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FOREWORD

This report is prepared by Fairchild Industries, Fairchild Republic Company
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Force Flight Dynamics Laboratory, Alr Force Wright Aeronautical
Laboratories, Air Force Systems Command, Wright—Patterson Air Force Base,
Ohio. Mr James L. Rudd (AFWAL/FIBEC) was the Air Force project engineer
through December 1985. Subsequently, Mr Rudd was replaced by Lt Christopher

Mazur.

This Final report presents the results of Task I-Volume II, Analytical
Methods. The work was performed under the supervision of S. Saul - Senior
Section Chief of Stress and W. Guman — Director of Research and Development.
A. Kuo was the Program Manager and Principal Investigator through March
1985, Subsequently, Mr Kuo was replaced by Meir Levy for the completion of
the program. D. Yasgur contributed to the finite element analyses reported
herein. M. Serchia - Word Processing and R. Ingenito - Graphics contributed
to the typing and art work for preparing this report.
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1.0 INTRODUCTION

1.1 Background of the Program

The recognition that failures of metallic aircraft structures are primarily caused by
cracks emanating from fastener holes and the availability of fracture mechanics method-
ologies to deal with cracks have led the USAF to adopt the damage tolerance approach, in
lieu of the safe-life approach, for ensuring safety of aircraft. The requirements specified
by the USAF to achieve a damage tolerant design are given in MIL-A-83444 (Ref.1), which
‘defines initial flaw assumptions, in-service inspection flaw assumptions, inspectability,
and which specifies residual strength requirements. However, some of the requirements
are based on engineering judgment and limited data; hence they need to be updated,

improved upon through analyses, and verified experimentally.

Fatigue crack growth life analysis is essential, in the fulfillment of MIL-A-83444, for
qualifying the service life of airframes, establishing inspection intervals, and satisfying
residual strength requirements. The effectiveness of the damage tolerance approach will
greatly depend on the accuracy of fatigue crack growth life analyses. To perform fatigue
crack growth life analyses, assumptions must be made of specific initial primary flaw
location, flaw geometry, flaw multiplicity, continuing damage, and cracking sequence for
a fracture critical area. Although MIL-A-83444 gives such assumptions, it is often not
detailed and specific enough so that analyses can be made for typical structural elements
without invoking somewhat arbitrary assumptions. Experience has indicated that varying
these assumptions often results in substantial differences in fatigue crack growth lives. In
particular, the most critical locations for initial primary damage are not obvious for the
complex geometries involved in aircraft structures. Thus, guidelines are needed for

identifying the most critical initial primary damage locations.

In the design analysis of’oirframes, the complexities of numerous structural details,
assumption of the initial crack locations and flaw geometries, and possible cracking
sequence have necessitated the consideration of time and cost required for the analysis.
The compounded solution method (Ref. 2) is well suited for the design and has been
commonly used in the aircraft industry. However, a thorough assessment of the accuracy

of this relatively simple method is needed for complex aircraft structural configurations
and loadings.



Current damage tolerance analysis is based on fracture mechanics which presumes the
existence of initial flaws. However, it is often observed that the growth of initial primary
damage is arrested at an adjacent boundary or fastener hole. In order to continue the
analysis of subsequent cracking behavior, current MIL-A-83444 assumes that the initial
continuing damage having specified sizes and shapes exists at specified locations. Such
assumptions are necessary becaquse fracture mechanics cannot be used to predict the
reinitiation time of an arrested crack; in particular, these assumptions often result in very
conservative structural life predictions of chordwise lap-joints.  One promising method
of predicting the reinitiation time involves the use of baseline fatigue crack initiation
data and the concept of stress severity factor. A study of this method was made in Ref.
3; however, improvement and verification of such a crack reinitiation analysis is needed
to assess the initial continuing damage assumptions in MIL-A-83444 and the associated

analyses.

The previously completed USAF contract F33615-75-C-3093 (Refs. 3, 4, and 5) was
directed toward resolving the above problems. The effort of that contract has resulted in
recommended improvements to MIL-A-83444 and the associated analyses, and has exposed
a deficiency in the crack reinitiation analysis. However, the conclusions were based on a
single material and constant amplitude load tests. Therefore, such conclusions must be
further verified and substantiated by extensive experimental and analytical studies which

use realistic aircraft structural configurations, manufacturing processes, and service
stress specira.

1.2 Objective of the Program

The objectives of this reported upon program are germane to the background as described
in the previous section. The objectives are to: (a) assess the validity of and recommend
improvements to the current USAF MIL-A-83444, (b) develop guidelines for identifying
the most critical initial primary damage locations for typical aircraft structure and, (c)

assess and improve the state-of-the-art analytical methods to satisfy the requirements of
MIL-A-83444.

