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FOREWORD

This report is prepared by Fairchild Industries, Fairchild Republic Company

for the United States Air Force under a research and development program

entitled "Assessment of Damage Tolerance Requirements and Analyses,"

Contract No. 33615-82-C-3215. This program is being administered by the Air

Force Flight Dynamics Laboratory, Air Force Wright Aeronautical

Laboratories, Air Force Systems Command, Wright-Patterson Air Force Base,

Ohio. Mr James L. Rudd (AFWAL/FIBEC) was the Air Force project engineer

through December 1985. Subsequently, Mr Rudd was replaced by Lt Christopher

Mazur.

This Final report presents the results of Task I-Volume II, Analytical

Methods. The work was performed under the supervision of S. Saul - Senior

Section Chief of Stress and W. Guman - Director of Research and Development.

A. Kuo was the Program Manager and Principal Investigator through March

1985. Subsequently, Mr Kuo was replaced by Meir Levy for the completion of

the program. D. Yasgur contributed to the finite element analyses reported

herein. M. Serchia - Word Processing and R. Ingenito - Graphics contributed

to the typing and art work for preparing this report.
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1.0 INTRODUCTION

I.1 Background of the Program

The recognition that failures of metallic aircraft structures are primarily caused by

cracks emanating from fastener holes and the availability of fracture mechanics method-

ologies to deal with cracks have led the USAF to adopt the damage tolerance approach, in

lieu of the safe-life approach, for ensuring safety of aircraft. The requirements specified

by the USAF to achieve a damage tolerant design are given in MIL-A-83444 (Ref. I), which

defines initial flaw assumptions, in-service inspection flaw assumptions, inspectability,

and which specifies residual strength requirements. However, some of the requirements

are based on engineering judgment and limited data; hence they need to be updated,

improved upon through analyses, and verified experimentally.

Fatigue crack growth life analysis is essential, in the fulfillment of MIL-A-83444, for

qualifying the service life of airframes, establishing inspection intervals, and satisfying

residual strength requirements. The effectiveness of the damage tolerance approach will

greatly depend on the accuracy of fatigue crack growth life analyses. To perform fatigue

crack growth life analyses, assumptions must be made of specific initial primary flaw

location, flaw geometry, flaw multiplicity, continuing damage, and cracking sequence for

a fracture critical area. Although MIL-A-83444 gives such assumptions, it is often not

detailed and specific enough so that analyses can be made for typical structural elements

without invoking somewhat arbitrary assumptions. Experience has indicated that varying

these assumptions often results in substantial differences in fatigue crack growth lives. In

particular, the most critical locations for initial primary damage are not obvious for the

complex geometries involved in aircraft structures. Thus, guidelines are needed for

identifying the most critical initial primary damage locations.

In the design analysis of airframes, the complexities of numerous structural details,

assumption of the initial crack locations and flaw geometries, and possible cracking

sequence have necessitated the consideration of time and cost required for the analysis.

The compounded solution method (Ref. 2) is well suited for the design and has been

commonly used in the aircraft industry. However, a thorough assessment of the accuracy

of this relatively simple method is needed for complex aircraft structural configurations

and loadings.
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Current damage tolerance analysis is based on fracture mechanics which presumes the

existence of initial flaws. However, it is often observed that the growth of initial primary

damage is arrested at an adjacent boundary or fastener hole. In order to continue the

analysis of subsequent cracking behavior, current MIL-A-83444 assumes that the initial

continuing damage having specified sizes and shapes exists at specified locations. Such

assumptions are necessary because fracture mechanics cannot be used to predict the

reinitiation time of an arrested crack; in particular, these assumptions often result in very

conservative structural life predictions of chordwise lap-joints. One promising method

of predicting the reinitiation time involves the use of baseline fatigue crack initiation

data and the concept of stress severity factor. A study of this method was made in Ref.

3; however, improvement and verification of such a crack reinitiation analysis is needed

to assess the initial continuing damage assumptions in MIL-A-83444 and the associated

analyses.

The previously completed USAF contract F33615-75-C-3093 (Refs. 3, 4, and 5) was

directed toward resolving the above problems. The effort of that contract has resulted in

recommended improvements to MIL-A-83444 and the associated analyses, and has exposed

a deficiency in the crack reinitiation analysis. However, the conclusions were based on a

single material and constant amplitude load tests. Therefore, such conclusions must be

further verified and substantiated by extensive experimental and analytical studies which

use realistic aircraft structural configurations, manufacturing processes, and service

stress spectra.

1.2 Objective of the Program

The objectives of this reported upon program are germane to the background as described

in the previous section. The objectives are to: (a) assess the validity of and recommend

improvements to the current USAF MIL-A-83444, (b) develop guidelines for identifying

the most critical initial primary damage locations for typical aircraft structure and, (c)

assess and improve the state-of-the-art analytical methods to satisfy the requirements of

MIL-A-83444.

1.3 Scope of the Program

To ensure that the program objectives are met, eight major tasks are planned. These

tasks are divided into three phases as shown below.
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Phase I:

Task 1: Analytical Methods

Task II: Basic Tests

Task IIl: Analytical Predictions

Phase 2:

Task IV: Structural Tests

Task V: Analytical/Experimental Correlations

Phase 3:

Task VI: Assessment of and Recommended Improvements to MIL-A-83444

Task VII: Guidelines for Selecting the Most Critical Initial

Primary Damage Locations

Task VIII: Assessment of and Improvement to Damage Tolerance Analyses

The objective of Task I is to formulate approximate stress intensity and stress severity

factors based on the compounded solution method. Two damage tolerance analysis

methods have been developed based on the stress intensity and stress severity factors. The

objective of Task II is to generate basic material property data which are necessary to the

life prediction of the structural test specimens in Task IV. The objective of Task Ill is to

predict the lives of all structural test specimens in Task IV, using the analytical methods

developed in Task I and the basic material property data generated in Task II.

The objective of Task IV is to conduct damage tolerance tests representing the realistic

aircraft structural configurations and service usage stress spectra. The tests involve

stringer-reinforced panels and chordwise lap-joints. The stress spectra include a constant

amplitude loading, a spectrum which represents attack/fighter/trainer aircraft, and a

spectrum which represents bomber/cargo/transport. Two materials are used i.e. 2024-

T3XX and 7075-T6XX aluminum alloys. The objective of Task V is to correlate the

analytical predictions of Task Ill with the test data of Task IV.

The objective of Task VI is to assess the validity of the current MIL-A-83444

requirements. Improvements to the MIL-A-83444 shall be recommended as appropriate.

The objective of Task VII is to develop guidelines for selecting the most critical initial

primary damage locations for typical aircraft structures. The objective of Task VIII is to

assess the analytical capability for predicting the damage tolerance lives of typical

aircraft structural configurations subjected to representative spectrum loadings. The

-3-



assessment will be based on the analytical/experimental correlations of Task V. Utilizing

the results of Task V and VI, improvements to the current damage tolerance analysis

methods will be made as appropriate.

1.4 Task I

To achieve the objective of assessing and improving the state-of-the-art analytical

methods to satisfy the requirements of MIL-A-83444, the major effort of Task I was

focused on assessment and improvement of the compounded solution method and crack

initiation analysis method. This Volume II report contains the results of Task I efforts.

The ancillary solutions required in the compounded solution method have been improved,

integrated, and simplified for expedient usage. The stress intensity and stress severity

factors have been formulated for typical airframe structures such as stringer-reinforced

panels and chordwise lap-joints to be used in Task IV-Structural Tests. Two-dimensional

and three-dimensional finite element analyses have been performed to improve and

validate stress intensity and stress severity factor solutions. In order to improve the

handling of continuing damage, an analytical method based upon the concepts of stress

severity factor and strain energy density have been developed to predict crack initiation.

The analytical methods developed in Task I were incorporated into an automated

computer program to predict the damage tolerance life of airframe structures. The

computer program was written in FORTRAN computer language. The computer proqram

will be used in Task III to predict structural lives of the specimens developed in Task IV.

A user's manual for the computer program will be prepared and submitted to the Air

Force Wright Aeronautical Laboratories (AFWAL) in a later stage of the program.

-4-



2.0 DAMAGE TOLERANCE ANALYSIS METHODS

Damage tolerance analysis involves structural life and residual strength predictions.

According to the current MIL-A-83444, structural life prediction shall be made on the

basis of crack growth only. The structural life prediction method based on crack growth

only has shown satisfactory accuracy for the majority of airframe structures except

chordwise lap-joints. The comparison of experimental and analytical results in the

previously completed contract (Refs. 3, 4, and 5) have shown that life predictions of

chordwise lap-joints are too conservative. It was experimentally observed (Ref. 3) that

when the primary damage grows into an adjacent hole, a considerable amount of time is

required to initiate a crack in the opposite side of an adjacent hole at which the primary

damage terminates. Such observations have necessitated an alternative method for

treating continuing damage, for lap-joints in particular. Therefore, a combined crack

growth and initiation method for damage tolerance analysis has been developed in this

investigation to improve life predictions of lap-joints.

In this contract, a computer program was developed which provides the options for

performing damage tolerance analyses either based on crack growth alone or based on the

combined crack growth and initiation. The theoretical background of the computer

programs are described in the following sections of this report.

2.1 Crack Growth Method

The crack growth method is based entirely on the principles of fracture mechanics which

have been well established and need not be reiterated herein. The recently completed

USAF contract F33615-77-C-3121 (Ref. 6) has reported the details of the crack growth

method. In the crack growth method, the following elements need to be included in the

analysis. The way of handling these elements is briefly described.

"o stress intensity factors

"o da/dN equation

"o load interaction effects

"o crack growth/initial flaw geometry model

"o damage accumulation scheme

Within the framework of fracture mechanics, the stress intensity factor, K, has been used

as the primary characterization parameter for crack growth life prediction. Thus, the

accuracy of the stress intensity factor solution for the complex airframe structures will

-5-



have direct impact on life prediction. Experience indicates that a +10% variation in the

stress intensity factor will result in very substantial variation in the predicted structural

life. Therefore, the stress intensity factor solutions must be as accurate as possible

within the prevailing constraints. A detailed description of the stress intensity factor

solutions is given in Section 3 of this report.

The Walker equation (Ref. 6) as shown in Equation (I) is adopted to fit the experimental

da/dN (constant amplitude fatigue crack growth rate) data. The constants, c,m, and n, in

Equation (I) are to be determined from experimental data through a curve-fitting

procedure. The R and Kmax in Equation (I) are stress ratio and maximum stress intensity

factor,

da f

d- = c[(1-R)mKmax]n

respectively. Two da/dN equations are required; one equation fits the experimental data

with positive stress ratios, and the other equation fits the experimental data with

negative stress ratios. The da/dN is set to zero for Kmax being less than Kthreshold

which is the minimum value of the stress intensity factor for a crack to grow under

fatigue loading. The effect of stress ratio on da/dN is not considered when the positive

stress ratio is higher than a positive cut-off value or when the negative stress ratio is

smaller than a negative cut-off value.

The load interaction effects being considered are (i) retardation due to tensile overload,

(ii) acceleration due to compressive load in the tension-compression load cycle, and (iii)

reduced retardation effect due to a compressive load spike which follows overload. The

generalized Willenborg et al-Gallagher-Chang et al model (Ref. 6, 7, 8) is adopted to treat

load interaction effects. The mathematical expressions of the model are given in Ref. 6.

Both of the part-through and corner cracks change their shape (aspect ratio) under fatigue

loading. The stress intensity factor in the depth-direction is different from that in the

surface-direction. Crack growth in both depth- and surface-directions are analyzed

individually using the stress intensity factors appropriate to each direction. Such an

approach is being identified in Ref. 6 as the two-dimensional crack growth model. The
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portion of crack growth life for a crack to grow through the plate thickness will increase

with plate thickness. Thus, a two-dimensional model will improve the life prediction of

those airframe parts which are made of thick plates or forgings.

The damage accumulation scheme being adopted is the linear approximation method (Ref.

6) which is considered to be a reasonable compromise between prediction accuracy and

computational efficiency. A description of the linear approximation method is qiven in

Ref 6.

2.2 Combined Crack Initiation and Growth Method

In the combined crack growth and initiation method for life prediction, the crack growth

is analyzed in a way similar to those described in Section 2.1. The only difference is that

the simultaneous growth of two unequal-length cracks emanating from the same fastener

hole or internal notch is accounted for. The various aspects which need to be considered

in the crack initiation analysis is given in the following sections.

2.2.1 Stress/Strain Characterization

Fatique crack initiation is a rather localized behavior; it is determined mainly by the local

concentrated stress/strain. The concept of stress severity factor proposed in Ref. 9

appears to be a suitable parameter for characterizing the elastic stress concentration at

a fastener hole subjected to both fastener load and remote (by-pass) load. The stress

severity factor is defined in the following equations,

kt = ktg + ktb ktd(2)

by-pass load fastener load

(3)
k = a 03 I kt

where: kt = elastic stress concentration factor for a fastener hole

k = stress severity factor

o = P/wt = effective reference stress

a = coefficient to account for hole condition

.= coefficient to account for fastener system

y= coefficient to account for faying surface condition

P = applied total load

c = fraction of load transferred through fastener
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R hole radius

W plate width

t plate thickness

ktb elastic stress concentration factor for fastener load assuming rigid fastener

and no fastener tilting

ktd = elastic stress concentration factor to account for fastener tilting and fastener

deflection

ktg - elastic stress concentration factor for remote load

Many observations in the past have repeatedly indicated that the local concentration of

plastic strain at a notch root causes fatigue crack initiation of notched members. Such

observations became the basis for the common practice in fatigue analysis where only

stress/strain at the very edge of the notch root was considered. In order to obtain a true

stress/strain characterization at the notch root, the well-known Neuber's rule (Ref. 10) is

employed in conjunction with the stress severity factor. Neuber's rule can he expressed in

the following equation,

2kt = ka 
k e 

(4)

where kt is the elastic stress concentration factor as defined in Equation (2); the k V and

ke are the true stress and strain concentration factors, respectively. The ka and kE are

defined as

k (5)
ka

e (6)

where a and E are the maximum true peak stress and strain at the notch root,

respectively; andoo and E. are the average gross section stress and strain, respectively.

It is noted that Neuber's rule was originally written on the basis of net section

stress/strain. It is assumed in this investigation that Neuber's rule is also applicable for

gross section stress/strain.

2 0kt-a
00 e (7)

For the cases where the average gross section strain is within the elastic limit, such as in

oircroft structures, Equation (7) can be rewritten as,

(kt 0012{

E
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Since kt and E are fixed for a given geometry and material, Equation (8) indicates that the

relation between true peak stress and true peak strain corresponding to a given gross

section stress is a hyperbolic curve. This outcome of Neuber's rule has been experiment-

ally demonstrated in Ref. II using the experimental data of Ref. 12.

The right hand side (R.H.S.) of Equation (8) is the product of true peak stress and strain

at the very edge of the notch root. Therefore, the left hand side (L.H.S.) of Equation (8)

can be used to characterize the true peak stress/strain at the very edge of the notch root.

The L.H.S. of Equation (8) equals two times the strain energy density, S. Hence, S, as

defined in Equation (9), is adopted to characterize the true peak stress/strain in this

investigation.

1 1 (a. kt)2

S oe = 2  E (9)

Brussat et al (Ref. 3) have proposed to use the peak elastic stress, ktao , for

characterizing the stress/strain at the notch root vicinity. A major undesirability of

Brussat et al's approach is that the elastic peak stress often exceeds the ultimate strength

of the materials. The strain energy density approach proposed in this investigation will

circumvent the disadvantage encountered in the peak elastic stress approach.

2.2.2 Material Size Effect

An important fatigue phenomenon which needs to be considered to achieve accurate crack

initiation time is the "material size effect". It is a well established fact that the fatigue

notch factor, kN, is lower than the theoretical elastic stress concentration factor, kt.

This fact implies that the real stress experienced by the material at the notch root is

lower than that calculated by the theoretical elastic stress concentration factor. In other

words, the high peak elastic notch stress is not realized at the notch root. This "material

size effect" was observed even in the cases where peak notch stress was well within the

elastic limit so that plastic deformation could not be used as the basis of explanation.

The "material size effect" has been ascribed to the fact that engineering metals have a

granular structure, whereas the theory of elasticity for metals assumes the material to be

a homogeneous and isotropic continuum. Thus, this notch fatigue phenomenon is termed

"material size effect" to distinguish it from other size effects such as "metallurgical size

effect" and "statistical size effect". The omission of this effect in fatigue crack

initiation analysis will result in conservative estimates of structural life. Therefore, it is

necessary to consider "material size effect" to achieve realistic structural

-9-



life predictions. The recognition of such a necessity is evidenced by the inclusion of the

Neuber's "material size effect" correction to kt in the specification of metal fatigue data

as contained in MIL-HDBK-5D.

The elastic stress concentration factor kt appearing in Equation (9) is subjected to the
"material size effect" correction. The common approach to treat "material size effect" is

due to Neuber (Ref. 13). Neuber recognized the granular structure of metal and argued

that when there is a very high stress gradient, the usual assumptions of isotropy and

homogeneity are invalid within a localized area. He proposed a block-model in which

conventional theory of elasticity for metals is applicable down to region of a limiting size

(of linear dimensionp'). Thus, a material is composed of material "building blocks" instead

of crystal grains and a high stress gradient across this material "building block" is not

permitted. Based on this argument, Neuber proposed the following "effective stress

concentration factor" to account for "material size effect",

kN = 1+ kt+ -1 (10)

where p is the notch root radius; the p' is Neuber's material constant which is available

for aluminum and steel from Refs. 14 and I 5, respectively.

According to Equation (10), kN is always smaller than kt; and for the same kt, kN

decreases with decreasing p . Such a relationship conforms with the empirical observa-

tion that the smaller the notch root radius, the more the experimental fatigue notch

factor falls below the theoretical elastic stress concentration factor.

