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1. BACKGROUND

It has been known for some time that by operating a
marine propeller in a duct (also called a shroud or nozzle),
certain advantages can be obtained over an open propeller.
When the duct is designed to accelerate the fluid through
the propeller disk, the advantages include an increased
ideal efficiency at a given propeller diameter, an
efficiency curve which is fairly flat over a wide range of
advance ratios, and high bollard pull. The disadvantages of
the ducted propeller are that there is additional viscous
drag on the duct surface, and cavitation can be a problem in
the clearance gap between the blade tips and the duct. A
propulsor which avoids the latter problem is the banded, or
ring, propeller. In this configuration the shroud is
attached to the blade tips, and rotates with the propeller.
Viscous drag on the band contributes to shaft torque,
resulting in a loss of efficiency, but high tip loading on
the blades can be better maintained in the absence of a tip
gap, and a concentrated tip vortex can be avoided in favor
of a distributed vortex sheew in the wake of the band. This

may result in delayed cavitation inception relative to an

open propeller.

........




Ducted and banded propellers have been fitted mainly to

o

Y ships operating at low speeds, with heavy disk loading, and
P
i:ﬁ particularly those which must operate at the zero speed
v condition, such as tugs and trawlers. However, recent

S9N
,i:; attention has focused on these configurations for higher
b
;23 speed naval applications. In order to evaluate the
. suitability of ducted and banded propellers for these new
j}i applications, design and analysis methods must be developed
o for them.

-;Q A first step in this direction was taken when an
~
i:?: analysis program for banded propellers was developed by Van
>
i:“j Houten (1983) under the sponsorship of NSRDC. This program,
'33~ called BPSF (Banded Propeller in Steady Flow), was an
. .\'
SN . . . .

n extension of PSF, a lifting surface analysis program for
AN
R

oA open propellers (Greeley, 1982; Greeley and Kerwin, 1982).
O

o In BPSF the radius of the band and its section
! '\:,

;:ﬁ characteristics (camber, thickness, and angle of attack)
) "‘-:'
L were allowed to vary circumferentially, the only restriction
::f being that the axial extent of the band be equal to that of
'j%' the tip of the blade. The objective of the work presented
B A
';?i here was to develop an equivalent program for the analysis
’ng of ducted propellers.
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This program, called DPSF, allows there to be an
arbitrary tip gap between the propeller tip and the surface
of the duct. The duct is constrained to be axisymmetric,
but 1is allowed to extend axially well beyond the blade tip.
This report presents some of the theory behind this program,
and some representative results. Little effort will be made
to recap the development of PSF and BPSF, for which the

reader is referred to the beforementioned publications.
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2. VISCOUS EFFECTS IN TIP GAP FLOWS

One of the fundamental préblems to be faced in
developing an analysis program for ducted propellers is the
question of accurately modeling the clearance gap between
the blade tip and the duct surface. This gap is typically a
fraction of a percent of the propeller diameter, and the
question arises as to the importance of viscous effects in
determining the leakage flow. This guestion has been
addressed 1in the past by several investigators, who have
concluded in general that the 1leakage flow 1is largely
inviscid in nature. This 1is supported by some simpie
scaling arguments outlined in Appendix A. Furthermore, the
leakage volume flow rate is to a large extent independent of
the chordwise flow. As a result simple two dimensional
experiments can be wused to investigate the flow in the

clearance gap.

Such experiments have been carried out in the past by
Shalnev (1954), Gearhart (1966), Booth, Dodge and Hepworth
(1981), and Wadia and Booth (1981). The type of 1leakage
flow they have found, 1in the case of a blade tip with a
square cross-section, is shown in figure 2.1. The sharp
corner at the entrance to the gap causes a separation bubble
which then reattaches to the blade tip. The jet at the exit

from the gap causes the rolling up of a vortex on the

suction side of the blade. The presence of the separation
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bubble causes the total flow through the gap to be less than

would otherwise be predicted. The reduction in flow 1is

often given in terms of a discharge coefficient, defined as:

where Q total volume flow through the gap

Ap pressure difference across the gap

p = fluid density

jan
i

clearance height

This coefficient is a strong function of blade tip shape.
In the interest of reducing the pressure reduction which
takes place at the gap entrance, and thereby delaying the
onset of gap cavitation, the pressure side of the blade tip
is often rounded off. This can eliminate flow separation in
the gap, and results in an increse in CQ . In this respect

the goals of efficiency and good cavitation performance

operate at cross purposes.