1.3 Scope of the Program

To ensure that the program objectives are met, eight major tasks are planned. These

tasks are divided into three phases as shown below.



Phase 1:

Task 1: Analytical Methods
Task 1z Basic Tests
Task Ill: Analytical Predictions
Phase 2:
Task IV: Structural Tests
Task V: Analytical/Experimental Correlations
Phase 3:
Task Vl: Assessment of and Recommended Improvements to MIL-A-83444

Task VIi: Guidelines for Selecting the Most Critical Initial
Primary Damage Locations

Task VilI: Assessment of and Improvement to Damage Tolerance Analyses

The objective of Task | is to formulate approximate stress intensity and stress severity
factors based on the compounded solution method. Two damage tolerance analysis
methods have been developed based on the stress intensity and stress severity factors. The
objective of Task Il is to generate basic material property data which are necessary to the
life prediction of the structural test specimens in Task IV. The objective of Task !l is to
predict the lives of all structural test specimens in Task 1V, using the analytical methods

developed in Task | and the basic material property data generated in Task Il.

The objective of Task IV is to conduct damage tolerance tests representing the realistic
aircraft structural configurations and service usage stress spectra. The tests involve
stringer-reinforced panels and chordwise lap-joints. The stress spectra include a constant
amplitude loading, a spectrum which represents attack/fighter/trainer aircraft, and a
spectrum which represents bomber/cargo/transport. Two materials are used i.e. 2024-
T3XX and 7075-T6XX aluminum alloys. The objective of Task V is to correlate the
analytical predictions of Task Il with the test data of Task IV.

The objective of Task VI is to assess the validity of the current MIL-A-83444
requirements. Improvements to the MIL-A-83444 shall be recommended as appropriate.
The objective of Task VIl is to develop guidelines for selecting the most critical initial
primary damage locations for typical aircraft structures. The objective of Task VIil is to
assess the analytical capability for predicting the damage tolerance lives of typical

aircraft structural configurations subjected to representative spectrum loadings. The



assessment will be based on the analytical/experimental correlations of Task V. Utilizing
the results of Task V and VI, improvements to the current damage tolerance analysis

methods will be made as appropriate.

1.4 Task |

To achieve the objective of assessing and improving the state-of-the-art analytical
methods to satisfy the requirements of MIL-A-83444, the major effort of Task | was
focused on assessment and improvement of the compounded solution method and crack

initiation analysis method. This Volume Il report contains the results of Task | efforts.

The ancillary solutions required in the compounded solution method have been improved,
integrated, and simplified for expedient usage. The stress intensity and stress severity
factors have been formulated for typical airframe structures such as stringer-reinforced
panels and chordwise lap-joints to be used in Task IV-Structural Tests. Two-dimensional
and three-dimensional finite element analyses have been performed to improve and
validate stress intensity and stress severity factor solutions. In order to improve the
handling of continuing damage, an analytical method based upon the concepts of stress

severity factor and strain energy density have been developed to predict crack initiation.

The analytical methods developed in Task | were incorporated into an automated
computer program to predict the damage tolerance life of airframe structures. The
computer program was written in FORTRAN computer language. The computer program
will be used in Task lll to predict structural lives of the specimens developed in Task V.
A user's manual for the computer program will be prepared and submitted to the Air

Force Wright Aeronautical Laboratories (AFWAL) in a later stage of the program.

-



2.0 DAMAGE TOLERANCE ANALYSIS METHODS

Damage tolerance analysis involves structural life and residual strength predictions.
According to the current MIL-A-83444, structural life prediction shall be made on the
basis of crack growth only. The structural life prediction method based on crack growth
only has shown satisfactory accuracy for the majority of airframe structures except
chordwise lap-joints. The comparison of experimental and analytical results in the
previously completed contract (Refs. 3, 4, and 5) have shown that life predictions of
chordwise lap-joints are too conservative. It was experimentally observed (Ref. 3) that
when the primary damage grows into an adjacent hole, a considerable amount of time is
required to initiate a crack in the opposite side of an adjacent hole at which the primary
damage terminates. Such observations have necessitated an alternative method for
treating continuing damage, for lap-joints in particular. Therefore, a combined crack
growth and initiation method for damage tolerance analysis has been developed in this

investigation to improve life predictions of lap-joints.

In this contract, a computer program was developed which provides the options for
performing damage tolerance analyses either based on crack growth alone or based on the
combined crack growth and initiation. The theoretical background of the computer

programs are described in the following sections of this report.

2.1 Crack Growth Method

The crack growth method is based entirely on the principles of fracture mechanics which
have been well established and need not be reiterated herein. The recently completed
USAF contract F33615-77-C-3121 (Ref. 6) has reported the details of the crack growth
method. In the crack growth method, the following elements need to be included in the

analysis. The way of handling these elements is briefly described.

stress intensity factors
da/dN equation
load interaction effects

crack growth/initial flaw geometry mode!