2.2.3 Governing Parameter for Crack Initiation

Based upon Equations (2), (9), and (10), the strain energy density, S, is redefined (Cf.

Equation (9)) in Equation (II) as the governing parameter for crack initiation.

S 1 (k uo) 2 (21)
2 E

where k stress severity factor = a 3 If kN (12)

The procedure for computing the governing parameter, S, of fatigue crack initiation at

notch root is given below:
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Step I: Calculate effective reference stress, a-, , taking into account all friction

forces.

Step 2: Calculate kt due to hole geometry, fastener load, and remote load.

Step 3: Calculate kN according to Equation (10).

Step 4: Calculate stress severity factor, k, according to Equation ( 12). The

empirical constants, a , , Y are determined from basic test which will

be described in the next section.

Step 5: Calculate strain energy density, S, according to Equation (11).

2.2.4 Required Basic Data

Experimental tests are required to provide basic fatigue crack initiation data for the
analysis. The coupon test specimens should be representative of the geometries

encountered with typical aircraft structures such as a plate containing a circular hole and

a plate containing two holes which are connected by a slot. The specimen geometry

should be simple enough to permit accurate stress analysis and precise control of

excitation parameters used in testing, yet it should yield the kind of data suitable to the
determination of coefficients, a , ft, and -t in Equation (12). The stress levels used in the

testing will be representative of the stress spectrum under consideration. Parameters

considered in the tests are fastener/hole interference or clearance, clamp-up, load

transfer, and sealant.

The test crack initiation life, N, will be plotted against strain energy density, S, using a

log-log scale. The data can be represented by a best-fit equation in the following form,

Smax = Sf Nm
(1 3)

where Smax is the maximum strain energy density and Sf can be interpreted as material

constant corresponding to N = I.

In order to determine a , , and I , results from specimens with interference, clamp-up,

and sealant, respectively will be plotted to obtain three lines. These three lines are
expected to be approximately parallel to the basic line obtained from specimens without

interference, clamp-up, or sealant. The a , 0 , and y' will be determined so as to

bring the three lines into coincidence with the basic line.

The basic test is to be conducted for only one strain energy density ratio, i.e., -

Smin/Smax= 0.0. The advantage of using R - 0.0 is to be explained later. It should be
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noted that the strain energy density ratio equals the square of the stress ratio according

to the definition of strain energy density (Equation II). The basic crack initiation data

for R = 0.0 is sufficient for the analysis, because crack initiation life for other strain

energy density ratios in a stress spectrum can be estimated in a manner similar to the

well-known Goodman Diagram which is widely used in MIL-HDBK-5D to present constant

amplitude S/N fatigue data. A linear approximation is adopted to construct a constant

life diagram (Goodman Diagram) as shown in Equation (14).

Sm
Sa = A (1 - S-•.

8- (14)

Sa and Sm are strain energy density amplitude and mean strain energy density,

respectively, and the constant A in Equation (14) can be determined from Equation (13)

which is valid only for R = 0.0. After some mathematical manipulation of Equations (13)

and (14), the equation for constant life curves is given as.

11 R \Sf NfSa (2 ) ( - (15)

It should be noted that the R in Equation (15) is not an independent variable, but is the

strain energy density ratio used in the basic test. In the fatigue crack initiation analysis,

Sa and Sm are known for a given stress cycle. The unknown is the life, N. Solving
Equation (IS) for N in terms of Sa and Sm results in the following expression.

Nm +R Sa

(12 / a 2- 2/m)2  f (16)

When R = 0.0, Equation (16) can be greatly simplified as follows.

Nm 2 Sa
Sa - Sm + Sf (17)

S(11-R) Smax ]

N Sf -- RSm (18)
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Obviously, Equation (17) is much simpler than Equation (16). It should also be noted that

Equation (18) is as simple as any da/dN equation. Thus, computation time can be greatly

reduced the selection of R = 0.0 for basic test. The simple expression of Equation (18)

will be used to deal with the positive stress ratios. For the negative stress ratios, the

stress ratios are set to zero.

2.2.5 Damage Accumulation

Equation (18) gives the crack initiation life as a function of constant strain energy

density. However, the strain energy density is a variable for a component subjected to a

stress spectrum, because it is determined by the stress severity factor, which changes

with crack length and effective reference stress, cro. Thus, to predict fatigue crack

initiation under spectrum loading, cumulative damage computations must be performed.

The Palmgren-Miner approach of linear cumulative damage is being employed.

The damage rate, dD/dN = I/N, can be obtained from Equation (18) which is derived from

basic test data. According to the Palmgren-Miner approach, the cumulative damage is,

nk

-Zdn - Df
J 0  \dn / i i

(19)

When cumulative damage equals a predetermined value of Df, a fracture mechanics crack

is assumed to be initiated. A 0.05 inch corner circular flaw is considered as an initial

fracture mechanics crack. The back-tracking method will be used to determine Df for

each of the two stress spectra selected for the structural tests of Task IV. Let ti be the

crack initiation life determined from the backtracking method and Ti be the total life for

a specimen subjected to stressoj. Then, compute di = ti/Ti. It should be noted that total

fatigue life consists of crack initiation life and crack growth life; the lower the stress

level is, the longer the crack initiation life will be. Thus, the value of di will increase

with decreasing stress level. Since the set of stress levels o0-, 0 n to be used in the

basic test were intentionally selected to be representative of the kind of stress
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layers in a spectrum, a weiqht factor, Wi, will be assigned to each oi according to the

number of occurrences of wi in a specific spectrum. The Wi will be selected in a manner

such that,

L (20)
Swi = 1

i=1

The value of Df will be determined by the following formula,

L
Df= Z Widi (21)

i=1

Thus, Df will not be a universally fixed value since it depends on the stress spectrum and

fatigue crack initiation properties of materials.

2.2.6 Load Interaction Effect

Load interaction will affect not only crack growth life but also crack initiation life. Thus,

it needs to be considered in the analysis to achieve a realistic prediction of crack

initiation time. There have been a number of theoretical models to treat load interaction

effects in crack growth analysis, but no such models exist for crack initiation. The

Willenborg model, which represents one of the state-of-the-art retardation models in

crack growth analysis, was employed in Ref. 3 to treat the beneficial effect due to

overload in the crack initiation analysis. The Willenborg model will also be employed in

this investigation.

The Willenborq model utilizes the concept of effective stress at the crack tip. The two

essential elements in the Willenborg model are: (i) what is the effective stress? and (ii)

when will retardation effect cease? Figure I illustrates the Willenborg model. The

effective stresses are given as

effective Umax = Umax - (a' max) = -'

(22)
effective Omin = amin - (O' -Omax) = (Umax +o min)- a'
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where or is the stress level required to effect a plastic zone rp such that a + rp = ap.

Retardation effect will cease when the current stress level results in a plastic zone rp

such that a + rp>_ap.

r P

ý_a a4

Sap

Figure I. Willenborg Model

In applying the Willenborg model to fatigue crack initiation, let DOl be the damage due to

overload stress vol. The DOI can be calculated as DOo = I/Nol, where Nol is obtained from

Equation (18). Let di = I /ni be the damage induced by the stress Vi after overload, where

ni can be calculated from Equation (18) if the effective stress is known. Then, calculate

the cumulative damage up to the current stress cycle, Z di. If Z di is greater than or/

equal to DOI, then the overload effect ceases. To calculate 0, the difference in damaqe

Di -Zdi is first calculated, then calculate the number of cycles corresponding to DOo - Zdi

as n' = I/(Dol - Zdi), finally, the stress level corresponding to n' is calculated from

Equation (18). The effective stress to be used for calculating di subsequent to overload

can be calculated in the same way as shown in Equation (22).

The above approach is suggested in order to keep as parallel a relationship as possible to

its counterparts in crack growth analysis, but differences do exist. Table I shows the one-

to-one comparison of the Willenborg model applied to crack growth and crack initiation,

respectively.
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TABLE I. COMPARISON OF WILLENBORG MODEL

COMPARISON BETWEEN CRACK INI T I ATION AND CRACK GROWTH

METHODS (WILLENBORG MODEL)

Crack Growth Crack Initiation

Damage Index At Overload ap = aol + RoL Dol

Overload Effect Ceases a + r P a Pdi io DDoL

0 The stress that results The stress that results

in r sucI4 that in n' such that

a + r = ap (I/n' +Edi) =DoL

Effective Stresses armax -o2 amax -a' = 2 amax -a

nin = (amnax + amin) - 'min = (max + amin) -a'

2.2.7 Crack Initiation Analysis

The approach employed to perform crack initiation analysis is summarized as following:

"o Use the strain energy density, S = 0.5 (kgo)2 /E, as the governing parameter in

crack initiation analysis.

"o Positive and negative stress ratios in a flight-by-flight spectrum are treated with

the Goodman Diagram and the basic fatigue crack initiation data.

"o The Palmgren - Miner rule is used for damage accumulation computation. The

damage index, Df, is determined using the weight factor method.

"o The Willenborg model is used to treat the load interaction effect.

-16-



3.0 STRESS INTENSITY FACTORS

An analytically closed form solution of the stress intensity factor for an actual airframe

part is presently too difficult to achieve within practical considerations. The common

approach currently being used by the aircraft industry is the compounded solution method

(Ref. 2) wherein the stress intensity factor is obtained by superimposing a set of

appropriate ancillary solutions to account for the effects of various structural boundaries.

Ancillary solutions are usually associated with simple configurations. The method can be

expressed in the following equations:

K - KR • CR 1 • CR 2 - -------. CRn (23a)

KR = a F (23b)

where 0 and "a" are the remote stress and crack length, respectively. The CRI, CR?,

.... CRn are the correction factors associated with the ancillary solutions. The ancillary

solutions are to be discussed in Section 3.1. According to Equations (23a) and (23b), the

accuracy of the stress intensity factor obtained with the compounded solution method will

depend on the type and accuracy of the ancillary solutions being used for modeling.

Where a high degree of accuracy is required, the finite element method (FEM) is usually

used.

The compounded solution method is used in this program to formulate stress intensity

factors for complex airframe structures. However, the deficiencies of the compounded

solution method were improved, whenever appropriate, using the finite element method.

3.1 Ancillary Solutions

To apply the compounded solution method, the load and geometry of a fracture critical

area in an airframe are decomposed into simple geometries subjected to remote uniform

stress and/or fastener load. The stress intensity factor solution for the simple geometry

is called an ancillary solution. Two kinds of ancillary solutions are given for each

configuration. One is due to remote uniform stress as shown in Equations (23a) and (23b),

the other is due to uniform internal pressure, as shown in Equations (23c) and (23d), which

are intended to simulate fastener loads.

K = KP • CP 1  CP2 . . . . ....... CPn

(23c)

KP p pJ-f"
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"p" and "a" are the uniform pressure on an entire hole and the crack length respectively.

The CP 1 , CP 2 ....... CPn are the correction factors associated with the ancillary solutions.

Note that the definition of Equation (23c) is different from the conventional one. The

definition was used in Tweed and Rooke's (Ref. 18) ancillary solution for a pressurized

hole.

3. 1.1 A Through Crack Emanating From A Fastener Hole

The stress intensity factor, SIF, of a through-crack emanating from a circular hole

(Figure 2) was firstly solved by Bowie (Ref. 16). Bowie's solution was improved by Tweed

and Rooke (Ref. 17). The numerical results due to Tweed and Rooke were curve-fitted

into an expression by Brussat et al (Ref. 3) as shown below.

K = [ K1.2133 -2.205 ( ) + 0.6451(a )2 (2-4)

aa•a9-a aRaR

Figure 2. A Crack Emanating from a Fastener Figure 3. A Crack Emanating from

Hole - Remote Stress A Fastener Hole - Uniform Pressure

The SIF of a through-crack emanating from a circular hole, which is subjected to uniform

internal pressure as shown in Figure 3, was solved by Tweed and Rooke (Ref. 18). In this

investigation, The Tweed and Rooke's numerical values were curve-fitted into the

following expression.

CPhol= K . F01192622264 )+2.6 9 8 1 ( 2  3
6 J 8&+R/ \a+RJ &a+R (25)

+ 19.76043 _-) 12.66919 (A) 8

Table 2 shows a comparison of Equation (25) with Tweed and Rooke's numerical results.

The deviation of Equation (25) from Tweed and Rooke's results is within 0.6%.
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3.1.2 Two Unequal Through Cracks Emanating From A Fastener Hole

Tweed and Rooke (Ref. 18) have solved the problem of two unequal through cracks

emanating from a fastener hole for the cases of remote stress and uniform internal

pressure as shown in Figures 4 and 5. For the case of remote stress, Tweed and Rooke's

numerical results are curve-fitted into Equations (26) and (27). Table 3 shows a

comparison of Equations (26) and (27) with Tweed and Rooke's numerical results. The

deviation of Equation (26) and (27) from Tweed and Rooke's results is within 2%. Equation

(28) was given by Tweed and Rooke (Ref. 18).
K al a

CRh°2 - K CRbol ' F1  for -1 <5 and !-2<5 (260)

22
F.1 = RKO + RK1( + RK2 (,,) 2(26b)

RKO - 0.993522 +0.157907 (a' - 0.0 9 (L) (26c)

0.00457513 - 0.032251927 (2) +o0.00517178 (_-) 2 .o00o4 (12) (26d)

R =0.00031020177 + 0.001974207 () o 0.0005974349 _ 2 0.0000576760 (!) ( 26e)

CRho2 K exp 1.21009 - 2.1114 +R0.92466 ( a,2 for al (27)

a ýrirji a +) a2
1+ -+2 (28)

CRho2 K CRhol R al for -5 or •5
1 2+- R R

R

~ R

a1  a2  a1  a2

Figure 4. Two Cracks Emanating From Fiqure 5. Two Cracks Emanatinq From
A Fastener Hole - Remote Stress A Fastener Hole - Uniform Pressure

-19-



For the case of uniform internal pressure as shown in Figure 5, Tweed and Rooke's

numerical results are curve-fitted into Equations (29a) through (29i). Table 2 shows a

comparison of Equations (29a) through (29i) with Tweed and Rooke's numerical results.

The deviation from Tweed and Rooke's result is within 0.6%. Equation (29 i) was qiven by

Tweed and Rooke (Ref. 18).

CPho2 = = CPho1 • F2 for !- < 5 and - < 5(29)

p~al

F2 = RKO+RK1 (a) +RK2 (1) 2+ 3 (a) (29b)

RKO- 0.97484+0.19014 (!- -0.04186 (_) +0.0036359 (_)R (29c)

R K1 - - 0. 0068344 +0.021689 ( !2) + 0.0047001 ()-0.0010094 2(29d)

"RK2 - 0.002338-0.00029425 (-) -0.0026977 ()2 +0.00049749 3(29d)R. R74 (R ) (29e)

RK3 = 0.00022626 - 0.00024296 (!-) + 0.00038673 ( - 0.000067379 (R / (29f)

CPho2 K exp [0.1174204 -2.154486 (~)+ 2.2570372 (al

-9.760309( al 3 +14.54895 (a!-1 4 (-9.070292 al 5 (29g)\al+R! \al+R! al+R/

a1
for a 1 a 2  and 1- < 5R

= K 2 foral 812 an
CPh°2 P =a1 ai ( and >5 (29h)

-r81( -+ 1)

2a al
K (1+-)(2+- al a2

CPh°2 " l---al CPhol '2 + -'2a) for W->5 or 4->5 (29i
RI R 21
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3.1.3 Two Symmetric Corner Cracks Emanating From A Fastener Hole
Newman and Raju (Ref. 19) have solved the problem shown in Figure 6 using the three-

dimensional finite element method. Their solution is rewritten in the following

expression:

Mo2 K _c a-S-aC~~ 2- KV - - T Fch(A " - t'' ) (30)
o Yirc C Q Chct (0

where Q and Fch are available in closed form expressions qiven in Ref. 19.

a

14-2R-ol
aa

t

Figure 6. Two Symmetric Corner Cracks Emanating

From A Fastener Hole - Remote Stress

For the case of uniform pressure as shown in Figure 7, the SIF is obtained in this

investigation using the similarity principle shown in Figure 8 where no finite width effect

exists.

KA _KCA- (31)
KB KD

KA ( KB (32)
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According to Equation (32), the correction factor for two symmetric cracks emanating

from a circular hole under uniform internal pressure is given in the following expression:

Kcor2 K (CRcor2) (33)

P 7r2- ýR-M2

t

•C -WiCt

Figure 7. Two Symmetric Corner Cracks Emanating
From A Fastener Hole - Uniform Pressure

R R

T T

-24

KC -c -0 K -0 -- 0

0a

TT

Figure 8. Illustration of Similarity for Figure 7
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3.1.4 A Corner Crack Emanating From A Fastener Hole

Newman and Raju (Ref. 19) have solved the problem of a corner crack emanating from a

fnstener hole under remote stress, as shown in Figure 9, usinq the three-dimensional finite

element method. Their solution is rewritten in the following expression. The square-root

term in Equation (34) is Shah's conversion factor (Ref. 30) to convert the solution for two

symmetric corner cracks to the solution for one corner crack.

= K CRRt + rac (34)
CRcorl ' cr2 V 8 Rt + 2irac

a

-- R

Figure 9. A Corner Crack Emanating From

A Fastener Hole - Remote Stress

For the case of uniform internal pressure shown in Figure 10, the SIF was obtained in

this investigation using the similarity principle shown in Figure 8 where the two

symmetric cracks were replaced by a corner crack. The correction factor for Figure 10

is given below . KC c r
CPcorl =pAM = CRhoI " CPhoI (35)

T

t
C _

Figure 10. A Corner Crack Emanating From A Fastener

Hole - Uniform Pressure
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3.1.5 Two Asymmetric Corner Cracks Emanating From A Fastener Hole

The SIF of two asymmetric corner cracks emanating from a fastener hole under remote

stress, shown in Figure II, was estimated in this investigation using the similarity

principle shown in Figure 12. The SIF of crack No. I in Figure II can be obtained in the

following manner.