C. is also a function of the boundary layer on the

Q
surface of the duct. This boundary layer causes the
relative inflow velocity vector to twist suddenly, becoming

tangential at the duct surface. When this velocity vector
is decomposed into chordwise and normal components, both
components exhibit boundary layer characteristics., The

normal velocity field, when viewed relative to the blade




Cadt adih e and srn oS SNl Shag i S Seade Ret bl xealle Senet i T ke Vil e Jhhe SUcaitel St SV S Al ek hek Sl et At Miak gt e iiat s - oAl sl atds b A i N A et Sadh it ahd Sl e by T

L 4 tip, appears as shown in figure 2.2. This shear flow can be
characterized in terms of the relative magnitude of the wall

velocity U, compared to the "ideal" leakage velocity:

* Uw
- Uy = —/—/———
S v 2 Ap /o
® and the ratio of the displacement thickness to the clearance
height (6*/h). The effect of relative wall motion on the
flow through the gap is two-fold: 1) For a given size
e separation bubble, the net leakage will be increased by the
. existance of the shear flow. 2) It has been observed
,g experimentally by Gearhart (1966) and analytically by Wadia
‘.-' and Booth (1981) that the size of the separation bubble is
E decreased by the existance of the shear flow, thereby
further increasing the total leakage flow.
4 @
Another parameter affecting the leakage flow 1is the
- thickness of the blade tip relative to the clearance height
T_ (t/h). For the square blade tip, with or without a rounded
%“' entrance corner, this parameter appears not to have a strong

- effect, since the pressure 1is not changing significantly
; over the constant height region of the gap. The Reynolds
number of the flow will also have some importance, both 1in
. determining the nature of the inflow boundary layer and in

determining the size of the separation region.

............
_____
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Addressing for the sake of simplicity the cases of a
square blade tip, with and without a rounded leading edge,
with U; =0, table 2.1 gives the wvalues for CQ found by
various investigators. Although the data is limited, it
indicates that CQ is relatively independent of both t/h and

Reynolds number.

Of the 1investigators mentioned above, only Gearhart
(1966) and Wadia and Booth (1981l) investigated the effect of
wall motion on the leakage flow. Wadia and Booth did so
using a numerical model and considered only the case of a
turbine, where the shear velocities oppose those due to the
pressure gradient. Gearhart investigated a range of values

*

*
of Uw , but presented C, values for § /h = .20 only. These

Q
are shown in figure 2.3. It can be seen that the curves
approach one another at the higher values of U; , indicating
that the separated zone on the square blade tip may be
eliminated under these conditions. The numerical results of
Wadia and Booth for a square tip at U; =-1 is also shown,
although they do not indicate the displacement thickness of

the boundary layer assumed. More data on the effect of wall

motion, and in particular the effect of boundary layer

thickness, would be very useful.
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Reynolds

Author Number t/h C 0

Square Tip:

Shalnev 15000- 5-30 .762-.838
110000

Gearhart 270000 14 .82

Wadia, 6500 6.3 .851

Booth

Booth, 2800 3.8-7.5 .80-.82

Dodge,

Hepworth

Rounded Entrance:

Shalnev 39000~ 5-10 .884-.,975
115000

Gearhart 270000 14 .92

Table 2.1 Summary of experimental data on discharge
coefficient for 2-D tip gap, with no wall motion.
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The application of data such as that shown in figure 2.3
to a global propeller analysis method is straightforward.
It can be presumed that due to the very large mismatch 1in
length scales between the c¢learance gap and the other
propeller dimensions, the major impact of the clearance gap
on the global flow field is the resulting leakage flow
volume. Since chrepresents the reduction in leakage volume
due to viscous effects, these effects can be incorporated in
the global flow field by wusing for analysis purposes an

"inviscid" clearance gap height hi equal to the product of

CQ and the physical gap height h:
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3. LIFTING LINE REPRESENTATIONS OF FLOWS WITH TIP GAPS

The mismatch in length scales between the tip clearance
height and the other relevant propeller dimensions makes
difficult the development of a lifting surface theory for
ducted propellers. 1In order to describe the small scale tip
clearance region accurately one would normally have to use a
vortex lattice whose spacing is small compared to the gap
size, at least in the tip region. The total number of
control points would be very large and the cost of running
the program correspondingly high. 1In order to avoid this
expense, a different approach was taken =-- namely to
determine if there is an optimum position of the outermost
chordwise vortex on the blade such that numerical
convergence can be accelerated. In order to find such an
optimum, some numerical experiments were carried out using
lifting line theory, with the supposition that the optimum
spanwise arrangement of trailing vortices would not be

affected by the chordwise arrangement of bound vorticies.

The initial configuration investigated was that of a
straight 1lifting 1line normal to an infinite wall, and
separated from that wall by a small gap. The effect of the
wall was modeled by an image lifting line an equal distance
on the other side of the wall. The circulation around the
lifting line was represented by discrete horseshoe vortices.

Figure 3.1 shows the arrangement of vortices and control
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points 1in the <case o0f equally spaced trailers (linear

spacing). The outermost trailers are inset from the tips of

YA
l‘l

Ea

the foil by a fraction of the trailer spacing :s. At the

[
]

o'

2
o -ll

foil tip furthest from the wall, this inset fraction 1is

,-
N L
l' J

taken to be .25, This is the inset normally used in the

> 5
e
P

.

¢ J " ". ""
KRN

case of an isolated foil, and is analogous to the vortex

>
v

.
R}
B

position 1in 2-D vortex lattice theory (James, 1972). The
optimum inset fraction "i" on the end near the wall |is
presumably not equal to .25, but approaches that value as

the gap becomes large. For arbitrarily small gaps, the

'~

inset must approach zero, since in that case one would want

V.

o)
\-»\-'.‘-. U

to reproduce the results of a single foil of twice the

& 4
P

aspect ratio. The problem can therefore be reduced to that
of finding how the optimum inset fraction varies from zero

to .25 as the gap varies from zero to infinity.

