N=DIM.F(XV(®))

LET IMAXz=N/2

e

'*CHECK VALUE OF N.

LET NP2=1
'PO'LET NP2:NP2%2
IF NP2<N
GO TO PO
F-9
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OTHERWISE
IF NP2>N
PRINT 1 LINE WITH N THUS

IMPROPER VALUE OF INPUT-ARRAY DIMENSION (- ®®®®®) TN ROUTINE CONVOLV.

STOP
OTHERWISE ''GO ON

''OBTAIN THE FOURIER TRANSFORMS OF XV AND YV.
CALL FOUR.TRANS(-1,XV(%))
CALL FOUR.TRANS(-1,YV(%);

'*PLACE PRODUCT IN YV(®),
FOR K=1 TO NFOLD-1 DO
FOR I=1 TO IMAX DO
LET TEMPR=YV(2®I-1)
LET TEMPI-YV(2®I)
LET YV(2%I-1)=XV(2%*I-1)®TEMPR-XV(2%I)®TEMPI
LET YV(2#I)=XV(2%I-1)®TEMPI+XV(2%1)®TEMPR
LOOP ''OVER (I) FOURIER FREQUENCIES
LOOP ''OVER (K) CONVOLUTION ORDER

''GET INVERSE TRANSFORM.

RETURN
END ''CONVOLV

ROUTINE FOUR.TRANS (ISIGN, DATA)
‘'Routine to calculate the Fourier transform (or inverse transform)
'‘of a sampled data trace, which is passed in the input vector DATA(").
'*The algorithm used is the Cooley-Tukey fast Fourier transform (FFT),
''implemented by Norman Brenner of the MIT Lincoln Lab. The technique
''"requires that the # of real data points (N) be EXACTLY 2%##K, K > 0.
'*If ISIGN = -1, the routine ylelds the transform. If ISIGN = 1, the
*'{nverse transform is produced. Program output, in either case, is
''tne one-dimensional array DATA(®). When giving the transform with
'*N/2 complex frequencies, requiring N elements, the real and imaginary
**components are stored in adjacent storage positions. If a ISIGN = -1
‘*transform {s followed by a +1 transform, the original trace appears
‘'*scaled by a factor of N,
*'*Transform amplitudes are defined by:
"*FT(K)=SUM OVER J : EXP(-2%PI®IMAG®(J-1)®(K-1)/N)*DATA(J),
**1 LE K LE N.
**Input series in DATA must be in complex form with DIM.F(DATA(®)):2%N,
DEFINF I, ISIGN, NDIM, AND N AS INTEGER VARIABLES
DEFINE IPO,IP1,IP2,IP3,I1,I2A,12B,I3,AND I3REV AS INTEGER VARIABLES
DEFINE DATA AS A REAL, 1-DIMENSIONAL ARRAY
LET NDIM:DIM.F(DATA(®))
LET Nz=NDIM/2

LET IPO:=2

LET IP3=IPO"N

LET I3REV:z1
FO3 13=1 TO IP3 BY IPO DO ''TO P50
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58
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70
T
72
13
T4
75

IF I3<I3REV
LET TEMPR=DATA(I3)
LET TEMPI=DATA(I3+1)
LET DATA(I3)=DATA(I3REV)
LET DATA(I3+1)=DATA(I3REV+1)
LET DATA(I3REV)=TEMPR
LET DATA(I3REV+1)=TEMPI
ALWAYS
LET IP1=IP3/2
'P3'IF I3REV>IP1
SUBTRACT IP1 FROM I3REV
LET IP1=IP1/2
IF IP1 GE IPO
GO TO P3
OTHERWISE
ALWAYS
ADD IP1 TO I3REV
LOOP ''OVER I3 (P50)
LET IP1=IPO
'P6'IF IP1 GE IP3
RETURN
OTHERWISE
LET IP2:=IP1%2
LET THETA=2.0*PI.C/REAL.F(ISIGN*IP2/IPO)
LET SINTH=SIN.F(THETA/2.0)
LET WSTPR=~2.0%SINTH®#?2
LET WSTPI=SIN.F(THETA)
LET WR=1.0
LET wI=0.0
FOR I1=1 TO IPY BY IPO DO
FOR I3=I1 TO IP3 BY IP2 DO
LET I2A=I3
LET I2B=I2A+IP1
LET TEMPR=WR®DATA(I2B)-WI*DATA(I2B+1)
LET TEMPI:=WR®DATA(I2B+1)+WI®DATA(I2B)
LET DATA(I2B)=DATA(I2A)-TEMPR
LET DATA(I2B+1)=DATA(I2A+1)-TEMPI
ADD TEMPR TO DATA(I2A)
ADD TEMPI TO DATA(I2A+1)
LOOP ''OVER I3
LET TEMPR=WR
LET WR=WR®WSTPR-WI*WSTPI+WR
LET WI=WI®WSTPR+TEMPR®*WSTPI+WI
LOOP ''OVER IV
LET IP1=1IP2
GO TO P6
END ''FOUR.TRANS
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