K _A KB
KC KD (36)

KA = KB (KD) (37)

a

t I t

-*I 2R

Figure 11. Two Asymmetric Corner Cracks Emanating

From A Fastener Hole - Remote Stress

C2 C

I 2 II

C2e Cle Li I
C~e~le

t tLl{ EI 4XL
Figure 12. Illustration of Similarity for Figure II
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CRacor2 - o _ = (CRCoI CRho2 (38)

where CRcorl shall be evaluated with a t and C l as independent variables for crack No. I.

Similarly, the SIF of crack No. 2 in Figure II can be estimated with Equation (38);

however, CRcorl shall be evaluated with a2 and C? as independent variables. In the
calculation of CRhoI and CRho2, the effective crack lengths as defined in Equations (39a)

and (39b) shall be used. (39a)

Cie =7t Cl

C2 e = J// C2 (39b)

tt

RR

Figure 13. Two Asymmetric Corner Cracks Emanating From
A Fastener Hole - Uniform Pressure

For the case of fastener load as shown in Figure 13, the same similarity principle shown in

Fiqure 12 is used to estimate siF of crack No. I.

CPacjr2 - K = ( cr CPh° 2  (40)

4 2_ Chý l

where CPcorl shall be evaluated with a I and C I as independent variables. Similarly, the
SIF of crack No. 2 in Figure 13 can be estimated with Equation (40); however, CPcor

shall be evaluated with a2 and C2 as independent variables. In the calculation of CPhol

and CPho2, the effective crack lengths as defined in Equations (39a) and (39b) shall be

used.
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3.1.6 A Corner And A Through Crack Emananting From A Fastener Hole

The ')IF of a corner and a through crack emanating from a fastener hole under remote

",tress fFiglure 14) can be estimated using the same procedure shown in Figure 12. The SWF

of the corner crack is given in Equation (41). The CRcor I shall be evaluated (ismnci C, and

02 as independent variables. The CRho I and CRho2 shall be evaluated using C I and C72e as

independent variables. The C2e is the effective crack length for the corner crack and is

defined in Equations (39b).

S°••K _S Ccorl)

CRcoth K = CRho'i CRho2 (41)c oth V7rc 2  CRhol /

R

2tEL.L

2R

Fiqure 14. A Corner and A Through Crack Emanating

From A Fastener Hole - Remote Stress

The SIF for the through crack is given below.

K

CRcoth a = CRh° 2  (42)

where CRho2 shall be evaluated with ClI and C2e as independent variables. The C2e is the

effective crack length for the corner crack and is defined in Equation (39b).
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Similarly, the SIF due to uniform internal pressure (Figure 15) is estimated in Equation

(43) for the corner crack. The CPcor l shall be evaluated using C2 and a2 as independent

variables. The CPhoI and CPho2 shall be evaluated using Cl and C2e as independent

variables. The C2e is defined in Equation (39b).

CPcoth pK = (CPcor CPho2 (43)
P 7 rC-2  - CPholl )

The SIF for the through crack, shown in Figure 15, is given as,

CPcoth = K CPho 2  (44)p /7-rC 1

where CPho2 shall be evaluated with C I and C2e.

2R

Figure 15. A Corner And A Through Crack Emanating From A Fastener Hole -
Uniform Pressure
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3.1.7 A Through Crock Emanating From An Internal Notch

The configuration of a through crack emanating from an internal notch under remote

stress, shown in Figure 16, can be modeled as the configuration shown in Figure 17 (Ref.

20) which shows the SIF's are approximately the same when a/(a + b) is not smaller than

0.11 and c/b is not larger than 1.0. When c/b equals 1.0, the ellipse becomes a circle.

Therefore, Equation (24) for a circle is applicable to Figure 16 for a/(a+b) beinq equal to

or larger than 0.11; and the correction factor for Figure 16 is given as,

CR2hol K _'_ - CRhol, a+b > 0.11 (45)

where CRhoI shall be evaluated by replacing "R" in Equation (24) with "b" in Figure 16.

For the case of a/(a + b) being smaller than 0. 11, Schijve's solution (Ref. 21), as given

below, is applicable.

CR 2 hol K ktg F (46)

1.5 2 2.5
F = 1.1215- 3.21 ()+ 5.16(!) -3.73( ) + 1.14( (47)R R RR

where ktq is given later in Equation (005). According to Schijve (Ref. 21), Equation (47) is

applicable for a/R _• I. Normally, the "b" in Figure 16 equals to about 5R. Therefore, the

condition a/(a + b) < .11 results in a/R < 0.62; and Equation (47) is applicable for

a/(a +b)<0.11. a
t t t

aa

EI

Figure 16. A Through Crack Emanating From An

Internal Notch - Remote Stress
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2
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Figure 17. A Through Crack Emanating From An Elliptical Hole -
Remote Stress (Ref. 20)
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3.1.8 A Corner Crack Emanating From An Internal Notch

The SIF of a corner crack emanating from an internal notch, as shown in Figure 18, can

he estimated using the similarity principle shown in Figure 19. The relationship among

the configurations shown in Figure 19 is given in Equations (36) and (37). The SIF for the

corner crack shown in Figure 18 is given in Equation (48).

CRcrl= K = CR32hol C
CR2corl - a r=\ "CRcorl (48)

where CR2hol is evaluated with Equations (46) and (47) for cf(c + b)< 0.11 ,and CR2hol

is evaluated with Equation (45) for c/(c + b)-> 0. 11.
a

t t f

R !R

oC

I a

Figure 18. A Corner Crack Emanating From An Internal

Notch - Remote Stress

LK' J~l T K a

Figure 19. Illustration of Similarity for Figure 18.
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3.1.9 Two Through Cracks Emanating From An Internal Notch

The problem of two throuqh cracks emanating from an internal notch under remote stress,

shown in Figure 20, can be modeled in the manner shown in Fiqure 21, which shows that

the SIF's are approximately the some when a/(a + b) >_ 0.18 and c/b •< 1.0. When c/b equals

1.0, the ellipse becomes a circle. Therefore, Equation (26) for a circle is applicable to

Figure 20 for a/(a + b)Ž 0.18. For crack No. I,

CR2h°2 - K = CR2hol " F3  for 82 2(49)"of- 1  b and b-<5 !g

CR2ho1 - -x (1.2133-2.205 -0.451 2] (50)

(!)2F3 - RKO+RK1 (1) + a K2 + 2_ (51)

RK0 0.993522+0.157907 (!2) -0.00579398 _

RK1 I 0.00457513 -0.032251927 +~ +0.00517178i 2 - .04815(- (52)

K2- -0.00031020177 + 0.001974207 _~ _ 0.0005974349 (!_2 0.00005767606 (823

CR2ho2 - K - x 1.21009 -2.1114 (.J)+ 0.92466 ( , 2 for al82 (3

a TFlal+b (;ji)1 b3

CR Kal ++2b +a2  f 1 ~ 5o 2CR2ho2 K - CR2hol 2b+ 1  b 5 or !- > 5  (54)

a2 a

44 R41 j

it

Figure 20. Two Through Cracks Emanating From An Internal

Notch - Remote Stress
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For the case a/(a + b) < 0.18, Schijve's expression (Ref. 21 ) is applicable.

K

CR 2 ho2 = = ktg F (55)

+5 1.5 1) 2 2.5

The ktg in Equation (55) can be calculated from Equation (101). For crack No. 2, al and a2

in Equations (49) through (56) shall be interchanged.

t t

C

12

10
I0 o(F.

81 5m" .. 1-.*4 11
0K O K. t I+

-o(-*u-o): F I.122- Wt
6 (- -1 ): F-- '/JiN

C Q lb, a F

14 -4

4.

22

2 2

0.2 0.4 0.6 0.8 1.0

a

Figure 2 1. Two Symmetric Cracks Emanating From A Elliptical Hole -

Remote Stress (Ref. 20)
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3. 1. 10 Two Corner Cracks Emanating From An Internal Notch
The SIF for the configuration shown in Figure 22 can he obtained using the simili iil
principle illustrated in Figure 23. The relationship of the configurations shown in Figure

23 is given in Equations (36) and (37). The correction factor for Crack No. I in Figure 22

is given in Equation (57).

CR2cor2 K- - (CR2ho2 CR 2crl = CR2hoI' CRcorl (57)a 7 r 61 CR12ho1 co CRhol ~(7

where CR2cor I shall be evaluated with a I and C I as independent variables. Similarly, the
SIF for crack No. 2 can be estimated with Equation (57), where CR2cor I should be
evaluated with a2 and C2 as independent variables. The CR2hol and CR2ho2 shall be

evaluated using effective crack lengths C le and C2e as defined in Equations (39a) and

(39). a
4 4

RI R

-*1 b Ib- Cl I.

a

Figure 22. Two Corner Cracks Emanating From An Internal Notch -

Remote Stress

c2ý RF IR[Cih 7RI- -IR +

cz-, R -.4 R C+ -,.R CR *

Figure 23. Illustration of Similarity for Figure 22
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3. 1.11 A Through And A Corner Crack Emanating From An Internal Notch

The SIF of the configuration shown in Figure 24 can be estimated using the similarity

shown in Fiqure 23. The correction factor for the corner crack is given in Equation (58).

The CR2corl shall be evaluated using C2 and a2 as independent variables. The CR2ho?
and CR2hol shall be evaluated using CI and C2e as independent variables. The effective

crack length C2e is defined in Equation (39b).

K _ (CR2ho2 CR cor (58)CR2cath -a = CR2 l ) Ro

The correction factor for the through crack is given below,

K

CR 2coth a K = CR 2 ho 2  (59)

where CR2ho2 shall be evaluated with CI and C2e as independent variables. The C2e is
the effective crack length for the corner crack and is defined in Equation (39b).

a -

t tt

2b pit c, I-

21

Figure 24. A Through And A Corner Crack Emanating from

An Internal Notch - Remote Stress
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3.1.12 A Through Crack Emncmating From An Edge Notch

The SIF for a through crack emanating from an edge notch under remote stress, shown in

Figure 25, can be approximated by the solution given in Figure 26. This shows that the

SIF's are approximately the same when s = a/(a + b) _ 0.10 and c/b !!_ 0.5. For the

airframe structures, the c/b is usually less than 0.5.

K

CRegt = = exp [1.622013 - 4.256582 • S + 4.748848 S2 - 2.002491 S2] (60)

for S>0.1

When s is less than 0.10, Schijve's formula (Ref. 21) is applicable.

CRegt = K = ktg_4 .F for S<0.10 (61)

where ktg-4 and F are available from Equations (108) and (47), respectively. Note that

ktg-4 for a semi-infinite plate can be calculated by setting "b" (in Figure 101) equal to

infinite in equation (108). a

t t t

ta

Figure 25. A Through Crack Emanating From An

Edge Notch - Remote Stress

For the case of uniform pressure as shown in Figure 27, the SIF can be obtained by the

similarity shown in Figure 28.

.KA [C) KB] I (~gta~ Cps." ~Ap 1
CPeg[(L0 p-a (K p(62)

- CReWt 2R

where CRsweg, CPsweg and CRegt are available from Equations (72), (73) and (60) or (61),

respectively.
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Figure 26. A Through Crack Emanating From An Edge Elliptical Notch -

Remote Stress (Ref. 20)
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R

pa

Figure 27. A Through Crack Emanating From An Edge Notch - Uniform Pressure

p~p

A4 a KB

A I

t ,

-A-A

Figure 28. Illustration of Similarity for Figure 27
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3.1.13 A Corner Crock Emcruting From A Plate Edge

Newman and Raju (Ref. 19) have solved the problem of a corner crack emanating from a

plate edge, shown in Figure 29, using the three-dimensional finite element method. Their

solution is rewritten in the following expression:

CRcore K a 1 Fc t

C0cre C Q (63)

where 0 and Fc are available in the closed form expression given in Ref. 19.

C

Figure 29. A Corner Crack Emanating From

A Plate Edge - Remote Stress
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3.1.14 A Corner Crack Emanating From An Edge Notch

S t t

R

CC

Figure 30-a. A Corner Crack Emanating From An Edge

Notch - Remote Stress
The SIF of the configuration shown in Figure 30-a can be obtained by modifying the

solution of the corresponding through crack problem shown in Figure 25.

CRegc = K = CRegt CR g(64)

For the case of uniform pressure shown in Figure 30-b, the SIF is approximated as,

KCPeg = = CPegt C oeJ'g 5rc• pg CRcoreg (65)

-'1 ci..-

Figure 30--b. A Corner Crack Emanating From An

Edqe Notch - Uniform Pressure
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3. 1. IS The Finite Width Correction

Isida (Ref. 22) has solved the problem of finite width effect for the case of remote stress,

(is shown in Figure 31-a. He gave his results in terms of a 19-term series for various

eccentricities of crack locations. His results were curve-fitted into the following simple

expressions in this investigation.

CRfwa Sec~ ("5a + bb35a
2 (66a)

CR = Se (145a + 1.55a (66b)Cfwb ec 1 * b ' l<b2
6 bb 2 /

A comparison of Equations (66a) and (66b) with Isida's 19-term solution is given in Tables 4

and 5 for 0.5 •_ X (= a/b i) < 0.8. For X <0.5, the agreement between Isida's data and

Equations (66a) and (66b) is better than 2%. Tables 4 and 5 show that some deviations are

about 10% for X = 0.8, but this would not significantly affect the structural life

prediction because the crack will grow at a high rate to reach the free edge.

A prevailing approach to treat crack eccentricity is to take 2b I and 2b2 as the effective

widths for crack tips A and B, respectively; and the crack is assumed to be in the middle,

i.e. E ( = e/b) = 0.0. A comparison of this approach with Isida's solution is given in the

bottom line of Tables 4 and 5 for E = 0.9. The tables indicate that when the eccentricity

is high, this prevailing approach gives very conservative SIFs.

U

t t t

B Aa

=---- -b z q- b ._•bt

Figure 3 I-a. An Eccentric Crack In A Finite Plate - Remote Stress
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For the case of uniform pressure, as shown in Figure 31-b, the finite width correction is

obtained by dividing the solution on page 2.32 of Ref. 20 by the solution on page 5.9 of

Ref. 20. The correction factor is rewritten in the following expressions

B o c IR A

Figure 3 I-b. A Crack In An Finite Plate - Uniform Pressure

Ke Fa

CPf b 1= P 71 CP h2  
Fb7

1 + 1 I -(0,-\Sn

= - tan ia2 ~
Fb 2 (68)

P ~i "'r C C+
Cos2b
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3.1.16 A Crack Approaching A Hole

Isida (Ref. 23) has solved the problem of a crack approaching a hole, as shown in Figure

32. In this investigation, the graph was enlarged to an appropriate size to facilitate

reading the numerical values to two digits after the decimal point. Isida's solution was

then curve-fitted into the following expression.

t

*-b

Figure 32. A Crack Approaching A Hole

CRah K =F3 + 2 4 - F3)/7r (69a)

F3 = 1 +0.5 A2 + 1.5/; 4  (69b)

F4=1+ 0.5 (iýi 15 X) (69c)

where A = R/b and X = a/b as shown in Figure 32. A comparison of Equations (69a), (69b)

and (69c) with Isida's solution is given in Table 6. The table indicates the deviation is

within 5%.
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3.1.17 The Finite Width Effect For An Edge Crack

The finite width corrections for an edge crack, shown in Figures 33 and 34, are available

from Ref. 20 (Pages 2.11 and 2.27). For the case of remote stress, the correction factor

is given as,

0.752+2.02 (9 )+0.37 (1-sin 7ra 3
K 2b 7ra b2

CRfweg = j 2 -tan -r
2b (70)

t

Figure 33. An Edge Crack In A Finite Plate - Remote Stress

For the case of fastener load, the correction factor is given as,

3.52 (1- _ - ) 4.35-5.28 C + -1.30 - 0.3 ( 5

CPfweg p = 2 .. 0.5 + / + (71)
p• (- 1.5 01_ 5 (71

0.83- 1.76 - (

a

P

-*b

Figure 34. An Edge Crack In A Finite Plate - Fastener Load
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3.1.18 An Edge Crack In A Semi-infinite Plate

The SIF for the crack shown in Figures 35-a and 35-b is available from Ref. 20. For the

case of remote stress, the correction factor is given as,

K
CRsweg = = 1.1215 (72)

For the case of fastener load, the correction factor is given as,

c 1.51

K 2 [1.3- 0.3 () 1
CPsweg = T a (73)

+ +

Figure 35-a. A Crack In A Semi-infinite Figure 35-b. A Crack In A Semi-infinite
Plate-Remote Stress Plate - Fastener Load
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3.1.19 The Effect Of A Counter-Sink

The counter-sink will increase the stress concentration factor, ktg, because there is less

load-carrying area in a counter-sunk hole. The effect of a counter-sink on the stress

concentration of a hole is usually estimated using engineerinq judgement coupled with

simplified model representation. In this investigation, the three-dimensional (3-D) finite

element method (FEM) was used to analyze the effect of a counter-sink on ktg and SIF.

The HEXA and HEX20 elements, which are 20-node isoparametric brick elements in the

MSC/NASTRAN, were adopted for modeling.

