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EXECUTIVE SUMMARY 

This report describes the results of a study of several 
numerical methods for calculating points on the distribution of a sum 
of statistically independent random variables. The report is directed 
to practitioners of statistical and numerical methods.  Immediate 
motivation for the study arose in connection with the random time to 
accomplish a collection of tasks. However, application to a variety 
of problems is anticipated because of the generality of the metnods. 

Study objectives are to investigate the relative accuracy and 
computational effort, viz, run time, for eacn of the following methods: 

(a) Evaluation of closed-form solutions for particular cases. 

(b) Discrete numerical convolution of probability densities. 

(c) Normal probability approximation to the distribution. 

(d) Numerical inversion of the Laplace transform of the convolu- 
tion.  (Bellman's method). 

(e) Erlang approximation for convolutions of a two-parameter 
Weibull distribution.  (Johnson's method). 

(f) Convolution of probability densities using the FFT algorithm 
for calculating finite Fourier transforms. 

(g) Monte-Carlo simulation. 

Normal approximation for sums of independent random variables 
(RVs) is made in several areas, including quality control and 
analytic network theory. Because of the frequently uncritical 
assumption of Normality, the error of this approximation is a 
particular focus here. 

Methods are sketched for deriving analytic expressions for 
the distribution of the sum of RVs of certain distributions. Each 
numerical method is described and illustrated using RVs from several 
distributional forms, 3uch as uniform, exponential, gamma, and 
Weibull, as well as mixture models.  In terms of run time and 
accuracy, some methods are particularly suited to certain distribu- 
tional forms. If problem applications are quite special and if 
the time for program ceding (as well as running) is a consideration, 
Monte-Carlo simulation itay be tne preferred method. All computer 
source programs are listed in annexes. 
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SUBJECT: Methods for Calculating the Probabil  v Distribution of 
Sums of Independent Random Variables 
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CA, April 1963. 

b. Schlenker, Ü. Numerical Methods in Renewal Theory, 03-68-2, 
(AD 828276),   
USA WECOM, Rock Is, IL, Feb 1968. 

c. Schlenker, G. Reliability and Maintainability of the M^ldAI Tank, OR- 
63-2UD439501) -  
USA WECOM, Rock Is, IL, Apr 1963. 

2. Background 

Problems associated with the distribution of sums of independent 
random variables (RVs) occur in various analyses. Examples are: 
(a) estimating the total cost of an end item or a project, given 
component cost estimates; (b) estimating time to complete a series 
of sequential tasks, (This problem can be generalized to estimating 
the completion time for a series of networks.); (c) estimating 
dimensional variability in an assembly of serially arranged parts; 
and (d) estimating statistical confidence limits on the mean of a 
random variable (RV). Changing problem context may obscure the math- 
ematical Identity of these familiar problems. Often, the probabil- 
ity distribution of the sum is assumed to be Normal, since the 
central limit theorem guarantees Normality as the number of RVs 
in the sum becomes infinitely large. However, if either tail of 
tne distribution of the sum of a small number of independent HVa 
is to be estimated with accuracy, it is prudent to be cautious in 
immediately assuming Normality. This report addresses the issue 
of accuracy of a Normal approximation and other issues associated 
with different methods of calculating the cumulative distribution 
function (c.d.f.) of a sum of n random variaoies (RVs), when 
the RVs have a variety of distributional forms. 

3. Study Objectives 

Specific objectives of the study reported here are:  (a) identify 
the error of approximation for the c.d.f. of an n-component sura is 
n increases; Thl3 error is examined for cases in which ill of the 
components have the same distribution ind for cases in which tne 
form of the distribution 13 the same but in which tne parameterJ are 
unique,  (b) obtain closed-form expressions for the c.d.f. of the 
sum for special cases, wnlch may ue used to check various numerical 
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metnods; (c) obtain measures of computational effort for several 
numerical methods for comparative purposes; and (d) suggest which 
methods are suitable for treating particular cases. 

M. Discussion 

The sum of two RVs has a distribution which is the mathematical 
convolution of the component distributions. Thus, the sum of n 
RVs has a distribution which is the n-fold [1] convolution of the 
component distributions. The problem of calculating the dist- 
ribution of the sum is, then, equivalent to obtaining an n-fold 
convolution. Tnis fact can be exploited in calculating the c.d.f. 
of the sum numerically and In obtaining a formula for the c.d.f. of 

.trj the sum. Consider the case of two continuous RVs, defined on 0 to 
1 v5 infinity. Call the variables x and y and call the sum z. The c.d.f. 

of any RV will be denoted by F(.), with a subscript referring to the 
variable of interest. Similarly, the notation for the probability 
density function (p.d.f.) of interest will be f(.), with a specifying 
subscript. Thus, tne c.d.f. and p.d.f. of the RV x are, respectively, 

F (x) ~nd f (x). For this case, the convolution theorem yields: 
x       x 

iJj> F (z) 5 Integral(0,z): F (z - t) f (t) dt . (1) 
z y       x 

Similarly, from (1), the p.d.f. of z is written as 

pj-i f (z) z  Integral(0,z): f (z - t) f (t) dt. (2) 
"* % z y       x 

For specific distributional forms the indicated integration may 
be simple to carry out. If so, a closed form expression for the 
desired convolution is obtained. If not, one can use discrete 
numerical convolution. The numerical equation is obtained fro« 
equation (1) by discretizing the domains of the functions at, say, 
m identical points: t(l), for 1 le 1 le m. Then, the diferential 
form f (t) dt is replaced by a probability difference and the 

x 
integral becomes a sum, as follows: 

F (z(k)) z  Sum U1,k: F (z(k)-t(i)) (F (t(i)-F (t(i-1))). (3) 
z y x     x 

Tne accuracy of the numerical method Improves by increasing the 
numoer (m) of discrete points, assuming that the range t(m) - t(l) 
adequately covers the domain of tne c.d.f. of z in the sense that 
tne upper-tail probability beyond z(a) is negligible—say, 1/100,000. 
If numerical convolutions are to be performed recursively, it is 
necessary to anticipate the domain of the highest-order convolution 
when choosing z(m). Because of the need for a high density of discrete 
points, me size of m generally becomes quite large for four or more 
convolutions. Clearly, this situation produces a computational 
ourden which Increases rapidly with the order (n) of convolution. 
For  n greater tnan, e.g. **, other numerical methods may be preferred 
on tne basis of efficiency. 

HT""Order~of "convolution is defined imr^  as the number of distribu- 
tions being convolved. This is equal to the • of RVs in a sum. 

Z 



5. Integral Transforms 

In dealing with convolutions It Is helpful to use a theorem [1] from 
the theory of Integral transforms—either Laplace or Fourier. Tnat 
theorem states that the transform of a convolution of two function is 
the product (in the complex plane) of the transforms of the functions. 
Following a UK convention, I denote the Laplace transform of a function 
with the function symbol having an asterisk superscript. For example, 
the Laplace transform of f(x) is ff(s), with complex argument s. 
Thus, the p.d.f. of z in (2) can be characterized by the transform: 

f«(s) = f*(s) f»(s) . (u) 
z     y   x 

If the RV z is added to another RV w yielding the sum v, one can 
immediately write the transform of the p.d.f. of v as 

f»(s) = f»(s) f»(s) f»(s) , (b) 
v     y    x    w 

instead of convolving f (y) with f (x), and the result with f (w). 
y        x w 

Of course, it is necessary to be able to invert the transform to 
achieve the desired result. More will be said about this later. 
For many probability distributions of interest, the Laplace transform 
can be written * -. simple form. Examples are the uniform distribution 
on (0,a), which has the Laplace transform of the p.d.f.: 

f»(s) z  (1 - exp(-as))/a/s, (6) 

and the exponential distribution with rate parameter r, whose p.d.f. 
transform is 

f«(s) * r/(s ♦ r). (7) 

If each of the n random variables in the sum has the same distribution, 
the transform of the p.U.f. of the sum is Just the ntn power of tne 
transformed p.d.f. For the sum of n uniform (0,1) deviates, yielding 
tne RV t, 

n n 
f«(s) = (1 - exp(-s)) /s . (d) 
t 

The Laplace transform ot  tne c.a.f. of t is obtained from the 
transformed p.u.f. simply oy dividing by s, since tne c.d.f. is 
just the integral of tne p.d.f. To facilitate inversion, the 
expression for the n th power of 1 - a^pi^s)  is be expanded as 
a sum of binjaiai terms: 

i 
Sum over i (0,n):  C(n,i) (-1) exp(-is), 

where C(n,i)   is  th«  t of combinations of n objects  taken  1  at  a time. 

ffT"~An*eiposftion of  the theorem  is found,  e.rf.,   in Jeniclns,  G.rt.  md 
Watts,  D.O.    Spectral Analysis, Holden-Day,  c.   UC8. 



The transformed cd.f. of t can be readily inverted analytically: 
i n 

F (t) = Sum over i (0,n): (-1) C(n,i) u(t-i) (t-i) /n! t  (9) 
t 

where u(t-x) is the unit step function at x. This expression is 
quickly and accurately evaluated, even for large values of n (n > 10). 
Calculation was performed by the routine NFOLD.U on the Prime 9955 
minicomputer with a run time limited by the print buffer, i.e., in a 

£V fraction of a second. This program is listed lr. Annex A. 

6. If the RV of interest (t) is the sum of n Identical exponential 
RVs, the Laplace transform of the p.d.f. of t is, from (7)# 

4 
n      n 

f«(s) = r /(s ♦ r)  . (10) 
t 

This expression also has a simple Inverse: 

n n-1 
f (t) s r t   exp(-rt)/(n-1)! (11) 
t 

This is recognized as a gamma p.d.f. with shape parameter n and 
rate parameter r. This result Illustrates the familiar theorem 
that the sum of n identical exponential RVs has an Erlang distri- 
bution, i.e., a gamma distribution with Integer shape parameter. 
It follows immediately from (10) that the sum of N identical gamma 
distributions, having shape parameter n, is also a gamma distribu- 
tion with snape parameter Nn, since the Laplace transform of its p.d.f. 

(12) 

nas the same form as the transform of the gamma p.d.f. in (10). 
Aitho the Laplace transforms in these examples have simple inverses, 
transforms are still useful in calculating convolutions of probability 
distributions when this condition does not exist. The reasons for this 
sss^rtion are:  (a) that the transforms of the distributions being 
convolved are often simple functions of s, (b) that the product of 
such transforms are easy to evaluate, and (c) that numerical methods 
exist for calculating the inverse Laplace transform. One such method 

.SJ was developed by Ricnard Bellman (Ref (la)). X have found this method 
t£« useful in several applications, such as in solving integral equations 

(fief (lb)) as well as for obtaining the distribution of sums of RVs. 
Further discussion of Bellman's method is deferred to a later point. 

7. Measures of Accuracy 

Nn Nn 
f«(s) z r    /($ ♦ r) 
t 

Sevtrat measures can be used in describing the accuracy of numerical 
methods for approximating the c.d.f. of a sum of RVs. Two are used 
here:  (a) the maximum absolute error over a finite set on the domain 
of the c.d.f., and (o) the square root of the mean squared error or 
R:4S error, evaluated over the same set of points. For most methods 
in this study, I nave used 20, equally*spaced points on the domain of 
th« c.d.f., such that tail probabilities are »ess than 0.01 beyond 
tnv range of points used. An exception to this selection of points 

>>' 
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is made when using Bellman's method. In that case 16, log-spaced 
points are used to span the range of the sum. As an illustration 
of these measures, consider the Normal approximation to the N-fold 
convolution of a standard (0,1) uniform distribution. Using the 
exact result, given in (9), the measures of error are calculated fo: 
several choices of N. These are snown in Table 1. 

TABLE 1 
ERROR IN THE NORMAL APPROXIMATION OF CONVOLUTIONS 0? N 

STANDARD UNIFORM PROBABILITY DISTRIBUTIONS 

N Max Abs Error 

3 0.0097 
4 0.0074 

5 0.0057 
10      0.0028 

RMS Error 

"0."0095 
0.0054 
0.0038 
0.0029 
0.0013 

In many applications, the error associated with a very large (small) 
value of the c.d.f. is more appropriate than either of the above 
error measures. For 5 convolutions of a uniform distribution, the 
error of a Normal approximation is about 0.1% for values of the 
c.d.f. > 0.95. By nearly any measure, 4 or 5 convolutions of a given 
uniform distribution is well approximated by a Normal distribution 
whose mean and variance are N times the uniform mean and variance. 
However, not all distributions of sums of uniform RVs are this well 
approximated by a Normal c.d.f. Tne case of sums of different 
uniform RVs is considered below. One may ask if Monte-Carlo simul- 
ation is competitive in terms of accuracy—if not in terms of run 
time—with a Normal approximation. For the case considered above, 
20 thousand Monte-Carlo replications produces a typical RMS error 
of 0.002 to 0.003» This is about the same accuracy as the Normal 
approximation for N = 5. The run time for 20,000 replications on 
the Prime 9955 is approximately a linear function of the number of 
RVs in the sum. For this case, approximate run time T, in seconds, 
is given by 

T = 8(N - 2) ♦ 30. (13) 

For simple cases such as this, Monte-Carlo is quite expensive in 
terms of run time. However, Monte Carlo becomes more attractive 
when the problem becomes mathematically intractable. 

8. Sum3 of Non-identical Uniform RVs 

The n-fola convolution of the standard uniform distribution was 
obtained in closed form (9) by inversion of the Laplace transform, 

given In (9). Toll result can ^ gen.raUltd by perllluing each 

of the n uniform distributions to have a different range, but with 
common threshold parameter. Thus, the ktn member of the set is 
defined on, say, 0 to a(k). The Laplace transform of tne p.d.f. of 
the sura (t) is, tnen, 

f«(s) = ProJucL over krl to n:  (1 - exp(-aU)s)/ (a(k)s).  (14) 
t 

5 
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Tne inverse transform is somewhat complicated to obtain, and is 
not derived here. Tne exact c.d.f. for th** sum of n different 
uniform RVs is simply presented, with the following definitions, as 

n k 
r (t) = 1/a/n![t ♦ Sum over k (1,n):  (-1) Sum over j (1,C(n,k)); 
t 

n 
u(t - S (n))(t - S (n)) ] , (15a) 

where 

a = Product over k=1 to n: a(k) 

and where 

S (n) is the j th sum of the k tuple of n values of a(i), taken 

kj 

k at a time. For example, 

S (n) = a(j), 1 le j le n, 

1J 

S (n) = a(l)*a(2)  and S      = aCn-D+atn).       (15b) 
21 2C(n,2) 

The implementing computer program, given in Annex B, calculates the 
error of a Normal approximation for a larger class of suras of uni- 
form RVs. Consider the following special case in which the range 
of the k th uniform RV in the sum of n is k. Normal errors in the 
c.d.f. of the sum are given in Table 2. Compare with Table 1. 
Note that the errors are about twice those in Table 1. However, 
even these errors are relatively small (M or less) for N s 5. 

TABLE 2 
ERROR IN THE NORMAL APPROXIMATION OF CONVOLUTIONS OF N 

DIFFERENT UNIFORM PROBABILITY DISTRIBUTIONS » 

N Max Abs Error 

T 
3 
u 
5 

10 

~<To3?r 
0.0179 
0.0131 
0.0102 
0.0049 

RMS Error 

-offfff— 
0.010U 
0.0071 
0.005** 
0.002U 

it 

• Range of the k th uniform RV is taken to be k. 

(). Sum3 of Identical Exponential RVs 

For a somewnat different picture, consider the case of a sum of N 
exponential RVs from the same c.d.f. The error of a Normal approxima- 
tion Is shown In Table 3 as a function of N. 

^£3SSffl^&&^^^ 



TABLE 3 
ERROR IN THE NORMAL APPROXIMATION OF N CONVOLUTIONS OF 

AN EXPONENTIAL PROBABILITY DISTRIBUTION 

N Max Abs Error RMS Error 

2 
3 
4 

5 
10 

15 

0.0945 
0.0769 
0.0648 
0.0596 
0.0416 
0.0340 

0.0436" 
0.0365 
0.0316 
0.0278 

0.0183 
0.0142 

Tne errors shown in Table 3 are about one order of magnitude 
greater than those in Table 1, indicating that sums of exponential 
RVs approach Normality much more gradually than sums of uniform 
RVs. For a sum of 15 exponentials, the Normal error is about 1% 
or less for values of the c.d.f. > 0.98. Clearly, this example 
indicates a need for caution in applying the Normal assumption. 

10. Sums of Different Exponentials 

The p.d.f. of the sum of exponential RVs from the same distribution 
was shown (11) to have the Erlang form. If a set of n exponential 
RVs from distributions with unique mean values are summed, the form 
of the c.d.f. is somewhat complicated. However, an analytic model 
exists for this, more general case. The computer program which is 
used for evaluating this distribution is found in Annex C. If the 
rate parameter, r(k), of the distribution of an arbitrary kth RV is 
unique, the c.d.f. of the sum of n RVs is given by 

F (t) = r Sura over i (1,n): 
t 

A(i)(l - exp(-r(i)t))/r(i),  (16) 

W 

where  r = Product over k=1 to n: r(k), 

and where the vector A(*) is the solution of a certain matrix 
equation: M A = B. Elements of the B vector are ail zero except 
the nth (last). A typical element of M, m(i,j), involves the sum 
of all (i-1) tuple products of r(k), with k not : to j. Thus, e.g., 

m(3,j) = Sum over k ne J (1,n): Su* over 1 > k, ne J:  r(k)r(i). 

The 1st row of M has elements = 1. Other rows are like tne one above. 
Equation (16) can be used to calculate the Normal c.d.f. error for a 
special case. In a set of n exponential RVs, let the range of the 
mean values be fixed at 2. Let the ktu. RV have the mean value 
1 ♦ (k-1)/(n-1). Tne Nonaal errors for the c.d.f. of tne sum of these 
RVs are shown in Table 4. Comparison with the results of Table 3 
indicates that greater errors of Normal approximation occur whan 
the RVs in the sura have different mean values. For this example 
the error is about 10% greater than for the n-fold convolution of 
the same exponential distribution. 
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TABLE 4 
ERROR IN THE NORMAL APPROXIMATION OF CONVOLUTIONS OF 
N DIFFERENT EXPONENTIAL PROBABILITY DISTRIBUTIONS» 

N 

*T 
3 
4 

5 
10 

Max Abs Error RMS Error 

"0.103?" 
0.0823 
0.0693 
0.0634 
0.0436 

0.0477 
0.0393 
0.0338 
0.0297 
0.0195 

*"""fo"r"the ktOvTn a set 6T"h,Tet "the"mean value "be Tk- f J7Cn-1). 

11. An Exponential Mixture Model 

In forming a sum of independent RVs, one may think of each RV as 
the duration of a particular activity in a serial network of n 
activities. Tne distribution of the sum is, then, the distribu- 
tion of completion time for the network. A variation of this model 
is one in which the nodes, separating activities, permit two exit 
patns, each of which has a given probability of being taken. If 
either activity can occur prior to the next network node, the form 
of tne probability distribution for the transit time to next node 
is a mixture of the distributions for the alternate activity times, 
with weights equal to the probability the activity is taken. This 
model is a particular instance of a semi-Markov process, a type of 
stochastic process frequently observed in industrial operations. 
An interesting special case of a two-component mixture model is 
one in which the components (alternate activities) are exponentially 
distributed. The form of the c.d.f. for this inter-node duration Is 

F(t) = a(1 - exp(-r1 t)) ♦ (1-aMl - exp(-r2 t)), (17) 

where a Is the weight associated with the first component, and 
with rate parameters ri and rZ for the 1st and 2nd component dist- 
ributions, respectively. The p.d.f for this mixture model is 

f(t) s a ri exp(-r1 t) ♦ (1-a) rZ exp(-r2 t). (18) 

The sum of n such "activities'* will have a distribution denoted 
by g (t), for the p.d.f., and by C (t). for the c.d.f. of time t. 

n n 
Using the convolution theorem of Laplace transforms, the transform 

of g (t) can be written as 
n 

g«(s) = [a rl/(s ♦ ri) ♦ (1-a) r2/(s ♦ rZ))    . (19) 
n 

To facilitate» obtaining an Inverse, this expression is expanded 
in a power series of terms in 

i       n-i 
1/(3 ♦ ri) /(s ♦ r2) 

te«k&^^ 



Aiim Hain IHM um UM IHHIL ■■ii'Jn,i'ir.'mr.iMin»'«i irur»1« T>?«^?WI nr rrw IT^T I- -W i T TÄrrÄnTOvw»xn'TOi wnsmuinni 

The mixed products in this series must, then, be expressed in a 
continued fraction expansion. This result can be inverted term by 
term. For example, for n = 2, the Laplace transform after the 
indicated operations is 

2      2 
g»(s) = (a rl) /(s+r1)  + 2a(1-a)r1r2/(M-r2)/(s+r2) + 

2      2 
((1-a)r2) /(s+r2) + 2a(1-a)r1r2/(r2-r1)/(s+r1). (20) 

The inverse transformation is obtained by inspection. 

2 2 
g (t) = (a rl) t exp(-r1 t) + ((1-a)r2) t exp(-r2 t) 
2 

♦ 2a(l-a)r1r2/(r1-r2)(exp(-r2 t) - exp(-r1 t)) . 

Integrating g (t) produces the c.d.f.: 
2 

(21) 

2 2 
G (t) = 1 - a (Url t) exp(-r1 t) - (1-a) (Ur2 t) exp(-r2 t) 
2 

- 2a(1-a)/(r1-r2)(r1 exp(-r2 t) - r2 exp(-r1 t)). {22) 

Closed-form expressions for G (t) for larger values of n are found 
n 

in the implementing computer program in Annex D. These expressions 
are used to calculate the Normal approximation error for the c.d.f. 
Results are shown in Table 5 for a numerical example in which tne 
parameter a s 0.8, and the mean values of the first and second compon- 
ents are in the ratio of 0.05 to 1.0. Rate parameters rl and r2  are 
adjusted to always yield a mean value of the sum equal to unity. 
The last practice assures that the same points are evaluated in the 
domain of the c.d.f. regardless of the value of n. Also note that 
the computer program (LP.INV) uses 16 log-transformed points at whien 
the c.d.f, error  is evaluated—not the usual 20. 

»: 

TABLE 5 
ERROR IN THE NORMAL APPROXIMATION OF N CONVOLUTIONS OF A 
TWO-COMPONENT EXPONENTIAL MIXTURE PROD DISTRIBUTION 

rc,> 

jl ••" JUJ"Jjjy\n'öf " ""RMS "Error ~(\G ~po fiits) 

"z 6?2$5             d.'ffff  
3 0.242 0.166 
4 0.213 0.142 
5 0.188 0.124 

10 0.117 0.074 
IS 0.032 0.052 

9 
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The maximum absolute errors in Table 5 are nearly 3 times the 
corresponding errors in Table 3, which referred to convolutions 
of a single exponential component. Further, the RMS errors in 
Table 5 are about 4.0 to 4.5 times the corresponding errors in 
Table 3. These observations indicate that the sum of n RVs from 
an exponential mixture distribution may converge VERY SLOWLY, with 
increasing n, toward Normality. In fact, the approximation errors 
in the c.d.f. of the sum may be much greater than comparable 
errors  in sums of exponential RVs, (which are even quite large). 
A frequently used rule of thumb for deciding what is a marginally 
large sample size in many statistical applications is that n > 30 
is "large". However, for the 30-fold convolution of the exponential 
mixture c.d.f., one finds that the approximating Normal c.d.f. has 
a max absolute error of nearly 0.057 and an RMS error of about 0.026. 
When dealing witn sums of RVs from a serai-Markov process, consider- 
able inaccuracy can be encountered in taking a Normal approximation. 
This is the lesson of this particular example. 