An alternative lifting line representation uses "cosine"
spacing, with the discrete vortices and control points at

equally spaced values of the Glauert angle g as shown in

figure 3.2. The inset fraction is defined as a fraction of

the angular spacing .5 of the vortices. On the free end

this 1inset fraction is taken to be .5. This corresponds to

NN

RN »
TR @ T
LN PRI Tt
. RN

common practice for isolated airfoils (Lan, 1974). At the

i

end near the wall, the optimum inset fraction must vary

from zero to .5 as the gap is varied from zero to infinity.




In order to determine the optimum insets, numerical
experiments were carried out. These experiments were
performed on a foil with optimum loading, in the sense that
induced drag 1is a minimum for a given lift. The "exact"
circulation distribution was found for this case by using a
large number of vortices (up to 400) with cosine spacing,
and requiring the downwash to be a constant at all control
points. The solution was then repeated, using a small
number of vortices, and the 1inset was varied until a
solution was obtained with the smallest mean-squared error
between the calculated vortex strengths and the "exact"

solution at the corresponding control points.

The results of these calculations are shown in figures
3.3 through 3.7. Figure 3.3 shows the calculated "exact"
solution for an isolated foil (infinite gap) and gaps of .1,
.01, .001, and .0001 of the span. In addition, the
solutions are shown using optimum insets and linear spacing
for 5, 10, and 20 vortices. It is clear that the use of an
optimum inset results in a solution which is very close to
the exact one, even when using very few vortices. Figure

3.4 shows comparable results for cosine spacing.

Figures 3.5 and 3.6 show the log of the optimum vortex

)

inset fraction "i" plotted against the log of the ratio of

gap width to the width of the last panel on the foil. It

can be seen that when plotted in this way all the optimum
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Figure 3.5 Op<imum inset fraction, infinite wall, linear svacing. d
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igure 3.6 Ootimum inset fraction, 1infinite wall, cosine sgacing.
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insets fall <close to a single line, an approximate
expression for which is given in the respective figures. 1In
the large gap ratio region the expression deviates somewhat
from the <calculated optimum, but the solution is quite
insensitive to inset at these gap ratios. At the lower gap
ratios, the solution is much more sensitive, as can be seen
in figure 3.7, where the optimum linear 10 vortex solution
is shown for a gap of .001 span (optimum inset ratio =
.142), as well as the 10 vortex solution using the 1isolated
airfoil inset fraction of .25. In this case, the incorrect

inset results in an error in induced drag of 10.2%.

The second numerical experiment concerned a wing
separated by a small gap from a perpendicular, symmetrical,
winglet of equal span. This winglet can be thought of as
representing the duct surface in the case of a ducted
propeller. The 1lifting 1line representation of this
arrangement using linear spacing 1is shown in figure 3.8.

The panelling of the main foil is the same as that wused in

e the case of a foil near a wall. Each half of the winglet is
.-

bﬁf panelled using the infinite gap inset at the free end and
s

L?ﬂ zero inset at the winglet's midspan position. The number of
SRl g p p
;21 panels on the winglet was selected so that the distance from
b

E the center trailing vortex to the nearest control point
-

y ot . .

p o matched as nearly as possible the distance between the last
e " -

o trailer and control point on the main foil. The "exact"
Ly
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Figure 3.8 Winglet lifting line geometry,
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minimum drag solution was found by using a large number of
vortices and requiring the downwash on the foil to be a
constant, and the sidewash on the winglet to be zero. The
calculation was then repeated using fewer vortices, and
varying the inset until the solution agreed most closely
with the "exact" one. Figure 3.9 shows as an example the
case of a gap of .001 span, and the optimum solution using
6, 10, and 20 vortices on each foil. The optimum inset
fractions for linear and cosine spacing are given in figures
3.10 and 3.11. These values were used in the ducted

propeller program.
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.356 (g/p) 1% if g/p < .0801

= ,250 if g/p > .0801
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1 L 1 | |
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Optimum inset fraction for winglet with gap,
linear spacing.
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4. VORTEX LATTICE REPRESENTATION OF FLOWS WITH TIP GAPS

In order to investigate the applicability of the optimum
insets to non-optimally loaded fecils, a planar lifting
surface program was used to analyze a rectangular flat plate
at an angle of attack, placed normal to an infinite wall
from which it is separated by a gap. The insets used were
those found optimum for a lifting line normal to an infinite
wall. Cosine spacing (Lan, 1974) was used in the chordwise
direction, and either cosine or linear spacing was used in
the spanwise direction. The drag was calculated using Lan's
method of deriving the suction force from the total upwash
at the leading edge. The effective aspect ratio was then

defined as

Figures 4.1 and 4.2 show results for a geometric aspect
ratio of 3 and a gap-to-span ratio of .00l1. The number of
spanwise panels NS was varied from 3 to 24 while the ratio
between the number of spanwise panels to the number of
chordwise panels NC was kept constant, and equal to 3. It
can be seen that the convergence was quite good for both
linear and cosine spacing. Also shown are the corresponding
results obtained using a vortex inset fixed at the infinite
gap value. It can be seen that while the cosine spacing

results converged quickly for this gap regardless of the

-25-

PR,

A M A A e AAAAN N A K K S RN A S S




- cosine spacing

; X } optimum inset
/,—11near spacing

3050 = .
cosine spacing } infinite gap inset
linear spacing
3.25 L 1 1 ] 4
1 5 10 15 20 25

NS

Figure 4.1 Convergence of lift curve slope, rectangular
wing normal to infinite wall. Aspect ratio = 3.
Gap/span = .001. NS/NC = 3.