© o0 © O ©O

damage accumulation scheme
Within the framework of fracture mechanics, the stress intensity factor, K, has been used

as the primary characterization parameter for crack growth life prediction. Thus, the

accuracy of the stress intensity factor solution for the complex airframe structures will
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have direct impact on life prediction. Experience indicates that a +10% variation in the
stress intensity factor will result in very substantial variation in the predicted structural
life. Therefore, the stress intensity factor solutions must be as accurate as possible
within the prevailing constraints. A detailed description of the stress intensity factor

solutions is given in Section 3 of this report.

The Walker equation (Ref. 6) as shown in Equation (1) is adopted to fit the experimental
da/dN (constant amplitude fatigue crack growth rate) data. The constants, ¢,m, and n, in
Fquation (1) are to be determined from experimental data through a curve-fitting

procedure. The R and Kmax in Equation (1) are stress ratio and maximum stress intensity
factor,

da

an = ¢ [ —R)™ Kmax]n

(1

respectively. Two da/dN equations are required; one equation fits the experimental data
with positive stress ratios, and the other equation fits the experimental data with
negative stress ratios. The da/dN is set to zero for Kmax being less than Kihreshold
which is the minimum value of the stress intensity factor for a crack to grow under
fatigue loading. The effect of stress ratio on da/dN is not considered when the positive
stress ratio is higher than a positive cut-off value or when the negative stress ratio is

smaller than a negative cut-off value.

The load interaction effects being considered are (i) retardation due to tensile overload,
(ii) acceleration due to compressive load in the tension-compression load cycle, and fiii)
reduced retardation effect due to a compressive load spike which follows overload. The
generalized Willenborg et al-Gallagher-Chang et al model (Ref. 6, 7, 8) is adopted to treat

load interaction effects. The mathematical expressions of the model are given in Ref. 6.

Both of the part-through and corner cracks change their shape (aspect ratio) under fatigue
loading. The stress intensity factor in the depth-direction is different from that in the
surface-direction. Crack growth in both depth- and surface-directions are analyzed
individually using the stress intensity factors appropriate to each direction. Such an

approach is being identified in Ref. 6 as the two-dimensional crack growth model. The
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portion of crack growth life for a crack to grow through the plate thickness will increase
with plate thickness. Thus, a two-dimensional model will improve the life prediction of

those airframe parts which are made of thick plates or forgings.

The damage accumulation scheme being adopted is the linear approximation method (Ref.
6) which is considered to be a reasonable compromise between prediction accuracy and

computational efficiency. A description of the linear approximation method is given in
Ref 6.

2.2 Combined Crack Initiation and Growth Method

In the combined crack growth and initiation method for life prediction, the crack growth
is analyzed in a way similar to those described in Section 2.l. The only difference is that
the simultaneous growth of two unequal-length cracks emanating from the same fastener
hole or internal notch is accounted for. The various aspects which need to be considered

in the crack initiation analysis is given in the following sections.

2.2.1 Stress/Strain Characterization

Fatique crack initiation is a rather localized behavior; it is determined mainly by the local
concentrated stress/strain. The concept of stress severity factor proposed in Ref. 9
appears to be a suitable parameter for characterizing the elastic stress concentration at
a fastener hole subjected to both fastener load and remote (by-pass) load. The stress

severity factor is defined in the following equations,

_ 1 (1-C)P CP
kt = oo [ Wt kg * ZRe Kb ktd] 2
‘Pf
by-pass load fastener load
(3)
k=afY k¢

where: k¢ = elastic stress concentration factor for a fastener hole

k = stress severity factor

P/wt = effective reference stress

coefficient to account for hole condition

coefficient to account for fastener system

<™ RS
1}

coefficient to account for faying surface condition
P = applied total load

¢ = fraction of load transferred through fastener
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R = hole radius
W = plate width
t = plate thickness

kib = elastic stress concentration factor for fastener load assuming rigid fastener
and no fastener tilting

ktd = elastic stress concentration factor to account for fastener tilting and fastener
deflection
kfg = elastic stress concentration factor for remote load

Many observations in the past have repeatedly indicated that the local concentration of
plastic strain at a notch root causes fatigue crack initiation of notched members. Such
observations became the basis for the common practice in fatigue analysis where only
stress/strain at the very edge of the notch root was considered. In order to obtain a true
stress/strain characterization at the notch root, the well-known Neuber's rule (Ref. 10} is

employed in conjunction with the stress severity factor. Neuber's rule can be expressed in
the following equation,

(4)
where k3 is the elastic stress concentration factor as defined in Equation (2); the k¢ and

ke are the true stress and strain concentration factors, respectively. The kg and ke are

defined as
_ 0 (5
kg = og
_ € (6)
ke = -e—o

where ¢ and € are the maximum true peak stress and strain at the notch root,
respectively; ande@, and €, are the average gross section stress and strain, respectively.