12. Monte-Carlo Simulation 

As is shown above, closed-form expressions can be obtained for 
convolutions of an exponential mixture distribution by using Laplace 
transform methods. However, the complexity of inverting G*(s) grows 

n 
rapidly >lth n. In this case in particular, alternatives to eval- 
uating jrmulas are sought for calculating points of G (t) for large 

n 
values of n. As suggested above in paragraph 7» p.5» Monte-Carlo 
is a useful and quite general technique. For example, in the case 
of the exponential mixture model, generation of one RV from the 
mixture distribution involves: (a) drawing one uniform (0,1) deviate, 
U; (b) drawing a RV from an exponential distribution with rate 
parameter r1, if U < a; or (c) otherwise, drawing a RV from an 
exponential distribution having rate parameter r2. Tue sum of n 
sucn random variables is, of course, the RV of interest. Run time 
for generating an estimate of G (t) by simulation is actually found 

n 
to be somewhat less tnan that indicated by equation (13) for sums 

i*X* of uniform RVs, due to a different choice of points in the domain 
/vjS of the c.d.f. at which the distribution Is evaluated. The particular 
"";£ numerical example, introduced in paragraph 11, is used to compare 

a Monte-Carlo estimate with a theoretical estimate and with a Normal 
approximation of G (t). Results for two values of n are displayed 

n 
in Table 6. Tne theoretical estimate is obtained by formula eval- 
uation for n z  3, and is obtained by Bellman*s numerical inversion 
method (to be discussed), for n = 15. For this problem the max abs- 
olute error in Bellman's method is quite small—typically < 0.001— 
making mis a good theoretical estimate. Exponential rate parameters 
are scaled so that the mean of the sum is unity for both values of 
n. The effect of the time scaling makes the variance of the sum 
inversely proportional to n. Thus, the standard deviation of the 
sum is 1.U158 for n=3» and is 0.6332 for n=1$» In this example. 
Note that tne Normal approximation is quite poor at low quantiles, 
even for n as large as 15. Also note that the Monte-Carlo estimate 
Is quite good for 20,000 replications. Tne max abs error is nearly 
0.006, and the RMS error is about 0.003 for one random number stream. 

10 
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TABLE 6 
SEVERAL APPROXIMATIONS OF THE C.D.F. OF THE SUM OF N RV'S 
FROM A TWO-COMPONENT EXPONENTIAL MIXTURE PROB DISTRIBUTION 

N " 3~~ "N "15 

Sum Theory Monte Norm Theory Monte Norm 
Value Eval'n Carlo Approx Eval'n Carlo Approx 

0.0053 0555P 0.0000 0.^412 0.0000 ""öfooöo" ""OSST" 
0.0281 0.0044 0.0043 0.2462 0.0000 0.0000 0.0624 

0.0695 0.0432 0.0438 0.2555 0.0002 0.0000 0.0709 
0.1304 0.1577 0.1580 0.2696 0.0027 0.0030 0.0848 
0.2120 0.3256 0.3292 0.2889 0.0371 0.0336 0.1067 
0.3161 0.4740 0.4796 0.3145 0.1070 0.1036 0.1400 
0.4450 0.5668 0.5696 0.3475 0.1956 0.1938 0.1904 
0.6024 0.6218 0.6259 0.3894 0.3109 0.3088 0.2650 
0.7930 0.6646 0.6676 0.4419 0.4473 0.4478 0.3718 

1.0239 0.7073 0.7123 0.5067 0.5948 0.5929 0.5150 
1.3057 0.7519 0.7542 0.5855 0.7360 0.7330 0.6854 
1.6552 0.7981 0.7996 0.6782 0.8545 0.8571 0.8496 
2.1013 0.8451 0.8473 0.7817 0.9370 0.9381 0.9590 

2.7003 0.8918 0,8949 0.8851 0.9817 0.9811 0.9964 

3.5859 0.9367 0.9394 0.9661 0.9974 0.9974 1.0000 
5.2401 0.9771 0.9764 0.9986 1.0000 1.0000 1.0000 

RMS errors In the Monte-Carlo c.d.f. estimate seem to vary inversely 
as the square root of the sample size (S), over the range from 5 to 20 
thousand replications, and do not vary statistically with the order 
(N) of the convolution. Typical RMS errors  for this example over thU 
.*ange in S vary from 0.002 to 0.004. An approximation for Monte-Carlo 
run time (sec) on the Prime 9955 is 

T s S N/4, (23) 

where S is given in thousands of replications, and with 2 le N le 20. 
Ran time—as opposed to c.p.u. time—is dependent on the number of 
other users sharing the couputer and upon the nature of their Jobs. 
The value of T given here is representative of the active part of a 
work day. 

13. Bellman's Metnod 

A numerical method is given in Ref la by Bellman for inverting 
Laplace transforms. Derivation of the method proceeds from the 
definition of the Laplace transform of an analytic function F(t): 

F«(s) s IntegraKO.inf): exp(-st) F(t) dt. (24) 

Tne variable of integration is changed to x via the transformition 

t(x) = In (2/(x ♦ 1)). (25) 

11 
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Then, the real variable x is defined on (-1,1).    Now, the trans- 
form variable, s,   is replaced with a discrete real variable c k, 
with c   constant and k integer,   1 le k le n,    That is,  the transform 
is evaluated   at discrete, evenly spaced points on the real line. 
The variable   of integration is also discretized c.t m points, x(j), 
1   le j   lem.     Tnus, the integration operation is replaced by a 
summation.    Gaussian quadrature is chosen as the mean of evaluat- 
ing the integral.     The x{j) are chosen as the points of the 
independent   variable in an rath order quadrature.    Notationally, let 

g(J) = F(t(x(j))), i =  1,  2. m.  (26) 

The weight function [1] for gaussian quadrature is denoted by w(j), 
for 1   le j le m.     With this notation, equation (24) becomes 

ck-1 
F*(ck) =   Sum over j  (1,m):    0.5 w(j)((x(jM)/2)        g(j),    (27) 

for k   s 1, 2, ..., m.    This equation is seen to be a matrix 
equation, which can be written compactly as 

F» = A g (28a) 

where  Ftt and g are is-component column vectors and where a 

typical element a     of the A matrix is 

ck-1 
a      : 0.5 w(j) Ux(jM)/2) 

Equation (28) is solved for g .    Then, a points of F(t) are 

(28b) 

obtained fron (26), with associated values of the independent 
variable, t, obtained fron (25)*    For the best accuracy for 
the c.d.f. on several sample problems using Bellman's method, 
It is  found   that  the value of the constant c should be unity 
and that the problem scale parameters should be adjusted so 
that the mean value of the sum (t) is approximately unity. 
(If necessary, rescaiing t can be done following the solution 
of (28), In  order to preserve original units of the independent 
variable.)     It Is found that the matrix A becomes progressively 
clojer to being singular as m increases.    For double-precision 
arithmetic on the Prime 9955» it is found that truncation error 
limits the maximum value of m to about 16.    However, these 16 
points of F(t) are calculated quite rapidly and accurately.    For 
example, the RMS  error for 3 convolutions of an exponential is 
about   0.000004, and the RMS error for 3 convolutions of the above 
exponential   mixture is about 0.00027.    Thus, when the Laplace 
transform of a distribution of interest is easily and accurately 
calculated»   Bellman'j method Is the method of choice. 

D"I"The'rfefgnts, wtj), and the points, x(J), for «nth order gaussian 
quadrature are listed In Handbook of Mathematical Functions, 

AMS V>   (1966), on page 916, for values of m from 2 to 96. 

12 
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14. Convolutions of a Two-Parameter Weibull Distribution 

Analytic methods and/or Bellman's inverse Laplace transform are 
not well suited to obtain convolutions of certain types of prob- 
ability distributions. Examples are:  (a) a distribution with 
a threshold parameter and c*i upper truncation limit, and (b) a 
distribution whose Laplace transform is difficult to express or to 
evaluate accurately. One probability distribution of practical [1] 
interest which suffers from the last difficulty is the two-parameter 
Weibull function, whose c.d.f. is given as 

F(x) z 1 - exp( -(x/a) ) , 0 le x < inf, (29) 

with scale parameter a and shape parameter b. 
Altho the transform can be expressed as an error function of s, 
the result is difficult to evaluate with accuracy sufficient for 
inversion via Bellman's method. Further, closed-form expressions 
for the n-fold convolution of (29) become quite complicated for 
n large. The closed-form expression for n = 2, taken from Ref 1c, 
for the special case in which the shape parameter, b, = 2, is 

F (t) = 1 - exp(-z ) - sqrt(pi/2) z (N(z) - N(-z)), 

t 

(30a) 

where N(z) is the standard Normal integral with argument z, and 
with 

z z  t/a , (30b) 

k  general formula which approximates the n-fold convolution of 
a two-parameter Weibull distribution was derived by Leonard 
Johnson [2]. The LJ approximation Is an Erlang distribution in 
the argument u, where 

u ; (pt/a) . (3D 

Tne parameter p is chosen so that the mean of the approximating 
distribution matches its counterpart in ths convolution distribution. 

p z  gamma(n ♦ 1/b)/gamma(1 ♦ 1/b)/n! , (32) 

with complete gamma function gamma(argument), 

rn™fh«~twöTpJraaeter Weibull distribution has proved to be 

a good model for the life distribution of components or 
systems subject to fatigue failure. For this reason it is 
used extensively in the automotive industry. See Ref 1c. 

[2] Johnson, L. GMR Reliability Manual, GMR-302, 

General Motors Research Labs, 1960. 
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m 

U 

I 

Thus, the LJ approximation for the n-fold convolution c.d.f. is 
i 

F (t) = 1 - exp(-u) Sum over i (0,n-1):  u /i! . (33) 
t 

From equations (31,32,33) it is seen that the LJ approximation 
is exact for n = 1. To see how the error of approximation grows 
with the order of convolution, consider the following numerical 
example. Let the scale parameter, a, = 6 and the shape parameter, 
b, = 2. To compare the LJ approximation with other methods, this 
problem is also solved using these other methods:  (a) discrete 
numerical convolution, using 1028 points on a domain that comprises 
the 0th to the 99.97th percentiles, (b) Normal approximation, and 
(c) Monte-Carlo simulation with a sample 3ize of 20,000 replications. 
The RMS error, over 20 equi-spaced points, for each of these methods 
is shown in Table 7. The error for the discrete-numerical (DN) 
convolution is shown for t\ ^ 2,  since an analytic expression exists 
as a check, in this instance. Since this error is relatively quite 
3mall, the DN solution is used to evaluate the c.d.f. errors for other 
values of n. As expected, the Normal approximation decreases with n. 
By contrast, the LJ approx error increases with n. For n greater 
than or equal to 7, the Normal approximation has a smaller RMS error 
tnan the LJ approximation, and hence is preferred to LJ there. 
RMS errors  of the Monte-Carlo (MC) method are relatively independent 
of convolution order. The values given here are the average produced 
by two random number streams. 

TABLE 7 
RMS ERRORS IN THE C.D.F. OF THE SUM OF N IDENTICAL 
TWO-PARAMETER WEIBULL RVS PRODUCED BY SEVERAL METHODS 

Convol'n Method of Calculation 
Order (N) DN LJ NA MC [1] 

1 0.0000 0.0000 0.0194 0.0013 
2 0.0004 0.0028 0.0145 0.0024 

3 0.0 [2] 0.0036 0.0104 0.0022 
a 0.0 0.00U1 0.0081 0.0026 

5 0.0 0.0045 0.0067 0.0026 
6 0.0 0.0049 0.0060 0.0028 
7 0.0 0.0054 0.0054 0.0036 

[1] Average value of the error over two random number streams. 
[2]    Value of the discrete numerical error is not evaluated for 

n > 2, but is considered relatively small versus other errors. 

is. Run Time Comparisons 

«(i^reas, the discrete numerical method Is quite accurate, and Is 
rensonubly fast for t\ = 2t  run time for this method increases as a 
power function of n - 2, with a power of about 1.25. Thus, for a 
constant density of 10?4 points on the domain of the convolution 
c.d.f., an approximate run time (sec) is given by 

14 
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1.25 
T = 40 (n-2)    . (34) 

For n = 2 only 20 points of the numerical convolution are evaluated. 
For this reason run tine is a fraction of a second for n = 2, whereas 
for larger values of n, the maximum number of points (1024) are calc- 
ulated for each of the convolutions except the last (nth). It is 
emphasized that run time for any method strongly depends upon the 
background activity of the (time-shared) computer. Equation (34) gives 
nearly the maximum time experienced. Minimum run times are approx- 
imately haLf of maximum. The form of equation (34) suggests that 
computational overhead, e.g. paging, increases faster than n does. 
When n is 3t the Monte-Carlo run time for 20,000 replications is 
about the same as the run time for the DN method. However, for 
higher-order convolutions, MC is faster. For example, for n = 4, 
DN requires 5031 more time to execute than MC. For n = 5f DN 
requires 75% more time to r\m  than MC, i.e., the ratio of run times is 
about 1.75. For n = 8, this ratio is 2.6. Thus, if one is satisfied 
with an RMS error less than 0.3$. Monte-Carlo would be the preferred 
of these two methods, for n > 3. Considering the errors of the LJ 
and NA methods, these are not very attractive unless execution time 
is a major consideration. If minimum run time is a primary consider- 
ation for this type of problem, a hybrid method might be used in which 
DN is used for n < 4, LJ used for 4 le n < 7, and NA used for n ge 7. 
The computer source program (INT.TEST) used in making the comparisons 
in Table 7 is found in Annex E. 

16. Fourier Transform Method 

As noted above (p. 3» Pgf. 5)» the product of an integral transform 
of each of two functions corresponds to the transform of the convol- 
ution of the functions. This theorem has already been exploited in 
connection with the Laplace transform. Tnls paragraph 13 concerned 
with an application of this theorem using the Fourier transform. 
An Important and practical Fourier transform method uses an aigoritnm 
for calculating the finite Fourier transform (or Its inverse) due to 
Cooley and Tukey, and called the fast Fourier transform or FFT [l]. 
The speedy execution of the FFT makes practical the following method. 
Two density functions are eacn evaluated at a particular number of 
equi-spaced points on their domains. Tnese data vectors are input to 
the FFT, which yields the complex-valued transforms. These transforms 
are multiplied (observing the rules of complex arithmetic) to obtain 
the transform of the convolution density. Finally, the inverse FFT is 
performed on this function to yield the required density. In the 
computer program for performing these operations, found in Annex E, a 
function f(x) is represented in complex form by a set of n points in 
which there are n/2 real components and n/2 imaginary components. Note 
that n must be an integer power of 2 for this purpose. These real and 
complex components are stored in adjacent storage locations in tue 
n-elcment vector. Of course, the densities being convolved have only 
real components, so that all imaginary components of f(x) are assigned 
0 value. Since the transform occurs in place, the transform of f(x), 

(1) Bioomfield, P. Fourier Analysis of Time Series: An Introduction, 

John Wiley, New York, M*, c. 1976. 
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denoted as f*(w), is also stored in the n-element vector with real and 
imaginary components of the transform also located in adjacent posi- 
tions. In general, the imaginary components of f*(w) are non-zero. 
The n/2 real frequency components of f*(w) are denoted by f*(w(k)) 
with k odd. and the n/2 imaginary frequency components are located 
in elements of the vector f*(k) with k even, (k = 1. 2, • ••• n). 
In this formulation the transform and its inverse are duals related 
by equations (35) and (36): 

f»(w(k)) = San over j (1,n): exp (-lw(k)(J-1)) f(x(J))/nf (35) 

where w(k) is the kth complex frequency with 

w(k) = 2 pi (k-1)/n , k r 1. 2, ..., n, 

and where i is the pure imaginary, sqrt(-l). 

Then, 

f(x(j)) z  Sum over k (1,n). exp (iw(k)(j-1)) f«(w(k)).   (36) 

Because of the dual nature of f(x) and f»(w), the same routine 
that produces a transform can obtain an inverse transform merely by 
specifing which type of operation is wanted via "sign" = -1 for the 
Fourier transform, and by sign * 1 for an inverse transform. The 
computer code for this algorithm is found in Annex F. 

17. A series of numerical tests were performed for accuracy and 
run time using the Fourier transform method. These are compared 
with Monte-Carlo tests using the same test functions. Probability 
densities used as test functions have the standardized Erlang and 
standardized Ueibull forms. In both instances the scale parameter 
is unity, and the function is characterized by just a shape para- 
meter. In the first numerical example with n Erlang densities 
being convolved, n-1 of these have been assigned a shape parameter 
of 2 and one is assigned shape parameter 3* RMS wror»  are shown in 
Table 8, for selected values of n, for both the Fourier transform (FFT) 
method and for a Monte-Carlo simulation with 20,000 replications. 
Tne RMS error is obtained over 16 equi-apaced points on the domain. 
The number of points (equivalentiy, real Fourier frequencies) used 
to represent the densities is also a parameter in these tests. 

TABLE 8 
RMS ERRORS IN THE CD.F. OF THE SUM OF H  RVS FROM 

T» ERLANG DISTRIBUTIONS VIA FFT AND MONTE-CARLO METHODS 

W 

X 

CÖnvof'n" 
Order  (N) 

'7ff"with' 
1024 

"# reaf YrVquencies ~~~ 
2048           4096 

"Monte"" 
Carlo (20k reps) 

2 
3 
u 
5 

10 
20 

o.odoff 
0.0016 
0.0023 
0.0031 
0.0072 
0.0136 

0.0004 
0.0008 
0.0012 
0.0016 
0.0036 
0.0082 

0.0002 
0.0004 
0.0006 
0.0008 
0.0018 
0.0041 

'676622 
0.0019 
0.0007 
0.0010 
0.0008 
0.0011 
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Using the FFT method with 2048 real frequencies, the run time for 
any value of n varies from about 9 to 18 seconds. Run time for the 
FFT method seems to be dominated by the time to obtain the Fourier 
transforms and to obtain the inverse. Because relatively little time 
Is spent in multiplying transforms, run time is essentially independ- 
ent of the convolution order for the values shown. By contrast, it is 
seen that Monte-Carlo run time (T) increases nearly linearly with N: 

T = 8(N - 2) ♦ 12. (37) 

(This approximation is quite similar to that given in equation (13) 
for evaluating the c.d.f. of the sum of N uniform random variables 
at 20 points via Monte-Carlo.) Run time for the FFT method does 
increase in a proportional manner with # of real Fourier frequencies. 
For example, when 1024 real frequencies are used run time is about 
5 seconds. This time Increases to 9 seconds for 2048 real frequencies 
and to about 20 seconds for 4096 real frequencies. Thus, in terms 
of run time, calculating the c.d.f. of the sum of 3 Erlang RVs is 
nearly the same using either Monte-Carlo, with 20,000 replications, 
or the FFT method, using 4096 real frequencies. It is noted that for 
a high-order convolution integral—say, > 10— a very large number 
of Fourier frequencies are required to make the accuracy of the FFT 
method competitive with Monte-Carlo. This point is illustrated by 
the results in Table 8. It is also demonstrated by another numerical 
example. Consider the case in which ail the distributions being 
convolved are standardized exponential. The RMS errors  for the FFT 
and Monte-Carlo methods for this case are shown in Table 9. Note 
that these results are substantially the same as those in Table 3. 

TABLE 9 
RMS ERRORS IN THE C.D.F. OF THE SUM OF N IDENTICAL 
EXPONENTIAL RVS USING FFT AND MONTE-CARLO METHODS 

Convofrn ~~~"""*"" *"   Numerical MethocT"*""" 
Order (N)       Fourier Transform   Monte Carlo 

3 
4 
5 
10 

s:m&~~  '676616 
0.00045 0.0018 
0.00064 0.0019 
0.00082 0.0022 
0.00178 0.0010 

•    The FFT method implemented here has 4096 real Fourier frequencies 
(8192 element array).    Simulation sample is 20,000 replications. 
Monte-Carlo results shown are averages for two random streams. 

18.  A t'rtrd numerical example was used to test tne accuracy of the 
Fourier  , *ansform method.    In this case a standardised «Jelbull 
density *■  tn shape parameter -. 2 is convolved n times to yield th* 
p.d.f.  for  lhe sum of n such Wei bull  RVs.    For the particular case 
in which n is 2,  the numerical error in the c.d.f.  is found by 
comparing the exact result from equation  (30) with tne FFT approx- 
imation.    The RMS error for this case is 0.00089, about three 
times that for the previous two examples.    Tnus, the numerical error 
of the Fourier transform method is rather sensitive to the form of 
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the distributions being convolved. Simpson's rule is used to calc- 
ulate mean and SD from a numerical c.d.f. for the sum of two Welbull 
RVs from the distribution with shape parameter s 2. For the case of 
4096 real Fourier frequencies, the error in the FFT mean is 0.186*. 
By contrast, the error In the mean value using the discrete numerical 
(DN) convolution with 1024 points is 0.09*. A comparable relationship 
exists in the RMS error in the c.d.f. for the DN versus the FFT method. 
RMS error in the convolution c.d.f. for this example is 0.00038, for 
DN, versus 0.00089 for FFT. By either measure of error, the DN 
method, applied on a set of 1024 points, lncurrs less than half the 
error of the FFT method, applied on a set of 4096 points. If 
accuracy of results were tne sole criterion, discrete numerical 
convolution would certainly be preferred to the FFT method. However, 
for high-order convolutions, DN is computationally expensive relative 
to FFT. For example, 5 convolutions of a Welbull distribution using 
DN with this degree of discretization takes about 160 sec. (equa- 
tion (34)). In a comparable run environment, FFT with 4096 real 
Fourier frequencies requires about SO sec for the same problem. 
Thus, the FFT method executes this problem in one third the time 
required by the DN method, given the specified density of points. 
It is noted that the maximum number of real frequencies (4096) used 
with FFT in the above examples is the maximum permitted on our Prime 
computer. The computer system limit on the number of double-precision 
words allocated to a vector is less than 16,384. If the number of 
real frequencies were doubled, to 8192, the dynamic storage required 
for both real and imaginary frequency components would be 16,384. 

19. Summary and Conclusions 

This report has surveyed several methods for calculating probability 
distributions of sums of independent random variables. Formulas for 
tne c.d.f. of the sum have been derived for several cases. These 
cases Include n random variables fromi (a) a standard uniform dist- 
ribution, (b) uniquely different uniform distributions, (c) an Erlang 
distribution, including the exponential as a special case, (d) dif- 
ferent exponential distributions, (e) two-component exponential mix- 
tures, and (f) a Welbull(2) distribution (two RVs only). The closed- 
form solutions were used to evaluate the accuracy of various numer- 
ical methods, including approximations. 