4,75 . .
cosine spacing optimum inset
linear spacing b
4.50 b R —
Ae \-cosine spacing
; . } infinite gap inset
linear spacing
4,25 -
4.00 F
1 1 1
1 5 10 15 20 25

NS

Figure 4.2 Convergence of effective aspect ratio,
rectangular wing normal to infinite wall. Aspect
ratio = 3., Gap/span = .001. NS/NC = 3.
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inset,  the convergence of the 1linear spacing results

improved significantly when the optimum inset was used.

Figure 4.3 shows the calculated increase in the
effective aspect ratio as the gap size is decreased, along
with corresponding results for an optimally loaded foil from
the 1lifting 1line calculation, and from a conformal mapping
solution reported by Durand (1963). Surprisingly, this
relationship appears to be practically identical for the two
loading situations. Also shown are the experimental results
of Munk and Cario (1917), as reported by Hoerner (1965),
which indicate that the effect of the gap between two foils
of aspect ratio 3 is significantly less than that predicted
by lifting surface theory. This data 1is plotted assuming
that C 0 = 1. Hoerner gives the Reynolds number, based on
chord length, as 80,000, but gives no thickness data. The
scaling arguments presented in Appendix A indicate that even
for quite thick airfoils, the flow through the gap should be
essentially inviscid for gap/span ratios as large as .0l.
The discrepancy between the calculated and measured effect
of a small gap seems too large to be accounted for by
deviations of ng from unity. Other experimental data
presented by Hoerner and Borst (1975) and by Kerwin, Mandel,
and Lewis (1972) deal with a control surface normal to a

plane. These data also indicate that small gaps have a

smaller effect than theory predicts.
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5. THE DUCTED PROPELLER ANALYSIS PROGRAM

The Ducted Propeller in Steady Flow (DPSF) program is an
adaptation of PSF, developed by Greeley (1982) and described
by Greeley and Kerwin (1982). DPSF analyses ducted and
banded propellers operating in an axisymmetric inflow
consisting of axial, radial, and tangential components.
This inflow field is generally taken to be the
circumferential average velocity field at the propeller
plane, and can include the effects of stators and multiple
rotors. The presence of the propeller hub and any other
boundaries to the flow 1is not modeled. The blade and duct
boundary layers are assumed to be thin, so that the flow can
be considered inviscid, except for the empirical addition of

frictional drag.

Py The blades and duct are represented by straight-line
vortex and source lattice elements of constant strength that
are distributed over the mean camber surface. The trailing
vorticity 1in the wake of the propeller is represented by
straight-line vortex elements distributed over a specified

surface. The vortices are arranged in horseshoce vortices so

as to satisfy Kelvin's condition, and the strength of the
horseshoe vortices 1is determined by solving a set of
simultaneous equations, each satisfying the flow tangency

Y condition at a control point. Source strength is determined

E stripwise using a linearized boundary condition.
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The position of the trailing vortex wake is determined

iteratively by first solving the boundary value problem with

a guessed position, and then aligning the wake with the

computed velocity field. The boundary value problem is then

oda

re-solved and the procedure is repeated until convergence is

obtained. When a converged solution 1is obtained, blade
forces are found by application of the Kutta-Joukowski and .
<
Lagally theorems.
4
Blade Geometry
The description of blade geometry in DPSF is as shown |

in figure 5.1. The coordinates of the midchord line are

defined by the radial distribution of skew angle Om(r) and

rake x_(r). The pitch angle ?(r) and chord c(r) define the

m

angle and extent of the sectional nose-tail line along the

surface of a «cylinder of constant radius r. The camber
f(r,s) and thickness t(r,s) describe the section
characteristics of the blade as a function of radius, r, and 3
the fraction of chord from the leading edge, s. The camber

is measured along the cylindrical surface at right angles to

the nose-tail line. The thickness is measured normal to the

mean line. The propeller radius, R, 1s defined as the

maximum radius of the blade midchord line.
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All geometric properties describing the blade must be
defined out to a radius equal to the largest radial extent
of the blade surface, which is likely to exceed that of the
midchord lina2. This avoids the wuncertainty involved 1in

extrapolation.

Duct Geometry

The duct (or band) 1s assumed to be axisymmetric and 1is
defined 1in terms of its chord ¢, chord fraction forward of
the blade tip midchord line "a", angle of attack o, camber
f(s), and thickness t(s). The gap g between the blade tip
and the inner surface of the duct is assumed to be constant,
and may be zero, as 1in the case of a banded propeller.
Unlike BPSF (Van Houten, 1983), all quantities are defined
in the (r,x) plane, as shown in figure 5.2. ©Note that duct

camber is applied in the radial direction only.