It is noted that Neuber's rule was originally written on the basis of net section
stress/strain. It is assumed in this investigation that Neuber's rule is also applicable for

gross section stress/strain.

2 _o0 €
ke = 7o & (7)

For the cases where the average gross section strain is within the elastic limit, such as in

aircraft structures, Equation (7) can be rewritten as,

2 ()
(ks 04)

E
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Since k¢ and E are fixed for a given geometry and material, Fquation (8) indicates that the
relation between true peak stress and true peak strain corresponding to a given gross
section stress is a hyperbolic curve. This outcome of Neuber's rule has been experiment-

ally demonstrated in Ref. || using the experimental data of Ref. 2.

The right hand side (R.H.S.) of Equation (8) is the product of true peak stress and strain
at the very edge of the notch root. Therefore, the left hand side (L.H.S.) of Equation (8)

can be used to characterize the true peak stress/strain at the very edge of the notch root.
7 The L.H.S. of Equation (8) equals two times the strain energy density, S. Hence, S, as
defined in Equation (9), is adopted to characterize the true peak stress/strain in this

investigation.

1 (oo ky)?
2 E (9)

Brussat et al (Ref. 3) have proposed to use the peak elastic stress, ki o for

o I
characterizing the stress/strain at the notch root vicinity. A major undesirability of
Brussat et al's approach is that the elastic peak stress often exceeds the ultimate strength
of the materials. The strain energy density approach proposed in this investigation will

circumvent the disadvantage encountered in the peak elastic stress approach.

2.2.2 Material Size Effect

An important fatigue phenomenon which needs to be considered to achieve accurate crack
initiation time is the "material size effect". It is a well established fact that the fatigue
notch factor, kN, is lower than the theoretical elastic stress concentration factor, kj.
This fact implies that the real stress experienced by the material at the notch root is
lower than that calculated by the theoretical elastic stress concentration factor. In other
words, the high peak elastic notch stress is not realized at the notch root. This "material
size effect" was observed even in the cases where peak notch stress was well within the
elastic limit so that plastic deformation could not be used as the basis of explanation.
The "material size effect" has been ascribed to the fact that engineering metals have a
granular structure, whereas the theory of elasticity for metals assumes the material to be
a homogeneous and isotropic continuum. Thus, this notch fatigue phenomenon is termed
"material size effect" to distinguish it from other size effects such as "metallurgical size
effect" and "statistical size effect". The omission of this effect in fatigue crack
initiation analysis will result in conservative estimates of structural life. Therefore, it is

necessary to consider "material size effect"” to achieve realistic structural



life predictions. The recognition of such a necessity is evidenced by the inclusion of the

Neuber's "material size effect" correction to ki in the specification of metal fatigue data
as contained in MIL-HDBK-5D.

The elastic stress concentration factor k3 appearing in Equation (9 is subjected to the
"material size effect" correction. The common approach to treat "material size effect" is
due to Neuber (Ref.13). Neuber recognized the granular structure of metal and argued
that when there is a very high stress gradient, the usual assumptions of isotropy and
Homogeneify are invalid within a localized area. He proposed a block-model in which
conventional theory of elasticity for metals is applicable down to region of a limiting size
(of linear dimensionp’). Thus, a material is composed of material "building blocks" instead
of crystal grains and a high stress gradient across this material "building block" is not
permitted. Based on this argument, Neuber proposed the following "effective stress

concentration factor" to account for "material size effect",

ke — 1

1+ /o (10
P

where p is the notch root radius; the p’ is Neuber's material constant which is available

for aluminum and steel from Refs. 14 and 15, respectively.

ky = 1+

According to Equation (10), kN is always smaller than ky; and for the same ki, kN
decreases with decreasing p . Such a relationship conforms with the empirical observa-
tion that the smaller the notch root radius, the more the experimental fatigue notch

factor falls below the theoretical elastic stress concentration factor.

2.2.3 Governing Parameter for Crack Initiation

Based upon Equations (2), (9), and (10), the strain energy density, S, is redefined (Cf.

Equation (9)) in Equation (11) as the governing parameter for crack initiation.

2
1 (k 00) (
= = (1)
S 2 E
where k = stress severity factor = a § 7 ky (12)

The procedure for computing the governing parameter, S, of fatigue crack initiation at

notch root is given below:
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Step It Calculate effective reference stress, g, , taking into account all friction
forces.

Step 2:  Calculate k4 due to hole geometry, fastener load, and remote load.

Step 3:  Calculate kN according to Equation (10).

Step 42 Calculate stress severity factor, k, according to Equation (12). The
empirical constants, @ , 8 , ¥ are determined from basic test which will
be described in the next section.