20. The sum of n RVs from some distributions have a c.d.f. which 
rapidly approaches Normality with Increasing n. Examples of this 
sort are the uniform distribution an* distributions which appear 
Normal, such as gamma with large shape parameter. However, other 
distributional forms exhibit relatively slow convergence. These 
include exponential and exponential mixture distributions. The last 
is particularly slow in converging toward Normality. For this case, 
the sum of IS RVs has a c.d.f. whose Normal approximation nas a max 
aosolute error of more than 0.08, which Is Intolerably large for most 
purposes. Generally, the c.d.f. errors of a Normal approximation 
ara larger, for a given n, if the scale (or rate-) parameters of the 
component distributions exhibit a large range than if all distributions 
are identical. 

21. It is difficult to make unqualified statements concerning the 
.superiority of any one of the numerical methods. This situa- 
tion Is due in part to the diversity of user requirements for speed 
and accuracy and, in part, to the fact that some methods are parti- 
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cularly suited to just some classes of distributions.  For example, 
Bellman's method requires that the Laplace transform of the probab- 
ility density be easily and accurately calculated. The class of gamma 
distributions and of mixtures of gamma distributions are, therefore, 
well suited to this method. Because of superior run time and accur- 
acy [1], Bellman's method is the method of choice for distributions 
in the gamma class, when certain conditions are met. These are: 
(a) the user must be satisfied with a sixteen-point characterization 
of the p.d.f. and of the cd.f., and (b) available macnine arithmetic 
can operate on a floating-point word with 48 bit mantissa and 7 bit 
(or more) exponent.  (These requirements are met on the Prime 9955 
minicomputer with double-precision arithmetic.) The last feature 
is necessary to avoid truncation error, which is critical to Bellman's 
method. In those instances where Bellman's method is inapplicable, 
discrete numerical convolution of the component distributions offers 
the greatest potential for accuracy, at a cost of run time. Where 
run time is an important consideration as well as accuracy, use of tne 
Fourier transform method with the FFT algorithm is attractive, pro- 
viding the order of convolution does not exceed about ten.  (This 
statement pre3urae3 that the max vector dimension < 16,384.) Another 
advantage of the Fourier transform method is that it is quite flexible 
with regard to distributional forms that can be handled. Of course, 
the Normal approximation is preferred in those instances where the 
form of the component distributions assures rapid convergence toward 
Normality. For distributions on a bounded domain, such as the uniform, 
relatively small RMS errors in the c.d.f. by Normal approximation are 
incurred when the order of convolution is 5 or more.  In case3 where 
accuracy is not too stringent—say, an RMS error of 0.002—Monte-Carlo 
simulation [2] is the most flexible and re3onably efficient method 
studied. A somewhat surprising finding is that Monte-Carlo is pre- 
ferred, in many cases, to discrete numerical convolution when the 
tolerable RMS error is about 0.2%  and when the number (n) of random 
variables in the sum is three or more. Monte-Carlo run time increases 
linearly with n, but the rate of increase is not as great as that for 
discrete numerical convolution. In comparing Monte-Carlo with FFT, it 
is noted that the RMS error for Monte-Carlo does not increase with n, 
as the FFT error does. When limited by computer storage to 4096 real 
frequency components, the FFT method becomes less accurate than 
Monte-Carlo for n greater than about ten. Also, time to code a given 
application for a Monte-Carlo simulation is generally ihe least of any 
method. 

nT*"Nu»erleaf "error in the c.d.f. of convolutions of tne gamma family 
have error's via Bellman's metnod of the order of 10**-5. 

[2] A Monte-Carlo sample of 20,000 replications was used for nearly 
ail numerical tests. This sample size is a practical value in 
view of these facts:  (a) run time is proportional to sample size, 
and (b) RMS error is inversely proportional to square root of tne 
sample. Halving the RMS error  would increase run time by a factor 
of 4.  For an RMS error in tne c.d.f. of much less than 0.21, tne 
required Monte-Carlo run time would make thi3 method non- 
competitive with others. 
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DISTRIBUTION 

Copies 

1 HQDA 
WASH DC 20310 

DAMO-ZA 

1 HQDA 
WASH DC 20310 

DALO-SMZ 

COMMANDER 
USAMC 
5001 EISENHOWER AVE. 
ALEXANDRIA, VA 22333-0001 
ATTN: AMCRE-IP 

AMCPA-S 
AMCDP 

DIRECTOR, US AMSAA 
ABERDEEN PG, MD 21005-5066 

1  ATTN: AMXSY-DL 
1 AMXSY-R 
1 AMXSY-MP 

COMMANDER USA 
(. ,MMUNICATI0NS AND ELECTRONICS 
COMMAND 
FT MONMOUTH, NJ 07703-5304 

1  ATTN: AMSEL-PL-SA 

COMMANDER CECOM (R&D) 
FT MONMOUTH, NJ 07703-5304 
ATTN: AMSEL-SAD 

$ 

COMMANDER USAMICOM 
REDSTONE ARSENAL, 
AL 35809-5060 
ATTN: AMSMI-DS 

COMMANDER USATACOM 
WARREN, MI 48090 
ATTN: AMSTA-V 

OFFICE OF PROJECT MGR 
CANNON ARTY WPNS,DOVER 
NJ 07801-5001 
ATTN: AMCPM-CAWS 

COMMANDER, US ARMY LOGISTICS CENTER 
FORT LEE, VA 23801 
ATTN: ATCL-S 
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COMMANDER 
DEFENSE LOGISTICS STUDIES 
INFORMATION EXCHANGE 
FORT LEE,  VA 23801 

COMMANDER 
USA LOGISTICS EVAL AGENCY 
NEW CUMBERLAND ARMY DEPOT 
NEvV CUMBERLAND,  PA  17070 

1      ATTN: DAL-LEM 

COMMANDER 
US MRSA 
LEXINGTON, KY 40511-5101 

1       ATTN: AMXMD-ER 

DIRECTOR,  US ARMY 
INVENTORY RESEARCH OFFICE 
ROOM 800, CUSTOM HOUSE 
2ND & CHESNUT STREETS 
PHILADELPHIA,  PA 19106 
ATTN: AMXM^-IRO 

COMMANDER USATECOM 
ABERDEEN PG, MD 21005-5055 
ATTN: AMSTE-SY 

12 

^J 

1 
1 
1 
1 
1 
7 
1 

DEFENCE TECHNICAL INFORMATION CENTER 
CAMERON STATION 
ALEXANDRIA,  VA 22314 

COMMANDER US ARDEC    (0) 
DOVER, NJ 07801-5001 
ATTN:    SMCAR- -LC  (D) 

-SC  (D) 
-SE (D) 
-RAA  (D) 
-MSI  (D) 

COMMANDER US AMCCOM  (R) 
ROCK IS,  IL 61299-6000 

ATTN:    AMSMC- -AS (R) 
-IR (R) 
-QA (R) 
-MA (R) 
-OP (R) 
-SA (R) 
-IMP-L  (R) 

w'. 
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DIRECTOR,   AMCCOM 
AMMO CENTER 
SAVANNA,  IL 61074 
ATTN: SARAC-DO 

COLANDER 
WATERVLIET ARSENAL 
WATERVLIET,  NY   12189-5000 

1      ATTN: AMXMC-LCB-TL 

COMMANDER 
CHEMICAL R AND D CENTER 
ABERDEEN PROVING GROUND 
(EDGEWOOD AREA), MD 21010-5423 
ATTN: AMSMC-CLJ-IA  (A) 

DIRECTOR US AMETA 
ROCK IS,  IL 61299-6000 
ATTN: AMXOM-QA 

DIRECTOR 
NAVAL POSTGRADUATE SCHOOL 
MONTEREY, CA 939*40 

1       ATTN:  DEPT OF OPERATIONS ANAL. 

1      DIRECTOR 
ADVANCED RESEARCH PROJECTS AGENCY 
1U00 WILSON BLVD 
ARLINGTON,  VA 22209 

DIRECTOR 
USA TRASANA 
WHITE SANDS MISSILE RANGE 
WHITE SANDS,  NM 88002-5502 

1      ATTN: ATAA-SL 

COMMANDER 
USA COMBINED ARMS COMBAT 
DEVELOPMENT ACTIVITY 
FT LEAVENWORTH, KS 66207 
ATTN: ATZL-CAM-M 

£>! 
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COMPUTER SOURCE PROGRAMS 

Source programs listed in Annexes A-F are written in SIMSCRIPT 2.5 
for the PRIME minicomputer. However, the source code doe3 not employ 
features peculiar to this computer. Each Annex contains a MAIN or ex- 
ecutive program and several routines and functions. At the beginning 
of each program listing are found a functional description and an I/O 
list. All utility functions and routines are included among these 
listings. Inputs to MAIN programs are read interactively, with prompt- 
ing messages displyed at the terminal. No external files are used. 
Since output is lengthy, it is necessary to set up a COMO file to 
display all of it and to obtain a permanent copy. The functions of 
the MAIN programs are summarized here: 

RUN.NFOLD.U, in Annex A, obtains the probability density and cum- 
ulative probability distribution of the n-fold convolution of a stand- 
ard uniform distribution. Approximations to the p.d.f. and c.d.f. of 
convolution based on a Normal probability function are calculated and 
printed for comparison. 

RUN.NFOLD.GU, in Annex B, calculates and prints the p.d.f. and 
c.d.f. of the sum of a set of n uniform random variables drawn from 
distributions having a common threshold parameter but with different 
domains. Normal probability approximations to the p.d.f. and c.d.f. 
are calculated and printed for comparison with exact results. The 
maximum absolute error and the RMS error are calculated for the Normal 
approximation to the c.d.f. Optionally, a Monte-Carlo simulation can 
be performed and error statistics calculated and printed. 

RUN.NFOLD.E, in Annex C, obtains the p.d.f. and c.d.f. of the 
sura of n exponential random variables. Two options are available: 
(a) all exponential random variables are from the same distribution, 
and (b) each exponential RV is from a uniquely different distribution. 
The exact c.d.f. is compared with a Normal approximation on a finite 
point set. Max ab3 and RMS errors are calculated and printed. 

LP.INV, in Annex D, obtains the p.d.f. and the c.d.f, of the 
sum of n random variables from Erlang distributions and exponential 
mixture distributions. A numerical method based upon the Laplace 
transform Is used to obtain approximate results. This method involves 
calculating the inverse transform via Bellman*s method. A closed-form 
solution to the problem is used to calculate the error in Bellman's 
method and the errors of a Normal approximation and of a Monte-Carlo 
estimate of the c.d.f. 

INT.TEST, in Annex E, tests a variety of methods for obtaining 
convolution integrals of a two-parameter Weibull distribution. Tne 
methods being compared are:  (a) evaluation of an analytic expression, 
(b) Leonard Johnson'3 approximation based on the Erlang distribution, 
(c) discrete numerical convolution, and (d) Monte-Carlo simulation. 
The max absolute error and the RMS error, over a finite set of points, 

are calculated and printed for each numerical approximation. 

TEST.CONVOLV, in Annex F, obtains convolutions of either standard- 
ized Erlang or Weibull distributions using a numerical method based un 
the finite Fourier transform. Comparisons with exact results anJ, 
optionally, with Monte-Carlo estimates are also given. 
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ANNEX A 

SIMSCRIPT SOURCE PROGRAM:  RUN.NFOLD.U 

1 
2 
3 
4 

5 

1 
2 

3 
4 
5 
6 
7 
8 
9 
10 

PREAMBLE "RUN.NFOLD.U 
NORMALLY MODE IS REAL 
DEFINE SNORM AS A REAL FUNCTION GIVEN 1 ARGUMENT 
DEFINE ERRFX AS A REAL FUNCTION GIVEN 1 ARGUMENT 
END •■PREAMBLE 

MAIN "RUN.NFOLD.U 

Driver program to obtain the probability density and cum probability 
of the N-fold convolution of a standard, uniform dist. PDFs and CDFs 
of the Normal dist having same mean and SD is printed for comparison. 

, • 20 
R^ 21 

22 
MO>A 23 
{MVV • 24 

25 
26 
27 
28 
29 

gjj? 30 

M 31 w PROBABILITY 

p> •♦ 

füfs Indep         I 
2K Variable    i 

tat 
—sr— 

39 

$? 40 

PpS 41 
42 

HÜ «»3 
44 
45 
46 

DEFINE I,N AS INTEGER VARIABLES 
DEFINE ANSWER AS A TEXT VARIABLE 

'LO'SKIP 1 LINE 
PRINT 4 LINES THUS 

This program calculates and prints the p.d.f. and c.d.f of the N-fold 
convolution of a standard, (0-1) uniform probability distribution. User 
inputs are the Integer N and the upper probability limit (PMAX) to terminate. 

15    PRINT 1 LINE THUS 
INPUT THE VALUE OF N, 

17 READ N 
18 PRINT 1 LINE THUS 
INPUT THE (MAX) VALUE OF THE CDF TO TERMINATE CALCULATIONS. 

READ PMAX 
LET AVGrN/2.0 
LET VAR=N/12.0 
LET C0ND=1.0/SQRT.F(2.0»PI.C»VAR) "FOR NORMAL DENSITY COEF 
LET STDVsSQRT.F(VAR) 
LET LIMrAVG ♦ 3.0»STDV 
LET LIM=MIN.F(REAL.F(N), LIM) 
LET DELTsLIM/20.0 
LET LINES.V=9999 
SKIP 2 LINES 
PRINT 6 LINES WITH N 
THUS 

I  DISTRIBUTION OF A «»-FOLD CONVOLUTION OF A STD UNIFORM DISTRIBUTION 

N-fold Convolution 
p.d.f.    c.d.f. 

Normal Prob Distrib 
p.d.f.   c.d.f. 

Difference 
c.d.f. 

LET MAEsO.O 
LET RMS=0.0 
FOR 1=1 TO 20 DO 

LET T=I»DELT 
CALL NFOLD.U (N,T) YIELDING PDF.CDF 
LET ARG=(T-AVG)/STDV 
LET NPDF=COND»EXP.F(-0.5§ARG«»2) 
LET NCDF=SNORM(ARG) 
LET DIFF=CDF-NCDF 
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47 LET MAE=MAX.F(MAE,ABS.F(DIFF)) 
48 ADD DIFF»»2 TO RMS 
49 PRINT 1 LINE WITH T, PDF, CDF, NPDF, NCDF, DIFF 
50 THUS 

•».•»ft ft.ft»*»«»          ft.ftftftftft»                      ft.*»»**»          ft.ftftftftftft                   *«»**•» 

52 IF CDF GE PMAX 
53 GO TO L1 
54 OTHERWISE 
55 LOOP  "OVER I 
56 VL11PRINT 2 LINES THUS 

59 LET RMS=SQRT.F(0.05»RMS) 
60 PRINT 2 LINES WITH MAE,RMS 
61 THUS 

Max ab3 error in Normal approximation of c.d.f. 
RMS error in Normal approximation of c.d.f. _ 

64     PRINT 1 LINE THUS 
DO YOU HAVE OTHER VALUES OF N? (YES OR NO). 

6b    READ ANSWER 
67    IF SUBSTR.F(ANSWER,1,1) = MYrt 

6*        GO TO LO 
69 OTHERWISE 
70 STOP 
71 END "MAIN 

i 
2 
3 
4 
5 
6 
7 
9 
) 

10 
11 
12 
13 
N 

**» 
16 
17 
14 
1') 
20 
21 
22 
23 
24 
?•, 
?o 
27 
23 
>* 
30 
?1 

ROUTINE NF0LD.U JIVEN N, T YIELDING PDF, CDF 

Routine calculates the probability density function (PDF) and the cum- 
ulative distribution function (CDF) of the N-fold convolution of a 
standard uniform (0,1) probability dist. Real-valued argument is T. 

With the following notation for the CDF argument tt F(n,t), with 
the combination of n things taken i at a time denoted as C(n,i), 
and with the unit step function at x denoted by u(t-x), 

i n 
F(n,t) = Sum (i=0 to n): (-1) C(n,i) u(t-i) (t-i) /n! 

DEFINE I,N AS INTEGER VARIABLES 
IF T LS 0.0 

L5T PDF=0.0 
LST CDF=0.0 
RETURN 

OTHERWISE 
IF T GE REAL.F(N) 

LET PDF=0.0 
LET CDFsl.O 
RETURN 

OTHERWISE 
LET COM3IN=N 
LET FACT=1.0 
FOR 1=2 TO N, LET FACT=FACT»I ,fFOa N FACTORIAL 
Lr.T PDF=T*a(N-l) 
LET CDF=PDF»T 
LET SIGNr -1.0 
F0;i 1 = 1 TO H  DO 
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32 
33 
34 
35 
36 
37 
38 

39 
40 
41 
42 
43 
44 

45 

1 
2 
3 
4 

5 
6 
7 
8 

9 
10 
11 
12 
13 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

13 
14 

15 
16 
17 
18 
19 
20 
21 
2Z 
23 

LET TIrl 
IF T LE TI 

GO TO L1 
OTHERWISE 
LET TERM=SIGN»COMBIN»(T-TI)«•(N-1) 
ADD TERM TO PDF 
ADD TERM*(T-TI) TO CDF 
LET SIGN = -SIGN 
LET COMBIN=COMBIN»(N-I)/(I+1) 

LOOP "OVER I 
'LTLET PDF=PDF»N/FACT 

LET CDF=CDF/FACT 
RETURN 

END "NFOLD.U 

FUNCTION SNORM(Z) 

11 ROUTINE CALCULATES THE STANDARD NORMAL PROBABILITY INTEGRAL. 
"REF: APPROXIMATION OBTAINED FROM AMS 55, ABRAMOWITZ AND STEGUN. 

IF ABS.F(Z) > 7.0 
GO TO L2 

OTHERWISE 

LET P=0.5*SIGN.F(Z)»0.5*ERRFX(ABS.F(Z)/SQRT.F(2.0)) 
RETURN WITH P 

lL2,LET P=0.5*SIGN.F(Z)*0.5 
RETURN WITH P 

END "OF SNORM 

FUNCTION ERRFX(X) 

ROUTINE CALCULATES THE ERROR FUNCTION. THIS FUNCTION IS CALLED 3* 
SNORM(Z). 
REFERENCES AMS 55, 'HANDBOOK OF MATHEMATICAL FUNCTIONS', NAT. BUREAU 
OF STANDARDS, NOV. 1970, (P. 299). 

LET S=SIGN.F(X) 
LET X=ABS.F(X) 
IF X<0.00000000001 

RETURN WITH 0.0 
OTHERWISE 
IF X>10.0 

RETURN WITH S 
OTHERWISE 
LET T=1.0/(1.0*0.3275911»X) 
LET SUM=1.06140543»T 
LET SUM=(SUM-1.45315203)#T 
LET SUM=(SUM*1.42141374)»T 
LET SUM=(3UM-0.284496736)»T 
LET SUM=(SUM*0.254829592)n 
RETURN WITH S»(1.0-SUM«EXP.F(-X«X)) 

END "OF FUNCTION ERRFX 

fit 
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14 
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18 

ANNEX B 

SIMSCRIPT SOURCE PROGRAM:  RUN.NFOLD.GÜ 

PREAMBLE "RUN.NFOLD.GÜ 
NORMALLY MODE IS REAL 
DEFINE SNORM AS A REAL FUNCTION GIVEN 1 ARGUMENT 
DEFINE ERRFX AS A REAL FUNCTION GIVEN 1 ARGUMENT 
DEFINE ICOMBIN AS AN INTEGER FUNCTION GIVEN 2 ARGUMENTS 
END "PREAMBLE 

MAIN "RUN.NFOLD.GÜ 

Driver program to obtain the probability density and cum prob of the 
N-fold convolution of a set of uniform distributions having a common 
lower domain limit (CD and having different upper domain limits. 
PDFs & CDFs of Normal dist having same avg and s.d. are also printed. 

DEFINE FLAGM,I,J,K,M,N,NCELLS,NREPS,SEED AS INTEGER VARIABLES 
DEFINE ANSWER AS A TEXT VARIABLE 
DEFINE NCV,HISTV AS INTEGER, 1-DIMENSIONAL ARRAYS 
DEFINE AV,XV,CDFV AS REAL, 1-DIMENSIONAL ARRAYS 
DEFINE SM AS A REAL, 2-DIMENSIONAL ARRAY 
LET LINES.Vr9999 
LET RT12=SQRT.F(12.0) 
LET NCELLS=10 
RESERVE CDFV(») AS NCELLS 

•LCTSKIP 1 LINE 
PRINT 7 LINES THUS 

This program calculates and prints the p.d.f. and c.d.f of the N-fold con- 
volution of a set of N uniform probability distributions, each of which is 
defined on its own, possibly, unique interval—CL to upper limit. Inputs are 
Integer N, upper c.d.f. value to terminate calculation (PMAX), common lower 
argument value (CL), and N upper limits of the uniform ranges. Max value of N 
permitted by the program Is 20. Optionally, a Monte-Carlo histogram can be 
obtained. 

26 SKIP 2 LINES 
27 PRINT 1 LINE THUS 
INPUT THE VALUE OF N. 

29 
30 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

READ N 
LET N=MIN.F(N,20) 
RESERVE AV(») AS N 
RESERVE NCV(«) AS N 
LET NCV(1)=N 
LET NCV(N)=1 
FOR K=2 TO N-l, LET NCV(K)=ICOMBIN(N,K) 

"RESERVE MATRIX OF N-TUPLE SUMS OF AV(*). 

RESERVE SMC*,») AS N BY • 
FOR 1=1 TO N, RESERVE SM(I,-) AS NCV(I) 
PRINT 1 LINE THUS 

INPUT THE (MAX) VALUE OF THE CONVOLUTION CDF TO TERMINATE CALCULATIONS. 
43 READ PMAX 
44 PRINT 1 LINE THUS 
INPUT THE COMMON VALUE OF THE ARGUMENT LOWER LIMIT (OR THRESHOLD). 

46     READ CL 
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m   -   

ttj     i<7 LET AVGrO.O 
m            Md LET VAR=0.0 
M                   **9 LET ACON=1.0 

M              50 FOR 1=1 TO N DO 
M       51 PRINT 1 LINE WITH I 
8a     52 THUS 
H         INPUT THE UPPER LIMIT OF THE ARGUMENT RANGE FOR UNIFORM VARIABLE # »». 
1        54 READ AU 
V»       55 IF AU LE CL 

«       56 PRINT 1 LINE WITH AUfCL 
SB       57 THUS 
M     INPUT 
U       59 

ppana   MDDPR ARf. I TM     TS LESS THAN l.nURR    

STOP 
ff       60 OTHERWISE 
■8       61 LET AV(I)=AU-CL 

»       62 LET ACONrACON«AV(I) 
«       63 ADD 0.5*AV(I) TO AVG 
N       64 ADD AV(I)»»2/12.0 TO VAR 
1       65 LOOP "OVER (I) UNIFORM COMPONENTS 
1       66 LET CONDs1.0/SQRT.F(2.0»PI.C«VAR) "FOR NORMAL DENSITY COEF 
&       67 LET STDVsSQRT.F(VAR) 
$       68 LET LIMaAVG ♦ 3.0»STDV 
^       6q LET LIMsMIN.FCLIM, 2.0»AVG) 
&       70 LET DELTsLIM/20.0 

n     71 PRINT 1 LINE THUS 

B         °° YOU WANT A MONTE-CARLO SIMULATION? (YES OR NO). 
S        73 READ ANSWER 
W        74 IF SUBSTR.F(ANSWER,1,1) - HYH 

*        75 LET FLAGMs! 
£        76 PRINT 1 LINE THUS 
£         INPUT THE INDEX (1 TO 9) OF THE RANDOM NUMBER SEED. 
•       78 READ SEED 
S        79 PRINT 1 LINE THUS 
K5         INPUT THE NUMBER OF REPLICATIONS WANTED. 