Vortex Lattice

The vortex lattice representing the propeller geometry
consists of spanwise and chordwise vortices. The lattice
representing the blade 1s located on the blade camber
surface. That representing the duct follows the duct camber

surface, but 1is displaced radially inward so that 1its
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distance from the blade tip is equal to the physical tip

gap. A typical vortex lattice is shown in figuure 5.3.

The spanwise spacing of the chordwise vortices on the
blade and duct can be independently selected to be either
linear, cosine, or in the case of the duct, a mixture of the
two. With 1linear spacing the intersection of the blade

chordwise vortices with the midchord line is given by:

(R - rH)(m -.75)
M+ .25 +1i

n + r m=1,2,...M+1

H

where r_ is the hub radius and M is the number of spanwise

H
panels. The inset fraction i is given in figure 3.10, where
the panel size is egual to r -r
P d M+1
In the case of cosine spacing, the corresponding

relationship is:

rm = .5 (1 - cos (rm)) (R-rH)+rH

(m- .5 - m=1,2,...M+1

(M+ .5 +1)

T =
m

where the inset fraction is given in figure 3.11.

The radial position of each chordwise vortex varies as
it crosses the blade. The outermost chordwise vortex
follows the duct camber line. The other chordwise vortices

have a radial wvariation which is attenuated by the factor

-33-
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Figure 5.3 Vortex lattice for NSMB Ka4-55
propeller in Nozzle 19,




g v (rpmTy) /(R-1y) .

The spanwise position of control points depends on the
type of spacing used. With linear spacing, the control
points are located midway between chordwise vortices. With
cosine spacing the 1ith control point 1is located at a
position corresponding to a value of t midway between %i and

i+l

One of the duct's chordwise vortices is always located

:g along the blade tip, displaced radially outward by the gap.

The extension of this vortex beyond the blade 1leading edge

follows the slope of the blade camber surface at the leading

{:i' edge. The extension beyond the blade trailing edge follows

the current wake geometry. The other chordwise vortices on

the duct are displaced circumferentially from this vortex by

v an amount 9m which depends on the spacing used. With linear
spacing,

g = (ml) 27 m=1,2,...Mq +l

Mg 2

where M, is the number of spanwise panels on each duct

segment, and 2 1s the number of blades. With cosine

e .‘...._.". l'n..'.'

spacing,
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With mixed spacing: |

[e8)

=2 7/2 b (ﬁ—c‘il) +.5(1-b) (1-cos( & ))]

where b can vary between 0 (cosine spacing) and 1 (linear
spacing). The spanwise position of control points follows

that used on the blades.

The spacing method used and the number of panels used on
the blade and duct must be chosen carefully. It 1s
recomnended that the distance between the last blade control
point and the last blade chordwise vortex match as closely
as possible the distance between the duct chordwise vortex

at the blade tip and the nearest duct control point.

The spanwise vortices on the blade are 1located at

constant values of s, the variable which varies from 0 to 1
along the chord. The chordwise spacing of these vortices

can be selected to be linear:

S, = (n - .75)/N n=1,2,...N

R T T N S
R A A AR T e e e e e e - . e
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i. or cosine:
: S, = .5 (l-cos (§n))
! n=1,2,...N
' s,= 7(n-.5)/N
[~
where N is the number of panels chordwise. With linear
- spacing the ith control point is located midway between the
ith and (i+l)th spanwise vortex. In the case of cosine
spacing the ith control point is located at the value of s
o corresp.onding to a value of § midway between §; and Sieq-
Spanwise vortices are located on the duct at the same
axial locations as the end points of the spanwise vortices
hd on the blade. In addition, the portions of the duct
extending beyond the blade leading and trailing edges are
represented by spanwise vortices spaced wusing the same
¢ scheme (linear or cosine) as the blade and central portion
of the duct. A minor exception to this is that when using
cosine spacing the trailing portion of the duct is panelled
. "half-cosine", where:
§n= “(n-.5)
(2N +.5)
|
\{‘ s, = (l-cos(8))
1 The spacing scheme and the panel numbers used should be
selected so that the panel gyize varies smoothly between the
° mid-portion of the duct and the portion extending beyond the
- ~37-
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blade leading and trailing edges. In the case of linear

spacing, the number of panels on the different portions of
the duct should be proportional to their respective axial
extent. In the case of cosine spacing, there are control
points on the duct at the axial position of the blade tip
leading and trailing edges. These control points should be
as nearly as possible midway between the adjacent spanwise

vortices.

In DPSF, all blades (and all segments of the duct) are
panelled identically. This causes run times to be somewhat
longer than if the "non-key" blades were panelled more

coarsely, but the code is significantly simplified.