Figure 36 shows the 3-D FEM results for a straight hole and a corresponding counter-sunk

hole whose depth of counter-sink is 21% of the plate thickness. Only one quarter of the

plate is modeled; the model consists of 1047 nodal points. Figure 36-a indicates that the

ktg value on the surface is the lowest, (2.806), and the ktg value in the mid-thickness is

highest, (3.338). There is a 16% difference in ktg between the surface and the mid-

thickness. This is one of the reasons that an embedded crack tends to initiate in the hole

wall of relatively thick plate. Figure 36-b indicates that the ktg value on the counter-

sunk side surface is only 1.781 whereas the ktg value on the other side of the plate is

2.731. The highest ktg value occurs at z=0.64t which is near the point of intersection

between the counter-sink and the drilled hole wall. The largest ktg value in the counter-

sunk hole, (3.562) is 7% higher than the largest ktg value in the corresponding straight

hole, (3.338).

The 3-D FEM analysis was also made for a straight hole and a corresponding counter-sunk

hole whose depth of counter-sink is 32% of the plate thickness. The results are shown in

Figure 37. The trend of the data is similar to that shown in Figure 36. However, the

largest ktg value for a counter-sunk hole, (3.628) is 8.4% higher than the largest ktg value

for a straight hole.

To facilitate the evaluation of the effect of a counter-sink on SIF, the averaged ktg value

through the thickness will be used. Based on the 3-D FEM results, the fraction of increase

in the average ktg values due to the presence of a counter-sink is approximated by the

following equation.

G = 0.0021 • csk (74)

where CSK is the percentage of counter-sink depth relative to the plate thickness.
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kt k t

2.806 1.781 HIT 0.21

3.121 2.492 H

3.259 3.529

3.324 3.562

3.338 3.488 T

3.324 3.398

3.258 3.276

3.120 3.095

2.806 2.731

AVG 3.151 AVG - 3.297

(a) (b)

Figure 36. Comparison Of ktq In Straight Hole And In A

21% Counter-sunk Hole

ktg K tg HIT 0.32

2.889 1.892

3.296 3.586

3.345 3.628 T

3.296 3.428 4

2.889 2.748

AVG - 3.143 AVG - 3.347

(a) (b)

Figure 37. Comparison Of ktg In Straight Hole And In A

32% Counter-sunk Hole
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The 3-D FEM was also used to analyze the cracked counter-sunk holes whose depths of

counter-sink are 21% and 32% of the plate thickness. The crack length equals about the

hole radius. The HEX20 element, which is a true 20-noded isoparametric element in

MSC/NASTRAN, was used for the elements immediately surrounding the crack tip. The

1/4 position technique due to Barsoum (Ref. 24) was used to impose the desired

strain/stress singularity near a crack tip. The rest of the plate is modeled using the

HEXA element which is a modified 20-noded isoparametric element.

The normalized SIF's from FEM analysis are shown in Table 7 for various locations through

the plate thickness. The largest SIF occurs at the point of intersection between counter-

sink and the drilled hole wall. This location coincides with the location of the largest ktg.

TABLE 7. NORMALIZED SIF OF COUNTER-SUNK HOLE

Z= 21% Z= 32%
Counter-sink Counter-sink

0.3125 0.8758 0.3125 0.9091
0.2790 0.9250 0.2790 0.9467
0.2455 0.9732 0.2455 0.9862
0.2009 0.9696 0.2078 0.9813
0.1562 0.9629 0.1701 0.9754
0.1116 0.9636 0.1366 0.9263
0.0670 0.9614 0.1031 0.8797
0.0335 0.9091
0.0 0.8564

RMS 0.9339 0.9443

The normalized SIF for a straight hole having the same crack length is 0.926. The Root-

Mean-Square (RMS) of the SIPs for the 21 % and 32% counter-sunk holes are only 0.8% and

2% higher than that of a straight hole, respectively. The largest SIF for the 21 % and 32%

counter-sunk hole are 5. I % and 6.5% higher than the SIF of a straight hole, respectively.

The largest ktg for the 21% and 32% counter-sunk holes are 6.7% and 8.5% higher than

the largest ktg of a straight hole, respectively. However, the averaged ktg for the 21%

and 32% counter-sunk holes are 4.6% and 6.5% higher than the averaged ktg of a straight

hole, respectively. It seems that the largest SIF values can be correlated with the

averaged ktg value.
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Therefore it is proposed to increase the SIF with the same percentage increase of the

average ktg due to the presence of a counter-sink. This is incorporated into the following

correction factor using Equation (74).

CRck = '"K CRhol -1 + 0.0021 •ck, for a < R (75)

Since this FEM analysis is performed for the crack length equal to about one hole radius,

Equation (75) would be applicable for a < R. For a >R, the effect of counter-sink can be

neglected. It is noted that the effect of a counter-sink on the SIF will be more

substantial for small cracks.

3.1.20 The Stiffening Effect Of A Central Stringer

The stiffening effect of a central stringer, shown in Figure 38, was solved by Sanders

(Ref. 25). His numerical data points were curve-fitted into the following expression in

this investigation. The E and Est are the Young's modulis for the skin and stringer,

respectively. The A is cross section area of the stringer. The "t" is the skin thickness.

K

CRstf = = 0.63776 + 0.07559 X - 0.04081 X2 + 0.01058 X3 (76a)

= 2atE (76b)

A Est

t

-.- stiffener

U

Figure 38. A Cracked Sheet With A Central Stringer
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3.1.21 The Stiffening Effect Due To Non-similar Material

Isida (Ref. 23) has solved the stiffening effect for the configuration shown in Figure 39.

He presented his results graphically. In this investigation, the graph was enlarged to an

appropriate size to facilitate reading the numerical values up to two digits after the

decimal point. The numerical values were then curve-fitted into the following expression.

CRsf K = C1+C2 X + C3. *X 2  (77a)
aCf= a-

Cl = 1.00753 - 0.01088 3 + 0.00218 32 - 0.00013 I3 (77b)

C2 = - 0.24814 + 0.33864 j - 0.10613 02 + 0.01388 33 - 0.00062 04 (77c)

C3 = 0.57494 - 0.77771/3 + 0.23633 P2 _ 0.03146 g3 + 0.00145 34  (77d)

b

a a

X- a/b, *- E2t2/Elt 1

Figure 39. The Stiffening Effect Due To Non-similar Material
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3.2 Stress Intensity Factors for Typical Airframe Structures

The compounded solution method is being used to formulate the stress intensity factors

for the Task IV structural test specimens which are representative of common airframe

design. Two types of specimens are used in Task IV Structural Tests, namely, stringer-

reinforced specimens and lap-joint specimens. The stringer-reinforced specimens are

intended to simulate spar-to-skin attachments. The lap-joint specimens are intended to

simulate chordwise lap-joints.

Figures 40 through 45 show the schematic diagrams of the structural test specimens. The

stress intensity factors for each member in a specimen assembly are formulated for the

anticipated cracking sequence according to MIL-A-83444 and the combined crack growth

and initiation method for life prediction. For all types of stringer-reinforced specimens,

the load redistribution accompanying crack growth can be neglected in accordance with

the observation made in Refs. 3, 4, and 5. However, the load redistribution (due to crack

growth) among fasteners in the chordwise lap-joint specimens will be considered to

achieve accurate life predictions.

3.2.1 Skins of Stringer-reinforced Specimens

The fastener load induced by the load redistribution during crack growth need not be

considered in accordance with the observation made in Refs. 3, 4, and 5. Therefore, only

remote stress is considered in the formulation of the SIF for skins. Figures 46 through 59

show the anticipated cracking sequence and the SIF associated with each configuration.

The anticipated cracking sequence with the consideration of crack initiation is merely to

illustrate the formulation of the SIF; the actual cracking sequence shall be predicted from

crack growth and initiation analyses.

3.2.2 Tee-Stringer

Figures 60-a through 60-e show various configurations where a crack does not extend into

the upright leg of a tee-stringer. In such cases, the tee-stringer can be modeled in the

way shown in Figure 61 for the compounded solution method. The stiffening effect due to

the upright leg can be accounted for using Isida's solution (Ref. 23) given in Equations

(77a) through Equations, (77d). The normalized SIF calculated in this manner is shown in

Table 9. The 3-D FEM analyses were performed to validate the modeling technique shown

in Figure 61.
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Figure 40. Central Tee-Stringer Continuous Figure 41. Central Angle-Stringer
Skin Specimen Continuous Skin Specimen
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outside
crack \crack

oulstde ins Ide
crack \-crack

Figure 4?. Central Tee-Stringer Split Figure 43. Edge-Stringer Continuous

Skin Specimen Skin Specimen
upright leg

base Leg

Figure 44. Single-shear Lap-joint Figure 45. Double-shear Lap-joint

Specimen Specimen
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Seq. I: Seq. 2:

R RK"K'CR R CR r *CR K=KR'CR •CR CRto. I CI' .. b) Cek heol oh fCa(b)

Seq. 3: Seq. 4:

R RKOK CCR KOKk *CR CR2•or; Crv(b) 2h.) tfw=b)
;•ho I

Figure 46. Cracking Sequence and Associated SIF

for the Inside Initial Crack in the Skin of Figure 40 -

Without Crack Initiation

Seq. I: Seq. 2:

KO KKR co,ý CRfh )or crack no.I
K=KR'tRco CRal CRf~l) CRRoh fab

h f,,(b) CR K=KR' =KCRR fop crack no.2
co~h 1.(b)

Seq. 3: Seq. 4: I

SK.CR., CR °for crock no.2
KcK 4o(b) K=KCR'c CR for crock no.2

2ho1 fwa(b)

Seq. 5:

KOK CR I crack no8.2 & 3
2ceoh fwo(b)

Figure 47. Cracking Sequence and Associated SIF

for the Inside Initial Crack in the Skin
of Figure 40 - With Crack Initiation
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Seq. I: Seq. 2:

K K "CRf .I CRte )M' sk KOK CR CR -wob)

seq. 3: i Seq. 4: I

RII
K-K -CR CR CR K-K CR - CR CRego te s o at ~ oh

Figure 48. Cracking Sequence and Associated SIF

for the Outside Initial Crack in the Skin

of Figure 40 - Without Crack Initiation

Seq. I: Seq. 2:St 21

Rt K-K CR CR for crack no.!
KOK CR " CR,,; CR ask KKR.

aeel f ask K'K "CRQ• CR CR. for crock no.2
set h fwab

Seq. 3: I Seq. 4 21

ft2 I 2

K-K -CR,-: CR for crack no.! ft

he b) K"K .'CR CR... CR h for crack no.2
KOK CR CR CR for crack no.2 goo

h.2 C fueNOW

Figure 49. Cracking Sequence and Associated SIF

for the Outside Initial Crack in the Skin
of Figure 40 - With Crack Initiation
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Seq. I. Seq. 2.

KK "CR..., CR,,ol ,CR... KwK "CRh, CR NOW

Seq. 3: Seq. 4:

-9 I RM
RR

K-K CR CR K-K *CR CR0g00 '~ll fee eelr ("woo

Figure 50. Cracking Sequence and Associated SIF

for the Skin of Figure 41 - Without Crack Initiaion

Seq. I: Seq. 2:

I -1

K=K "CR CR,,oljl CR.. K CR CR for crack nos.I L 2
o~ oil% (.O(b)

Seq. 3: I

2 t

K-K CR •2 for crock no., , 2(. #o(h(

Figure 51. Cracking Sequence and Associated SIF

for the Skin of Figure 41 - With Crack Initiation
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Seq. It seq. 2:

K-K'CR CR *CR K-K 'CR "CR
eer two~h) oak Not 4wtb

Seq. 3: Seq. 4:

K-K RCR 'CR K-K *CR •CR
*gc fwtost

Figure 52. Cracking Sequence and Associated SIF

for the Inside Initial Crack in the Skin

of Figure 42 - Without Crack Initiation

Seq. I= Seq. 2: 2j1

R R

K- CRO-CR ' C R oPAr crack no.1 K-K .CR., C R C..,r crack nos., I 2

Seq. 3 2 Seq. 4 2 1 1

K-K 'CR • CR for crack no.2 K-K 'CR ' CR,,Caor crack no.2

Figure 53. Cracking Sequence and Associated SIF

for the Inside Initial Crack in the Skin

of Figure 42 - With Crack Initiation
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Seq. I: Seq. 2:

I R
K-K *CRoor I CR 'v(ý) CR k K-K CR CR ".016)

Figure 54. Cracking Sequence and Associated SIF

for the Outside Initial Crack in the Skin

of Figure 42 - Without Crack Initiation

Seq. I I Seq. 2: 2

R R

K-K "CR CR CR Carcrack no.1 K-K "CR CR Por crack nos.I 6 2

Seq. 3: 1 2 Seq. 4: 1 2

I . I
K-K 'CR* • CRf,.(Ifr crack nog.I L 2 K-K CR CR .. "or crack no.1

Figure 55. Cracking Sequence and Associated SIF

for the Outside Initial Crack in the Skin
of Figure 42 - With Crack Initiation
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Seq. I: Seq. 2:

R R
K-K *CR RCR CR ook K-K CR CR

owel. fuCh k hol fwa(b)

Figure 56. Cracking Sequence and Associated SIF

for the Inside Initial Crack in the Skin

of Figure 43 - Without Crack Initiation

Seq. I: Seq. 2:
2 1

K-K *CR CR 1  for crack no.1
K-K CR -rCR for crock no.1 R tCh

K-K CR CR for crack no.2

Seq. 3: Seq. 4:

R R

K-K *CR2* "I CR¢,.(6) for crack no.1 K-K "CR* 2 CRf.J.r crack no'.I & 3

Seq. 5:
3 I

R
KK CR2.;i CRf, (tr crack no.. I & 3

Figure 57. Cracking Sequence and Associated SIF

for the Inside Initial Crack in the Skin

of Figure 43 - With Crack Initiation
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Seq. I Seq. 2
I 1 2 I

1 ~R
K-K "CR CR (web) for crack no.1

K .v CR.. * b Cek K-K CR CR for crack no.2
K NW() oh

Seq. 3 Seq. 4
2 3

K-K CR • CR CR for crack no.2 K-K -CR.- CR CR c 0°bfor crack no. 3

* at h wa(b)

Seq. 5 3

R
K-K -CR CR for crock no.3

eac twa~b)

Figure 58. Cracking Sequence and Associated SIF

for the Outside Initial Crack in the Skin

of Figure 43 - Without Crack Initiation

Seq. I Seq. 2

R' R
K-K "CR o CR CR,, K-K *CR " CR

cop .I a (b) ck h. I fwatb)

Seq. 3 Seq. 4

R R
K-K "CR - CR - CR K-K C: . CR . CR

e*o oh f(aib) CFi h 4~wotb)

Seq. 5 Seq. 6

R
K-K CR • CR K-K CR CR

49C ao(b) salt twoib)

Figure 59. Cracking Sequence and Associated SIF

for the Outside Initial Crack in the Skin

of Figure 43 - With Crack Initiation
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Figure •;0. Cracked Tee-Stringers
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S crl2 ic 2a a d- W dt 3

Figure 1 I. Tee-Stringer Models for Compounded Solution Method
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Figure 62. FFEM Model for the Tee-Stringer shown in Figure 60-i
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The PENTA, HEXA, and HEX20 elements in the MSC/NASTRAN were used in the

analyses. Figure 62 shows an example of the finite element meshes. Only two layers of

elements were used in the thickness direction. Since the main purpose is to evaluate the

load transfer between the base and upright legs of a tee-stringer rather than the stress

distribution along the thickness direction, such a modeling technique is expected to give a

reasonably good representation of load-transfer. The normalized SIF corresponding to

Figures 60-a through 60-e are shown in Table 8 for comparison.

Table 8 indicates that the compounded solution method, in conjunction with the model

shown in Figure 61, gave slightly higher SIF values compared to the 3-D FEM results. The

largest deviation is about 14% for the longest crack length, (Figure 56-b) where the SIF is

high and there is not much life left. Such an accuracy of the compounded solution method

is probably acceptable for practical applications.

When an outside crack, e.g. Figure 60-g, grows into the junction area between the upright

leg and the base leg of a tee-stringer, the normalized SIF is so large such that the crack

virtually grows in a somewhat unstable manner. However, the configuration shown in

Figure 60-f, where an inside crack grows into the junction area, is an important one. In

both cases, the method due to Brussat et al (Ref. 3) is being adopted and rewritten in the

following expression.

Fst + 0.25. r2

CRsfj = a0.25. r (2r) (78)

where a, t, r, and s are shown in Figure 60-f. Equation (78) will be applicable until the

crack front reaches circle No. 2 shown in Figures 60-f and 6 0-g. After this point, the

configurations can be treated as having two cracks shown in Figures 60-h and 60-i.

When a crack grows into the protruding leg of a tee-stringer as shown in Figures 60-h and

60-1, the load eccentricity will induce additional bending stress which needs to be

considered in the analysis. The bending stress, fb, at locations a, b, c, and d in Figure 60-h

can be calculated with Equation (79) given in pages 156-157 of Ref. 26. The coordinates

M x - MY Ix MyI - Mx ly
fb= Ixy xx (79)
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are located at the centroid of the cross section of intact tee-stringer. The moments Mx

and My are calculated from the stress in the fractured area. The Ix, ly, and Ixy, are

moments of inertia. The x and y are the coordinates of locations a, b, c, and d,

respectively. A correction factor, CRb, as defined below is included in the SIF.

CRb= 1 +
0o (80)

For the branch of the crack in the base leg of a tee-stringer shown in Figure 60- h, the

upright leg is treated as a middle stiffener across a crack. The ancillary solution CRstf

given in Equations (7 6a) and (76b) can be applied to this situation. The effective cross

sectional area of the stiffener shall be only the uncracked ligment of the upright leg.

Thus, the SIF is given as;

K =a -r .- CRhol CRfwa(b) , CRah • CRStf • CRb

(81)

The root-mean-square of the SIF's calculated from Equation (81) for locations c and d of

Figure 60-h is shown in Table 9 to compare with the FEM result. The root-mean-square of

the SIF calculated from Equation (81), (1.515) is about 13.8% lower than that from the

FEM.