K      81 READ NREPS 

«      ** PRINT 1 LINE WITH NREPS 
1       83 THUS 
4R     A Monte-Carlo slouUtlon of ••■•• replications has begun. 
3       85 LET NCELLSslO 
$       86 LET DELXa2.0*DELT 
}                   87 RESERVE XV(«) AS NCELLS 
5%       88 RESERVE HISTVC») AS NCELLS 

■       8* FOR Ksl TO NCELLS, LET HISTVU)*0 
PJ        90 LET AVOX«0.0 
£       91 LET VARXsO.O 
f:                92 FOR X:1 TO NCELLS, LET XV(K)»N»CL*K«DELX 
£       93 ? t 

£       94 "SIMULATE FOR NREPS REPLICATIONS. 

N        95 
• i 

"       96 FOR 1st TO NREPS DO 
2        37 LET SUM*0.0 
:•:•           98 FOR J*1 TO N DO 
•:•:           99 ADD UNIFORM.F(CL,CL*AV(J),SEED) TO SUM 
»        loo LOOP "OVER J 
ä       101 ADD SUM TO AVGX 
"       102 ADD SUM««2 TO VARX 
£       103 i • 
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104 ••DETERMINE CELL OF HISTOGRAM AND ADD 
i         105 f i 

i         106 FOR K=1 TO NCELLS DO 
|         107 IF SUM LE XV(K) 
1         108 ADD 1 TO HISTV(K) 
!         109 GO TO K2 
j         110 OTHERWISE 

111 LOOP "OVER K 
!         112 •K21   LOOP "OVER (I) REPLICATIONS 

!        113 LET AVGX=AVGX/NREPS 
i          114 LET VARX=VARX/NREPS-AVGX«»2 
!        115 PRINT 1 LINE THUS 
I       Monte-* Carlo simulation has been completed. 

117 OTHERWISE 
I        118 LET FLAGM=0 
!        119 ALWAYS 
i         120 11 

!         121 "FILL RAGGED TABLE SM WITH N-TUPLE S 
1         122 11 

1         123 CALL STÜPLES (N, AV(»), SM(*,»)) 
■         124 SKIP 2 LINES 
:           125 PRINT 7 LINES WITH N 
'         126 THUS 

(1) 
PROB DISTRIBUTION OF A "-FOLD CONVOLUTION OF A SET OF UNIFORM FUNCTIONS 

Indep ~" N-toli Convolution 
Variable p.d.f.    c.d.f. 

TnFf 
c.d.f. 

Normal Prob Distrib erence 
p.d.f. c.d.f. 

134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 

145 
146 
147 
148 
149 
150 
151 

153 
154 
155 
156 
157 Li 

LET RMS.DIFFsO.O 
LET MAE.DIFFsO.O 
LET K=0 "TO COUNT PAIRS 
FOR 1*1 TO 20 DO 

LET TsI«DELT 
CALL NFOLD.GU (N, ACONf SMC»,«), T) YIELDING PDF, CDF 
IF M0D.F(I,2)=0 

ADD 1 TO K 
LET CDFV(K)*CDF 

ALWAYS 
LET ARG=(T-AVG)/STDV 
LET NPDFrCOND^EXP.FC-O^ARG«^) 
LET NCDFsSNORM(ARG) 
LET DIFF=NCDF-CDF 
ADD DIFF**2 TO RMS.DIFF 
LET MAE.DIFFrMAX.F(MAE.DIFF,ABS.F(DIFF)) 
PRINT 1 LINE WITH T*N«CL, PDF, CDF, NPDF, NCDF, DIFF 
THUS 

•.•••••a  •,•■••••     •.»••»••  •.••••••     •.••••■■ 
IF CDF GE PMAX 

GO TO LI 
OTHERWISE 

LOOP "OVER I 
•PRINT 2 LINES THUS 

160 LET RMS.DIFF=SgRT.F(0.05#RMS.DIFF) 
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161 PRINT 2 LINES WITH MAE.DIFF,RMS.DIFF 
162 THUS 

Max aba error between c.d.f. and the Normal c.d.f. approx 
RMS difference between c.d.f. and the Normal c.d.f. approx 

•.«*«««• 
»*•»»«« 

165 
166 
Mean 
(1) 

170 
171 
172 

174 
175 
176 
177 
178 
179 
180 

PRINT 3 LINES WITH AVG+N*CL,STDV 
THUS 

value of the convolution is •#•••.•■••• with std dev **■ 
Mean and Std Dev of each of the uniform distributions: 
Component     Mean Value    Std Deviation 

FOR 1=1 TO N DO 
PRINT 1 LINE WITH I, CL*0.5*AV(I), AV(I)/RT12 
THUS 

»« 

LOOP "OVER (I) UNIFORM DISTRIBUTIONS 
SKIP 2 LINES 
IF FLAGM NE 1 

GO TO K3 
OTHERWISE 
PRINT 7 LINES WITH N.NREPS 
THUS 

MONTE-CARLO SAMPLE DISTRIBUTION OF THE SUM OF •» UNIFORM RANDOM VARIABLES 

NUMBER OF REPLICATIONS: 

Indep    Histo     Sample     Sample     Diff Versus 
Variable  Frequency  p.d.f.     c.d.f.     analytic c.d.f. 

TBT 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 

200 
201 

LET XCDKsO.U  
LET RMS.DIFF=0.0 
LET M*0 
FOR K*1 TO NCELLS, ADD HISTV(K) TO M 
FOR Ks1 TO NCELLS DO 

LET XPDF*HISTV(K)/M 
LET XCDFsXCDF+XPDF 
LET DIFFrXCDF-CDFV(K) 
ADD DIFF*»2 TO RMS.DIFF 
PRINT 1 LINE WITH XVOC),HISTV(K),XPDF,XCDF,DIFF 
THUS 

I«* I.IMII ■.••••• •.•••••• 

LOOP "OVER (K) HISTO CELLS 
PRINT 2 LINES THUS 

204 LET RMS.DIFF=SQRT.F(RMS.DIFF/REAL.F(NCBLLS)) 
205 PRINT 1 LINE WITH RMS.DIFF 
206 THUS 

RMS difference: sample c.d.f. - analytic c.d.f.  •.••§••• 
208 LET SDXrSQRT.F(VARX) 
209 LET SEX»SDX/SQRT.F(REAL.F(NREPS>) 
210 PRINT 3 LINES WITH AVGX,SDX9AVGX-1.96«SEX,AVGX*1.96»SEX 
211 THUS 

Sample Average Value ••■••«•••••   Sample Standard Deviation •••••.••••• 
95 percent confidence Interval in mean: •••••.•••••, ••••»,•#••• 

215 ,K3,RBLEASE NCV<*> 
216 RELEASE AV(») 
217 RELEASE SM(»t«) 

B-4 

^i^>&^>^^ 



218     PRINT 1 LINE THUS 
DO YOU HAVE OTHER PROBLEMS OF THIS KIND? 

220 READ ANSWER 
221 IF SUBSTR.F(ANSWER,1,1) = "Y" 
ZZZ GO TO LO 
223 OTHERWISE 
224 STOP 
225 END "MAIN 

(YES OR NO). 

M 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
ZZ 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
3* 
35 
36 
37 
38 
39 
40 
41 
42 
13 
44 
45 
46 
47 
48 

ROUTINE NFOLD.GU GIVEN N, ACON, SM, T YIELDING PL/, CDF 

Routine calculates the prob density function (PDF) and the cum- 
ulative dist function (CDF) of the N-fold convolution of a set of 
N unique uniform distributions. The range of the i th distribution 
is (0, a(i)). The product, over N, of the a(i) is the argument ACON. 
All n-tuple sums of elements a(i) are entered in the ragged table SM, 
where the k th row and j th column element is the j th k-tuple sum. 
E.g., the first row of SM contains a(j). Real-valued argument is T. 
Num of combinations of N objects taken K at a time is DIM.F(SM(K,*)). 
With the following notation for the CDF, with argument tt F(n,t), 
with the j th k-tuple sum for the n th convolution denoted by 

S (n) , 
VcJ 

and with the unit step function at x denoted by u(t-x), 

F(n,t) s (l/AC0N/n!)(t  ♦ Sum over k*1 to n and j=1 to C(n,k): 

(-1) u(t - S (n))(t - 
Jk 

n 
S (n)) ), 
jk 

where C(n,k) is the # combinations of n things taken k at a time. 

DEFINE I,J,K,N AS INTEGER VARIABLES 
DEFINE SM AS A REAL, 2-DIMENSIONAL ARRAY 
IF T LE 0.0 

LET PDFsO.O 
LET CDFsO.O 
RETURN 

OTHERWISE 
IF T GE SM(N,1) 

LET PDFsO.O 
LET CDFrl.O 
RETURN 

OTHERWISE 
LET FACT*1.0 
FOR UZ  TO N, LET FACTsFACT«I **FOR N FACTORIAL 
LET PDF=T«»(N-1> 
LET CDFsPOF'T 
LET SIGN* 1.0 
FOR K*1 TO N DO 

LET SIGN* -SIGN 
FOR J=1 TO DIM.FCSMtt,»)) DO 

IF T > SM(K,J) 
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M 

& 

& 

49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

1 
2 
3 
u 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

1 
2 
3 
u 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

NUMBER 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

END 

LET TARGsT-SM(K,J) 
LET INCRsSIGN*TARG»»N 
ADD INCR/TARG TO PDF 
ADD INCR TO CDF 

ALWAYS 
LOOP "OVER (J) COLUMNS 

LOOP "OVER (K) ROWS 
LET PDFsPDF«N/FACT/ACON 
LET CDFrCDF/FACT/ACON 
RETURN 
"NFOLD.GU 

FUNCTION ICOMBIN (Nt K) 
11 

••INTEGER-VALUED # OF COMBINATIONS OF N OBJECTS TAKEN K AT A TIME. 
t» 

DEFINE C,I,K,N AS INTEGER VARIABLES 
IF K « 0 

RETURN WITH 1 
OTHERWISE 
LET C*1 
FOR 1*1 TO K DO 

LET C*C»(N-I*1)/I 
LOOP "OVER I 
RETURN WITH C 

END "FUNCTION ICOMBIN 

ROUTINE STUPLES (Nt AV, SM) 
t« 

Routine fills the elements of « ragged table, SM» having N rowe. 
The k,J element of thla table consists of the J th k-tuple sum of the 
eleacnts of the vector AV. Routine Is called by NFOLD.GU. 

DEFINE 1,11,12,13,14,15,16,17,18,19,110,111,112,113,114.115,116t 
I17,I18,I19,J,K,N AS INTEGER VARIABLES 
DEFINE JV AS AN INTEGER, 1-DIMENSIONAL ARRAY 
DEFINE AV AS A REAL, 1-DIMENSIONAL ARRAY 
DEFINE SM AS A REAL, 2-DIMENSIONAL ARRAY 
IF N > 20 

PRINT 1 LINE WITH N 
THUS 

OF VARIABLES U ••) EXCEEDS THE CAPACITY OF 20 IN ROUTINE STUPLES« 
STOP 

OTHERWISE 
RESERVE JV(») AS N "LOCALLY 
LET SM(N,1)*0.0 
FOR Jtl TO N, ADD AVtJ) TO SM(N.l) 
FOR list TO N DO 

LET SltAV(II) 
LET SM(1,I1)sS1 
IF N < 3 
GO TO LI 

OTHERWISE "gen 2 tuples 
FOR 12=11*1 TO N DO 

ADD 1 TO JVC?) 
LET S2sSWAV(I2) 
LET SMC2,JV(2))*S2 
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to 

»>. 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

45 
46 
47 
48 
49 
50 
51 
52 

53 
54 

55 
56 
57 
58 
59 
60 
61 
62 
63 
64 

65 
66 
67 
68 
69 
70 
71 
72 
73 
74 

75 
76 
77 
78 

79 
80 
81 
82 

83 
84 

85 
86 
87 

IF N < 4 
GO TO L2 

OTHERWISE "gen 3 tuples 
FOR 13=12+1 TO N DO 

ADD 1 TO JV(3) 
LET S3=S2+AV(I3) 
LET SM(3,JV(3))=S3 
IF N < 5 

GO TO L3 
OTHERWISE "gen 4 tuples 
FOR 14=13+1 TO N DO 

ADD 1 TO JV(4) 
LET S4=S3+AV(I4) 
LET SM(4,JV(4))=S4 
IF N < 6 
GO TO L4 

OTHERWISE "gen 5 tuples 
FOR 15=14+1 TO N DO 

ADD 1 TO JV(5) 
LET S5=S4+AV(I5) 
LET SM(5,JV(5))=S5 
IF N < 7 
GO TO L5 

OTHERWISE "gen 6 tuples 
FOR 16=15+1 TO N DO 

ADD 1 TO JV(6) 
LET S6=S5*AV(I6) 
LET SM(6,JV(6))=S6 
IF N < 8 
GO TO L6 

OTHERWISE "gen 7 tuples 
FOR 17=16+1 TO N DO 

ADD 1 TO JV(7) 
LET S7=S6+AV(I7) 
LET SM(7,JV(7))=S7 
IF N < 9 

GO TO L7 
OTHERWISE "gen 8 tuples 
FOR 18=17+1 TO N DO 

ADD 1 TO JV(8) 
LET S8=S7+AVU8) 
LET SM(8fJV(8))=S8 
IF N < 10 
GO TO L8 

OTHERWISE "gen 9 tuples 
FOR 19=18+1 TO N DO 

ADD 1 TO JV(9) 
LET S9=S8+AV(I9) 
LET SM(9,JV(9))=S9 
IF N < 11 
GO TO L9 

OTHERWISE "gen 10 tuples 
FOR 110=19+1 TO N DO 

ADD 1 TO JV(IO) 
LET S10=S9*AV(I10) 
LET SM(10,JV(10))=S10 
IF N < 12 
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88 
89 
90 
91 

Kj 92 
93 
9^ 
95 
96 
97 
98 
99 

100 
101 SB 102 

1 103 
104 
105 
106 
107 

w 108 

«1 109 
« 110 

1 111 
112 

Tin 113 
P3 114 

P 115 
116 

j« 117 
118 
119 /5 120 

U 121 

ft 
122 

sfi 123 

H 124 P 125 

^: 126 

£ 127 

& 
128 

fc 129 i 130 1 131 
132 

£ 133 
£ 134 
:X 135 
hi 136 
P^ 
v; 137 
V, 138 V, 
V, 139 
' 140 
* 141 

i 142 
* 143 

ft ' 144 

GO TO L10 
OTHERWISE "gen 11 tuples 
FOR 111=110+1 TO N DO 

ADD 1 TO JVOD 
LET S11=S10+AV(I11) 
LET SM(11,JV(11))=S11 
IF N < 13 
GO TO L11 

OTHERWISE "gen 12 tuples 
FOR 112=11 U1 TO N DO 

ADD 1 TO JVC 12) 
LET S12=S11+AV(I12) 
LET SM(12,JV(12))=S12 
IF N < 14 

GO TO L12 
OTHERWISE "gen 13 tuples 
FOR 113=112+1 TO N DO 

ADD 1 TO JVC 13) 
LET S13=S12+AV(I13) 
LET SM(13,JV(13))=S13 
IF N < 15 
GO TO L13 

OTHERWISE "gen 14 tuples 
FOR 114=113+1 TO N DO 

ADD 1 TO JVC 14) 
LET S14=S13+AVCI14) 
LET SM(14,JVC14))=S14 
IF N < 16 

GO TO LI4 
OTHERWISE "gen 15 tuples 
FOR 115=114+1 TO N DO 

ADD 1 TO JVC 15) 
LET S15=S14+AVCH5) 
LET SM05,JVC15))=S15 
IF N < 17 

GO TO L15 
OTHERWISE "gen 16 tuples 
FOR 116=115+1 TO N DO 

ADD 1 TO JVC 16) 
LET S16=S15+AV(I16) 
LET SMC16,JV(16))=S16 
IF N < 18 
GO TO L16 

OTHERWISE "gen 17 tuples 
FOR 117=116+1 TO N DO 

ADD 1 TO JVC 17) 
LET S17^S16+AVCI17) 
LET SMC17,JV(17))=S17 
IF N < 19 
GO TO L17 

OTHERWISE "gen 18 tuples 
FOR 118=117+1 TO N DO 

ADD 1 TO JVC 18) 
LET S18=S17+AVCI18) 
LET SM(18,JV(18))=S18 
IF N < 20 

GO TO L18 

L.A 
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i 

145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 

165 
166 
167 
168 

169 
170 
171 

1 
2 
3 
4 
5 
6 
7 
8 

9 
10 
11 
12 

13 

OTHERWISE "gen 19 tuples 
FOR 119=118+1 TO N DO 

ADD 1 TO JVC 19) 
LET S19=S18+AV(I19) 
LET SM(19,JV(19))=S19 

LOOP "OVER 119 
LOOP "OVER 118 

LOOP "OVER 117 
LOOP "OVER 116 

LOOP "OVER 115 
LOOP "OVER 114 

LOOP "OVER 113 
LOOP "OVER 112 

LOOP "OVER 111 
LOOP "OVER 110 

LOOP "OVER 19 
LOOP "OVER 18 

LOOP "OVER 17 
LOOP "OVER 16 

LOOP "OVER 15 
LOOP "OVER 14 

LOOP "OVER 13 
LOOP "OVER 12 

'LTLOOP "OVER 11 
RELEASE JV(») 
RETURN 

END "STUPLES 

FUNCTION SNORM(Z) 

"ROUTINE CALCULATES THE STANDARD NORMAL PROBABILITY INTEGRAL. 
"REF:  APPROXIMATION OBTAINED FROM AMS 55, ABRAMOWITZ AND STEGUN. 

IF ABS.F(Z) > 7.0 
GO TO L2 

OTHERWISE 
LET P=0.5+SIGN.F(Z)»0.5*ERRFX(ABS.F(Z)/SQRT.F(2.0)) 
RETURN WITH P 

,L2,LET P=0,5+SIGN.F(Z)«0.5 
RETURN WITH P 

END "OF SNORM 

•L19' 
'L18' 

•L17' 
•L16' 
•L15' 
•L14' 

'L13' 
•L12' 
•LIT 
•L10' 
•L9* 
'L8' 
'L7' 
'L6' 
'L5f 

•L4» 
fL3' 
•L2' 

:%•: 
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ANNEX C 

SIMSCRIPT SOURCE PROGRAM;  RUN.NFOLD.E 

1 
2 
3 
'4 

5 

PREAMBLE ■'RUN.NFOLD.E 
NORMALLY MODE IS REAL 
DEFINE SN03M AS A REAL FUNCTION GIVEN 1 ARGUMENT 
DEFINE ERRFX AS A REAL FUNCTION GIVEN 1 ARGUMENT 
END ••PREAMBLE 

1 
2 
3 
4 

5 
6 
7 

MAIN *'RUN.NFOLD.E 

Driver program to obtain the probability density and can prob of the 
N-fold convolution of a set of N exponential dist's. Two options 
are available:  (a) all exponential dist's in the set to be convolved 
are identical,  (b) all of the exponential dist's are unique.  PDFs 
and CDFs of a Normal dist with the sane mean and variance is printed 
for comparison with the convolution. 

9 
10 DEFINE I,J,K,L,M,N,NCELLS AS INTEGER VARIABLES 
11 DEFINE ANSWER AS A TEXT VARIABLE 
12 DEFINE INDEX AS AN INTEGER, 1-DIMENSI0NAL ARRAY 
13 DEFINE AV,LAV AS REAL, 1-DIM5NSI0NAL ARRAYS 
14 DEFINE MAT AS A REAL, 2-DIMENSIONAL ARRAY 
15 LET NCELLS=20 
16 'LO'SKIP 1 LINE 
17 PRINT 7 LINES THUS 

This program calculates and prints the p.d.f. and c.d.f of the N-fold 
convolution of a set of N exponential distributions. Two progam options exist 
for these distributions:  (a) all distributions have the same mean value, and 
(b) all distributions have unique (or different) means. User inputs are tne 
number (N) of distributions to be convolved, the upper c.d.f. limit to term- 
inate calculations, and the mean values of these exponential distributions. 

25 PRINT 1 LINE THUS 
INPUT THE VALUE OF N. 

27 READ N 
23 PRINT 1 LINE THUS 
INPUT THE (MAX) VALUE OF THE CDF TO TERMINATE CALCULATIONS. 

READ PMAX 
RESERVE AV(*),LAV(») AS N 
RESERVE INDEX(») AS N-1 
RESERVE MAT(»,*) AS N BY N 
PRINT 1 LINE THUS 
EXPONENTIAL DISTRIBUTIONS HAVE THE SAME PARAMETER? 
READ ANSWER 
IF SUBSTR. FUNS WER, 1,1) = "Y" 

PRINT 1 LINE THUS 

30 
31 
32 

33 
34 

DO ALL 

X> 
37 
38 
INPUT THE caWOS MEAN VALUE. 

40 READ AVG 
41 FOR 1 = 1 TO N, LET L/WCI) = 1.0/AVG 
42 LET VAR=N»AVG»»2 
45 LET AVG=N*AVG 
44     OTHERWISE 
4«j        LET AVGrO.O 
46 LET VARrO.O 
47 LET LAMBDA=1.0 

(Y OH N). 
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43 IF N > 15 
49 PRINT 1 LINE THUS 
MAX U  OF CONVOLUTIONS IS LIMITED TO 15 FOR THIS OPTION. CHOOSE THE 15. 

51 RELEASE AV(»),LAV(»),INDEX(*) 
52 RELEASE rfAT(*,*) 
53 LET N=15 
54 RESERVE AV(«),LAV(»),INDEX(») AS N 
55 RESERVE MAT(*,*) AS N BY N 
56 ALWAYS 
57 FOR 1=1 TO N DO 
58 PRINT 1 LINE WITH I 
59 THUS 
INPUT THE MEAN VALUE 0? THE ** TH EXPONENTIAL DISTRIBUTION. 

61 
62 

63 
64 

65 
66 
67 
63 
69 
70 
71 
72 
73 
74 

75 
76 
77 
73 

n 
80 
81 
82 
S3 
34 

85 
80 
87 
sa 

90 
91 
-)? 
73 
94 

95 
96 
97 
*b 
9» 
100 

READ THETA 
ADD THETA TO AVG 
ADD THETA«2 TO VAR 
LET LAV(I)=1.0/THETA 
LET LAtfBDA=LAMBDA*LAV(I) 

LOOP "OVER (I) EXPONENTIAL DISTRIBUTIONS 

"OBTAIN THE COEFFICIENTS AV(») FOR THE CONVOLUTION DENSITY. 
»i 

IF N = 2 

LET AV(1)=LAMBDA/(LAV(2)-LAV(D) 
LET AV(2)= -AV(1) 
GO TO L2 

OTHERWISE 

FOR J=1 TO N, LET MAT(1,J)=1.0 
FOR 1=2 TO N-1, FOR J=1 TO N, LET MAT(I,J)=0.0 
FOR J=1 TO N DO 

LET PNJ=1,0 
FOR K=l TO N DO 

IF K NE J 
LET PNJ=PNJ»LAV(K) 

ALWAYS 
LOOP "OVER K 
LET MAT(N,J)=PNJ 

LOOP "OVER (J) COLUMNS 
CALL NTUPLES (N, LAV(«), MATC*,*)) "FILL RL'MTS OF MAT(»,*) 

"03TAIM THE INVERSE OF rfAT(«,»). 