Wake Geometry

The geometry of the blade transition and ultimate wakes
in DPSF is similar to that in PSF, as described by Greeley
and Kerwin (1982). One difference is that the transition
wake 1is ‘"grown" by increments in x, rather than €. Those
wake points forward of the duct trailing edge are located at
values of X corresponding to the spanwise vortices on the
duct. Behind the duct trailing edge, the wake is grown by
an axial increment which is specified by the user. The

radial location of the blade trailing vortices aft of the

duct trailing edge follows PSF. Forward of the duct
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trailing edge the radius of the mth trailer is contracted by
an amount equal to (rm—rH)/(R—rH) times the contraction of
the duct camber line between the blade trailing edge and the
axial position of the wake point in question. The duct
transition wake is modeled by a set of trailing vortices
which begin where the duct chordwise vortices intersect the
trailing edge o0f the duct, and parallel the outermost
trailing vortex from the key blade, displaced by the same
angle as that of the chordwise vortex on the duct. The

ultimate wake is modeled the same as in PSF.

Wake Alignment

The blade transition wake is aligned the same way as in
PSF, except for the case of the outermost blade trailing
vortex. In PSF, the velocity calculated on this vortex
includes a self-induced velocity due to the curvature of the
rolled-up tip vortex. Since in the <case o0of a ducted
propeller the roll-up of the tip vortex is impeded by the
presence of the duct, DPSF does not include this term. The
velocity 1induced at a segment of the outermost blade
trailing vortex due to itself and the adjacent segments of
duct chordwise and spanwise vortices 1is calculated by
assuming that the vorticity in these segments is spread out

over the local duct panel. The magnitude of the local

-39-
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velocity is just one half the resulting vortex density.

Because the duct chordwise vortices aft of the blade
trailing edge are aligned with the blade transition wake,
this portion of the duct must be repanelled after each

iteration of wake alignment.

Source Strength

As in PSF, the blade thickness is represented by 1line
sources at the same location as the spanwise vortices.
Their strength is obtained by using thin wing theory, based
on the undisturbed inflow velocity. This undisturbed inflow
velocity is calculated at the mean radius of the source

element at the midchord position. The strength of the line

sources on the duct are calculated in the same way as those

on the blade.

Solution of Boundary Value Problem

The solution of the boundary value problem in DPSF
follows the procedure 1in PSF exactly. The number of
additional unknowns representing bound vorticity on the duct
is exactly equal to the number of additional equations to be

solved in order to enforce flow tangency on the duct control
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points.

Force Calculation

The calculation of forces in DPSF 1is practically the
same as that 1in PSF. The total velocity is calculated at
the midpoint of each singularity, and the Kutta-Joukowski
and Lagally theorems applied. The only exception to this is
that the Lagally forces on the sources due to the
undisturbed relative 1inflow 1is not included. This 1is
necessary in order that the Coriolis force on the fluid
emitted by the sources does not contribute to shaft torque

(Van Houten, 1983).

The forces on the individual singularities are summed up
to give overall forces and moments on each spanwise panel.
The force associated with each spanwise panel on the blade
and duct includes the forces on the spanwise singularities
in that panel and one half the forces on the chordwise
vortices on the edge of the panel. The forces on the
innermost and outermost panels include the entire forces on
the innermost and outermost chordwise vortex, respectively.
These panel forces are then summed to give the forces on the
blade, the duct, and the complete propeller. The torque

exerted on the duct can be included in the propeller torque

or not, depending on whether it in fact represents a duct or
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a band.

The empirical viscous drag force added to the force on
each spanwise vortex 1s computed from the local velocity,
the area of the 1local panel, and an estimated drag
coefficient. In order to account for an increase in the
drag at non-ideal angles of attack, the chordwise force
calculated on the spanwise vortices nearest the leading edge
is multiplied by a suction force coefficient that 1lies
between zero and unity (Kerwin and Lee, 1978). . The drag and
suction force coefficients are allowed to vary radially
along the blade and can be prescribed separately on the
duct. For thin sections typical of propeller blade tips, a
suction force coefficient of 0.333 is generally used (Kerwin
and Lee, 1978; Greeley and Kerwin, 1982). For thicker
sections, such as those used on typical ducts, larger values

are probably appropriate.

Results

In order to assess the accuracy of DPSF performance
predictions, comparisons were made with published

experimental open water curves for both a banded propeller

and a ducted propeller.

|
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The banded propeller investigated was one of NSMB's
R4-55 series, data for which were given by Van Gunsteren
(1970). These are 4-bladed propellers with an expanded area
ratio of .55. They have zero skew and rake, and nominal P/D
ratios of 1.0, 1.2, 1.4, 1.6, and 1.8. The blades have NACA
a=.8 mean lines, and lé-series thickness sections. The 1.4
P/D propeller was chosen for the comparison between
experimental results and the predictions of DPSF. The
geometry for this propeller 1is tabulated in Table 5.1.
Although the nominal diameter of this propeller is 240 mm,
the actual radius, as defined in DPSF was 237.2, so
calculated values of K, Ko, and J were adjusted

accordingly.