Step 5:  Calculate strain energy density, S, according to Equation (11).

2.2.4 Required Basic Data

Experimental tests are required to provide basic fatigue crack initiation data for the
analysis. The coupon test specimens should be representative of the geometries
encountered with typical aircraft structures such as a plate containing a circular hole and
a plate containing two holes which are connected by a slot. The specimen geometry
should be simple enough to permit accurate stress analysis and precise control of
excitation parameters used in testing, yet it should yield the kind of data suitable to the
determination of coefficients, @, 8,and ¥ in Equation (12). The stress levels used in the
testing will be representative of the stress spectrum under consideration. Parameters

considered in the tests are fastener/hole interference or clearance, clamp-up, load
transfer, and sealant.

The test crack initiation life, N, will be plotted against strain energy density, S, using a
log-log scale. The data can be represented by a best-fit equation in the following form,
Smax = SgN™
(13)

where Smqax is the maximum strain energy density and Sf can be interpreted as material

constant corresponding to N = |.

In order to determine @, 8, and 7, results from specimens with interference, clamp-up,
and sealant, respectively will be plotted to obtain three lines. These three lines are
expected to be approximately parallel to the basic line obtained from specimens without

interference, clamp-up, or sealant. The a , 8, and ¥ will be determined so as to

bring the three lines into coincidence with the basic line.

The basic test is to be conducted for only one strain energy density ratio, i.e., R =

Smin/Smax= 0.0. The advantage of using R = 0.0 is to be explained later. It should be



noted that the strain energy density ratio equals the square of the stress ratio according
to the definition of strain energy density (Equation |1). The basic crack initiation data
for R = 0.0 is sufficient for the analysis, because crack initiation life for other strain
energy density ratios in a stress spectrum can be estimated in a manner similar to the
well-known Goodman Diagram which is widely used in MIL-HDBK-5D to present constant
amplitude S/N fatigue data. A linear approximation is adopted to construct a constant

life diagram (Goodman Diagram) as shown in Equation (14),

Sm
Sa—A(1—§) (o

Sq and S, are strain energy density amplitude and mean strain energy density,
respectively, and the constant A in Equation (14) can be determined from Equation (13)
which is valid only for R = 0.0. After some mathematical maniputation of Equations (13)

and (14), the equation for constant life curves is given as.

1-R S¢ N
sa=(1_2(1)-;R>Nm (1—:f—m) (15)

It should be noted that the R in Equation (15) is not an independent variable, but is the
strain energy density ratio used in the basic test. In the fatigue crack initiation analysis,
Sq and Sy, are known for a given stress cycle. The unknown is the life, N. Solving

Fquation (15) for N in terms of Sq and Sy, results in the following expression.

_(1;R) Sa - (1;R) sm*(%ﬁ) St (16)

When R = 0.0, Equation (16) can be greatly simplified as follows.

N™m _ 28,
Sa—Sm * S¢ (7
1
N=[(1_R)smax]m (
St — RSmax '9
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Obviously, Equation (17) is much simpler than Equation (16). It should also be noted that
F.quation (18) is as simple as any da/dN equation. Thus, computation time can be greatly
reduced the selection of R = 0.0 for basic test. The simple expression of Equation (18)

will be used to deal with the positive stress ratios. For the negative stress ratios, the

stress ratios are set to zero.

2.2.5 Damage Accumulation

- Equation (18) gives the crack initiation life as a function of constant strain energy
density. However, the strain energy density is a variable for a component subjected to a
stress spectrum, because it is determined by the stress severity factor, which changes
with crack length and effective reference stress, g,. Thus, to predict fatigue crack
initiation under spectrum loading, cumulative damage computations must be performed.

The Palmgren-Miner approach of linear cumulative damage is being employed.

The damage rate, dD/dN = /N, can be obtained from Equation (18) which is derived from

basic test data. According to the Palmgren-Miner approach, the cumulative damage is,

(19)

When cumulative damage equals a predetermined valuve of D¢, a fracture mechanics crack
is assumed to be initiated. A 0.05 inch corner circular flaw is considered as an initial
fracture mechanics crack. The back-tracking method will be used to determine D¢ for

each of the two stress spectra selected for the structural tests of Task IV. Let ti be the

crack initiation life determined from the backtracking method and Ti be the total life for

a specimen subjected to stress;, Then, compute dj = 1j/Tj. It should be noted that total
fatigue life consists of crack initiation life and crack growth life; the lower the stress
level is, the longer the crack initiation life will be. Thus, the value of dj will increase
with decreasing stress level. Since the set of stress Ievelso", 0‘2, o, to be used in the

basic test were intentionally selected to be representative of the kind of stress
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layers in a spectrum, a weight factor, Wi, will be assigned to each gr; according to the
number of occurrences of g in a specific spectrum. The Wi will be selected in a manner
such that,

L
(20)
2w =1
i=1
The value of Df will be determined by the following formula,
L

Thus, Df will not be a universally fixed value since it depends on the stress spectrum and

fatigue crack initiation properties of materials.