CALL HAT.INVERSE (N, MAT(»,»)) 
FOR 1=1 TO N, LET AV(I)=LAMBDA»MAT(I,N) 

ALWAYS 
'L2'LET COND=1.0/SORT.F(2.0«PI.C»VAn) 

LET STDV=SQRT.F(VAR) 
LET LIMsAVG ♦ 4.0»STDV 
LET DELT=LIM/NCELLS 
LET LINES.V=9999 
SKIP 2 LINES 
PRINT 7 LINES WITH N 
THUS 

(1) 
PiOH DISTRIBUTION 0? THE CONVOLUTION OF A SET OF •» EXPONENTIAL DISTRIBUTIONS 
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Inda*p 
Variable 

If-fb'lcf "Convol u t i on' 
p.d.f. c.a.f. 

No "ma 1 ~P r o b ~Df s t;ri b" 
p.d.f, c.d.f. 

"Difference 
c.d.f. 

108 LET MAE-0.0 
109 LET RMS=0.0 
110 FOR 1=1 TO NCELLS DO 
111 LET T=I*DELT 
112 CALL NFOLD.E (N, AV(«), LAV(»), T) YIELDING PDF,CDF 
113 LET ARG=(T-AVG)/STDV 
114 LET NPDF=C0ND»EXP.F(-0.5*ARG**2) 
115 LET NCDFrStlORM(ARG) 
116 LET DIFF=CDF-NCDF 
117 LET MAE=MAX.F(MAE,ABS.F(DIFF)) 
118 ADD DIFF**2 TO RMS 
119 PRINT  1  LINE WITH T,   PDF,  CDF,  NPDF,  MCDF,  DIFF 
120 THUS 

it*.**» »,#»»***      ».»mm»«               »,««««««      ftvftftft«ftft             *t»ft»»ft» 

122 IF CDF GE PMAX 
123 GO TO L1 
124 OTHERWISE 
125 LOOP   "OVER I 
126 'LI'PRINT 2 LINES THUS 

129 LET RMS=SQRT.F(RMS/REAL.F(NCELLS)) 
130 PRINT 2 LINES WITH MAE,RMS 
131 THUS 

Max abs error in a Normal approximation of sum c.d.f.  ».ft»»»»» 
RMS error of a Normal approximation of the sum c.d.f. "" ».»»»»»» 

13U PRINT 3 LINES WITH AVG, STDV 
135 THUS 

(1) Mean Value of the Convolution   Std Dev  < 
Mean Values of each of the exponential distributions 

139 FOR 1=1 TO N DO 
140 PRINT 1 LINE WITH I, 1.0/LAVU) 
141 THUS 
Number ** Mean    

143 LOOP "OVER I 
144 SKIP 2 LINES 
145 RELEASE LAV(») 
146 RELEASE AV(») 
147 RELEASE MAT(»,») 
148 PRINT 1 LINE THUS 
DO YOU HAVE SIMILAR PROBLEMS TO SOLVE?  (YES OR NO). 

150 READ ANSWER 
151 IF SU9STR.F(ANSWER,1,1) = "td 

152 GO TO LO 
153 OTHERWISE 
154 STOP 
155 END "MAIN 
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46 

47 
49 
49 
50 
M 
5/ 
53 

ROUTINE .N'FOLD.E GIVES N, AV, LAV, T YIELDING PDF, CDF 

Routine calculates the probability density function (PDF) and the cum 
distribution function (CDF) of the N-fold convolution of a set of 
exponential dist's. Two options are provided:  (a) each of the N 
dist'u has the sane mean, and (b) each dist has a unique mean. 
If the mean values of the exponential dist's are all unique, the 
convolution can be expressed as a weighted sum of the exponential 
dist's. These weights are passed to the routine in the vector AV(*). 
Hate parameters of the N expon dists are given in the vector LAV(*). 
The real-valued argument of the convolution is T. 

If each of the dist's has the same rate parameter, a, (option (a)), 
tne p.d.f. ana c.d.f. of the n-fold convolution are given, 
respectively, by these Erlang functions: 

END 

n-1 
f(n,t) = a (at)  exp(-at)/(n-1)! 

F(n,t) = 1 - exp(-at) Sum(i=0 to n-1): z / i! 

DEFINE I,N AS INTEGER VARIABLES 
DEFINE AV,LAV AS REAL, 1-DIMENSI0NAL ARRAYS 
IF T L5 0.0 

LET PDF=0.0 
LET CDF=0.0 
RETURN 

OTHERWISE 
IF LAV(1)=LAV(2) "ALL RATE PARMS ASSUMED EQUAL 

LET Z=LAV(1)*T 
LET EXPZ=EXP.F(-Z) 
LET FACT=1.0 
LET ZIsl.O 
LET SU.4= 1.0 
FOR 1=1 TO N-1 DO 

LET FACT=FACT*I 
LET ZI=Z*ZI 
ADD ZI/FACT TO SUM 

LOOP "OVER I 
LET PDF=LAV(1)»ZI/FACT»EXPZ 
LET CDF=1.0-EXPZ»SUM 
RETURN1 

OTHERWISE 
LET PDF=0.0 
LET CDF=0.0 
F0ä 1 = 1 TO N DO 

LET EXP:=EXP.F(-LAV(I)»T) 
ADD AV(I)»EXPZ TO PDF 
ADD AV(I)/LAV(I)»(1.0-EXPZ)  TO CDF 

LOOP   "OVER T 
RETURN 
"NF0LD.E 

t > 0. 
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ROUTINE FOR MAT.INVERSE (N, AM) 
1 I 

"ROUTINE TO OBTAIN THE INVERSE 0? THE N BY M MATRIX AM VIA THE 
••COMPACT FORM OF THE GAUSS-JORDAN METHOD.  INV IS RETURNED IN AM. 

DEFINE I, J, K, M AS INTEGER VARIABLES 
DEFINE AM AS A REAL, 2-DIMENSIONAL ARRAY 

8 FOR 1=1 TO M DO 
9 LET P=AM(I,I) 

10 IF P=0.0 
11 PRINT 2 LINES WITH I THUS 
ERROR IN ROUTINE MAT.INVERSE.  THE *« TH DIAGONAL ELEMENT IS ZERO. 
THE MATRIX CANNOT BE INVERTED. 
14 STOP 
15 OTHERWISE 
16 LET AM(I,I)=1.0 
17 FOR J=1 TO N DO 
18 LET AM(I,J)=AM(I,J)/P 
19 LOOP "OVER J 
20 FOR J=1 TO N DO  "THE SECOND J-LOOP 
21 IF J=I 
22 GO TO EOJ "END 0? J-LOOP 
23 OTHERWISE 
24 LET P=AM(J,I) 
25 LET AM(J,I)=0.0 
26 FOR K=1 TO N DO 
21 SUBTRACT P»AM(I,K) FROM AH(J,K) 
28 LOOP "OVER K 
29 'EOJ'  LOOP "OVER J 
30 LOOP "OVER I 
31 RETURN 
32 END "ROUTINE MAT.INVERSE 

1 ROUTINE NTUPLES (N, LAV, MAT) 
2 " 
3 "Routine fills N-2 row elements in the MAK1,*) which arc contribute,! 
4 "by n-tuples associated with variable L4V(*). Routine is called by 
5 "RUN.NFOLD.E, 
6 DEFINE 1,11,12,13,14,15,16,17,18,19,HO,111,112,J,K,N AS INTKJEi; 

VARIABLES 
7 DEFINE INDEX AS AN INTEGER, 1-DIMSNSIONAL ARRAY 
3 DEFINE LAV AS A REAL, 1-DIMENSIONAL ARRAY 
9 DEFINE MAT AS A REAL, 2-DIMSNSIONAL ARRA* 
10 IF M > 15 
11 PRINT 1 LINE WITH N 
12 THUS 

INPUT ERROR TO ROUTINE NTUPLES.  NUMBER OF CONVOLUTIONS, *», IS EXCESSIVE. 
14 STOP 
V> OTHERWISE 
16 RESERVE INDEX(«) AS N-1 "LOCALLY 
17 FOR J=1 TO N DO 
18 LET K=0 
19 FOR 1=1 TO N DO 
20 IF I NE J 
21 ADD 1 TO K 
2? LET INDEX(K)=I 
23 ALWAYS 



m LOOP " OVER (I) PARAMETERS 
25 IF N < 3 
26 RELEASE IMDSX(» >) 
21 RETURN 
28 OTHERWISE 
29 FOR 11= 1 TO N-1 DO 
30 LET LA1 =LAV(INDSX(I1)) 
31 ADD LA1 TO MAT(2,J) 
3? IF N < 4 
33 GO TO I 1 
34 OTHERWISE ' 1 gen 2 tuples 

35 FOR 12 = IU1 TO N-1 DO 
36 LET LA2=LA1»LAV(INDEX(I2)) 
37 ADD LA2 TO I4AT(3,J) 
33 IF H < 5 
30 30 TO L2 
40 OTHERWISE < •gen 3 tuples 
41 FOR 13= 12+1 TO N-1 DO 
42 LET LA3=LA2»LAV(INDSX(I3)) 
43 ADD LA3 TO MAT(4,J) 
MU IF N < 6 
45 GO TO L3 
a*. OTH ERWISE "gen 4 tuples 
47 FOR 14: =13*1 TO N-1 DO 
48 LET LA4=LA3*LAV(INDEX(I4)) 
49 ADD LA4 TO MAT(5,J) 
50 IF N < 7 
51 GO TO L4 
52 OTHERWISE "gen 5 tuples 
53 FOF t 15=14+1 TO N-1 DO 
54 LET LA5=LA4»LAV(INDEX(I5)) 
55 ADD LA5 TO MAT(6fJ) 
55 IF N < 8 
57 GO TO L5 
53 OTHERWISE "gen 6 tuples 
59 FOR 16=15+1 TO N-1 DO 
60 LET LA6=LA5*LAV(INDEX(I6>) 
61 ADD LA6 TO MAT(7,J) 
62 IF N < 9 
63 GO TO L6 
61 OTHERWISE "gen 7 tuples 
65 FOR 17=16+1 TO N-1 DO 
66 LET LA7=LA6»LAV(INDEX(17)) 
67 ADD LA7 TO MAT(8,J) 
68 IF N < 10 
69 GO TO L7 
70 OTHERWISE "t'en 8 tuples 
71 FOR 18*17+1 TO N-1 DO 
1? LET LA8=LA7»LAV(INDEX(I8)) 
73 ADD LA8 TO MAT(9.J) 
7^ IF N < 11 
75 GO TO L8 
76 OTHERWISE "gen 9 tuples 
77 FOR 19=18+1 TO N-1 DO 
7fi LET LA9=LA8»LAV(INDEX(I9)) 
79 ADD LA9 TO MAT(10fJ) 
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80 IF N < 12 
81 GO TO L9 
82 OTHERWISE "gen 10 tuples 

83 FOR 110=19+1 TO M-1 DO 
84 LET LA10=LA9*LAV(INDEX(I10)) 

85 ADD LA10 TO MAT(11,J) 
86 IF N < 13 
87 GO TO L10 
88 OTHERWISE "gen 11 tuples 

89 FOR 111=110+1 TO N-1 DO 
90 LET LA11=LA10*LAV(INDEX(IU)) 

91 ADD LA11 TO MAT(12,J) 
92 IF N < 14 

93 GO TO L11 
9^ OTHERWISE "gen 12 tuples 
95 FOR 112=111+1 TO N-1 DO 
96 LET LA12=LA11«LAV(INDSX(T12)) 

97 ADD LA12 TO MAT(13,J) 
98 •L12' LOOP "OVER 112 

99 »LTV LOOP "OVER 111 
100 •L10» LOOP "OVER 110 
101 •L9* LOOP " OVER 19 
102 •L8' LOOP " OVER 18 
103 •ir LOOP " OVER 17 
104 •L6« LOOP •• OVER 16 

105 •L5' LOOP "OVER 15 
106 •L4» LOOP "OVER 14 
107 •L3' LOOP " OVER 13 
108 'L2'   LOOP "OVER 12 
109 •LI»LOOP "OVER 11 
110 LOOP "OVER (J) COLUMNS 
111 RELEASE INDEX(• ) 
112 END " ROUTINE NTUPLES 
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ANNEX D 

SIMSCRIPT SOURCE PROGRAM: LP.INV 

1 PREAMBLE ••LP.INV 
2 NORMALLY MODE IS REAL 
3 DEFINE A1,A2 AS REAL VARIABLES 
4 DEFINE SNORM AS A REft'. FUNCTION GIVEN 1 
5 DEFINE ERRFX AS A REAL FUNCTION GIVEN 1 
6 DEFINE LTRNS.FUN AS A REAL FUNCTION GIVEN 
7 END "PREAMBLE 

ARGUMENT 
ARGUMENT 

3 ARGUMENTS 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 
21 
ZZ 
23 
24 
25 
26 
27 
28 
29 
30 
31 •• 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

Data flit 

MAIN "LP.INV 

'Obtains the inverse Laplace transform at a set of discrete points via 
»Bellman's method. This method approximates an Integral by gaussian 
'quadrature. The quadrature formula leads to a matrix eq'n whose 
'sol'n defines the inv in terms of the transform evaluated at M points. 
'An example of this method is provided on pp 14 thru 18 of "Numerical 
'Methods in Renewal Theory," (AD 828276), Feb 1968. 

DEFINE FLAGE,FLAGM,FLAGMX,I,J,K,L,M,N,NREPS,SEED AS INTEGER 
VARIABLES 
DEFINE ANSWER,FILNAM,TITLE,DIST.NAME AS TEXT VARIABLES 
DEFINE IPVT,HISTV AS INTEGER, 1-DIMENSIONAL ARRAYS 
DEFINE DET,TV AS REAL, 1-DIMENSIONAL ARRAYS 
RESERVE DET(«) AS 2 
DEFINE DSTARV,DV,GSTARV,GV,LAV,WV,XV,CDFV AS REAL, 1-DIMENSIONAL 
ARRAYS 
DEFINE AM AS A REAL, 2-DIMENSIONAL ARRAY 
LET M* 16 "TERMS IN THE GAUSSIAN QUADRATURE 
RESERVE CDFVf) AS M 
LET FILNAM « "GAUSS.Q16.DATA" 

• LET DIST.NAME * "Gamma(3)N 

LET DIST.NAME * "Expon Mix" 
LET FLAGMXil 
LET K«1 
RESERVE TV(»),HISTV(») AS M 
LET CON.AVG.K  "CONSTANT RELATING AVG TO RATE PARM 
RESERVE WV<«), XV(«), IPVT<«) AS M 
RESERVE DSTARV(»),DVC«),GSTARV(«),GV(«) AS M 
RESERVE AM(«,ft) AS M BY M 

"READ THE QUADRATURE POINTS AND WEIGHTS FROM THE FILEt FILNAM. 

LET EOF.V.1 
LET LINES.V.9999 
OPEN UNIT 4 FOR INPUT, 
OLD, 
FILE NAME IS FILNAM 
RECORD SIZE IS 120 
USE UNIT 4 FOR INPUT 
READ TITLE USING UNIT 4 
PRINT 2 LINES WITH FILNAM,TITLE 
THUS 
•■•■•••••§•■■• i3 r#*4 for •••■ 
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44     FOR 1=1 TO M DO 
U5        READ XV(I),WV(I) USING UNIT 4 
U6     LOOP "OVER (I) QUADRATURE POINTS 
47 CLOSE UNIT 4 
48 USE UNIT 5 FOR INPUT 
49 FOR 1=1 TO Mf LET TV(I)=L0G.E.F(2.0/(XV(M-I*1)♦!.0)) 
50 PRINT 7 LINES WITH DIST.NAME 
51 THUS 

This program calculates and prints the c.d.f. of an N-fold convolution of 
a set of N •»••■••*»•• distributions with different mean values. This c.d.f. 
Is obtained by numerically inverting the Laplace transform of this function at 
a discrete set of points on the real line. Required inputs are: N and the 
mean values of each of these distributions. Mean values of these dist- 
ributions should be scaled so that the sum of the means is near 1. 
Optionally, a comparative Monte-Carlo simulation may be performed. 

59 'LO'SKIP 2 LINES 
60 PRINT 1 LINE THUS 
INPUT THE VALUE OF N. 

62 READ N 
63 RESERVE LAV(») AS 
64 LET AVGsO.O 
65 LET VARsO.O 
66 LET FLAGEsO 
67 • • IF FLAGMX NE 1 
68 • GO TO L3 
69 ' • OTHERWISE 
70 IF N LE 3 
71 LET FLAGEsI 
72 ALWAYS 
73 PRINT 1 LINE THUS 
INPUT THE PROPORTION OF ' 

75 READ A1 
76 IF AW1.0 
77 LET PLAGMXtO 
78 GO TO L3 
79 OTHERWISE 
80 PRINT 1 LINE THUS 
INPUT THE MEAN VALUE OF THE 1ST EXPONENTIAL COMPONENT. 

82 READ THETA 
83 LET LAU1.0/THETA 
84 PRINT 1 LINE THUS 
INPUT THE MEAN VALUE OF THE 2ND EXPONENTIAL COMPONENT. 

86 READ THETA 
87 LET LA2«1.0/THETA 
88 LET A2.1.0-A1 
89 LET LAV(1)*LA1 
90 LET LAV(2).LA2 
91 LET AVGUA1/LAUA2/LA2 
92 LET VARU2.0*(A1/U1M2*A2/LA2»»2) - AVG1»«2 
93 LET AVG*N»AVG1 
94 LET VAR=N»VAR1 
95 GO TO L4 
96 ,L3,LET FLAGE.O 
97 FOR 1=1 TO N DO 
98 PRINT 1 LINE WITH I 
99 THUS 
INPUT THE MEAN VALUE OF THE •• TH RANDOM VARIABLE. 
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101 READ THETA 
102 ADD THETA TO AVG 
103 LET LAV(I)=CON.AVG/THETA 
10U ADD C0N.AVG»(C0N.AVG+1.0)/LAV(I)»»2 - THETA»*2 TO VAR 
105 IF I > 1 
106 IF LAV(I)=LAV(I-1) 
107 ADD 1 TO FLAGE 
108 ALWAYS 
109 ALWAYS 
110 LOOP  "OVER  (I) COMPONENTS 
111 LET LAULAVO) 
112 IF FLAGE = N-1 
113 LET FLAGE*1 
114 OTHERWISE 
115 LET FLAGErO "NOT ALL DISTS ARE THE SAME 
116 ALWAYS 
117 'HTLET C0ND=1.0/SQRT.F(2.0«PI.C»VAR) 
118 LET STDV=SQRT.F(VAR) 
119 M  PRINT 1 LINE THUS 
120 "  INPUT THE SCALE FACTOR (1 GE GAMMA LE 1.2) IN LAPLACE TRANSFORM. 
121 "     READ GAtttt 
122 LET GA**1A=1.0 
123 PRINT 1 LINE THUS 
DO YOU WANT TO PERFORM A MONTE-CARLO SIMULATION? (YES OR NO). 

125 READ ANSWER 
126 IF SUBSTR.F(ANSWER,1,1) = "Y" 
127 LET FLAGMrl 
128 PRINT 1 LINE THUS 
INPUT THE INDEX (1 THRU 9) OF THE RANDOM # SEED. 

130 READ SEED 
131 PRINT 1 LINE THUS 
INPUT THE NUMBER OF REPLICATIONS WANTED. 

133 READ NREPS 
13*» PRINT 1 LINE WITH NREPS 
135 THUS 
Monte-Carlo simulation of *•••• replications has begun. 
137 
138 
139 
mo 
141 
112 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 

FOR L*1 TO Mf LET HISTV(L)*0 
LET AVGTsO.O 
LET VART=0.0 

••SIMULATE POR NREPS REPLICATIONS. 

FOR 1=1 TO NREPS DO 
LET S'JM=0.0 
FOR Jsl TO N DO 

ADD ERLANG.F(CON.AVG/LAV(J)tK,SEED) TO SUM 
IF UNIFORM.F(0.0,1.0,SEED) LE Al 

ADD EXPONENTIAL.FC1.0/LA1.SEED) TO SUM 
OTHERWISE 

ADD EXP0NENTIAL.F(1«0/LA2VSEED) TO SUM 
ALWAYS 

LOOP "OVER J 
ADD SUM TO AVGT 
ADD SUM»»2 TO VART 
FOR L=1 TO M DO 

IF SUM LE TV(L) 
ADD 1 TO HISTV(L) 
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158 GO TO K2 
159 OTHERWISE 

. 160 LOOP "OVER (L) CELLS 
161 *K2*        LOOP "OVER (I) REPLICATIONS 
162 LET AVGT=AVGT/NREPS 
163 LET VART=VART/NREPS-AVGT«»2 
16« PRINT 1 LINE THUS 

Monte-Carlo simulation has been completed. 
166 
167 
168 
169 
170 
171 
172 
173 
17« 
175 
176 
177 
178 
179 
180 
181 
182 
183 
18« 
185 
186 
187 
188 
189 
190 
191 
192 
193 
19« 
195 
196 
197 
198 
199 

LET CDF.MCsO.O 
FOR Lrl TO M DO 

LET PDF=HISTV(L)/NREPS 
ADD PDF TO CDF.MC 
LET CDFV(L)sCDF.MC 

LOOP "OVER (L) CELLS 
OTHERWISE 

LET FLAGMzO 
ALWAYS 

"GET T1FORMS OF PDF AND CDF AT M POINTS.  PLACE IN DSTARV A GSTARV. 
«» 

FOR 1*1 TO M DO 
LET SzGAftUn 
LET GSTARV(I)«LTRNS.FUN (N, LAV(»), S) 
LET DSTARV(I)«GSTARV(I)»S 

LOOP "OVER (I) POINTS ON THE REAL LINE IN THE S-FLANE 

"FILL THE ELEMENTS OF AM(»f»). 

FOR 1*1 TO M DO 
FOR J«1 TO M DO 

LET E.GArtU»! -1.0 
LET AM(IfJ)«0.5

#WV(J)»(0.5,(XV(J)^1.0))ME 
LOOP "OVER (J) COLUHNS 

LOOP "OVER (I) ROWS 

"SOLVE THE EQUATIONS AM • GV « GSTARV. 

LET J«0 
CALL SGEFA <AM(«f«), IPVTC*), J) 
IF J NE 0 

PRINT 1 LINE WITH J 
THUS 

TROUBLE FRACTORING THE MATRIX AM IN PROGRAM LP.INV* J «    •♦ 
201 STOP 
202 OTHERWISE 
203 CALL SGEDI <AM<»f»), IPVT<«>>, DET<»), 11) 
20«    IF DET(2) < -82 
205 SKIP 2 LINES 
206 PRINT 2 LINES WITH DCT(1)9 DETC2) 
207 THUS 

DETERMINANT Of MATRIX AM . •••••• X 10 EXPO« <••••), WHICH IS ALMOST 
SINGULAR. 