For the branch of the crack in the upright leg of a tee-stringer, shown in Figure 60-h, the

base leg is treated as a middle stiffener across the crack. The effective cross sectional

area of the stiffener shall be only the uncracked ligment of the base leg. To account for

the finite width effect, the crack is treated as an edge crack in a finite plate. Thus, the

SIF is given as

Ko .i-a CRfweg .CRstf • CRb

(82)

-68-



The root-mean-square of the SIF's calculated according to Equation (82), for locations a

and b of Figure 60-h, is shown in Table 8 to compare with the FEM result. The root-

mean-square of the calculated SIF's is 1.469 which is about 8.7% lower than that of the

FEM result. However, the crack growth rate at this stage is very high so that it will not

affect the accuracy of the crack growth life prediction.

To calculate bending stresses at locations a, b, c, and d in Figure 60-i, the moments of

inertia and centroid shall be calculated using the area bounded by the six corners I, 2, 3,

4, 5, and 6, which form an angle shape. However, the stress which contributes to the

bending moments Mx and My, shall be from the entire fractured area. The two branches

of the crack are treated as an edge crack in a finite plate. The stiffening effect due to

the other leg can be neglected. The effective crack lengths for the two branches are

shown in Figure 60-i. Thus, the SIF is given as

K =a ,7raeff • CRfweg CRb . CRah (for base leg) (83a)

K = a 1  .eff CRfweg • CRb (for upright leg) (83b)

The root-mean-square of the SIF's calculated according to Equations (83a) and (83b) are

shown in Table 8. It appears that the root-mean-square values for the SIF calculated with

the compounded solution method agree quite well with the root-mean-square values from

the FEM results. However, the crack growth rate at this stage is very high so that the

accuracy will not significantly affect the crack growth life predictions.

In summary, the SIF's for the cracked tee-stringer configurations pertinent to life

predictions are given in Figures 63 through 66.

3.2.3 Angle-Stringer

Figures 67-a through 67-d show various configurations where a crack does not extend into

the upright leg of an angle-stringer. In such cases, two models for the compounded

solution method were used for each configuration to obtain the SIF as shown in Table 10.

The 3-D FEM analyses were performed to validate the solutions obtained from the

compounded solution method. The first model has an effective width equal to that of the

base leg of an angle-stringer. The stiffening effect due to the upright leg can be

accounted for by using Equations (77a) through (77d). However, such a stiffening effect

turns out to be small.
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Seq. I S q.2

RR
K=K .CR CR -CRf K=KR .CR * CR *R

f va (b) hot NvOW of

Seq. 3: Seq. 4:

K=K -CR CR -CR K=K R*CR -CR -CR

Seq. 5:

R
KinK *CR CR CRsat f woo Gfj

Figure 63. Cracking Sequence and Associated SIF

for the Outside Initial Crack in Tee-Stringer-

Without Crack Initiation
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Seq. I :Seq. 2:r

R R
K=KR CR. K=K* C CR CR CRK=K .C f K=K *CR,,.CR(CR

cphol ?wo(b) m

Seq. 3: Seq. 4:

R R
K=K *CR CR -(CR K=K *CR CR CR

coth fwo(b) of Sac fwaog of

Seq. 5: Seq. 6:

P R
K=K .CR CR , CR K=K .CR - CR CR

Sol w• •,gat fweo Cel

Figure 64. Cracking Sequence and Associated SIF

for the Outside Initial Crack in Tee Stringer -

With Crack Initiation
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Seq. I: Seq. 2:

RR

K=K RCRe CR CR K=KR .CRh* CR CRor
co I fa(b) of 1,ol twotb

Seq. 3: Seq. 4:

I ))i • I I __;) ,,1•t11•I a 2

°1 TR
K=K -CRho CR CR CR CR for aK=K . C CR o(ý)CR of R 1 wo(b) bhI

K=K ' CR'" CR, {'or a2

Figure 65. Cracking Sequence and Associated SIF

for the Inside Initial Crack in Tee-Stringer -

Without Crack Initiation
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Seq. I: Seq. 2:

RK=K *CR CR CR K=KRc - CR fo(*)CR
Cori fwo(b) *f hal fab) of

Seq. 3: Seq. 4:

R R
K=K CR CR CR K=K .CR CR - C CR

colh fwa~b) of ho2 fwa(b) of

Seq. 5:

R
K=K •CRo' CR CR

got twoo 03~

Figure 66. Cracking Sequence and Associated SIF

for the Inside Crack in Tee-Strinqer - With Crack Initiation
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Y t -tD

3.0 D a=D=0.3]25 a=D=0.3125
f t1 1I a=D=0.3125

K 1. 18 OM1.0:2
3.0
(a) (b) (c)

AflC

[.,* -a = -D-

(d) (e) (f)

Figure 67. Cracked Angle-Stringer

TABLE 9. NORMALIZED SIF OF ANGLE-STRINGER

Fig. 67-a Fig. 67-b Fig. 67-c Fig. 67-d Fig. 67-e Fig. 67-f

Z=0.3125 1.150 4.151 27.439 1.068 2.181 55.068

Z=0.2344 1.183 4.329 27.892 1.089 2.400 33.244

Z=O. 1562 1.236 4.482 27.684 1.126 2.617 13.900

Z=0.0781 1.181 4.210 24.671 1.064 2.589 0.0

Z=0.0 1.146 3.908 20.855 1.016 2.567 0.0

RMS* 1.180 4.220 25.849 1.073 2.476

Compounded 1.208 4.864 27.347 1.112 - 12.110
Solution I (Z=O.1562)

Compounded 1.208 3.073 6.480 1.004 *2.487 53.043
Solution 2 (Z=0.3125)

*RMS = Root-Mean-Square
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Table 9 indicates the agreement between the first model and the FEM results is

reasonably good. The second model has an effective width equal to that of an unbent

angle-stringer. Table 9 indicates such a model gives a very low SIF for long cracks.

When a crack grows into the upright leg of an angle-stringer shown in Figure 67-e, only

the second model described in the last paragraph will be applicable and it gives quite an

accurate solution compared to the FEM results, shown in Table 9. In this case, the load

eccentricity will induce out-of-plane bending. The bending stress can be calculated using

Equation (79). The moment of inertia shall be calculated using the entire cross section of

the angle-stringer. However, the bending moment shall be calculated using the stress in

the fractured area.

When a crack grows through the entire base-leg and into the upright leg of an angle-

stringer, as shown in Figure 67-f, a severe out-of-plane bending is introduced into the

upright leg. Along the line AB in Figure 67-f, the crack is closed due to bending. But,

along the line CD in Figure 67-f, the bending will further increase the crack opening

displacement. Thus, the two models shown in Figure 68 are used to model the SIF at mid-

thickness and at the line CD where maximum tension due to bending exists. The

estimated maximum tensile stress due to bending is about 27 times that of remote stress.

The SIF obtained in this manner agrees reasonably well with FEM result, as shown in Table

9.

b--Ll g> I -L_ Ll -- I --p

a. Model for SIF at Mid-thickness

AC A,-

T tM-•(• L t-)- h

-L j- AH 
K Br-HM

b. Model for SIF at Maximum Bending Stress

Figure 68. Angle-stringer Models for Compounded Solution Method

In summary, the SIF's for the cracked angle-stringer configurations pertinent to life

predictions are given in Figures 69 through 72.

-75-



Seq. I Seq. 2:

RR

K=K CRcotri CR ?wa(b) CRof K=K R*hCR CR * CR

Seq. 3: Seq. 4:

RR
K=K -CR - CR CR - CR K=K CR CR CR CR

aeg foe .00 of h 4;cal twog of* oh

Seq. 5: Seq. 6:

P R
K-K "CR - CR CR K=K *CR - CR - CR

age feGQ of SOT f V*g of

Figure 69. Cracking Sequence and Associated SIF

for the Inside Initial Crack in Angle - Stringer -

Without Crack Initiation
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Seq. I Seq. 2:

R R
K=K *CR CR CR K=K *CR C lR CR

coIfwo (b) ofhol f wa(b) U

Seq. 3: Seq. 4:

R R
K=K *CR ' CR CR - CR K=K *CR • CR CR " CR

c fo h sac Ch c ea f oh

Seq. 5: Seq. 6:

K=R R
K=K *CR • CR CR CR K=K *.CCR • CR - CR

*01 va o oh a*c fw•e of

Seq. 7:

p

K=K .CR CR CR
e60 fvWea er

Figure 70. Cracking Sequence and Associated SIF

for the Inside Initial Crack in Angle-Stringer -

With Crack Initiation
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Seq. I: Seq. 2:

R
K=K "CRr CR e(CR~f K=KR -CR- CP CR 4

Seq. 3: Seq. 4:

RR

K=K *CR CR CR " CR K=KR -CR CR "CRCwa(b) oh b hot 2colI fwa(b) b

Seq. 5:

R

K=K "CR 2 hoI CR wa(b) CR b

Figure 7 1. Cracking Sequence and Associated SIF

for the Outside Initial Crack in Anqle-Stringer -

Without Crack Initiation
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Seq. I: Seq. 2:

R
K=K *CR CR,,(-) CR K=KR CR C CR

Coll ?ab) * hol fwa(b) of

Seq. 3: Seq. 4:

R R
K=K "CR CR CR K=K *CR CR

colh f wa(b) of ha2 f wa (b)

Seq. 5:

R
K=K "CR h** CRrC*(b)"CRb

Figure 72. Cracking Sequence and Associated SIF

for the Outside Initial Crack in Angle-Stringer -

With Crack Initiation
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3.2.4 Skins and Doublers in Lap-Joints

The crack growth in skins and doublers can be modeled in the manner shown in Figure 73

where a crack grows along an array of holes. The model shown in Figure 73 is applicable

to both single-shear and double-shear lap joints. The skins and doublers in lap-joints are

subjected to both remote stress and fastener load, whereas the skin in stringer-reinforced

panels is subjected to remote stress only (assuming load redistribution due to crack growth

is negligible). The crack in Figure 73 is located in one of the row I holes. To calculate

the contributions of row 2 fastener loads to the SIF, Brussat el al (Ref. 3) treated the

fastener loads as point loads. Since the typical distance between holes is four diameters

for airframe design, the real loading condition of row 2 fasteners deviates considerably

from the idealized point loads. In this investigation, the total row 2 fastener loads are

converted to a remote stress as shown in Figure 73-b to simplify the analysis. For the

row I fastener loads, Plj, only the holes which are in the crack path will contribute to the

SIF. Thus, only fastener loads P14 and P 15 shown in Figure 73-d will contribute to the

SIF. The total SIF (K) is the sum of Kr and Kf which are due to remote stress and

fastener load, respectively. The remote stress is calculated using the gross section area.

The fastener loads are calculated as a function of crack length. The FEM is well suited for

the calculation. The computation of fastener load using on the FEM will be described in

Section 3.3.

Figure 75 shows the cracking sequence without the consideration of crack initiation and

the associated SIF.

For the case which considers crack initiation, the frictional force between the faying

surfaces of the skin and doubler needs to be included in accordance with the

analytical/experimental correlation due to Brussat et al (Ref. 3). Figure 74 shows a model

which includes this frictional force. The fij in Figure 74 represents the frictional force

due to each fastener. The external force F equals the sum of the fastener loads and

frictional forces. It is evident that the fastener loads, Pij, in Figure 74 are smaller than

the Pi in Figure 73. Thus, the presence of frictional forces reduces the amount of

external load effects to crack growth. The computation of fastener loads with the

consideration of faying surface frictional forces is given in Section 3.3. The frictional

force between the fastener head (or collar) and skin (or doubler) may be neglected in

crack growth analyses because their magnitudes are small compared to the faying surface

frictional forces. However, this kind of frictional force needs to be considered in the

analysis of crack initiation which is a very localized event.

Figure 76 shows the cracking sequence with the consideration of crack initiation and the

associated SIF.
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Figure 73. A Model for Skins and Doublers in Lop-joints - No Friction
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Figure 74. A Model for Skins and Doublers in Lop-joints - With Friction
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Seq. I: __I zzL ziEzz ___
K =K CR - CR 'C

K =K *CP *r CR * C wf(b)
Seq. 2: ____cn o

R
K =K C'-CR CRr p hol oh w(b

Kr =K ~CPh, CR * CPfabSeq. 3: 111i ___

R
K =:K * CR - CRCI CRr(

2cari 4CN b
Seq. 4: ___K KCPciCRhPC]

I F17l [p__
R

K =K .CR *CR * CR(b
r, p 2holaI oh o b

K. =K * CP CR *C
2hal 4oh 1.wo(b)Seq. 5: __ILII_______

R
=K .*CR CR - CRf.b

2copl oh fab

Kl =K *cp CP CR -*Seq. 6: 2cp Oh f o b

K =KR .CR *CR - CRCob
rl p 2hal oh fw b
=K .K*CP - CR *Cptwa(b

Figure 75. Cracking Sequence and Associated SIF

for Figure 73
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Seq. I R

R
K =K 'CR CRh CRf.()

f, p copI oh fw b

K =K CP " CR CP

Seq. 2: corl oh fw(b)I I I I I I }- f-'- I I I
R-=K .CR - CR - CR

r hoa I h No ob)

K1 =KP .CP * CR , CPw(b)

Seq. 3: hol ohI I I Vlff - J-l II I
R

K =K *CR * CR * CRw .a(b)
11 p coth oh

K =K' CP - CR - CP

Seq. 4: coth oh NOW(b)

+I i H-POP I--t-HI-I I
R

K =K "CRh2 CR CRb)

Ke=K PCP h*2 CR *ý CP - o(b)Seq. 5: zzz o oh CobiIi -t-I- NO )I~ I I I
R

K =K 'CR - CR -CR~,b
Kr "CR2ho"I Coh C o(b)

K =K CP CR - CP

Seq. 6 : "CP2hoI ch fCwo (b)

i IFIIRM l i1-- I 1
R

K =K .CR CR
Pr 2cor I h CRoh wo(b)

Kf=K CP CR - CP
Seq. 7 : 2_o- oh wo(b)

I II MEIN U EPk_4A
R

=K .K CR *CR * CRCb
r 2hoI ohalf wo(b)P

KI =K "CPho CR b CP

Figure 76. Cracking Sequence and Associated SIF

for Figure 74
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3.3 Fastener Load Distributions in Cracked Lap-Joints

3.3.1 General Approach

In order to obtain accurate stress intensity factors in lap-joints, the fastener load

distributions need to be accurately determined. The two-dimensional FEM is well suited

to solve the fastener load distributions in the single-shear and double-shear lap-joint

specimens to be used in Task IV - Structural Tests.

The QUAD8 element in MSC/NASTRAN is adopted for modeling both the skin and doubler

of a lap-joint. The QUAD8 element, which is an 8-noded quadratic quadrilateral

isoparametric element, can simulate curved boundaries better than other types of

elements. The fastener holes can be idealized as a nodal point except along the row of

holes in the crack path. Here, the boundaries of the holes must be realistically modeled.

The modeling technique to compensate for the loss of stiffness due to these holes is

explained below.

Each fastener is modeled as a spring element (ELAS2 element) in MSC/NASTRAN. The

spring constant of each fastener is calculated as a function of plate thickness, Young's

moduli of plates and fasteners, hole size, plate width, and Poisson's ratio of the

fasteners. Barrois' method (Ref. 27) was used in the calculation. A computer program,

FASTENER, based on Barrois method was developed previously by Fairchild Republic Co.

under a separate funding. Two ELAS2 elements are required to model a fastener; one

ELAS2 for the loading direction and the other ELAS2 for the direction perpendicular to

loading.

In Ref. 3, an elaborated finite element analysis was performed to obtain the spring

constant for the fasteners. Whether such an analysis will give better result is

questionable. The important point is that the fastener load distribution is only slightly

affected by the magnitude of the fastener spring constant. This fact has been

demonstrated on page 168 of Ref. 27 and was further confirmed herein. In this

investigation, the same finite element model was analyzed using two different spring

constants: the FASTENER program gave a value of 7.4 x 105 lb/in. while Swift and Wang's

formula (Ref. 28) yielded 9.5 x 105 lb/in. (a 28.4% increase). The two computer runs give

essentially the same results. Incidentally, Swift and Wang's formula indicates that the

spring constant increases with increasing stacking thickness. This functional relationship
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common engineering principles which indicate that as the fastener length increases, its

spring constant decreases.

The interface between the fastener and hole boundary is modeled as a set of rod elements,

i.e. ROD element in MSC/NASTRAN. To determine the actual contact region between the

fastener and hole boundary, iterations of computer runs are made. In the first computer

run, the rod elements are distributed around the entire hole boundary. In each iteration,

if a tensile load exists in a rod element, that particular rod element is removed in the

next iteration. The iterations continue until no tensile load exists in any rod element. The

final contact region can be determined in as few as three iterations.

As stated earlier, the faying surface frictional forces need to be considered in the

combined crack growth and initiation method of life prediction; otherwise, the life

prediction will be overly conservative. The frictional force per faying surface per fastener

F, can be calculated with the following empirical formula where /J is static coefficient

between faying surfaces and P is preload in a fastener.

F =p P (84)

P = 0.25- (Ultimate Strength of Collar as Specified by Manufacturer) (85)

TABLE 10. EXPERIMENTAL VERIFICATION OF FRICTION FORCE EQUATION

FASTENER DIAMETER EXPERIMENTAL "F" PREDICTED 'IF"

0.375 INCH 979 lb. 910 lb.
(Brussat et al, Ref 3)

0.50 INCH 1800 lb. 1625 lb.
(Yen & Smillie, Ref. 29)
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Table 10 shows a comparison of faying surface friction force obtained from experiments

and Equations (84) and (85). The t. is experimentally determined by setting a piece of

2024-T3 sheet (0. 188 inch thick) on the surface of another piece of 2024-T3 sheet (0. 188

inch thick), tilting the sheets until sliding occurs, and measuring the tangent of the angle

with horizontal. The value of )A determined in this manner is 0.52. It is noted that the

value depends very much on the finishing of the faying surfaces. The A value of 0.52

represents the faying surface condition of the Task IV structural test specimens. The

preload in a fastener is nominally about 50% of the ultimate strength of a fastener at

shear-off of collar. Thus, Equation (85) is a very conservative estimation of preload. The

experimental friction force of 979 lb for a 0.375 inch fastener shown in Table 10 is the

lower estimate from experiment (Ref. 3); the upper estimate is about I583 lb.