2.2.6 Load Interaction Effect

Load interaction will affect not only crack growth life but also crack initiation life. Thus,
it needs to be considered in the analysis to achieve a realistic prediction of crack
initiation time. There have been a number of theoretical models to treat load interaction
effects in crack growth analysis, but no such models exist for crack initiation. The
Willenborg model, which represents one of the state-of-the-art retardation models in
crack growth analysis, was employed in Ref. 3 to treat the beneficial effect due to

overload in the crack initiation analysis. The Willenborg model will also be employed in

this investigation.

The Willenborg mode! utilizes the concept of effective stress at the crack tip. The two
essential elements in the Willenborg model are: (i) what is the effective stress? and (ii)
when will retardation effect cease? Figure | illustrates the Willenborg model. The

effective stresses are given as

effective opay = Omax — (0'— Omax) = 20max — 9

(22)

effective omin = Onin — (0" = 0max) = (Omax * Omin) — ©

14



where @’ is the stress level required to effect a plastic zone L such that a + rp = ap.

Retardation effect will cease when the current stress level results in a plastic zone rp
such that a + rp>ap.

Figure |. Willenborg Model

In applying the Willenborg model to fatigue crack initiation, let Dg| be the damage due to
overload stress @g|. The Dy can be calculated as Dy = [/Ng|, where Ny is obtained from
Fquation (18). Let dj = |/nj be the damage induced by the stress @; after overload, where
nj can be calculated from Equation (18) if the effective stress is known. Then, calculate
the cumulative damage up to the current stress cycle, Zd;. If Zd; is greater than or
equal to Dgy|, then the overload effect ceases. To calculate 0,, the difference in damage
D; -Zdj is first calculated, then calculate the number of cycles corresponding to Do) - Zd;
as n' = |/(Do] - Zdj), finally, the stress level corresponding to n' is calculated from
Fquation (18). The effective stress to be used for calculating dj subsequent to overload

can be calculated in the same way as shown in Equation (22).

The above approach is suggested in order to keep as parallel a relationship as possible to
its counterparts in crack growth analysis, but differences do exist. Table | shows the one-

to-one comparison of the Willenborg model applied to crack growth and crack initiation,
respectively.
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TABLE 1. COMPARISON OF WILLFENBORG MODFEL
COMPARISON BETWEEN CRACK INITIATION AND CRACK GROWTH
METHODS (WILLENBORG MODEL)

Crack Growth

Crack Initigtion

Damage Index At Overload

Dol

Over load Effect Ceases

QqQ+r (o]
"% %

Zdi 2 DOL

o

The stress that resulits

in rp such that

The stress that results
in n' such that

- ) -
avr,=a (1/n ¢£d;) =0
Effective Stresses Omax = 2 Omax 0" Omax = 2%max =0
Tmin = (Gnax * Tmin’ =9 @ min = ¥max * Omin) =9

2.2.7 Crack Initiation Analysis

The approach employed to perform crack initiation analysis is summarized as following:

o Use the strain energy density, S = 0.5 (kao)Z/E, as the governing parameter in

crack initiation analysis.

o Positive and negative stress ratios in a flight-by-flight spectrum are treated with

the Goodman Diagram and the basic fatigue crack initiation data.

o The Palmgren - Miner rule is used for damage accumulation computation.

damage index, Df, is determined using the weight factor method.

o The Willenborg model is used to treat the load interaction effect.
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3.0 STRESS INTENSITY FACTORS

An analytically closed form solution of the stress intensity factor for an actual airframe
part is presently too difficult to achieve within practical considerations. The common
approach currently being used by the aircraft industry is the compounded solution method
(Ref. 2) wherein the stress intensity factor is obtained by superimposing a set of
appropriate ancillary solutions to account for the effects of various structural boundaries.
~ Ancillary solutions are usually associated with simple configurations. The method can be
expressed in the following equations:

K = kR . crq - CR, ~—CR, (23a)
KR =07
(23b)

where @ and "a" are the remote stress and crack length, respectively. The CR|, CR?2,
-»+CRp, are the correction factors associated with the ancillary solutions. The ancillary
solutions are to be discussed in Section 3.1. According to Equations (23a) and (23b), the
accuracy of the stress intensity factor obtained with the compounded solution method will
depend on the type and accuracy of the ancillary solutions being used for modeling.

Where a high degree of accuracy is required, the finite element method (FEM) is usually
used.