210 
211 " 
212 
213 
21« " 

ACCURACY OF INV(AM) IS QUESTIONABLE. 
ALWAYS 
CALL MAT.INVERSE (M. AM««,»)) 
CALL MAT.VEC.MPY (AM(«,»)9 GSTARVf»), M) YIELDING GV(») 
CALL MAT.VEC.MPY (AM(«.«), DSTARVC»), M) YIELDING DV(«) 
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215 "PRINT OUTPUT CD.F. 
216 •• 
217 SKIP 2 LINES 
218 PRINT 7 LINES WITH N,DIST.NAME 
219 THUS 

(1) 
PROB DISTRIBUTION OF THE CONVOLUTION OF A SET OF »« *••••»»••»» DIST'S 

Indep N-fold Convolution   Norm Prob Dlstrib   Difference 
Variable p.d.f. c.d.f.    p.d.f.    c.d.f.    c.d.f. 

___ LET MAE.DIFFrO.O 
228 LET RMS.DIFFrO.O 
229 LET MAE.MC=0.0 
230 LET RMS.MC=0,0 
231 LET MAE.NI=0.0 
232 LET RMS.NI=0.0 
233 FOR I BACK FROM M TO 1 DO 
234 SKIP 1 LINE 
235 LET T=TV(M-I+1) 
236 LET PDF=DV(I) 
237 LET CDFrGV(I) 
238 LET NPDF=COND«EXP.F(-0.5#((T-AVG)/STDV)»»2) 
239 LET NCDF=SNORM((T-AVG)/STDV) 
240 LET DIFF=CDF-NCDF 
241 LET MAE.DIFF=ilAX.F(MAE.DIFF,ABS.F(DIFF)) 
242 ADD DIFF«2 TO RMS.DIFF 
243 PRINT  1 LINE WITH T,PDFfCDF,NPDF,NCDF,DIFF 
244 THUS 

•itt.«»»»    ».ft»»»»»      »,»»»«»«      ».»»»»»»      ».»»»»»•      »,»•»•»« 

246 IF FLAGEsI "ALL RATE PARMS ARE THE SAME 
247 " CALL NFOLD.U GIVEN N, 0.5MLAV(1)»T YIELDING EPDF,ECDF 
248 IF A1 =1.0 
249 CALL ERLANG (K»N, LA1, T) YIELDING EPDF,ECDF 
250 OTHERWISE 
251 CALL NFOLD.MIXE (N, A1, LAIt LA2, T) YIELDING EPDF.ECDF 
252 ALWAYS 
253 LET RESID=CDF-ECDF 
254 LET MAE.NI;MAX.F(MAE.NI,ABS.F(RESID)) 
255 ADD RESID»»2 TO RMS.NI 
256 'LI1 PRINT 1 LINE WITH EPDF,ECDF,CDF-ECDF 
257 THUS 

Exact fun •.•»••••  •.••••••  Dif rel to exact cdf •.•••••• 
259 OTHERWISE 
260 LET ECDF=CDF 
261 ALWAYS 
262 LET DIFF.MC=CDFV(M-I*1) - ECDF 
263 LET MAE.MCSMAX.F(MAE.MC,ABS.F(DIFF.MC)) 
264 ADD DIFF.MC«*2 TO RMS.MC 
265 LOOP "OVER (I) CDF POINTS 
266 PRINT 2 LINES THUS 

269 LET RMS.DIFF=SQRT.F(RMS.DIFF/REAL.F(M)) 
270 LET RMS.NI=SQRT.F(RMS.NI/REAL.F(M)) 
271 LET RMS.MC=SQRT.F(RMS.MC/REAL.F(M)) 
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272 PRINT 2 LINES WITH M,MAE.DIFF,M,RMS.DIFF 
273 THUS 

Max abs error in Normal approx (over *•/ to c.d.f. 
RMS difference in c.d.f. and Normal approx (over •*) 

276 PRINT 2 LINES WITH MAE.NI,RMS.NI 
277 THUS 

Max abs error in num inverse est of the c.d.f. 
RMS error in the num inverse est of the c.d.f. 

280 IF FLAGM=1 
281 PRINT 2 LINES WITH MAE.MC,RMS.MC 
282 THUS 

Max abs error in Monte-Carlo estimate of the c.d.f. 
RMS error of the Monte-Carlo estimate of the c.d.f. 

ALWAYS 
PRINT 3 LINES WITH AVG,STDV,DIST.NAME 
THUS 

of Convolution Distribution »»»».»«ft« 

«»»•«» 

285 
286 
287 

Mean Std Dev 
(1) Mean of each of the »»»•»»»•»»• distributions: 

291 FOR 1=1 TO N DO 
292 IF FLAGMX=1 
293 LET AVGXI=A1/LAV(1)+A2/LAV(2) 
29^ OTHERWISE 
295 LET AVGXI=CON.AVG/LAV(I) 
296 ALWAYS 
297 PRINT 1 LINE WITH I,AVGXI 
298 

Number 
THUS 

»• Mean 
300 LOOP "OVER (I) COMPONENT COMPONENTS 
301 SKIP 2 LINES 
302 IF FLAGM NE 1 
303 GO TO L2 
304 OTHERWISE 
305 PRINT 7 LINES WITH N,DIST.NAME,NREPS 
306 THUS 

SAMPLE PROB DIST OF THE SUM OF A SET OF »«« RANDOM VARIABLES 

Monte-Carlo Sample •»•»• 

Indep 
Variable 

315 
316 
317 
318 
319 

•»•».»»»» 

321 
322 

Histo" 
Frequency 

Sample 
p.d.f. 

Sample 
c.d.f. 

"LET XCDF=0.0 
FOR 1=1 TO M DO 

LET XPDF=HISTV(I)/NREPS 
ADD XPDF TO XCDF 
PRINT 1 LINE WITH TV(I),HISTV(I),XPDF,XCDF 
THUS 

»••»•    ».»••••    ».»»ft»» 

LOOP "OVER (I) HIST0 CELLS 
PRINT 2 LINES THUS 

325 LET SDT=SQRT.F(VART) 
326 LET SET=SDT/SQRT.F(REAL.F(NREPS)) 
327 PRINT 3 LINES WITH AVGTtSDT,AVGT-1.96ftSET,AVGT+1.96»SET 
328 THUS 
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Sample Standard Deviation «••».*»»* 

* 

LvV>V. 

^W 

/V/V 

Sample Average Value *»»».«*< 
95 percent confidence interval in mean: 

332 'L21PRINT 1 LINE THUS 
DO YOU HAVE SIMILAR PROBLEMS TO SOLVE? (YES OR NO). 

Mi 

334 
335 
336 
337 
338 

339 
340 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

13 
14 

15 
16 
17 

1 
2 
3 
4 

5 
6 

7 
8 
9 
10 
11 
12 
13 
m 
15 
16 
17 
18 
19 
20 
21 
ZZ 
23 
24 

25 
26 

END 

READ ANSWER 
IF SUBSTR.F(ANSWER,1,1) = WY" 

RELEASE LAV(») 
GO TO L0 

OTHERWISE 
STOP 
"LP.INV 

ROUTINE FOR MAT.VEC.MPY (AM, BV, NELMTS) YIELDING CV 

"ROUTINE TO MULTIPLY THE SQUARE MATRIX AM , OF NELMTS BY NELMTS, 
"BY THE VECTOR BV (NELMTS BY 1), YIELDING THE VECTOR CV (NELMTS BY 1). 

DEFINE I, J, K, NELMTS AS INTEGER VARIABLES 
DEFINE BV, CV AS REAL, 1-DIMENSIONAL ARRAYS 
DEFINE AM AS A REAL, 2-DIMENSIONAL ARRAY 
RESERVE CV(«) AS NELMTS 
FOR 1=1 TO NELMTS DO 

LET CV(I)=0.0 
FOR K=1 TO NELMTS DO 

ADD AM(I,K)»BV(K) TO CV(I) 
LOOP "OVER K 

LOOP "OVER I 
RETURN 
END "ROUTINE MAT.VEC.MPY 

FUNCTION LTRNS.FUN (N, LAV, S) 

Obtains Laplace transform of a convolution of N prob dlst functions 
having rate parameters LAV(*). Complex argument (S) is evaluated 
only on the real line. The inv t*form of this function is the c.d.f. 
This function must be particularized for the desired form of the prob 
functions. The form used here is indicated by the comment statements. 

DEFINE I,N AS INTEGER VARIABLES 
DEFINE LAV AS A REAL, 1-DIMENSIONAL ARRAY 
LET F=1.0/S 

CODE FOR UNIFORM WITH MEAN = 1/LAVU). 

FOR 1=1 TO N, LET F=F/SB(1.0-EXP.F(«2.0«S/LAV(I))) 

CODE FOR EXPONENTIAL. 

FOR 1 = 1 TO N, LET F=F*LAV(I)/(S ♦ LAV(D) 

CODE FOR GAMMA(2). 

FOR 1=1 TO N, LET F=F*LAV(I)««2/(S ♦ LAV(I))«»2 

CODE FOR GAMMA(3). 
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ft 

Ky 

"CODE FOR EXPONENTIAL MIX. 
11 

27 "    FOR 1=1 TO N, LET F=F«LAV(I)»»3/(S ♦ LAV(I))»»3 
28 " 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39    END  "FUNCTION LTRNS.FUN 

FOR 1=1 TO N DO 
IF A1 = 1.0 

LET F=F«LAV(1)/(S+LAV(1)) 
OTHERWISE 

LET F=F»(A1»LAV(1)/(S+LAV(1))+A2»LAV(2)/(S+LAV(2))) 
ALWAYS 

LOOP "OVER I 
RETURN WITH F 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
2k 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 

ROUTINE SGEFA ( A, IPVT, INFO) 

FACTORS THE MATRIX A(»,») INTO UPPER (U) AND STRICTLY LOWER (L) 
TRIANGULAR MATRICES SUCH THAT A(»t») = U(»t«)L(»,»). ROUTINE 
IS INTENDED FOR USE WITH OTHER ROUTINES OF THE LINEAR OPERATIONS 
PACKAGE—LINPACK. THIS VERSION IS A CONVERSION OF THE FORTRAN 
ROUTINE WRITTEN BY CLEVE MOLER, U. OF N.M. AND ARGONNE NAT LAB. 

ARGUMENTS: 
NAME     MODE ENTRY VALUE RETURN VALUE 

A        REALCN, N) SQUARE MATRl5T~  UPPER TRIANGULAR MATRIX AND 
MULTIPLIERS WHICH WERE USED TO 
TO OBTAIN IT. ARE STORED IN L. 

N        INTEGER ORDER OF THE MATRIX A. DIMENSION OF AC»,»). 
IPVT     INTEGER(N). VECTOR OF PIVOT INDICES. 
INFO     INTEGER INDICATOR. = 0 FOR NORMAL VALUE. 

* K IF U(KVK) EQ 0.0. THIS 
INDICATES THAT SGESL OR SGEDI 
WILL DIVIDE BY 0 IF CALLED. 

DEFINE I,INFOfJ,K,KP1,L,N,NM1 AS INTEGER VARIABLES 
DEFINE IPVT AS AN INTEGER» 1-DIMENSIONAL ARRAY 
DEFINE A AS A REAL, 2-DIMENSIONAL ARRAY 

"GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING. 

LET N=DIM.F(IPVT(»)) 
LET INFO=0 
LET NM1=N-1 
IF NM1 < 1 

GO TO L7 
OTHERWISE 
FOR K=1 TO NM1 DO 

LET KP1=K*1 

»FIND L z  PIVOT INDEX IN THIS COLUMN. 

LET SMAX:ABS.F(A(K,JC)) 
LET LrK 
FOR I=IU1 TO N DO 

IF ABS.F(A(I,K)) > SMAX 
LET L=I 
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44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 

LET SMAX=ABS.F(A(I,K)) 
ALWAYS 

LOOP "FOR MAX ELEMENT 
LET IPVT(K)=L 

"ZERO PIVOT IMPLIES THIS COLUMN ALREADY TRIANGULARIZED. 
11 

IF A(L,K) = 0.0 
GO TO L4 

OTHERWISE 

"INTERCHANGE IF NECESSARY. 
11 

'LV 

IF L = K 
GO TO L1 

OTHERWISE 
LET T=A(L,K) 
LET A(L,K)=A(K,K) 
LET A(K,K)=T 
LET T=-1.0/A(K,K) 
FOR IsK+1 TO N, LET A(IfK)=T*A(I,K) 

"ROW ELIMINATION WITH COLUMN INDEXING. 

FOR J=KP1 TO N DO 
LET T=A(L,J) 
IF L=K 

GO TO L2 
OTHERWISE 
LET A(LfJ)=A(KtJ) 
LET A(KfJ)sT 

'L2'      FOR I=K*1 TO N, LET A(IfJ)=T*A(I,K)+A(IfJ) 
LOOP "OVER (J) COLUMNS 
GO TO L5 

•L4*   LET INFO=K 
•LS'LOOP "OVER K 
,L7,LET IPVT(N)sN 

IF A(N,N)=0.0 
LET INFOsN 

ALWAYS 
RETURN 

END "SGEFA 

1 
2 
3 
U 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

ROUTINE SGEDI (A, IPVT, DET, JOB) 

SGEDI COMPUTES THE DETERMINANT AND INVERSE OF A MATRIX USING THE 
RESULTS PRODUCED BY SGEFA. 

ARGUMENTS! 
A(«t»)  THE REAL FACTORED MATRIX FROM SGEFA ON INPUT. ON OUTPUT THE 

~ ARRAY CONTAINS THE MATRIX INVt IF REQUESTED. ELSE, UNCHANGED. 
IPVTC«) THE INTEGER PIVOT VECTOR FROM SGEFA. 
JOB    AN INTEGER SWITCH. 

" * U FOR BOTH DETERMINANT AND INVERSE. 
z  01 FOR INVERSE ONLY. 
= 10 FOR DETERMINANT ONLY. 
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15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
U2 
U3 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 

DET(») _ CONTAINS THE DETERMINANT OF THE MATRIX, IF REQUESTED. ELSE, 
IS NOT REFERENCED. DETERMINANT = DET(1)»10.0»»DET(2), WITH 
DET(1) BETWEEN 0 AND 10, AND WITH DET(2) A FLOATED INTEGER. 

NOTE: A DIVISION BY ZERO WILL OCCUR IF THE INPUT FACTOR CONTAINS A 
ZERO ON THE DIAGONAL AND THE INVERSE IS REQUESTED. 

DEFINE I,J,J0B,K,KB,KP1,L,N,NM1 AS INTEGER VARIABLES 
DEFINE IPVT AS AN INTEGER, 1-DIMENSIONAL ARRAY 
DEFINE DET, WORK AS REAL, 1-DIMENSIONAL ARRAYS 
DEFINE A AS A REAL, 2-DIMENSIONAL ARRAY 
LET N=DIM.F(IPVT(»)) 
RESERVE WORK(») AS N »•LOCALLY 

'CALCULATE THE DETERMINANT IF REQUESTED. 

IF DIV.F(JOB,10) = 0 
GO TO L6 

OTHERWISE 
LET DET(D = 1.0 
LET DET(2)=0.0 
LET TEN=10.0 
FOR 1=1 TO N DO 

IF IPVT(I) NE I 
LET DET(I) z  -DET(1) 

ALWAYS 
LET DET(1)=A(I,I)»DET(1) 
IF DET(1)=0.0 

GO TO L6 
OTHERWISE 

•LI1   IF ABS.F(DETd)) GE 1.0 
GO TO L2 

OTHERWISE 
LET DET(1)=TEN«DET(1) 
SUBTRACT 1.0 FROM DET(2) 
GO TO L1 

'L2'   IF ABS.F(DETd)) < TEN 
GO TO L4 

OTHERWISE 
LET DET(1)rDET(1)/TEN 
ADD 1.0 TO DET(2) 
GO TO L2 

fL4'L00P "OVER I 

"GET INVERSE OF UPPER TRIANGULAR MATRIX U(\»). 

•L6'IF M0D.F(J0B,10)*0 
RELEASE WORKC») 
RETURN 

OTHERWISE 
FOR Ksl TO N DO 

LET A(K,K);1.0/A(K9K) 
LET T*-A(K,K) 
FOR 1:1 TO K- 1, LET A(ItK)*T*A(I,K) 
LET KPUIU1 
IF N < KP1 

GO TO L9 
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3?: 
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12 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 

83 
84 
85 
86 
87 
88 
89 
90 

91 
92 

93 
94 
95 
96 
97 
98 

99 
100 
101 
102 

103 
104 
105 
106 
107 
108 
109 

1 
2 

3 
4 

5 
6 

7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

OTHERWISE 
FOB J=KP1 TO N DO 

LET T=A(K,J) 
LET A(K,J)=0.0 
FOR 1=1 TO K, LET A(I,J)=T*A(I,K)+A(I,J) 

LOOP "OVER J 
•L9'LOOP "OVER K 

"FORM INVERSES )*INVERSE(L) 
11 

END 

LET NM1=N-1 
IF NM1 < 1 

RELEASE WORK(«) 
RETURN 

OTHERWISE 
FOR KB=1 TO NM1 DO 

LET K=N-KB 
LET KP1=K+1 
FOR I=KP1 TO N DO 

LET WORK(I)=A(I,K) 
LET A(I,K)=0.0 

LOOP "OVER I 
FOR J=KP1 TO N DO 

LET T=WORK(J) 
FOR 1=1 TO N, LET A(I,K)=T»A(I,J)+A(I,K) 

LOOP "OVER J 
LET L=IPVT(K) 
IF L NE K "SWAP ELEMENTS OF VECTORS K AND L 

FOR 1=1 TO N DO 
LET T=A(I,K) 
LET A(ItK)=A(I,L) 
LET A(I,L)=T 

LOOP "OVER I TO SWAP 
ALWAYS 

LOOP "OVER KB 
RELEASE WORK(») 
RETURN 
"SGEDI 

ROUTINE ERLANG GIVEN N, R, T YIELDING PDF, CDF 

Calculates the probability density function (PDF) and cum distribu- 
tion function (CDF) for an Erlang function with integer shape para- 
meter Nf with rate parameter R, and with real argument T. 

DEFINE I,N AS INTEGER VARIABLES 
LET Z=R»T 
LET EXPZ=EXP.F(-Z) 
LET FACT=1.0 
LET ZIsl.O 
LET SUM=1.0 
FOR 1=1 TO N-1 DO 

LET FACT=FACT»I 
LET ZI=ZI*Z 
ADD ZI/FACT TO SUM 

LOOP  "OVER I 
LET PDF=R»ZI/FACT*EXPZ 
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19 LET CDF=1.0-EXPZ»SUM 
20 RETURN 
21 END "ROUTINE ERLANG 

1 ROUTINE NFOLD.MIXE (N,Al,LA1,LA2,T) YIELDING PDF,CDF 
2 •• 
3 ''Routine produces the probability density function (PDF) and cum- 
4 •'ulative distribution function (CDF) for an N-fold convolution of a 
5 ''two-component exponential mixture function having first proportion of 
6 "A1 and with rate parameters LAI and LA2. Real-valued argument is T. 
7 " 
8 DEFINE I,J,K,N AS INTEGER VARIABLES 
9 LET A2=1.0-A1 
10 LET E1=EXP.F(-LA1»T) 
11 LET E2=EXP.F(-LA2«T) 
12 IF N=1 
13 LET PDF=Al«LA1»EHA2»LA2»E2 
14 LET CDF=A1*(1.0-E1)+A2»(1.0-E2) 
15 RETURN 
16 OTHERWISE 
17 IF N=2 
18 LET XC0EF=2.0»A1*A2»LA1*LA2/(LA1-LA2) 
19 LET PDF=(A1»LA1)»»2»T»EU(A2»LA2)»»2»T»E2+XC0EF»(E2-E1) 
20 LET CDF =1.0-A1«»2»E1•(1.0+LA1»T) -A2»»2»E2»(1.0+LA2»T) 
21 -XC0EF«(E2/LA2-E1/LA1) 
22 RETURN 
23 OTHERWISE 
24 IF N=3 
25 LET ARG1=LA1»T 
26 LET ARG2rLA2*T 
27 LET F^I.O-EIMI.O+ARGUO.S^ARGI«^) 
28 LET F23=1.0-E2»(1.0+ARG2+0.51ARG2»»2) 
29 " LET F12=1.0-E1»(1.0*ARG1) 
30 " LET F22=1.0-E2»(1.0*ARG2) 
31 •• LET F11=1.0-E1 
32 •• LET F2U1.0-E2 
33 LET As1.0/LA1/(LA1-LA2) 

*i                       34 LET Bs1.0/LA1/LA2 - LA1/LA2/(LA2-LA1)»»2 
•V}         35 LET APB=A*B 

36 LET C=1.0/(LA2-LA1)"2 
37 LET AP=1,0/LA2/(LA2-LA1) 
38 LET BP=1.0/LA1/LA2 - LA2/LA1/(LA2-LA1)»«2 
39 LET APP:AP*BP 
40 LET PDF=0.5tA1«»3iLA1»ARG1»»2«EU0<5

lA2«»3lLA2*ARG2«»2»E2+3.0»A1 
41 ••2»A2»(APB»E1»LA1»»2»LA2-A»LA1"31ARG2»EUC»LA1«2»U2»E2)43.0 
42 «Al »A2»»2» (APP»E2»LA 1 •LA2»»2-AP»LA2«»3iARG 1 »E2+CUA1 •LA2»»2»E1) 
43 LET CDF=A1»»3,F13a2»»3iF23*3.0«A1**2»A2«(1.0-E2»LA1»»2/(LA1- 
44 LA2)»»2.(ARG1»LA2/(LA2-LA1)^(U2-2,0»LA1)«LA2/(LA2-LA1)M2)»E1) 
45 ♦3.0»A1«A2«2«(1.0-E1»LA2«»2/(LA2-LA1)"2 
46 -(ARG2»LA1/(LA1-LA2MLA1-2.0»LA2)«LAV(U1-LA2)*»2)»E2) 
47 RETURN 
48 OTHERWISE 
49 PRINT 1 LINE WITH N 
50 THUS 
INPUT ERROR TO ROUTINE NFOLD.MIXE. N s •• 

52 STOP 
53 END "NFOLD.MIXE 

V 
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1 
2 
3 
4 
5 
6 
7 
8 

ANNEX £ 

SIMSCRIPT SOURCE PROGRAM: INT.TEST 

PREAMBLE "INT.TEST 
NORMALLY MODE IS REAL 
DEFINE SNORM AS A REAL FUNCTION GIVEN 1 ARGUMENT 
DEFINE ERRFX AS A REAL FUNCTION GIVEN 1 ARGUMENT 
DEFINE FACTORIAL AS A REAL FUNCTION GIVEN 1 ARGUMENT 
DEFINE COMPLETE.GAMMA AS A REAL FUNCTION GIVEN 1 ARGUMENT 
DEFINE NUM.CNVL AS A REAL FUNCTION GIVEN 3 ARGUMENTS 
END "PREAMBLE 

MAIN "INT.TEST 1 
2 " 
3 "Program tests a variety of methods for obtaining convolution integrals 
4 "of a two-parameter Weibull distribution. Program compares Leonard 
5 "Johnson's approx for the 2nd order failure distribution with an exact 
6 "expression when time to fall is a Weibull RV. Ref: Reliability and 
7 "Maintainability of the M48A1 Tank, p.26 ff. 
8 DEFINE ANSWER AS A TEXT VARIABLE 
9 DEFINE FLAGM,I,J,K,KORD,M,N,NCELLS,NREPS,SEED AS INTEGER 

10 VARIABLES 
11 DEFINE HISTV AS AN INTEGER, ^DIMENSIONAL ARRAY 
12 DEFINE TVfFYV,FZVvDELFXV AS REAL, 1-DIMENSIONAL ARRAYS 
13 LET N=1024 "ELEMENTS IN FYV(») 
14 RESERVE FYV<«),FZV(«),DELFXV(«) AS N 
15 LET LINES.V=9999 
16 LET NCELLS=20 
17 RESERVE HISTV(•),TV(•) AS NCELLS 
18 PRINT 5 LINES THUS 

Program calculates the convolution integral of N (N le 8) identical Weibull 
distributions via several methods. This convolution distribution Is the c.d.f. 
of the sum of N, identical Weibull random variables. Methods include: 
(a) evaluation of an analytic expression, (b) Leonard Johnson's (L-J) approxi- 
mation, (c) finite numerical convolution, and (d) Monte-Carlo simulation. 