DPSF calculations were made using 8 spanwise panels and
9 chordwise panels on the blade. The band had two chordwise
panels forward of the blade leading edge and one panel aft
of the blade trailing edge. The band had 7 spanwise panels

between blade tips. Cosine spacing was used chordwise and

linear spacing used spanwise. The vortex lattice is shown
in figure 5.4, Calculations were made at advance ratios of
0, .247, .494, .741, .988 and 1.235. The wake was not

contracted radially. The viscous drag coefficient was taken

to be .0085. The suction force coefficient was assumed to

be .333 on the blade and 1.0 on the band.
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NSMB PROPELLER R4-55

r/R c/D t/D f/c P/D % m Xm
.182  .179 .039 .0175  1.423 0.0 0.0
.300  .208 .031 .0199 1.402 0.0 0.0
.400  .232 .023 .0215 1.389 0.0 0.0
.500  .254 .016 .0226 1.380 0.0 0.0
.600  .273 .015 .0230 1.379 0.0 0.0
.700  .288 .015 .0225 1.386 0.0 0.0
.800  .299 .015 .0198  1.408 0.0 0.0
.900  .306 .015 L0135 1.446 0.0 0.0
.950  .308 .015 .0092 1.472 0.0 0.0
1.000  .309 .015 .0048 1.502 0.0 0.0
4 BLADES

a=.8 mean line
NACA 16 thickness distribution
o BAND GEOMETRY

with 0024 thickness distribution
t/D=.0354 a=13,17°0

NACA 250 mean line,
c/D=.1474 £f/c=.0853

- Table 5.1

Geometry of NSMB R4-55 Banded Propeller
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Calculated and experimental open water results are given
in figure 5.5. The agreement 1is gquite good, and 1is
significantly better than that obtained wusing BPSF (Van
Houten, 1983). The spanwise distribution of bound
circulation 1is shown 1in figure 5.6. The transfer of
vorticity from the blade tip to the band can be seen to be

fairly complete.

The ducted propeller investigated was NSMB's Ka4-55
ducted propeller with a P/D of 1.0, operating in Nozzle 19,
data for which is given by wvan Manen (1962). The blade
geometry for this propeller 1is not described in terms of
modern airfoil sections so for the purpose of running DPSF
the geometry was approximated 1in terms of "equivalent"
sections, as given in Table 5.2. The duct geometry was
given 1in terms .of a NACA section, so no approximation was
necessary. The tip gap was 1 mm, or .42% of the 240 mm

propeller diameter.

Calculations were made using 8 spanwise panels and 6
chordwise panels on the blade. The duct had 9 chordwise
panels forward of the blade and 6 aft, for a total of 21
chordwise panels. 5 spanwise panels were used on each duct
segment. Cosine spacing was used chordwise, and linear
spacing was used spanwise. The complete vortex lattice 1is
shown in figure 5.3. Calculations were made at advance

ratios of O, .18, .36, .54, .72, and .90. The wake
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Experimental Data
(van Gunsteren, 1970)

© DPSF Calculation

by & Figure 5.5 Comparison of calculated forces with
b - experimental data for R4-55 propeller, P/D = 1.4,
(SFC = .333 on blade, 1.00 on band; CD = ,0085)
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r/R c/D
.200 .182
.300 .207
.400 .231
.500 .252
.600 .271
.700 .287
.800 .298
.900 . 305

1.000 .306
4 BLADES

Parabolic mean line assumed

t/D

.0400
.0352
.0300
.0245
.0190
.0138
.0092
.0061
.0050

f/c
.0510
.0553
.0502
.0416
.0351
.0240
.0154
.0100
.0082

NSMB PROPELLER Ka4-55

P/D

.067
.025
.012
.003
.000
.000
.000
.000
.000

e el

LUt Ul b O

.00
.54
.16
.01
.43
.55
.55
.55
.55

St

NACA 4-digit thickness distribution assumed

NACA 250 mean line,
f/c=.07

c/D=.5

Table 5.2

Approximate Geometry of NSMB Ka4-55 Propeller
in Nozzle 19

NOZZLE 19

t/D=.075

s L TWTTETS

.0000
.0070
.0115
.0139
.0151
.0154
.0154
.0154
.0154

with 0015 thickness distribution
a=10.2°

g/D=.0042

I
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1' contraction, viscous drag coefficient, and suction force \
;;C coefficients were the same as for the R4-55 propeller.
¥25: Calculated and experimental open water curves are shown
)
“ in figure 5.7. The total thrust was predicted quite
:5; accurately, but duct thrust and shaft torque were
i‘f significantly in error. One run was made at J=.36 for a gap
e ratio corresponding to a 3 mm gap. The efficiency reduction
.ff: of 1.9% fell on the curve given by van Manen for Kt/J2=3.
Jié The convergence of DPSF was tested by running the J=.36
- case with 1.5 and 2 times the original number of chordwise
:ﬁf panels and again with 1.5 and 2 times the original number of
(. spanwise panels. The results are shown in Table 5.3. Blade
forces did not vary by more than one percent. Duct thrust,
Hi}j however, 1increased by 28 percent as the number of chordwise
C)y panels was doubled. The reason for this slow convergence is
5&% not presently known.
b Figure 5.8 shows the spanwise distribution of
L &
T circulation on the blade and duct for the J=.36 condition.
:ﬁ% It can be seen that loading is transfered to the duct, but
RN
> this effect 1s much less pronounced than 1in the case of a
1
o banded propeller.
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y Experimental Data
; o (van Manen, 1962) 4
'” \ QO DPSF Calculation
|
\
o
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: ’ .2 .4 .6 .8 1.0 !
J
Figure 5.7 Comparison of calculated forces with J
t experimental data for Ka4-55 ducted propeller, P/D=1.0.
" (SFC = .333 on blade, 1.00 on duct; CD = ,0085)
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PANELLING
Initial arrangement
x1l.5