Considering the complexity of actual airframe structures and the possible loss of preload

due to wear-out, Equation (85) will be a conservative and safe approach to treat the

beneficial effect of faying surface friction force. Table 10 does indicate that predicted

friction force agree well with experiments.

In the FEM analysis, the frictional forces were applied as point loads in opposite

directions to the pair of nodal points which are connected by the two spring elements used

to simulate a fastener. However, the frictional forces were uniformly applied as surface

tractions to the first-ring elements surrounding the holes in the cracking path.

3.3.2 Single-Shear Lap-Joint Specimen

The basic considerations required to model a lap-joint specimen is already described in

Section 3.3.1. In this section, a step-by-step procedure is given below for a single-shear

lap-joint specimen.

Step I:

The single-shear lap-joint specimen is idealized as shown in Figure 79. The island in

the doubler, if any, and rib need to be considered in the idealized specimen.

Step 2:

Spring elements are used to simulate fasteners. Barrois' method (Ref. 27) is used to

calculate the spring constant. The distance between two fasteners is used as the

effective plate width in the calculation. The spring constant for each row of fasteners

may not be the same. It depends primarily on the thickness, fastener diameter, and

Young's moduli.
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Step 3:

Figure 79 is modeled as shown in Figure 80 which consists of 632 QUAD8 elements, 32

TRIA6 elements, 56 ELAS2 elements and 150 ROD elements. There are 2317 nodal

points in the model. The area surrounding the crack path is modeled as shown in

Figure 81. Two nodal points are assigned to each grid point along the crack line. These

two nodal points simulate the upper and lower surfaces of the crack. When there is no

crack, each pair of nodal points along the crack line are connected by a rigid rod to

close up the crack. When a crack of a certain length exists, the rigid rods between the

upper and lower crack surfaces are removed. Such a technique to simulate a crack

allows the use of one finite element model to analyze several cracked lap-joint

configurations of different lengths.

Step 4:

The fasteners are connected to the hole boundaries by rigid rod elements as shown in

Figure 82. Iterations of computer runs are made to determine the actual contact

points between fasteners and holes.

Step 5:

Since most of the fastener holes (except those along cracking path) are modeled as

nodal points in the finite element model, to obtain a realistic fastener load

distribution, a compensation needs to be made for the loss of stiffness due to the

circular cut-outs. This is done by increasing the spring constant of the fasteners in

that particular row. The amount of increase in the spring constant is obtained by

iterating computer runs until the proper load distribution is achieved. For example, the

loads in rows I and 4 of Figure 79 should be the same and the loads in rows 2 and 3

should be the same. Note that the loads in rows I and 2 will not be the same due to

the difference in stacking thickness.

Step 6:

When the faying surface frictional force is to be considered in the analysis, Equations

(84) and (85) are used to calculate the frictional force per faying surface per fastener.

The procedures described above have been used to calculate the fastener load

distributions in single-shear lap-joint specimens. Calculations were made for two cases.

In the first case, no frictional force was considered according to the current MIL-A-

83444; analyses were made for six different crack lengths. In the second case, frictional
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Figure 82. Modeling of the Interface Between the Hole and Fastener
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force was considered according to the combined crack growth and initiation method for

life prediction as required by Task III; analyses were made for seven different crack

lenqths.

Table I I shows the normalized fastener load distributions for the case without frictional

forces. The fastener loads are normalized with respect to the average fastener load which

is defined as the total applied load divided by the number of fasteners. This way of data

presentation will facilitate the application of the computed result for a particular applied

load level to any other load levels in a stress spectrum. In the table, the number within

the parentheses corresponds to the hole which has an initial crack. For the case without

friction, the spring constants for each row of fasteners are:

row I = 0.8999E6 lb/in. (21.5% increase w.r.t. row 4)

row 2 = 0.6644E6 lb/in.

row 3 = 0.6644E6 lb/in.

row 4 = 0.7405E6 lb/in.

Since the stacking thickness of rows 2 and 3 is larger (due to the rib and the island in the

doubler) than that of rows I and 4, the spring constants of rows 2 and 3 are lower than

those of rows I and 4. As expected, Table I I shows that the loads in rows I and 4 are

slightly higher than the loads in rows 2 and 3. This is due to the large spring constants for

rows I and 4. The data shown in Table I I are plotted in Figure 83 for the row I fasteners

to show the change in fastener loads for various crack lengths. Table I I indicates that

there is no substantial load variation in rows 3 and 4, whereas there is a drastic load

variation in rows I and 2. The crack grows from fastener No. 4 toward fastener No. 3

along row I. Six crack lengths, A I= 2R, 4R, 6R, I OR, 12R and 14R, were analyzed. Crack

A2 is assumed to be zero in accordance with MIL-A-83444. The crack lengths A I= 6R and

14R correspond to one and two ligments broken, respectively. As can be seen from Figure

83, there is a drastic decrease of load in fastener No. 3 after one ligment is broken. The

normalized fastener loads for fastener Nos. 3 and 4 are curve-fitted into the following

expressions as a function of Al.

P4  =A 1  A1
P AVG 1.00374 - 0.018805 -- for A < 6 (86)

P4  A1  A1
PAVG = 0.88896 + 0.00608 (--- -8), for-- > 8 (87)

3 = 0.89609 - 0.06003 A, - 8) for--- A > 8 (88)
P AVGR
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TABLE II. NORMALIZED FASTENER LOAD DISTRIBUTION

OF SINGLE-SHEAR LAP-JOINT SPECIMEN -- NO FRICTION

SINGLE LAP JOINT MODEL W/O FRICTION
INTACT MAIN PLATE, KX(1)-0.8999E6 (21.5% INCR), KX(2,3)-0.6644E6
NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG a 1953.125 LBS.)

COL 1 2 3 4 5 6 7
ROW

1 1.0752 1.0226 1.0120 (1.0095) 1.0118 1.0242 1.0749

2 1.0103 0.9589 0.9450 0.9418 0.9447 '0.9591 1.0099

3 -0.9987 -0.9535 -0.9430 -0.9409 -0.9431 -0.9535 -0.9986

4 -1.0730 -1.0304 -1.0212 -1.0197 -1.0212 -1.0304 -1.0730

SINGLE LAP JOINT MODEL W/O FRICTION
MAIN PLATE CRACK LENGTH OF (+02R)
NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG - 1953.125 LBS.)

COL 1 2 3 4 5 6 7
ROW

1 1.0824 1.0304 1.0186 (0.9589) 1.0201 1.0310 1.0802

2 1.0177 0.9662 0.9431 0.9228 0.9475 0.9656 1.0154

3 -1.0007 -0.9538 -0.9416 -0.9386 -0.9419 -0.9540 -1.0005

4 -1.0748 -1.0306 -1.0200 -1.0179 -1.0202 -1.0307 -1.0747

SINGLE LAP JOINT MODEL W/O FRICTION
MAIN PLATE CRACK LENGTH Of (+04R)
NORMALIZED FASTENER LOADS, PI/PAVG. (PAVG - 1953.125 LBS.)

COL 1 2 3 4 5 6 7
ROW

1 1.0938 1.0406 1.0177 (0.9257) 1.0290 1.0391 1.0863

2 1.0294 0.9739 0.9254 0.8925 0.9512 0.9736 1.0217

3 -1.0033 -0.9541 -0.9395 -0.9357 -0.9406 -0.9547 -1.0027

4 -1.0773 -1.0309 -1.0184 -1.0157 -1.0190 -1.0313 -1.0768

SINGLE LAP JOINT MODEL W/O FRICTION
MAIN PLATE CRACK LENGTH OF (+06R)
NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG - 1953.125 LBS.)

COL 1 2 3 4 5 6 7
ROW

1 1.1388 1.0811 0.8990 (0.8952) 1.0583 1.0621 1.1006

2 1.0748 0.9956 0.8467 0.8422 0.9720 0.9966 1.0368

3 -1.0122 -0.9542 -0.9317 -0.9277 -0.9377 -0.9572 -1.0089

4 -1.0852 -1.0313 -1.0127 -1.0092 -1.0161 -1.0331 -1.0825
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TABLE II. NORMALIZED FASTENER LOAD DISTRIBUTION

OF SINGLE-SHEAR LAP-JOINT SPECIMEN -- NO FRICTION (CONT'D)

SINGLE LAP JOINT MODEL W/O FRICTION
MAIN PLATE CRACK LENGTH OF (+1OR)
NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG = 1953.125 LBS.)

COL 1 2 3 4 5 6 7
ROW

1 1.1788 1.1133 0.7670 (0.8973) 1.0790 1.0759 1.1068

2 1.1140 1.0052 0.7898 0.8297 0.9891 .1.0105 1.0436

3 -1.0185 -0.9536 -0.9260 -0.9227 -0.9366 -0.9590 -1.0125

4 -1.0906 -1.0312 -1.0087 -1.0052 -1.0147 -1.0345 -1.0863

SINGLE LAP JOINT MODEL W/O FRICTION
MAIN PLATE CRACK LENGTH OF (+12R)
NCRMALIZED FASTENER LOADS, PI/PAVG, (PAVG - 1953.125 LBS.)

COL 1 2 3 4 5 6 7
ROW

1 1.2297 1.1347 0.6653 (0.9022) 1.1029 1.0904 1.1111

2 1.1606 0.9874 0.7113 0.8207 1.0099 1.0252 1.0487

3 -1.0250 -0.9525 -0.9199 -0.9181 -0.9358 -0.9609 -1.0158

4 -1.0962 -1.0309 -1.0045 -1.0013 -1.0136 -1.0359 -1.0896

SINGLE LAP JOINT MODEL W/O FRICTION
MAIN PLATE CRACK LENGTH OF (+14R)
NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG - 1953.125 LBS.)

COL 1 2 3 4 5 6 7
ROW

1 1.3887 1.0001 0.5327 (0.9341) 1.1622 1.1198 1.1098

2 1.2873 0.8888 0.5782 0.8291 1.0637 1.0555 1.0500

3 -1.0389 -0.9480 -0.9068 -0.9102 -0.9360 -0.9652 -1.0213

4 -1.1079 -1.0293 -0.9955 -0.9943 -1.0124 -1.0390 -1.0952
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Figure 83. Fastener Load Distribution in Row I

of Single-shear Lap-joint Specimen -- No Friction
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Table 12 shows the normalized fastener load distributions for the case with frictional

forces. The fastener loads are normalized with respect to the average fastener load,which

is defined as the total fastener load (which equals the total applied load minus total

frictional forces) divided by the number of fasteners. For the case with friction, the

spring constants for each row of fasteners are:

row I = 0.8395E6 lb/in.(13.4% increase w.r.t. row 4)

row 2 = 0.6644E6 lb/in.

row 3 = 0.6644E6 lb/in.

row 4 = 0.7405E6 lb/in.

Seven models corresponding to the seven crack lengths shown below were analyzed:

(I) AI =?R, A,= 0.

(2) Al =4R, A2= 0.

(3) Al =6R, A2 = 0. One ligment broken

(4) A I =6R, A2 = 2R One ligment broken

(5) Al =I OR, A2 = 4R One ligment broken

(6) Al =12R, A2 = 6R Two ligments broken

(7) Al =14R, A2 = 6R Three ligments broken

where A I and A2 are the crack lengths from the R.H.S. and L.H.S. of a hole, respectively

(see Figure 79). The above combination of AI and A2 is expected to be commensurated

with the anticipated crack growth and crack initiation behavior. Table 12 shows the

normalized fastener load distribution for various crack lengths. The data in Table 12 are

plotted in Figure 84 for the row I fasteners. The figure shows that there is a substantial

change in load as the crack grows. Table 12 shows that the loads in fastener Nos. 3 and 4

of rows I and 2 drop drastically after two ligments are broken. This phenomenon can be

explained as follows. When cracks Al and A2 become long enough, there is a great

decrease in the local plate stiffness. Hence, the load passing through the fasteners in this

region is also reduced. The little load in these fasteners is then further decreased by the

faying surface frictional forces.
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TABLE 12. NORMALIZED FASTENER LOAD DISTRIBUTION

OF SINGLE-SHEAR LAP-JOINT SPECIMEN -- WITH FRICTION

SINGLE LAP JOINT MODEL W/ FRICTION
INTACT MAIN PLATE, KX(1)-0.8395E6 (13.4% INCR), KX(2,3)-0.6644E6
NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG - 1906.250 LBS.)

COL 1 2 3 4 5 6 7
ROW

1 1.1051 1.0276 1.0123 (1.0087) 1.0121 1.0315 1.1058

2 1.0425 0.9643 0.9438 0.9393 0.9436 .0.9658 1.0430

3 -1.0319 -0.9613 -0.9448 -0.9415 -0.9449 -0.9613 -1.0319

4 -1.1050 -1.0383 -1.0235 -1.0209 -1.0235 -1.0383 -1.1050

SINGLE LAP JOINT MODEL W/ FRICTION
MAIN PLATE CRACK LENGTH OF (*02R)
NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG a 1906.250 LBS.)

COL 1 2 3 4 5 6 7
ROW

1 1.1146 1.0380 1.0210 (0.9419) 1.0227 1.0405 1.1129

2 1.0527 0.9745 0.9411 0.9128 0.9472 0.9748 1.0507

3 -1.0346 -0.9618 -0.9429 -0.9383 -0.9432 -0.9620 -1.0344

4 -1.1076 -1.0387 -1.0218 -1.0185 -1.0221 -1.0388 -1.1074

SINGLE LAP JOINT MODEL W/ FRICTION
MAIN PLATE CRACK LENGTH OF (*04R)
NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG = 1906.250 LBS.)

COL 1 2 3 4 5 6 7
ROW

1 1.1303 1.0522 1.0199 (0.8958) 1.0348 1.0518 1.1215

2 1.0696 0.9858 0.9161 0.8690 0.9522 0.9863 1.0600

3 -1.0384 -0.9623 -0.9399 -0.9343 -0.9414 -0.9630 -1.0376

4 -1.1110 -1.0391 -1.0195 -1.0154 -1.0204 -1.0395 -1.1104

SINGLE LAP JOINT MODEL W/ FRICTION
MAIN PLATE CRACK LENGTH OF (+06R)
NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG - 1906.250 LBS.)

COL 1 2 3 4 5 6 7
ROW

1 1.1921 1.1067 0.8592 (0.8540) 1.0746 1.0832 1.1411

2 1.1345 1.0161 0.8038 0.7975 0.9819 1.0192 1.0815

3 -1.0508 -0.9623 -0.9291 -0.9230 -0.9375 -0.9664 -1.0461

4 -1.1220 -1.0396 -1.0117 -1.0064 -1.0164 -1.0421 -1.1186
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TABLE 12. NORMALIZED FASTENER LOAD DISTRIBUTION

OF SINGLE-SHEAR LAP-JOINT SPECIMEN -- WITH FRICTION (CONT'D)

SINGLE LAP JOINT MODEL W/ FRICTION
MAIN PLATE CRACK LENGTH OF (+06R,-02R)
NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG - 1906.250 LBS.)

COL 1 2 3 4 5 6 7
ROW

1 1.2236 1.1397 0.8610 (0.6741) 1.1062 1.1150 1.1672

2 1.1680 1.0445 0.7854 0.7144 0.9860 1.0509 1.1095

3 -1.0596 -0.9639 -0.9227 -0.9129 -0.9320 -0.9685 -1.0544

4 -1.1302 -1.0408 -1.0066 -0.9987 -1.0118 -1.0437 -1.1264

SINGLE LAP JOINT MODEL W/ FRICTION
MAIN PLATE CRACK LENGTH OF (+1OR,-04R)
NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG - 1906.250 LBS.)

COL 1 2 3 4 5 6 7
ROW

1 1.3281 1.2357 0.6543 (0.5012) 1.1582 1.1823 1.2214

2 1.2769 1.1004 0.6717 0.5575 0.9753 1.1141 1.1683

3 -1.0816 -0.9656 -0.9052 -0.8909 -0.9214 -0.9738 -1.0725

4 -1.1500 -1.0428 -0.9933 -0.9813 -1.0025 -1.0478 -1.1434

SINGLE LAP JOINT MODEL W/ FRICTION
MAIN PLATE CRACK LENGTH OF (*12R,-06R)
NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG a 1906.250 LBS.)

COL 1 2 3 4 5 6 7
ROW

1 1.5271 1.3985 0.4551 (0.2524) 0.9560 1.3585 1.3818

2 1.4789 1.1737 0.4939 0.2670 0.8154 1.2475 1.3395

3 -1.1257 -0.9716 -0.8739 -0.8446 -0.8922 -0.9816 -1.1150

4 -1.1904 -1.0486 -0.9683 -0.9442 -0.9788 -1.0545 -1.1827

SINGLE LAP JOINT MODEL W/ FRICTION
MAIN PLATE CRACK LENGTH OF (*14R,-06R)
NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG a 1906.250 LBS.)