The compounded solution method is used in this program to formulate stress intensity
factors for complex airframe structures. However, the deficiencies of the compounded

solution method were improved, whenever appropriate, using the finite element method.

3.1 Ancillary Solutions
To apply the compounded solution method, the load and geometry of a fracture critical
area in an airframe are decomposed into simple geometries subjected to remote uniform
stress and/or fastener load. The stress intensity factor solution for the simple geometry
is called an ancillary solution. Two kinds of ancillary solutions are given for each
configuration. One is due to remote uniform stress as shown in Equations (23a) and (23b),
the other is due to uniform internal pressure, as shown in Equations (23c} and (23d), which
are intended to simulate fastener loads.
K = KP - CPy - CPy rreeemem CP
(23c)

kP = pJma
-17- (23d)



"p" and "a" are the uniform pressure on an entire hole and the crack length respectively.
The CP |, CP9,se+-++-CP,, are the correction factors associated with the ancillary solutions.
Note that the definition of Equation (23c) is different from the conventional one. The
definition was used in Tweed and Rooke's (Ref. I8) ancillary solution for a pressurized

hole.

3.1.1 A Through Crack Emanating From A Fastener Hole

The stress intensity factor, SIF, of a through-crack emanating from a circular hole

(Figure 2) was firstly solved by Bowie (Ref. 16). Bowie's solution was improved by Tweed
and Rooke (Ref. 17). The numerical results due to Tweed and Rooke were curve-fitted

into an expression by Brussat et al (Ref. 3) as shown below.

- K . _ _a_ _a_\2 (24)
CRho1= ;= = exp [1.2133 2.205 (a+R) + 0.6451 (a+R) ] 24)
o
A A A
R
=
d
v ¥ v
o
Figure 2. A Crack Emanating from a Fastener  Figure 3. A Crack Emanating from
Hole - Remote Stress A Fastener Hole - Uniform Pressure

The SIF of a through-crack emanating from a circular hole, which is subjected to uniform
internal pressure as shown in Figure 3, was solved by Tweed and Rooke (Ref. 18). In this

investigation, The Tweed and Rooke's numerical values were curve-fitted into the
following expression.

CPho1 = 5 J"?. = exp [0.11926-—2.22644 (“LR)«» 2.69981 (;:—R)zr-n.sazu (i)3

a+R (25)

+19.76043 (ﬁ)‘ — 12.66919 (;:T‘)s]

Table 2 shows a comparison of Equation (25) with Tweed and Rooke's numerical results.

The deviation of Equation (25 from Tweed and Rooke's results is within 0.6%.
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3.1.2 Two Unequal Through Cracks Emanating From A Fastener Hole

Tweed and Rooke (Ref. 18) have solved the problem of two unequal through cracks

emanating from a fastener hole for the cases of remote stress and uniform internal

pressure as shown in Figures 4 and 5. For the case of remote stress, Tweed and Rooke's

numerical results are curve-fitted into Equations (26) and (27).

Table 3 shows a

comparison of Equations (26) and (27) with Tweed and Rooke's numerical results, The
deviation of Equation (26) and (27) from Tweed and Rooke's results is within 2%. Fquation

(28) was given by Tweed and Rooke (Ref. IR).

a2

CRho2 = = J:_“ = CRpot * F1 for 'T; <5 and 2 <5 (26a)
2
_ " 81
Fy = RKO +RK1 (ﬁ) + RK2 () (26b)
2
7] a2
RKO = 0.993522 + 0.157907 (-ﬁ) — 0.00579398 (i) (26c)
RK1 = ooo457513—0032251927(33) +0.00517178 a—2) 2 0.000408155 ( 22 3 (26d)
) ) R ) (R - (R)
RK2 = — 0.00031020177 + 0.001974207 (°2) 0.0005974349 ( 2 2+o 7 02, 3 (26e)
) . 2)-0 (i) 00005767606 (ﬁ)
2
CRho2 = J'_:ﬁ = exp [1.21009-2.1114 ("'—:R) +0.92466 (;%) J for aq = a2 27
8 a2
CR = K_ -cR . R_—_:_R-_‘.z bl a2 (28)
ho2 o J7aq hot 2+;_1 for R_>5 or FT>5
A S
=®R=
a 22
\/ \/ v
(o)
Figure 4. Two Cracks Emanating From Figure 5. Two Cracks Emanating From
A Fastener Hole - Remote Stress A Fastener Hole - Uniform Pressure
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For the case of uniform internal pressure as shown in Figure 5, Tweed and Rooke's

numerical results are curve-fitted into Fquations (29a) through (29i). Table 2 shows a
comparison of Equations (29a) through (29i) with Tweed and Rooke's numerical results.

The deviation from Tweed and Rooke's result is within 0.6%. Fquation (291) was given by

Tweed and Rooke (Ref. 18).