24 'LO'SKIP 2 LINES 
25 PRINT 1 LINE THUS 

INPUT THE SCALE PARAMETER OF THE WEIBULL DISTRIBUTION. 
27 READ ETA 
28 LET Cs2.0/ETA"2 
29 PRINT 1 LINE THUS 

INPUT THE WEIBULL SHAPE PARAMETER. 
31 READ SHAPE 
32 'LV PRINT 1 LINE THUS 

INPUT THE NUMBER (LE 8) OF CONVOLUTIONS OF THIS DISTRIBUTION WANTED. 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 

READ KORD 
IF KORD > 8 

GO TO L1 
OTHERWISE 
LET ORDER=KORD 

"FILL THE ARRAYS OF DISCRETE VALUES OF THE C.D.F. 

LET FXOrO.O 
LET ERR=0.00001 

E-1 

^^M^^^M A^;;^^ 



44 LET TMAX=ETA»(-L0G.E.F(ERR))»»(1.0/SHAPE) 
45 LET AVG1=ETA»COMPLETE .GAM4A (1.0+1.0/SHAPE) 
46 LET VAR1=ETA»»2»C0MPLETE.GAMMA(1.0+2.0/SHAPE) - AVG1»»2 
47 LET STDV1=SQRT.F(VAR1) 
48 LET TMAX=MAX.F(TMAX,ORDER»AVG1+3.5»SQRT.F(ORDER»VAR 1)) 
49 LET DELZ=TMAX/N 
50 FOR 1=1 TO N DO 
51 LET X=I»DELZ 
52 LET FX=1.0 - EXP.FC-U/ETA)»»SHAPE) 
53 LET FYV(I)=FX 
54 LET DELFXV(I)=FX-FXO 
55 LET FX0=FX 
56 LOOP "OVER (I) DISCRETE POINTS OF THE CDF 
57 IF KORD > 2 
58 PRINT 1 LINE WITH N 
59 THUS 

Starting numerical convolution with »»»• points. 
61 FOR K=1 TO KORD-2 DO 
62 FOR 1=1 TO N, LET FZV(I)=NUM.CNVL (I, FYV(»), DELFXVC»)) 
63 FOR 1=1 TO N, LET FYV(I)=FZV(I) 
64 LOOP "OVER (K) CONVOL ORDERS 
65 PRINT 1 LINE THUS 

Numerical convolution completed. 
67 ALWAYS 
68 LET PSI=CQMPLETE.GAMMA(ORDER*1.0/COMPLETE.GAWA( 1.0*1.0/SHAPE)/ 
69 SHAPE)/FACTORIAL(KORD) 
70 LET DELT=TMAX/NCELLS 
71 FOR K=1 TO NCELLS, LET TV(K)=K»DELT 
72 PRINT 1 LINE THUS 

DO YOU WANT A MONTE-CARLO ESTIMATE OF THE CONVOLUTION CD.F.? <Y OR N). 
74 READ ANSWER 
75 IF SUBSTR.F(ANSWER,1,1) = "Y" 
76 LET FLAGM=1 
77 PRINT 1 LINE THUS 

INPUT THE INDEX OF THE RANDOM # SEED. 
79 READ SEED 
80 PRINT 1 LINE THUS 

INPUT THE NUMBER OF REPLICATIONS WANTED. 
82 READ NREPS 
83 PRINT 1 LINE WITH NREPS 
84 THUS 

A Monte-Carlo simulation of •»••• replications has begun. 
86 FOR K=1 TO NCELLS, LET HISTV(K)=0 
87 LET AVGT=0.0 
88 LET VART=0.0 
89 " 
90 "SIMULATE FOR NREPS REPLICATIONS. 
91 •' 
92 FOR 1=1 TO NREPS DO 
93 LET SUM*0.0 
94 FOR J=1 TO KORD DO 
95 ADD WEIBULL.FCSHAPB,ETA,SEED) TO SUM 
96 LOOP "OVER J 
97 ADD SUM TO AVGT 
98 ADD SUM»»2 TO VART 
99 FOR K*1 TO NCELLS DO 
100 IF SUM LE TV(K) 
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101 
102 
103 
104 
105 
106 
107 
108 

'K2' 

ADD 1 TO HISTV(K) 
GO TO K2 
OTHERWISE 

LOOP "OVER (K) CELLS 
LOOP "OVER (I) REPLICATIONS 
LET AVGT=AVGT/NREPS 
LET VARTrVART/NREPS-AVGT»»2 
PRINT 1 LINE THUS 

Monte-Carlo simulation has been completed. 
110 OTHERWISE 
111 LET FLAGM=0 
112 ALWAYS 
113 SKIP 2 LINES 
114 PRINT 1 LINE WITH KORD,SHAPE,ETA 
115 THUS 

CONVOLUTION C.D.F. OF ORDER «• OF A WEIBULL DIST: SHAPE •••• AND SCALE •••.•»• 
117     PRINT 5 LINES THUS 

Indep   Exact    L-J Aprx   Numerical 
Variable c.d.f.O) c.d.f.    c.d.f.(2) 

Normal 
Aprx 

Histo 
Freq 

Sample 
c.d.f. 

'123 LET CDFX=0.0 
124 LET MAELJ=0.0 "FOR MAX ABS ERROR IN C.D.F. FOR L-J APPROX 
125 LET MAEDNrO.O "FOR MAX ABS ERROR IN C.D.F FOR DISCRETE NUM APPROX 
126 LET MAEMC=0.0 "FOR MAX ABS ERROR IN C.D.F. FOR MONTE CARLO 
127 LET MAENA=0.0 "FOR MAX ABS ERROR IN C.D.F. OR NORMAL APPROX 
128 LET RMSLJrO.O 
129 LET RMSDNsO.O 
130 LET RMSMCrO.O 
131 LET RMSNA=0.0 
132 LET AVGsORDER'AVGI 
133 LET VAR*0RDER«VAR1 
134 LET STDVrSORT.F(VAR) 
135 FOR K*1 TO NCELLS DO 
136 LET T*TV(K) 
137 LET MS(T*0.4999»DELZ)/DELZ 
138 LET X«(PSI»T/ETA)MSHAPE 
139 LET SUM«1.0 
140 LET FACT*1.0 
141 LET XIxl.O 
142 FOR 1=1 TO K0RD-1 DO 
143 LET FACTsFACT»I 
144 LET XI=XI»X 
145 ADD XI/FACT TO SUM 
146 LOOP "OVER I 
147 LET QK=1.0 - EXP.F(-X)«SUM 
148 IF K0RD*1 
149 LET FZsFYV(M) 
150 OTHERWISE 
151 LET FZsNUM.CNVL (M, FYV(«), DELFXV<*)) 
152 ALWAYS 
153 IF SHAPE:2.0 AND K0RD:2 
154 LET ARGrT«SQRT.F(C/2.0) 
155 LET INTG=EXP.F(0.5iARG«»2)«(SN0RM(ARG).SN0RM(-ARG))»ARG» 
156 SQRT.FCPI.C/2.0) 
157 LET Q2=1.0 - EXP.F(-ARG»»2)*(1.0*INTG) 
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158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
17*4 
175 

•»,•■■ 
177 
178 
179 

181 
182 
183 
184 
185 
186 
!87 
188 

OTHERWISE 
LET Q2=FZ 

ALWAYS 
LET MAELJ=MAX.F(MAELJ,ABS.F(Q2-QK)) 
LET MAEDN=MAX.F(MAEDN,ABS.F(Q2-FZ)) 
LET FN=SNORM((T-AVG)/STDV) 
LET NERR=FN-Q2 
LET MAENA=MAX.F(MAENA,ABS.F(NERR)) 
ADD NERR»»2 TO RMSNA 
ADD (Q2-QK)«»2 TO RMSLJ 
ADD (Q2-FZ)»»2 TO RMSDN 
IF FLAGM=1 

LET PDFX=HISTV(K)/NREPS 
ADD PDFX TO CDFX 
LET MAEMC=MAX.F(MAEMC,ABS.F(Q2-CDFX)) 
ADD (Q2-CDFX)»«2 TO RMSMC 
PRINT 1 LINE WITH T,Q2fQK,FZ»FNfHISTV(K),CDFX 
THUS 

t.tltttttt ■■••»»■ ■,»»•««§ ft.ftft»»it      «••#•• I.HIIII 

OTHERWISE 
PRINT 1 LINE WITH T,Q2,QK,FZ,FN 
THUS 

t,»i«ttt  ■,»»«•§•  ».»«••••   ■,«••■■• 

ALWAYS 
LOOP "OVER (K) VALUES OF TIME 
LET RMSLJ*SQRT.F(RMSLJ/REAL.F(NCELLS)) 
LET RMSDN=SQRT.F(RMSDN/REAL.F(NCELLS)) 
LET RMSMC=SQRT.F(RMSMC/REAL.F(NCELLS)) 
LET RMSNA=SQRT.F(RMSNA/REAL.F(NCELLS)) 
PRINT 4 LINES WITH N 
THUS 

TTT""?he dTscfete nuoerfcaf "approx is treaTeTYs exact if either the 
W«ibull shape parameter is not 2 or the number of convolutions is not 2. 

(2) Number of discrete points in numerical convolution •*•• 
193 PRINT 4 LINES WITH MAELJ,RMSLJ,MAEDN,RMSDN,MAENA,RMSNA,MAEMC,RMSMC 
194 THUS 

Max abs error and RMS error in c.d.f. of L-J approximation e.eaeeae »,••■••■ 
Max abs error and RMS error in c.d.f, of discrete numerical •.•••••• e.eeeeee 
Max abs error and RMS error in c.d.f. of Normal approx    e.eeeeee •.•••in 
Max abs error and RMS error in c.d.f. of Monte-Carlo aim   e.eeeeee e.eeeeee 

199 PRINT 2 LINES WITH AVG.STDV 
200 THUS 

Mean of tne convolution distribution  sees,sees  std Oev eese.eeee 

203 IF FLAOMsl 
204 LET SET=SQRT.F(VART/REAL.F(NREPS>> 
203        PRINT 3 LINES WITH AVGT,SQRT.F(VART),AVGT-1.961SETlAVGT4l.96«SET 
206        THUS 

Sample average of sum of Weibuil RVs  eeee.eeee  std Dev eeee.eeee 
95 percent confidence interval in mean eeee.eeee, eeee.eeee 

210 ALWAYS 
211 PRINT 1 LINE THUS 

DO YO'J WANT TO CONTINUE? (YES OR NO). 
213    READ ANSWER 
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214 
215 
216 
217 
218 END 

IF SUBSTR.F(ANSWER,1,1) = MYH 

GO TO LO 
OTHERWISE 
STOP 
"INT. TEST 

s 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

FUNCTION FACTORIAL(N) 

"CALCULATES THE FACTORIAL OF INTEGER N. 
* t 

DEFINE I AND N AS INTEGER VARIABLES 
IF N LE 0 

RETURN WITH 1.0 
OTHERWISE 
LET Fs1•0 
FOR Is 1*TO N, LET F=F«I 
RETURN WITH F 

END ••FACTORIAL 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
ZZ 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

FUNCTION COMPLETE. G A WA( XX) 

"CALCULATES THE COMPLETE GAttU FUNCTION WITH SINGLE REAL ARGUMENT XX. 
"METHODS THE RECURSION RELATION AND POLYNOMIAL APPROXIMATION IS TAKEN 
"FROM: C. HASTINGS, JR, 'APPROXIMATIONS FOR DIGITAL COMPUTERS,* 
"PRINCETON UNIV. PRESS, 
f i 

1955. 

IF XX > 57.0 
GO TO LI30 

OTHERWISE 
•L6«   LET X z  XX 

LET ERR s 0.000001 
LET GAttM « 1.0 
IF X LE 2.0 

GO TO L50 
OTHERWISE 

GO TO L15 
•LIO»  IF X LE Z.T» 

GO TO L110 
OTHERWISE 

'LI 5'  SUBTRACT 1.0 FROM X 
LET GAN4A s GAMU * X 
GO TO L10 

•L50'  IF X s 1.0 
GO TO L120 

OTHERWISE 
IF X > 1.0 

GO TO L110 
OTHERWISE 

•L601  IF X > ERR 
GO TO L80 

OTHERWISE 
LET Y • REAL.F(TftUNC.F(X))-X 
IF ABS.F(Y) LE ERR 
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35 GO TO LI30 
36 OTHERWISE 
37 IF Y+ERR GE  1.0 
38 GO TO LI30 
39 OTHERWISE 
40 'L70'      IF X >  1.0 
41 GO TO L110 
42 OTHERWISE 
43 'LeO'  LET GAWA = GAH4A / X 
44 ADD 1.0 TO X 
45 GO TO L70 
46 'LIIO' LET Y s X - 1.0 
47 LET GY = 1.0*Y«(-0.57710166*Y«(0.98585399*Y»(-0.87642182*Y» 
48 (0.83282120*Y»(-0.56847290*Y»(0.25482049*Y«(-0.05149930))))))) 
49 LET GA**4A = GArtU • GY 
50 ^120' RETURN WITH GAftU 
51 'L130' PRINT 1 LINE WITH XX THUS 

ERROR IN COMPLETE.GAWA. ARGUMENT = •••.••••• 
53 STOP 
54 END ••COMPLETE.GAWA 

1 FUNCTION NUM.CNVL (N, FYV, DELFXV) 
2 " 
3 "Function calculates a value of the c.d.f. of the sum of tvo random 
4 "variables— x and y— whose c.d.f.'s are evaluated at a discrete # 
5 "of points on their domains. This distribution of the sun Is the eon- 
6 "volution of the dlst's of x and y. The convolution distribution Is 
7 "evaluated for the N th discrete argument. The set of c.d.f« values 
8 "of y are given by the vector FYV* and the first backward differences 
9 "in the c.d.f. of x, defined on the saae finite domain, are given in 

10 "DELFXV. 
11 DEFINE I,N AS INTEGER VARIABLES 
12 DEFINE FYV,DELFXV AS REAL, 1-DIHENSIONAL ARRAYS 
13 LET GN»0.0 
14 FOR 1*1 TO N-1, ADD FYV(N-I)»DELFXV(I) TO GN 
15 RETURN WITH GN 
16 END "FUNCTION NUM.CNVL 

:< 
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2 
3 
4 

5 
6 

7 
8 

9 
10 

1 
2 
3 
4 

5 
6 

7 
8 
9 

10 
i1 

12 

13 
14 

15 
16 

ANNEX F 

SIMSCRIPT SOURCE PROGRAM:  TEST.CONVOLV 

PREAMBLE "TEST.CONVOLV 
NORMALLY MODE IS REAL 
DEFINE SNORM AS A REAL FUNCTION GIVEN 1 ARGUMENT 
DEFINE ERRFX AS A REAL FUNCTION GIVEN 1 ARGUMENT 
DEFINE COMPLETE.GAMMA AS A REAL FUNCTION GIVEN 1 ARGUMENT 
DEFINE W2WFUN AS A REAL FUNCTION GIVEN 1 ARGUMENT 
DEFINE EFUN AS A REAL FUNCTION GIVEN 2 ARGUMENTS 
DEFINE WFUN AS A REAL FUNCTION GIVEN 2 ARGUMENTS 
END "PREAMBLE 

MAIN 
t» 

»TEST.CONVOLV 

"Program to run routine CONVOLV. This program generates 2 p.d.f.'s 
"defined on a discrete point set, from prob dist's to be numerically 
"convolved via Fourier transformation, multiplication of transforms, 
"and inversion. The # of real (as opposed to imaginary) points in 
"the transform and its Inverse must be a power of 2 in order to use 
"the Cooley-Tukey FFT algorithm. Comparisons with exact results and, 
"optionally, Monte-Carlo results are also given. 

DEFINE FLAGE,FLAGM,FLAGW,I,J,K,L,M,MINCR,N,NFOLD,NCELLS,NREPS,SEED AS 
INTEGER VARIABLES 
DEFINE ANSWER,FUN.NAME AS TEXT VARIABLES 
DEFINE HISTV AS AN INTEGER, 1-DIMENSI0NAL ARRAY 
DEFINE TV,XV,YV,PDFV,CDFV AS REAL, 1-DIMENSTONAL ARRAYS 

PRINT 11 LINES THUS 
This program calculates the probability distribution of the sum of a 

set of random variables of a particular type, such as Erlang or Weibull. 
This is equivalent to obtaining the N-fold convolution of the probability 
functions of the set of N. For a given type of random variable, two sets 
of parameters are permitted. Distributions having the 1st parameter 3et are 
convolved N-1 times with the distribution having the 2nd parameter set. 
Where available, exact results are calculated and displayed. A numerical 
method for obtaining convolution integrals based on the Fourier transform 
is used in all cases to obtain an approximation of the convolution p.d.f. 
and c.d.f. Optionally, Monte-Carlo simulation is used for sample estimates. 

28 PRINT 3 LINES 
29 THUS 

The current program version treats convolutions of an Erlang or a Weibull 
distribution in standardized form, i.e., characterized by a shape parameter. 

33     PRINT 1 LINE THUS 
IF THE ERLANG FORM IS WANTED, INPUT AN E; OTHERWISE, INPUT A W. 

35 READ ANSWER 
36 IF SUBSTR.F(ANSWER,1,1) = "E" 
37 LET FLAGW=0 
38 LET FLAGE=1 "TRIGGER FORMAT FOR EXACT RESULTS 
39 LET FUN.NAMEz "Erlang" 
U0 OTHERWISE 
41 LET FLAGW=1 
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life; 

42 LET FUN.NAMEr "Weibull" 
43 ALWAYS 
44 PRINT 1 LINE THUS 
INPUT THE NUMBER OF CONVOLUTIONS WANTED. 

46 READ NFOLD 
47 ''  LET N=4096 
48 LET N=8192 
49 LET M=DIV.F(N,2) »'NUMBER OF REAL POINTS IN THE SERIES 
50 RESERVE XV(»), YV<*> AS N 
51 LET MINCR=256 "SKIP INTERVAL FOR PRINTING 
5? LET NCELLS=DIV.F(M,MINCR) 
53 LET NCELLS=MAX.F(16,NCELLS) 
54 LET MINCR=DIV.F(M,NCELLS) 
55 RESERVE HISTV(*) AS NCELLS 
56 RESERVE TVC») AS NCELLS "FOR INDEPENT VAR IN A HISTOGRAM 
57 RESERVE PDFVC»),CDFV(») AS NCELLS 
53 LET LINES.V=9999 
59 LET ETAU1.0 
60 LET ETA2=1.0 
61 IF FLAGWri 
62 GO TO L7 
63 OTHERWISE 
64 'LO'PRINT 1 LINE WITH FUN.NAME 
65 THUS 
INPUT THE INTEGER SCALE PARAM OF THE 1ST STD •••»»•• DISTRIBUTION. 

67 READ K 
63 IF K < 1 
69        PRINT 1 LINE THUS 
Try again using a positive integer. 

71 
72 

73 
74 

75 
76 
77 
78 
79 

GO TO LO 
OTHERWISE 

"CALCULATE MEAN AND VARIANCE OF 1ST DIST. 

LET AVGUK 
LET VAR1=K 

•LT PRINT 1 LINE WITH FUN.NAME 
THUS 

INPUT THE INTEGER SCALE PARAM OF THE 2ND STD *»»«*»» DISTRIBUTION. 
81 READ L 
82 IF L < 1 
83 PRINT 1 LINE THUS 
Try again using a positive integer. 

85 
86 
37 
88 
39 
90 
91 
92 
93 
94 
95 
96 
97 
98 

GO TO L1 
OTHERWISE 

•CALCULATE MEAN AND VAR OF 2ND DIST AND OF CONVOLUTION DIST. 

LET AVG2=L 
LET VAR2=L 
LET AVG=AVG1»(NF0LD-1)*AVG2 
LET VAR = VAH1*(NF0LD-mVAR2 
LET STDVzSURT.F(VAR) 
LET STDV1=S'4RT.F(VAR1) 
LET STDV2=SQRT.F(VAR2) 
SKIP 2 LINES 
PRINT 7 LINES WITH FUN.NAME,K,L,M 
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99     THUS 
EXACT CONVOLUTION OF TWO »»»*»»« DENSITIES WITH SHAPE PARAMS »* AND « 
Number of real points in the Fourier transform ***» 

Indep 1st      1st      2nd      2nd Conv Conv* " Normal 
Variabl e  p.d.f.   c.d.f.   p.d.f.   c.d.f. p.d.f. c.d.f. c.d.f. 

107 LET RANGE=AVG+3.7*SQRT.FCVARJ 
108 •LU'LET DARG=RANGE/M 
109 I t 

110 "CHECK RANGE AND MODIFY, AS NECESSARY. 
111 11 

112 IF EFUN((NF0LD-1)»K+L,RANGE) < 0.9999 
113 ADD DARG TO RANGE 
114 GO TO L4 
115 OTHERWISE 
116 GO TO L8 
117 11 

118 ••GET INPUTS FOR WEIBULL DISTRIBUTION. 
119 »t 

120 •L7'PRINT 1 LINE WITH FUN.NAME 
121 THUS 
INPUT THE SHAPE PARAMETER OF THE 1ST **»»*»• DISTRIBUTION. 