COL 1 2 3 4 5 6 7
ROW

1 1.8632 1.1924 0.2164 (0.1955) 1.0429 1.4582 1.4207

2 1.7685 1.0099 0.1923 0.1724 0.8826 1.3442 1.3862

3 -1.1635 -0.9652 -0.8412 -0.8168 -0.8846 -0.9918 -1.1367

4 -1.2230 -1.0474 -0.9448 -0.9210 -0.9702 -1.0622 -1.2^39
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The normalized fastener loads for fasteners No. 3 and 4 are curve-fitted into the

following expressions as a function of AI and A2

P4  A1  frA1<6
P = 1.00163-0.02551 -fo A (89)P AVG RR

P4  A1  A2  A1  A2

PAVG - [0.854 - 0.06752(--- -8)1 (1 +0. 0 90 4 2 -R) for -- >, 8 and - •< 6(90)

P3  A1  A2  A1  A2

PAVG = [0.8592--0.1072 (--- -8)] (1.0 - 0.0050 5 9 ---- for-- 8 and-V- G 6 (91)

3.3.3 Double-Shear Lap-Joint Specimen

The procedure described in section 3.3.2 was used to analyze the fastener load distribution

in the double-shear lap-joint specimens of Task IV-Structural Tests. Figure 85 shows the

idealized double-shear lap-joint specimen being analyzed. Figure 86 shows the entire

finite element mesh which is similar to Figure 80. The crack is located at fastener No. 4

of row 2 and grows toward fastener No. 3. The detail of row 2 is shown in Figure 87.

Both doublers have cracks of equal length. The main plates are assumed to be intact. As

in the single-shear lap-joint specimen, the fastener stiffness was modeled with one spring

parallel and one spring perpendicular to the load direction. However, for the double-shear

lap-joint specimen, two sets of spring elements are required to simulate one fastener.

One set of spring elements connects a hole in the main plate with the corresponding hole

in the top doubler; the other set of spring elements connects the same hole in main plate

with the corresponding hole in the bottom doubler. Both sets of spring elements have the

same spring constants since the doublers have equal thicknesses. The model shown in

Figure 86 consists of 912 QUAD8 elements, 48 TRIA6 elements, 112 ELAS2 elements, 225

ROD elements and 3353 nodal points.

Table 13 shows the normalized fastener load distribution for the case without friction. In

the table, the number within the parentheses corresponds to the hole which has an initial

crack. For the case without friction, the spring constants for each row of fasteners are:

row I = 0.6520E6 lb/in.

row 2 = 0.9694E6 lb/in. (48.7% increase w.r.t. row I)

row 3 = 0.6520E6 lb/in.

row 4 = 0.6520E6 lb/in.
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Figure 86. Finite Element Model for Double-shear Lap-joint Specimen

Figure 87. Detail of the Area Surrounding Row 2 Holes
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TABLE 13. NORMALIZFD FASTENFR LOAD DISTRIBUTION

OF DOURBLE-SHEAR LAP-JOINT SPECIMEN -- NO FRICTION

DOUBLE LAP JOINT MODEL W/O FRICTION
INTACT DOUBLERS, KX(2)-0.9694E6 (48.7% INCREASE)
NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG - 1953.125 LBS.)

COL 1 2 3 4 5 6 7
ROW

1 1.0505 0.9863 0.9827 0.9835 0.9823 0.9867 1.0498

2 1.0473 0.9786 0.9752 (0.9751) 0.9748 .0.9806 1.0467

3 -1.0440 -0.9869 -0.9798 -0.9790 -0.9799 -0.9874 -1.0438

4 -1.0430 -0.9839 -0.9814 -0.9828 -0.9814 -0.9838 -1.0429

DOUBLE LAP JOINT MODEL W/O FRICTION
BOTH DOUBLERS HAVING A CRACK LENGTH OF (+C2R)
NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG - 1953.125 LBS.)

COL 1 2 3 4 5 6 7
ROW

1 1.0580 0.9949 0.9822 0.9623 0.9875 0.9940 1.0551

2 1.0536 0.9877 0.9877 (0.9091) 0.9891 0.9880 1.0508

3 -1.0494 -0.9925 -0.9777 -0.9587 -0.9820 -0.9924 -1.0481

4 -1.0485 -0.9863 -0.9767 -0.9740 -0.9794 -0.9868 -1.0475

DOUBLE LAP JOINT MODEL W/O FRICTION
BOTH DOUBLERS HAVING A CRACK LENGTH OF (+04R)
NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG - 1953.125 LBS.)

COL 1 2 3 4 5 6 7
ROW

1 1.0700 1.0043 0.9612 0.9254 0.9934 1.0029 1.0613

2 1.0640 1.0006 0.9915 (0.8692) 1.0038 0.9967 1.0556

3 -1.0581 -1.0007 -0.9678 -0.9355 -0.9868 -0.9989 -1.0531

4 -1.0569 -0.9890 -0.9682 -0.9626 -0.9783 -0.9910 -1.0531

DOUBLE LAP JOINT MODEL W/O FRICTIONBOTH DOUBLERS HAVING A CRACK LENGT OF (÷06R)

NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG a 1953.125 LBS.)

COL 1 2 3 4 5 6 7
ROW

1 1.1169 1.0335 0.8702 0.8689 1.0207 1.0276 1.0754

2 1.1058 1.0587 0.8471 (0.8448) 1.0445 1.0198 1.0661

3 -1.0923 -1.0228 -0.9020 -0.8975 -1.0061 -1.0163 -1.0639

4 -1.0872 -0.9922 -0.9353 -0.9338 -0.9807 -1.0038 -1.0661
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TABLE 13. NORMALIZED FASTENER LOAD DISTRIBUTION

OF DOUBLER-SHEAR LAP-JOINT SPECIMEN -- NO FRICTION (CONT'D)

DOUBLE LAP JOINT MODEL W/O FRICTION
BOTH DOUBLERS HAVING A CRACK LENGTH OF (410R)
NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG - 1953.125 LBS.)

COL 1 2 3 4 5 6 7
ROW

1 1.1068 1.0147 0.8930 0.9301 1.0124 1.0133 1.0643

2 1.0990 1.0442 0.8078 (0.9300) 1.0214 .1.0058 1.0571

3 -1.0841 -1.0060 -0.9086 -0.9400 -1.0006 -1.0063 -1.0552

4 -1.0770 -0.9841 -0.9449 -0.9541 -0.9848 -0.9977 -1.0567

DOUBLE LAP JOINT MODEL W/O FRICTION

BOTH DOUBLERS HAVING A CRACK LENGTH OF (-12R)
NORM'ALIZED FASTENER LOADS, PI/PAVG, (PAVG a 1953.125 LBS.)

COL 1 2 3 4 5 6 7
ROW

1 1.1384 0.9947 0.8343 0.9321 1.0273 1.0215 1.0657

2 1.1332 1.0627 0.7353 (0.9468) 1.0379 1.0131 1.0571

3 -1.1080 -1.0005 -0.8703 -0.9420 -1.0109 -1.0122 -1.0567

4 -1.0936 -0.9774 -0.9271 -0.9493 -0.9898 -1.0028 -1.0595

DOUBLE LAP JOINT MODEL W/O FRICTION
BOTH DOUBLERS HAVING A CRACK LENGTH OF (+14R)
NORMAL:ZED FASTENER LOADS, PI/PAVG, (PAVG - 1953.125 LBS.)

COL 1 2 3 4 5 6 7
ROW

1 1.2346 0.8979 0.7442 0.9594 1.0663 1.0382 1.0610

2 1.2626 0.9134 0.6704 (0.9975) 1.0783 1.0271 1.0491

3 -1.1769 -0.9375 -0.8091 -0.9610 -1.0377 -1.0237 -1.0534

4 -1.1348 -0.9507 -0.8883 -0.9482 -1.0058 -1.0133 -1.0597
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Table 13 shows that the load distribution among the fastener rows is quite uniform in the

intact joint. As shown in Table 13, analyses were made for crack lengths A I= 2R, 4R, 6R,

I OR, 12R, and I14R. The crack lengths A I = 6R and 14R correspond to one and two

ligments broken. The data in Table 13 are plotted in Figure 88 to show the change of row

2 fastener loads for various crack lengths. Compared to the single-shear lap-joint

specimen, there is quite a substantial load variation in rows 3 and 4. This effect occurs

because rows 3 and 4 are closer to the local loss of stiffness due to crack growth in row 2

than they are in the single-shear lap-joint specimen. The normalized fastener loads for

fasteners Nos. 4 and 3 are curve-fitted into the following expressions.

P4 0.96417 - 0.02154 All fAor < 6 (92)

P4 A1r-A1

- 0.85854 + 0.023745 A1 -8 fr•> 8 (93)

P3  _A 1 A

P3 0.8 5 5 5 4 - 0.030 13 (. - 8) for ±1 >! 8 (94)PAVG R R

For the case with friction,the spring constant for each row of fasteners are:

row I = 0.6520E6 lb/in.

row 2 = 0.7277E6 lb/in.(1 1.6% increase w.r.t. row I)

row 3 = 0.6520E6 lb/in.

row 4 = 0.6520F-6 lb/in.

Seven models corresponding to the seven combinations of crack lengths shown on page 96

have been analyzed. It should be mentioned that there are two pairs of faying surfaces

associated with a fastener. Therefore, the total frictional force in the double-shear lap-

joints is twice that in the single-shear lap-joints. Table 14 shows the normalized fastener

load distribution for various crack lengths. The data in Table I 4 are plotted in Figure 89

for the row 2 fasteners. The figure shows that there are substantial changes in fastener

loads as the crack grows. Table 14 show that the loads of fastener Nos. 3 and 4 in rows I

and 2 drop to almost zero after two ligments are broken. This phenomenon is similar to
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TABLE 14. NORMALIZED FASTENER LOAD DISTRIBUTION

OF DOUBLE-SHEAR LAP-JOINT SPECIMEN--WITH FRICTION

DOUBLE LAP JOINT MODEL W/ FRICTION
INTACT DOUBLERS, KX(2)-0.7277E6 (11.6% INCREASE)
NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG - 1906.250 LBS.)

COL 1 2 3 4 5 6 7
ROW

1 1.0933 0.9634 0.9562 0.9581 0.9560 0.9674 1.0940

2 1.0840 0.9600 0.9523 (0.9518) 0.9519 0.9679 1.0846

3 -1.0891 -0.9733 -0.9596 -0.9580 -0.9598 -0.9738 -1.0889

4 -1.0878 -0.9665 -0.9620 -0.9651 -0.9620 -0.9663 -1.0877

DOUBLE LAP JOINT MODEL W/ FRICTION
30T0 DOUBLERS HAVING A CRACK LENGTH OF (+02R)
NORMA.LIZED FASTENER LOADS, PI/PAVG, (PAVG a 1906.250 LBS.)

COL 1 2 3 4 5 6 7
ROW

1 1.1062 0.9784 0.9551 0.9198 0.9638 0.9802 1.1037

2 1.0943 0.9740 0.9708 (0.8509) 0.9726 0.9795 1.0916

3 -1.0982 -0.9827 -0.9555 -0.9242 -0.9638 -0.9822 -1.0959

4 -1.0971 -0.9705 -0.9539 -0.9505 -0.9589 -0.9714 -1.0953

DOUBLE LAP JOINT MODEL W/ FRICTION
BOTH DOUBLERS HAVING A CRACK LENGTH OF (-04R)
NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG - 1906.250 LBS.)

COL 1 2 3 4 5 6 7
ROW

1 1.1294 0.9969 0.9173 0.8506 0.9743 0.9970 1.1158

2 1.1116 0.9959 0.9772 (0.7844) 0.9962 0.9943 1.1001

3 -1.1144 -0.9973 -0.9367 -0.8823 -0.9731 -0.9941 -1.1048

4 -1.1127 -0.9752 -0.9380 -0.9298 -0.9572 -0.9792 -1.1052

DOUBLE LAP JOINT MODEL W/ FRICTION
BOTH DOUBLERS HAVING A CRACK LENGTH OF (*06R)
NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG - 1906.250 LBS.)

COL 1 2 3 4 5 6 7
ROW

1 1.2166 1.0485 0.7495 0.7472 1.0243 1.0427 1.1421

2 1.1815 1.0871 0.7467 (0.7426) 1.0615 1.0326 1.1179

3 -1.1747 -1.0373 -0.8211 -0.8132 -1.0068 -1.0250 -1.1245

4 -1.1663 -0.9816 -0.8799 -0.8780 -0.9609 -1.0019 -1.1289
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TABLE 14. NORMALIZED FASTENER LOAD DISTRIBUTION

OF DOUBLE-SHEAR LAP-JOINT SPECIMEN -- WITH FRICTION (CONT'D)

DOUBLE LAP JOINT MODEL W/ FRICTION
BOTH DOUBLERS HAVING A CRACK LENGTH OF (*06R,-02R)
NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG - 1906.250 LBS.)

COL 1 2 3 4 5 6 7
ROW

1 1.2591 1.0896 0.7291 0.6294 1.0381 1.0880 1.1769

2 1.2136 1.1323 0.7650 (0.4800) 1.1223 .1.0737 1.1437

3 -1.2034 -1.0679 -0.8098 -0.7103 -1.0060 -1.0536 -1.1515

4 -1.1957 -0.996ý -0.8597 -0.8302 -0.9423 -1.0164 -1.1569

DOUBLE LAP JOINT MODEL W1 FRICTION
BOTH DOUBLERS HAVING A CRACK LENGTH OF (10R,-04R)
NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG a 1906.250 LBS.)

COL 1 2 3 4 5 6 7
ROW

1 1.4038 1.1772 0.5690 0.3942 1.0250 1.1781 1.2516

2 1.3303 1.2813 0.4753 (0.2777) 1.2179 1.1619 1.1977

3 -1.3038 -1.1226 -0.6815 -0.5586 -1.0131 -1.1195 -1.2030

4 -1.2839 -1.0078 -0.7826 -0.7371 -0.9204 -1.0534 -1.2126

DOUBLE LAP JOINT MODEL W/ FRICTION
BOTH DOUBLERS HAVING A CRACK LENGTH OF (+12R,-06R)
NORMAL:ZED FASTENER LOADS, PI/PAVG, (PAVG a 1906.250 LBS.)

COL 1 2 3 4 5 6 7
ROW

1 1.6739 1.2715 0.2773 0.0000 0.7714 1.3758 1.4745

2 1.5558 1.5192 0.2526 (0.1141) 0.9410 1.4197 1.3673

3 -1.4991 -1.2196 -0.5122 -0.2813 -0.8623 -1.2682 -1.3592

4 -1.4560 -1.0431 -0.6613 -0.5385 -0.8174 -1.1162 -1.3656

DOUBLE LAP JOINT MODEL W/ FRICT:ON
BOTH DOUBLERS HAVING A CRACK LENGTH OF (+14R,-06R)
NORMALIZED FASrENER LOADS, PI/PAVG, (PAVG w 1906.250 LBS.)

COL 1 2 3 4 5 6 7
ROW

1 2.0889 0.9696 0.0000 0.0000 0.8606 1.5109 1.5320

2 2.0053 1.1986 0.1110 (0.1034) 1.0626 1.5472 1.3983

3 -1.7924 -1.0807 -0.2318 -0.1994 -0.9274 -1.3620 -1.4045

4 -1.6570 -0.9785 -0.4806 -0.4470 -0.8370 -1.1784 -1.4233
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DOUBLE LAP JOINT MODEL W/ FRICTION ... INTAC DOUBLERS
BOTH DOUBLERS WI EQ CRACK LENGTHS IN ROW 2 114TACT DOUBLERS

NORMALIZED FASTENER LOAD IN ROW 2 -.-- A 402R

2.50- -.--.- A = i04R

-,- A = 40bR

--- 2.00- - =.- A = 1361R, -02R

-. A : 410,2, -04R

1:2
,- 1.50- ----- A - l2R, -FR

Lii, ------ =.~. A 414RI -06~R ]S1. 0 0 , .. ... .... ....
__ ,...,..

L$- I.
1-4 / "

k-J __ _ _ _ .. ._

-- 0.50-

c -

0.00-

2 3 4 5 6 7
FASTENER NO. IN ROW 2

Figure 89. Fastener Load Distribution in Row 2

of Double-Shear Lap-joint Specimen -- with Friction
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that observed in the single-shear lap-joint specimen. When the cracks become long

enough, fastener Nos. 3 and 4 in rows I and 2 transfer very little of the applied load due

to the local loss of stiffness. The slight load transfer in these fasteners was almost

negated by the faying surface frictional forces. The normalized fastener loads for

fastener Nos. 3 and 4 are curve-fitted into the following expressions.

P4  A1  A1
PAVG= 0.93654 - 0.034705 --- for -y < 6 (95)

P4  A1  A2  A1  A2
PAVG R R o-i Rn~ R (6)PAG= [0"7426--002815 (--R - 8)] (1.0+0.1408--) fo-•-; 8 Rn• (96)

P3 - [0.7467 - 0.1079 ( - 8)] (1.0 + 0.01888 A2 for-± 1> 8 and <• 6 (97)
PAVG R 0
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4.0 STRESS CONCENTRATION FACTORS

According to Equations (2) and (3), the stress concentration factors due to remote stress

(Ktg) and fastener load (Ktb), are required to calculate stress severity factor, k, which is

used in the crack initiation analysis. The ktg and ktb for the pertinent configurations are

given in section 4.1. These configurations are applicable to all the members in a specimen

assembly for all Task IV structural test specimens.

In view of the similarity between the stress intensity factor and the stress concentration

factor, the compounded solution method is also adopted to obtain stress concentration

factors. The correction factors to account for various structural boundaries are

considered to be the same as those for stress intensity factors. The two-dimensional

finite element analyses were performed to validate some of the stress concentration

factors obtained by the compounded solution method.

4.1 The ktg and ktb for Pertinent Configurations

4. 1.1 A Circular Hole

The ktg for a circular hole, as shown in Figure 90, is given in Equation (98).

ktg.1 = 3.0 - CRfwa(b) (98)

where CRfwa(b) is the finite width correction factor as given in Equations (66a) and (66b).

Note that the "a" in Figure 3 1-a shall be replaced by "R" in Figure 90.