%2.0 spanwise
x1.5 .
%2.0 chordwise

INITIAL ARRANGEMENT:

Chordwise Panels
Spanwise Panels

Table 5.3 Results of convergence test on Ka4-55 propeller
at J=.36

BLADE

.3017
.2993
.2985
.3013
.2993

BLADE
6
8

0429 3414

0570 3583

0617 3610
------- DUCT
FWD MID

9 6

5 5
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Computation Time

A typical DPSF run might consist of 3 solutions to the
boundary value problem, and two wake alignments, followed by
a force calculation. For a 4-bladed propeller with 153
control points, this takes 5.2 minutes on an IBM 4381 or

18.2 minutes on a DEC Micro VAX II.
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) & 6. CONCLUSIONS AND RECOMMENDATIONS

The Ducted Propeller in Steady Flow (DPSF) analysis
program is a useful tool in designing both ducted and banded
propellers. The test runs which have been made have shown
good agreement with published thrust and torque data in the
case of a banded propeller, and good total thrust
predictions 1in the case of a ducted propeller, although the
predictions of duct thrust and shaft torque in the latter
case differed significantly from measured values. The
solution appears to converge quite quickly with increasing
panel density for all force predictions except for duct

thrust.

The representation of tip clearance in DPSF is by 1)

defining the equivalent "inviscid gap" which results in the

® same volume of leakage flow as the physical gap, and 2)
placing the outermost blade chordwise vortex in the optimum

position so as to speed numerical convergence with respect

o to spanwise panel density. This approach appears to be

satisfactory for a "global" solution, including the

prediction of propeller forces. The detailed prediction of

Lo e e a4
.'_l '.' A“'

(. flow through the gap, 1including the effect of the duct
E boundary layer, could presumably be accomplished using a
En finite element method, wusing the predicted blade tip
2%9 loadings from DPSF as input.
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Additional work which would improve the accuracy and

usefulness of DPSF are:
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1) The development of a field point velocity program

to aid in the design of struts, stators, etc.

2) The development of a cavitation prediction capability

using the results of this field point velocity program.

3) The inclusion of the propeller hub in the boundary
value problem. This is made relatively easy by the

modular nature of DPSF.

4) The non-linear representation of the propeller
duct. A typical duct thickness/chord ratio is 15%,
large enough that improvements could be made by placing
the singularities on the duct surface rather than the

mean line.

5) More comparisons between DPSF predictions with
experimental data. The comparisons made so far are
quite limited, using data obtained at fairly low

Reynolds numbers. More recent data is necessary to

critically evaluate the accuracy of the program.

6) More experimental work in the area of determining

the nature of flow through small gaps.

7) The development of a local tip gap solution which
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o could be run iteratively with DPSF to predict the
exact nature of the flow in the gap, including the
occurance and extent of gap cavitation, while refining

) the prediction of global performance characteristics.
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APPENDIX A. MAGNITUDE OF THE GAP BOUNDARY LAYER THICKNESS.

The nature of the flow in the clearance gap of a ducted
propeller can be found by considering the relative thickness
of the viscous boundary layer within the gap. This boundary
layer 1is that due to the pressure-driven flow through the
gap rather than the boundary layer on the inner surface of
the duct. If one assumes laminar flow, the ratio of the

displacement thickness to the clearance gap is given by

v vt/U
h_.g_

[84]
*
113

4

where §* is the displacement thickness, h is the <clearance
gap, t 1s the blade thickness, Ug is the velocity ir the
gap, and v is the kinematic viscosity. From Bernoulli's
equation, one finds that

Ug= VZAp/D

where 5 is the density and Ap 1is the pressure difference
across the blade tip. Ap can be obtained from the blade

lift coefficient near the tip:

where Utip is the relative inflow velocity at the blade tip.

Combining the above equations, one obtains the following:

ut/h ]i
/C_

>

(I
Ueip

=l

........

..........

.......................
--------------
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A typical full scale propeller might have the following
characteristics:
. €/h=10 h=.02 f& U, <150 fps  Cpe.2
So that ¢*/h = ,009, indicating that the flow is primarily
inviscid.
1 ~)
N Assuming that tip speed scales with the square root of
.; the length scale % , 5*/h scales as *_'75, so that a 1/20
;i scale model of the above propeller would have a relative
«’ boundary layer thickness of 5*/h = .09. So even at this
: scale ratio, inertial effects will dominate.
® In the case of an incoming shear flow due to a duct
boundary layer, these considerations still apply. The
existance of such a boundary layer 1s <certainly due to
- viscous effects, but the local gap flow will be primarily an
inviscid interaction between the shear flow and the local
pressure field.
[ A4