123 READ SHAPE1 
124 PRINT 1 LINE WITH FUN.NAME 
125 THUS 
INPUT THE SHAPE PARAMETER OF THE 2ND *»»*»»» DISTRIBUTION. 

127 READ SHAPE2 
128 LET ERR=0.00001 
129 LET T1MAX=ETA1«(-LOG.E.F(ERR))»»(1.0/SHAPE1) 
130 LET T2MAX=ETA2»(-LOG.E.F(ERR))«»(1.0/SHAPE2) 
131 LET AVG1=ETA1»C0MPLETE.GAMMA(1.0+1.0/SHAPE1) 
132 LET AVG2=ETA2»C0MPLETE.GAMMA(1.0*1.0/SHAPE2) 
133 LET VAR1=ETA1«»2«COMPLETE.GAMMA(1.0*2.0/SHAPE1) - AVG1*»»2 
134 LET STDV1=SQRT.F(VAR1) 
135 LET VAR2=ETA2»»2«C0MPLETE.GAMMA(1.0*2.0/SHAPE2) - AVG2»»2 
136 LET STDV2=SQRT.F(VAR2) 
137 LET AVG=(NF0LD-1)»AVGUAVG2 
138 LET VAR = (NF0LD-1)»VARUVAR2 
139 LET STDV=SQRT.F(VAR) 
140 LET RANGE=MAX.F(T1MAX,T2MAX) 
141 LET RANGE=MAX.F(RANGE,AVG*3.7»SQRT.F(VAR)) 
142 •• 
143 "PRINT HEADINGS FOR INPUT DISTRIBUTIONS. 
144 " 
145 SKIP 2 LINES 
146 PRINT 3 LINES WITH FUN.NAME,SHAPE!,SHAPE2,M 
147 THUS 

EXACT CONVOLUTION OF TWO »*■»••* DENSITIES WITH SHAPE PARAMS •».• AND •».• 

Number of real points in the Fourier transform *•*• 
151 IF SHAPEU2.0 AND SHAPE2=2.0 
152 IF ETA1  NE ETA2 OR NFOLD NE 2 
153 GO TO L9 
154 OTHERWISE 
155 LET FLAGE=1 
156 HUNT 4 LINES THUS 

F-3 



Tnaep"    TsF"    TsE     2n3 TnH*  ~~ Conv    Conv    Normal 
Variable  p.d.f.   cd.f.   p.d.f.   cd.f.   p.d.f.   cd.f.   cd.f. 

iTi      G0T0T8 
162 OTHERWISE 
163 'L9'LET FLAGE=0 
16U     PRINT 4 LINES THUS 

*\'i Indep~ 1st       1st      2nd      2nd 
Variabl e   p. d.f.    c.d.f.    p.d.f.    cd.f. 

1 V" » 

~t>9~~ 
rLffrLET ARG0=0.0 "FIXED 

Q 170 LET RANGE=RANGE-ARG0 
171 LET DARG=RANGE/M 

Wy 172 LET AVGTD=0.0 "THEORETICAL, DISCRETIZED 
173 LET VARTD=0.0 
174 LET XSUM*1.0 
175 LET XXSUM=0.0 
176 LET F10=0.0 
177 LET F20=0.0 

w 178 LET F30=0.0 

« 179 LET J = 0 "TO COUNT CELLS 
Ab 180 LET MAENA=0.0 

181 LET RMSNA=0.0 
vt 182 11 

183 "GET TEST FUNCTIONS. 

fr 184 »1 

£ 185 FOR 1=1 TO M DO 

$ 186 LET ARG=I»DARG*ARGO 

& 187 IF M0D.F(I,2)=0 

i 188 
189 

LET COEF=2.0 
OTHERWISE 

ft 190 LET C0EF=4.0 
ft« 
ft*- 191 ALWAYS 
ft« 192 IF FLAGWrO 
3S 193 LET F1=EFUN(K,ARG) 

5 194 
195 

LET F2=EFUN(L,ARG) 
LET F3=EFUN((NFOLD-1)»K+L,ARG) 

196 OTHERWISE 

$ 
< 

197 LET F1=WFUN(SHAPE1,ARG) 
198 LET F2=WFUN(SHAPE2,ARG) 

£>• 199 IF FLAGE=1 

i 200 LET F3=W2WFUN(ARG) 
201 
202 

ALWAYS 
ALWAYS 

fö 203 LET XV(2»I-1)=F1-F10 

& 
204 LET YV(2»I-1)=F2-F20 

$ 205 LET CDENS=F3-F30 
ft 206 

207 
ADD CDENS»ARG TO AVGTD 
ADD CDENS»ARG»»2 TO VARTD 

t? 208 LET F10=F1 

209 
210 
211 
212 
213 

LET F20=F2 
LET F30=F3 
LET UPPERS.0-F3 
ADD C0EF»UPPER TO XSUM 
ADD C0EF»ARG»UPPER TO XXSUM 
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214 " 
215 "FILL IMAGINARY COMPONENTS WITH ZEROS. 
216 " 
217 LET XV(2»I)=0.0 
218 LET YV(2»I)=0.0 
219 IF MOD.F(I,MINCR)=0 
220 ADD 1 TO J 
221 LET TV(J)=ARG 
222 IF FLAGE=1 
223 LET PDFV(J)=CDENS 
224 LET CDFV(J)=F3 
225 LET FN=SNORM((ARG-AVG)/STDV) 
226 LET NERR=FN-F3 
227 LET MAENA=MAX.F(MAENA,ABS.F(NERR)) 
228 ADD NERR*«2 TO RMSNA 
229 PRINT 1 LINE WITH ARG,XV(2*I-1),F1,YV(2*I-1),F2,CDENS, 
230 F3,FN THUS 

«»«.«ft« «.»««««» «,««»»*» ».«»««»« «.«««««« «.«««»«« «,«»«««« ft,»«««»» 

232 OTHERWISE 
233 PRINT 1 LINE WITH ARG,XV(2»I-1),F1,YV(2»I-1),F2 
234 THUS 

«ft,»«»«   »a«ftftft»ft  ft.«»«»««  ».«ft««»»  ft.«»»«»« 

236 ALWAYS 
237 ALWAYS 
238 LOOP "OVER (I) DATA POINTS 
239 PRINT 2 LINES THUS 

242 PRINT 4 LINES WITH FUN.NAME,AVG1,STDV1,FUN.NAME,AVG2,STDVI\AVG,STDV 
243 THUS 

Mean and standard deviation of the 1st ••»•••» dist'n: »»«.•«»• ««».»»»« 
Mean and standard deviation of the 2nd •»•»»•» dist'n: ••».»•■» •««.*•«• 
Theoretical mean and SD of the convolution distribution: *»».«•»• •»».•»•» 

248 IF FLAGE=1 
249 LET VARTD=VARTD-AVGTD»»2 
250 LET XSUM=XSUM»DARG/3.0 
251 LET XXSUM=2.0»DARG/3.0»XXSUM - XSUM»»2 
252 PRINT 3 LINES WITH AVGTD,SQRT.F(VARTD),XSUM,SQRT.F(XXSUM) 
253 THUS 

Avg and SD of theoretical, discretized convolution dist: •»».•«•• ••».•»•• 
Alternate (2nd order) calculation of average and std dev: •■•.«*■• ••»,•••• 

257 LET RMSNA=SQRT.F(RMSNA/REAL.F(NCELLS)) 
258 PRINT 3 LINES WITH MAENA,RMSNA 
259 THUS 

Max abs error and RMS error in c.d.f. of Normal approx:  ».••»»•» »,•••••• 

263 ALWAYS 
264 »• 
265 "TAKE NUMERICAL CONVOLUTION. 
266 " 
267 PRINT 2 LINES WITH NF0LD,M 
268 THUS 

Starting •• convolutions using FFT with •»»» real points, 
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271 CALL CONVOLV (NFOLD, XV(«), YV(»)) 
272 SKIP 1 LINE 
273 LET SUMr 0.0 
27U FOR 1=1 TO M, ADD YV(2»I-1) TO SUM 
275 PRINT 1 LINE WITH 2.0*SUM/N 
276 THUS 

Cumulative of numerical convolution density is 
278 SKIP 2 LINES 
279 PRINT 6 LINES WITH NFOLD,FUN.NAME 
280 THUS 

Sft EXACT  VERSUS NUMERICAL CONVOLUTION OF «»  »•»»»»» PROB DISTRIBUTIONS 

Indep"^ "Theory"         Theory            Nuraer             "Sumer              Diff 
■A« < Variable p.d ,f.            c.d.f.            p.d.f.            c.d.f.            c.d.f. 

~5f ~~LET "CDFrff="0."0 
288 LET J=0 
289 LET AVGFT=0.0 
290 LET VARFT=0.0 
291 LET MAEFT=0.0 

vM 292 LET RMSFT=0.0 
Jr >C 
JCvi 293 LET XSUM=1.0 

294 LET XXSUM=0.0 
295 FOR 1=1  TO M DO 

j» 
296 LET ARG=I»DARG*ARG0 

& 297 IF MOD.F(I,2)=0 

& 293 LET C0EF=2.0 

M 299 OTHERWISE 
300 LET COEF=U.O 
301 ALWAYS 

rj<? 302 LET PDF.FT=YV(2»I-1)»2.0/N 

*S 303 ADD ARG»PDF.FT TO AVGFT 

$• 30U ADD ARG»«2»PDF.FT TO VARFT 

$ 
305 ADD PDF.FT TO CDF.FT 

ay 30b LET UPPER=1.0-CDF.FT 
307 ADD COEF»UPPER TO XSUM 
308 ADD COEF»ARG»UPPER TO XXSUM 1 309 IF MOD.F(I,MINCR)=0 

fc« 310 ADD   1  TO J 

311 IF FLAGE=1 
312 LET PDF=PDFV(J) 

H 313 LET CDF=CDFV(J) 
^T 314 OTHERWISE 

315 LET PDF=PDF.FT 

$ 316 LET CDF=CDF.FT 

*tf 317 LET PDFV(J)=PDF 
318 LET CDFV(J)=CDF 
319 ALWAYS 

Kv 320 LET DIFF=CDF.FT-CDF 

1^— # 
321 LET MAEFT=MAX.F(MAEFT,ABS.F(DIFF)) 
322 ADD DIFF™2 TO RMSFT 
323 PRINT  1  LINE WITH ARG,PDFtCDF,PDF.FTtCDF.FT,DIFF 

^y>t i;*" THUS 
••.im «,••••»•             I.HIIII             ■.•■■■••             *,#•••••             ■.•>»»•« 

* 
326 ALWAYS 

vjs 327 LOOf 1   "OVER   (I)   POINTS 
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328     PRINT 2 LINES THUS 

k:$ 331     LET VARFT=VARFT-AVGFT«*2 
332 LET XSUM=XSUM«DARG/3.0 
333 LET XXSUM=2.0»DARG/3.0«XXSUM - XSUM»»2 
334 LET RMSFT=SQRT.F(RMSFT/REAL.F(NCELLS)) 

v£X 335     PRINT 5 LINES WITH NFOLD,FUN.NAME,AVGFT,SQRT.F(VARFT),XSUM, 
336 SQRT.F(XXSUM),MAEFT,RMSFT 
337 THUS 

Mean value and standard deviation of the suui of •» ••«»»»» RVs via FFT: 
Calculated mean •••,»»»•  std Dev »»*.#•»» 
Alternate mean »»».«*»*  Std Dev ««».»*»« 
Max aba error and RMS error in convol c.d.f. via FFT «.***»»» #.»«*#»» 

343     PRINT 1 LINE THUS 
DO YOU WANT TO PERFORM A MONTE-CARLO SIMULATION?  (YES OR NO), 

345 READ ANSWER 
346 IF SUBSTR.F(ANSWER,1,1) NE "Y" 
347 GO TO 15 
348 OTHERWISE 
349 "  LET FLAGM=1 
350 PRINT 1 LINE THUS 

INPUT THE INDEX (1 THRU 9) OF THE RANDOM # SEED. 
352 READ SEED 
353 PRINT 1 LINE THUS 

INPUT THE NUMBER OF REPLICATIONS WANTED. 
355 READ NREPS 
356 PRINT 1 LINE WITH NREPS 
357 THUS 
Monte-Carlo simulation of *»»■• replications has begun. 
359 LET AVGT=0.0 

•Tit'T*. 
360 LET VART=0.0 
361 FOR 1=1 TO NCELLS, LET HISTV(I)=0 
362 11 

wj 363 "SIMULATE FOR NREPS REPLICATIONS. 

^K 364 11 

vv 365 FOR 1=1 TO NREPS DO 
jsjw< 366 LET SUM=0.0 

v$ 367 FOR J=1 TO NFOLD-1 DO 

bi£ 368 IF FLAGW=0 
nj 369 ADD ERLANG.F(AVG1,K,SEED) TO SUM 

370 OTHERWISE 
371 ADD WEIBULL.F(SHAPE1,ETA1,SEED) TO SUM 

££ 372 ALWAYS 

^s; 373 LOOP "OVER (J) RVS 
374 IF FLAGWzO 

'#* 375 ADD ERLANG.F(AVG2,L,SEED) TO SUM 

58S? 376 OTHERWISE 
%w 377 ADD WEIBULL.F(SHAPE2,ETA2,SEED) TO SUM 

loir • 378 ALWAYS 

5w 379 ADD SUM TO AVGT 
380 ADD SUM»»2 TO VART 
381 FOR J=1 TO NCELLS DO 

^ 382 IF SUM LE TV(J) 

^Ä 383 ADD 1 TO HISTV(J) 

*£ 384 GO TO <2 
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385 OTHERWISE 
386 LOOP "OVER (J) CELLS 
387 'K2'L00P "OVER (I) REPLICATIONS 
388 LET AVGT=AVGT/NREPS 
389 LET VART=VART/NREPS - AVGT**2 
390 LET SET=SQRT.F(VART/REAL.F(NREPS)) 
391 PRINT 3 LINES WITH NREPS,AVGT,SQRT.F(VART),AVGT-1.96»SET,AVGT+1.96«SET 
392 THUS 

Sample mean from ****  reps of Monte-Carlo sira •»».«•«• Std Dev *#*.»»»» 
95% statistical confidence interval in mean:  *•»,•«»», mi».»*»* 

396 SKIP 2 LINES 
397 PRINT 6 LINES WITH NFOLD, FUN.NAME 
398 THUS 

SAMPLE PROB DIST OF THE SUM OF A SET OF »» »»»»■*» RANDOM VARIABLES 

Indep 
Variable 

—uob 
406 
407 
408 
409 
410 
411 
412 

413 
414 

415 
416 
»»»,«»•» 

418 
419 

Histo 
Frequency 

"Sample" 
p.d.f. 

Sample 
c.d.f. 

" Theory* 
c.d.f. 

"Differ 
c.d.f. 

LET~XCDF=0.0 
LET MAEMCrO.O 
LET RMSMC=0.0 
FOR J=1 TO NCELLS DO 

LET XPDF=HISTV(J)/NREPS 
ADD XPDF TO XCDF 
LET CDF=CDFV(J) 
LET DIFF=XCDF-CDF 
LET MAEMC=MAX.F(MAEMC,ABS.F(DIFF)) 
ADD DIFF«»2 TO RMSMC 
PRINT 1 LINE WITH TV(J),HISTV(J),XPDFfXCDF,CDF,DIFF 
THUS 

»»»■»»     ».»»»»»»     ».»»»»»»     ».«»»»»«     »t 

LOOP "OVER (J) HISTO CELLS 
PRINT 2 LINES THUS 

422 LET RMSMC=SQRT.F(RMSMC/REAL.F(NCELLS)) 
423 PRINT 2 LINES WITH MAEMC,RMSMC 
424 THUS 

Max abs error and RMS error in convol c.d.f. via Monte-Carlo « »»»»»» »»»»«»» 

427 'LS'STOP 
428 END "TEST.CONVOLV 

1 

2 
3 
4 

5 
6 
7 
8 
9 

10 
n 
12 

FUNCTION EFUN (K, X) 

Test cum prob function used in TEST.CONVOLV. Function shown belc # 
is a Erlang distribution with (integer) shape parameter K and stand- 
ardized argument X. 

DEFINE I,K AS INTEGER VARIABLES 
LET EXrEXP.F(-X) 
IF K= 1 

RETURN WITH 1.0-EX 
OTHERWISE 
LET FACT=1.0 
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13 
14 
15 
16 

17 
18 
19 
20 
21 

1 
2 
3 
4 
5 
6 
7 
8 

END 

LET XI=1.0 
LET SUMsl.O 
FOR 1=1 TO K-1 DO 

LET FACT=FACT»I 
LET XI=XI»X 
ADD XI/FACT TO SUM 

LOOP "OVER I 
RETURN WITH 1.0-EX«SUM 
"FUNCTION EFUN 

FUNCTION WFUN (SHAPE, ARG) 

Function calculates the cumulative probability function for a 
Weibull distribution having shape parameter SHAPE and standardized 
independent variable ARG. 

RETURN WITH 1.0 - EXP.F(-ARG»»SHAPE) 
END "FUNCTION WFUN 

1 
2 
3 
4 

5 
6 
7 
8 
9 

FUNCTION W2WFUN  (ARG) 

"Calculates the convolution c.d.f. with argument ARG of 2 standardized 
"Weibull  probability distributions, each having shape parameter 2. 

LET  INTG=EXP.F(0.5*ARG«»2)»(SN0RM(ARG)-SNORM(-ARG))»ARG« 
SQRT.F(PI.C/2.0) 
RETURN WITH  1.0 - EXP.F(-ARG«*2)«(1.0+INTG) 

END  "FUNCTION W2WFUN 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 
20 
21 
22 

23 
24 

25 
26 
27 
28 

ROUTINE CONVOLV (NF0LD, XV, YV) 

Routine for calculating the result of a sequence of convolutions on 
2 probability density functions (p.d.f.'s). The 1st density (XV) is 
convolved with the 2nd (YV), and the result is recursively convolved 
NF0LD-1 times with the 1st p.d.f. The program returns the NFOLD-con- 
convoluted p.d.f. (in complex form) in the vector YV. Method: The 
program obtains the Fourier transform (FT) of the X-series in XV(f), 
and the Y-series in YV(*). Then, a complex product is calculated and 
placed in YV(*). NFOLD-1 additional complex products are taken 
between YV(») and XV(»), This final product is inverted in place 
in YV(»). 

NAME      TYPE ENTRY VALUE       RETURN VALUE 
XV    REAL ARRAY     COMPLEX X-DENSITY     FT OF X-DENSITY 
YV    REAL ARRAY     COMPLEX Y-DENSITY     CONVOLUTION DENSITY 

NOTE:  THE DIMENSION Or ARRAYS MUST BE AN INTEGER POWER OF 2. 

DEFINE I,IMAXtK,N,NF0LD,NP2 AS INTEGER VARIABLES 
DEFINE XV, YV AS REAL, 1-DIMENSIONAL ARRAYS 
LET N=DIM.F(XV(»)) 
LET IMAX=N/2 

"CHECK VALUE OF N. 

LET NP2=1 
•PO'LET NP2=NP2»2 

IF NP2<N 
GO TO P0 
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29 OTHERWISE 
30 IF NP2>N 
31 PRINT 1 LINE WITH N THUS 

IMPROPER VALUE OF INPUT-ARRAY DIMENSION (= »»»»«) IN ROUTINE CONVOLV. 
33        STOP 

fl        34     OTHERWISE "GO ON 
35 " 
36 "OBTAIN THE FOURIER TRANSFORMS OF XV AND YV. 
37 " 
38 CALL F0UR.TRANS(-1,XV(»)) 
39 CALL F0UR.TRANS(-1,YV(*)) 
40 " 
41 "PLACE PRODUCT  IN  YV(*). 
42 " 
43 FOR K=1 TO NFOLD-1 DO 
44 FOR 1=1 TO IMAX DO 
45 LET TEMPRzYV(2*1-1) 
46 LET TEMPI=YV(2»I) 
47 LET YV(2*1-1)=XV(2*1-1)»TEMPR-XV(2*1)»TEMPI 
48 LET YV(2*I)=XV(2»I-1)*TEMPI+XV(2*I)*TEMPR 
49 LOOP "OVER (I) FOURIER FREQUENCIES 
50 LOOP "OVER (K) CONVOLUTION ORDER 
51 " 
52 "GET INVERSE TRANSFORM. 
53 " 
54 CALL FOUR.TRANS(1 ""::")) 
55 RETURN 
56 END "CONVOLV 

1 ROUTINE FOUR.TRANS (ISIGN, DATA) 
2 " 
3 "Routine to calculate the Fourier transform (or inverse transform) 

^        4 "of a sampled data trace, which is passed in the input vector DATA(*). 
^■J        5 "The algorithm used is the Cooley-Tukey fast Fourier transform (FFT), 
JS        6 " implemented by Norman Brenner of the MIT Lincoln Lab. The technique 

7 "requires that the # of real data points (N) be EXACTLY 2**K, K > 0. 
8 "If ISIGN = -1, the routine yields the transform. If ISIGN s 1, the 
9 "inverse transform is produced. Program output, in either case, is 

10 "tne one-dimensional array DATA(*). When giving the transform with 
11 "N/2 complex frequencies, requiring N elements, the real and imaginary 
12 "components are stored In adjacent storage positions. If a ISIGN = -1 
13 "transform is followed by a +1 transform, the original trace appears 
14 "scaled by a factor of N. 
15 "Transform amplitudes are defined by: 
16 "FTCfOsSUM OVER J : EXP(-2*PI*IMAG*(J-1)»(K-1)/N)*DATA(J), 
17 "1 LE K LE N. 
18 "Input series in DATA must be in complex form with DIM.F(DATA(*))=2*N. 
19 " 
20 DEFINE I, ISIGN, NDIM, AND N AS INTEGER VARIABLES 
21 DEFINE IP0,IP1,IP2,IP3,H,I2A,I2B,I3,AND I3REV AS INTEGER VARIABLES 
22 DEFINE DATA AS A REAL, 1-DIMENSIONAL ARRAY 
2i LET NDIM=DIM.F(DATA(»)) 
24 LET N=NDIM/2 
?'> LET IP0=2 
26 LET IP3=IP0»N 
27 LET I3REV=1 
28 FOR 13=1 TO IP3 BY IPO DO "TO P50 
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29 IF I3<I3REV 
30 LET TEMPR=DATA(I3) 
31 LET TEMPI=DATA(I3+D 
32 LET DATA(I3)=DATA(I3REV) 
33 LET DATA(I3+1)=DATA(I3REV+1) 
34 LET DATA(I3REV)=TEMPR 
35 LET DATA(I3REV+1)=TEMPI 
36 ALWAYS 
37 LET IPUIP3/2 
38 ,P3,IF I3REV>IP1 
39 SUBTRACT IP1 FROM I3REV 
40 LET IPUIP1/2 
41 IF IP! GE IPO 
42 GO TO P3 
43 OTHERWISE 
44 ALWAYS 
45 ADD IP1 TO I3REV 
46 LOOP "OVER 13 (P50) 
47 LET IP1=IP0 
48 'P6'IF IP1 GE IP3 
49 RETURN 
50 OTHERWISE 
51 LET IP2=IP1*2 
52 LET TH£TA=2.0»PI.C/REAL.F(ISIGN«IP2/IP0) 
53 LET SINTH=SIN.F(THETA/2.0) 
54 LET WSTPR=-2.0*SINTH»»2 
55 LET WSTPIzSIN.F(THETA) 
56 LET MR: 1.0 
57 LET WI=0.0 
58 FOR 11=1 TO IP1 BY IPO DO 
59 FOR I3 = H TO IP3 BY IP2 DO 
60 LET I2A=I3 
61 LET I2B=I2A+IP1 
62 LET TEMPR=WR»DATA(I2B)-WI»DATA(I2B+1) 
63 LET TEMPI=WR»DATA(I2B*1)*WI»DATA(I2B) 
64 LET DATA(I2B)=DATA(I2A)-TEMPR 
65 LET DATA(I2B*1)=DATA(I2A*1)-TEMPI 
66 ADD TEMPR TO DATA(I2A) 
67 ADD TEMPI TO DATA(I2A*1) 
63 LOOP "OVER 13 
69 LET TEMPRrWR 
70 LET WR=WR»WSTPR-WI»WSTPI*WR 
71 LET WI=WI»WSTPR*TEMPR»WSTPI+WI 
72 LOOP  "OVER 11 
73 LET  IPUIP2 
74 GO TO P6 
75 END "FOUR.TRANS 
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