The case of the bearing stress concentration factor due to fastener load (ktb), as shown in

Figure 91, was investigated by performing several finite element analyses to obtain a

realistic solution. A detailed description of the finite element analysis and discussion

regarding to the current solution is given in Section 4.2. The results are summarized

below. Equation (99) shows that for E/D: 2, ktb-I equals 0.8349 for an infinite plate.

This result is in contrast to the common belief that as the plate width approaches infinity,

the value of ktb_ I approaches 1.0.

dd 3 E (99)

ktb. = 0.8349 + 1.6286 - 0.07077 (-) + 3.8666(

k 1.2069+0.7599 (- 1.4748 ( + 7.1797(

-(100)
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R

Sb2 T -- b1-

Figure 90. Hole in Finite Plate - Remote Stress

.D DE

2 2 2 2

EID =c EID 2

Fiqure 91. Hole in Finite Dlate - Fastener Load
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4.1.2 A Circular Hole With A Crack

The configuration shown in Figure 92 can be modeled as an ellipse.

ktg.2 = (1 + 2VAT/R) • CRshape CRfwb (101)

CRshape = 1+ 2- Sin (1- -)3 (102)

where CRfwb is the finite width correction factor and is available from Equation (66) And

(102) given by Brussat et al (Ref. 3). CRshape is to account for the difference between an

ellipse and a cracked hole.

e

t t t

R 
I

Figure 92. Cracked Fastener Hole in Finite Plate - Remote Stress

For the case of fastener load shown in Figure 93, the similarity shown in Figure 94 can be

applied to obtain ktb for Figure 93. The relationship among the configurations shown in

Figure 94 is given in Equation ( 03). The desired ktb is given in Equation (104).

(ktb)A KB (103)
(ktb)c KD

ktb-2 = (ktb)A = (D) (ktb)C (104)

where KB and KD are available from page 2.32 of Ref. 20, and (k tb)C is given in Equation

(99) for E/D >> 2 and Equation (100) for E/D = 2.
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RI

w ----
2 2

4O"

Fiqure 93. Cracked Fastener Hole in Finite Plate - Fastener Load

w w

(k tb)A K Bj

2/•w -I w22 -•-T- 2-"

0~ 41
(k tb)C KD

Figure 94. Illustration of Similarity for Figure 93
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4.1.3 Two Holes Connected By A Slot

The ktq for the problem of two holes connected by a slot under remote stress, as shown in

Figure 95, was obtained by 93russat et al (Ref. 3) using the compounded solution method.

This solution was verified to be accurate with the finite element analysis in this

investigation. The ktcq is further modified herein to account for the eccentricity as shown

in Figure 31-a.

irA TR/4Aktg.3 = (1+2I2 • ) - (sec-) CRfwa(b) (105)

where CRfwa(b) is available from Equations (66a) and (66b) for the finite width

correction.

iL.W

Figure 95. Two Holes Connected By A Slot - Remote Stress

For the case of fastener load shown in Fiqure 96, the similarity principle shown in Figure

97 is used to obtain ktb.

(ktb)A (ktb)B (106)

KC KD

KC

ktb'3 = (ktb)A = (-j ) (ktb)B (107)
KD

where Kc and KD) are available from Ref. 20, and (ktb)i3 is available from Equation (99)

for E/D>> 2 and Equation (100) for E/D = 2. Several finite element analyses (described in

Section 4.2.2) were performed to validate Equation (107). The results from the

compounded solution method are within 11.8% higher than that from the FEM as shown in

Table 17. It needs tobemention that Equation (107) is for load P only. Superposition

principle needs to be applied to obtain ktb-3 due to both PI and P2 shown in Figure 96.
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or

Figure 96. Two Holes Connected By A Slot - Fastener Loads

P1  P1D==( (D)

(ktb)A (ktb)B

'r r ' v
001

P1  P1

F r 9KD

Figure 97. Illustration of Similarity for Figure 96
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4.1.4 A Crack Emanating From An Internal Notch

The configuration for a crack emanatinq from an internal notch under remote stress, as

shown in Figure 98, can be modeled as an ellipse. Equation (101) is applicable to this

configuration. a

--t 
t 

t

-- b2  --- - -

Figure 98. Crack Emanating From An Internal Notch - Remote Stress

For the case of fastener loads, as shown in Figure 99, the similarity illustrated in Figure

100 was used to obtain ktb. In this case, Equation (107) is applicable.

I
P2  P1

w w
2 2

Figure 99. Crack Emanating From An Internal Notch - Fastener Loads

Q.
I (tb) tb

K U

Figure 100. Illustration of Similarity for Figure 99
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4. 1.S. An Edge Notch

The ktg for an edge notch in a semi-infinite plate is given on paqe 19.13 of Ref. ?0. The
solution is modified with the finite width correction factor to obtain kt, for Figure l01.

ktg .4 = (1+ 2 fA - ) . [1+ 0.122 (1 -c/a) 2.5 CRfWe] (108)

SCRsweg

where CRfweg and CR-sweg are given in Equations (70) and (72), respectively.

t ft

b-

Figure 10 1. Edge Notch - Remote Stress

4.1.6 Fastener Tilting and Deflection

B3arrois (Ref. 27) has used beam on elastic foundation theory and Timoshenko's beam

theory to solve the stress concentration factor due to fastener tilting and deflection

(Ktd). He has given a system of simultaneous equations as a function of plate thickness,
Young's moduli, fastener diameter and Poisson's ratio. The effect of shear force on beam

deflection is considered in Timoshenko's beam theory, whereas it is not considered in

conventional beam theory. Unless shear forces in short beams are considered, beam on

elastic foundation theory will provide unconservative values of ktd. It is noted that shear

forces have an insignificant effect on long beams.
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The Bnrrois ;nethod was used to calculate ktd for various combinations of thicknesses in

the lap-joints shown in Figure 102. The calculation was based on aluminum plates and

steel fasteners. The calculated ktd are shown in Table IS along with the data reported in

!-Ref.3. In general, Barrois's method gives higher values of ktd than Ref. 3. This is

exl<pt-ted as o consequence of Timoshenko's beam theory.

TABLE I. COMPARISON OF ktd

Sinqle-Shear

ktd for Plate I ktd for Plate 2

t t 2/tI ti/d Ref. 3 This Study Ref. 3 This Study

1.0 0.50 1.05 I.IS 1.05 I.IS
1.0 0.60 1.09 1.24 1.09 1.24

1.0 0.75 1.21 1.44 1.21 1.44

1.0 1.00 I.SO 1.98 1.50 1.98

0.75 1.00 1.43 1.88 1.23 1.49

0.53 1.00 1.35 1.77 1.0 1.21

Double-Shear

k+d for Plate I ktd for Plate 2

2t2/t I t id Ref. 3 This Study Ref. 3 This Study

1.0 0.7S I1.04 1.07 1.04 1.07

1.0 1.00 1.07 1.16 1.07 1.16

t2 7 Lt2i 1 i IT

I iqtjre t0?. qinqle-sheor (Tnd ,Dn, hI*,-shear Lnn-joints

-I118-
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The Barrois method was used to calculate ktd for various combinations of thicknesses in

the lap-joints shown in Figure 102. The calculation was based on aluminum plates and

steel fasteners. The calculated ktd are shown in Table 15 along with the data reported in

Ref.3. In general, Barrois's method gives higher values of ktd than Ref. 3. This is

expected as a consequence of Timoshenko's beam theory.

TABLE IS. COMPARISON OF ktd

Single-Shear

ktd for Plate I ktd for Plate 2

t 2/tI t I/d Ref. 3 This Study Ref. 3 This Study

1.0 0.50 1.05 1.15 1.05 1.15

1.0 0.60 1.09 1.24 1.09 1.24

1.0 0.75 1.21 1.44 1.21 1.44

1.0 1.00 1.50 1.98 1.50 1.98

0.75 1.00 1.43 1.88 1.23 1.49

0.53 1.00 1.35 1.77 1.08 1.21

Double-Shear

ktd for Plate I ktd for Plate 2

2t2/t I t lid Ref. 3 This Study Ref. 3 This Study

1.0 0.75 1.04 1.07 1.04 1.07

1.0 1.00 1.07 1.16 1.07 1.16

k ~Vt2
ti F~t±ti IIILI

Slt2 T_-,t2
T T

Figure 102. Single-shear and Double-shear Lap-joints
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4.2 The Finite Element Analysis of A Loaded Hole

4.2.1 A Single Hole

The stress concentration factor, ktb, due to fastener load, shown in Figure 91, was

analyzed with the 2-D FEM. The 8-noded quadratic quadrilateral isoparametric element,

QUAD8 in MSC/NASTRAN, was used in the analysis. The interface between the fastener

and hole was realistically treated using an iteration procedure to determine the actual

"contact point. The "multiple point constraint" technique in MSC/NASTRAN was employed

to simulate the interface. The load was applied to the center of the fastener.

Analyses were performed for two E/D ratios and various D/W ratios. Figures 103 and 104

show examples of the FEM models. The shaded region represents the fastener. There is no

clearance between the hole and fastener. The results are shown in Table 16. In the

table, ktb..max is defined as the maximum principal stress divided by the average bearing

pressure and ktb-90o is defined as the principal stress at e = 900 divided by the average
bearing pressure. The numerical results have been curve-fitted into two expressions as

shown in Equations (99) and (100). Except for the case of D/W = 0.5, ktb.max occurs at

0 = 900; thus, ktb..max equals ktb-900. For D/W = 0.5, ktb.max occurs at 95.6250;

ktb-max is slightly larger than ktb-.90o. The E/D ratio has a great effect on the ktb as

indicated in Table 16. However, the effect of E/D diminishes when D/W is larger than

0.375.

Analyses were also performed to investigate the effect of loading on ktb. Figure 105

shows the models used in the analysis. The hole in Figure 105-a and 10S-b is subjected to

a uniform internal pressure on a half circle to simulate the fastener load. The hole in

Figure 105-c is subjected to a uniform internal pressure on the entire circle. The ktb for

each case is shown in Table 16. It is interesting to observe that (i) for Figures 105-a

and 105-b, ktb-max is much larger than ktb_90o; (ii) for the same D/W ratios, the ktb_90o

for the uniform internal pressure case is much smaller than the ktb-90o for actual

fastener loading and; (iii) for actual fastener loading, the ktb-max is the same as the ktb-

90o. For the case of Figure 105-c, the ktb is 1.006 which is very close to the theoretical

value 1.00.

The FEM result of ktb_90o for Figures 105-a and 105-b can also be obtained by the

superposition principle shown in Figure 106. For the case of an infinite plate, the reactive

remote stress in Figure 106 approaches zero; accordingly, the ktb_90o equals 0.5.
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However, FEM results (Table 16) indicate that the ktb_90o for actual fastener loading is

0.917 for the case of D/W = 0.05 which approaches an infinite plate. Therefore, the

uniform internal pressure shown in Figure 106 is not appropriate to simulate the fastener

loading for determining ktb mainly because of the fastener-hole contact problem involved.
The important point to be emphasized is that the prevailing concept of ktb_90o being

equal to 1.0 for an infinite plate is misleading.

TABLE 16. FEM RESULTS OF ktb FOR A SINGLE HOLE

D/W E/D ktb.max 0 max ktb_90o ktb-90o(Ref. 27)
(degree)

Actual Fastener - Hole Contact (Figures 103 and 104)

32 0.917 900 0.917 1.055
0.050

2 1.244 900 1.244

32 1.044 900 1.044 1.161
0.125

2 1.285 900 1.?85

32 1.123 900 1.123 1.234
0.167

2 1.333 900 1.333

32 1.299 900 1.299 1.417
0.250

2 1.417 900 1.417

32 1.639 900 1.639 1.825
0.375

2 1.662 900 1.662

32 2.130 95.6250 2.115 2.5
0.500

2 2.131 95.6250 2.116

Uniform Internal Pressure on Half-Circle (Figures 105-a and 105-b)

0.050 32 0.942 95.6250 0.579

0.167 32 1.133 95.6250 0.768

Uniform Internal Pressure on Entire Circle (Figure 105-c)

0.050 32 1.006 900 1.006

-120-



CLU

4LThiZ



LLa%

CLJ

-i L

OLLJ

-122-



w

DIW .05

a.

Dw
DIW = .167 x I

b.

D wD

DIW - .05

C.

Figure 105. A Hole Subjected To Uniform Internal Pressure

a

1 +1

2 2

Figure 106. Illustration of Superposition For A Loaded Hole
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4.2.2 Two Holes Connected By A Slot

The ktb of two holes connected by a slot, as shown in Figure 107, was solved with the 2-D

FEM. The fastener-hole interface was realistically treated as described in Section 4.2.1.

Analyses were performed for five models having different 2A/W ratios. For each 2A/W

ratio, two models with E/D ratio equal to 32 and 2 were analyzed. The results are shown

in Table 17.
W2 -- 2

ID

Figure 107. Two-Holes Connected By A Slot-Fastener Load

TABLE 17. FEM RESULTS OF ktb FOR TWO HOLES CONNECTED BY A SLOT

Compounded Deviation

2A/W E/D ktb-max max ktb-90o Solution (%)
(degree)

32 1.242 84.375 1.232 1.324 6.6%
0.050

2 3.222 78.75 2.684 - -

32 1.3330 90.0 1.330 1.442 8.4%
0.125

2 3.216 78.75 2.701 - -

32 1.452 90.0 1.452 1.584 9.1%
0.208

2 3.212 78.75 2.727 - -

32 1.856 90.0 1.856 2.075 11.8%
0.417

2 3.219 78.75 2.932 - -

32 2.604 90.0 2.604 2.864 10.0%
0.625

2 3.855 84.375 3.615

The ktb obtained with the compounded solution method which is described in Section

4.1.3 is also shown in Table 17. It can be seen that the agreement between the FEM

results and the compounded solutions is within an accuracy of about 1°%. Table 17 also

indicates that the E/D ratio has a great effect on ktb, but that the effect of D/W on ktb

is small for E/D = 2.

-124-



5.0 DAMGRO COMPUTER PROGRAM

A computer program "DAMGRO" (Damage Growth) has been developed based upon the

analytical results described in Sections 2, 3, and 4. The computer program was written in

terms of FORTRAN language. Using the DAMGRO, structural life can be predicted with

any one of the following three methods, namely, (i) crack growth only, (ii) combined crack

growth and initiation, or (iii) crack initiation only. Method (i) - crack growth only and

inethod (ii0 - combined crack growth and initiation will be validated later in Task VIII
based upon Task IV structural test result. Improvements, if necessary, will then be made.

Method (iii) is similar to the old fatigue analysis as adopted in the safe life approach; thus

no experimental verification of this method is required in this contract. A user's manual
will be developed after the completion of experimental validation of computer program.

The "DAMGRO" computer program contains 10 subroutines to calculate the stress

intensity factors and six subroutines to calculate the stress concentration factors. The

structural models corresponding to these sixteen subroutines are shown in Figures 108

through 123. The cracks in all of the models can be either a through-thickness crack or a

corner crack. The load on each model can be either remote stress only or a combination of
remote stress and fastener load.
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(1 - C)F (1 - C)F

t t kt t

CF CF

QO =(Q 0

K1010 K1020

F F

Figure 108. Subroutine K1010 Figure 109. Subroutine K 1020

(1 - C1 - C2 )F (1 - C)F

t t t t t t

C1 F C2 F CF

===Q-o 0 -(D- 0
K1030 K1040

F F

Figure I 10. Subroutine K 1030 Figure I II. Subroutine K 1040
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(1 - 1 - C2 )F

Crack can be on
either side of
the ho'1e.

CIF C2 F

K1050 ,

K2010

F

Figure 112. Subroutine K1050 Fiqure 113. Subroutine !<2010

K2020 K2040

F-iure 114. Subroutine K2020 Figure I15. Subroutine K2040

-127-



K2050 K2060

Figure 116. Subroutine K2050 Figure 117. Subroutine K2060

(1 - C1 - C2 )F (- c 1 - C2 )F

CIF C2 F C2 F CI F

0 Q 4j- Q 2 1C- 0

S1010 $1020

F F
Figure 118. Subroutine S1010 Figure 119. Subroutine S1020
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(1 - C1 - C2 - C3 )F (1 - CI - C2 )F

C2 F C3 F C1 F C1F C2 F

S1030 S1040

F F

Figure 120. Subroutine S 1030 Figure I? 1. Subroutine S 1040

(I - C1 - C2 - C3 )F (1 - C1- c2 )F

k t 4 t 4k

C1F C3 F C2 F C1 F C2 F

S1050 S1060

F F
Figure 122. Subroutine S1050 Figure 123. Subroutine S1060
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6.0 CONCLUSIONS

I. Two damage tolerance analysis methods have been developed. The first method is

based on the growth of one crack only. The second is based on the combination of crack

initiation and growth. This latter method also deals with the simultaneous growth of two

cracks emanating from the same hole or internal notch.

2. The strain energy density is proposed as the governing parameter for crack initiation

analysis. The load interaction, stress ratio, and material size effect are considered in the

analysis.

3. The stress intensity factors and stress concentration factors associated with simple

configurations representative of airframe structures are integrated, improved, and

simplified. Some of the factors are validated with or obtained from the two-dimensional

and three-dimensional finite element method.

4. Based on the comparison with the results from the finite element analyses, it has been

shown that the compounded solution method can give quite accurate stress intensity

factors and stress concentration factors provided, appropriate modeling and accurate

ancillary solutions are used.

5. The two-dimensional finite element method is an indispensable tool to analyze fastener

load distributions of lap-joints as a function of crack length. The faying surfaces'

frictional force can also be included in the analysis.

6. The computer program "DAMGRO" has been developed for structural life prediction.

"DAMGRO" has three options to predict structural life: (i0 crack growth only, (ii)

combined crack growth and initiation, or (iii) crack initiation only.
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