K a
“CPho2 = o Ty =CPphot * F2 for " <5 and -R—<5

1) +RK2 (%‘)2 +RK3 (%‘) :

F2 = RKO + RK1 (R—

ag 2 3
R

RKO = 0.97484 +0.19014 ( =-) —0.04186 (;3) +0.0036359 (;—2)

2 3

) —0.0010094 (;—2)

a
RK1 = — 0.0068344 + 0.021689 (ﬁg

) + 0.0047001 (;—2

2 3
RK2 = 0.002338 — 0.00029425 (;3) — 0.0026977 (;—2) +0.00049749 (;—2)

a2 ag, 2 22,3
RK3 = —0.00022626 — 0.00024296 (ﬁ-) +0.00038673 (R—) — 0.000067379 (ﬁ-)
a aq 2
cP = =gxp | 0.1174204 — 2.154486 ( —‘—) + 2.2570372 (—)
ho2 p v Taq a1+R aq+R

3 4 5
3 3y a
— 9.760309 (“—m) + 14.54895 (;_14-—9) —9.070292 (“m) ]
ay
for ay = a3 and " <5
2 aq

foraq = a  and R >5

K
CPhoz = T a1 8
Jr'a*V

(1+;—2)(2+;—1)

-_K . —_ 7 ay a
CPho2 b Va CPhot « 2+ ;_2 . %!) for " 25 or R =5
1
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3.1.3 Two Symmetric Corner Cracks Emanating From A Fastener Hole
Newman and Raju (Ref. 19) have solved the problem shown in Figure 6 using the three-

dimensional finite element method. Their solution is rewritten in the following

expression:
-K __Ja1 a a
CRcorZ o V7t Fch (c e o’ ¢ (30)

]
¥

where Q and Fch are available in closed form expressions given in Ref, 19.

2R >
.
Zﬁ %4} *
vy ® 3
> Ch >l

Figure 6. Two Symmetric Corner Cracks Emanating

From A Fastener Hole - Remote Stress

For the case of uniform pressure as shown in Figure 7, the SIF is obtained in this

investigation using the similarity principle shown in Figure 8 where no finite width effect
exists.

K K
K_A = C (31)
B Kp
Kc
KA = (TD) KB (32)
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According to Equation (32), the correction factor for two symmetric cracks emanating

from a circular hole under uniform internal pressure is given in the following expression:

_ _K __ [CRcor2 (33)
CPeor2 p Vic (CRhOZ CPho2

<D
4ckiﬁck

2 R>|
F
a5 1 |
Y v Py
>cle >Cle

Figure 7. Two Symmetric Corner Cracks Emanating
From A Fastener Hole - Uniform Pressure
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Figure 8. Illustration of Similarity for Figure 7
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3.1.4 A Corner Crack Emanating From A Fastener Hole

Newman and Raju (Ref. 19) have solved the problem of a corner crack emanating from a
fastener hole under remote stress, as shown in Figure 9, using the three-dimensional finite
element method. Their solution is rewritten in the following expression. The square-root
term in Equation (34) is Shah's conversion factor (Ref. 30) to convert the solution for two

symmetric corner cracks to the solution for one corner crack.

- K - 8 Rt + mac (34
CReor1 o Ve CReor2 vV B8R+ 2nac )

+>{C t=
Figure 9. A Corner Crack Emanating From

A Fastener Hole - Remote Stress

For the case of uniform internal pressure shown in Figure [0, the SIF was obtained in
this investigation using the similarity principle shown in Figure 8 where the two

symmetric cracks were replaced by a corner crack. The correction factor for Figure 10
is given below.

_ K _ CRcort
CPeor1 = pVic CRhor1 * CPho1 (35)
gg——It:l-—
2R+

1
{ T } t

a

Cl~

Figure 10. A Corner Crack Emanating From A Fastener

Hole - Uniform Pressure
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~ 3.1.5 Two Asymmetric Corner Cracks Emanating From A Fastener Hole

The SIF of two asymmetric corner cracks emanating from a fastener hole under remote

stress, shown in Figure

",

was estimated in this investigation using the similarity

principle shown in Figure 12. The SIF of crack No. | in Figure || can be obtained in the

following manner.

Figure 11.

C
>

Ka
Ke

_Ks

" Kp (36)
Kc)

-{=%) «
(Ko B (37)
[«

cJ@’L

*icll*

Ean

23§

- 2R |

Two Asymmetric Corner Cracks Emanating

From A Fastener Hole - Remote Stress
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Figure 12.
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Illustration of Similarity for Figure |1
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CR
CR K _( corl

acor2 ~ GVrey  \ CRpgy ) “Fnoz (38)
where CReor | shall be evaluated with a| and C| as independent variables for crack No. |I.
Similarly, the SIF of crack No. 2 in Figure 1l can be estimated with Equation (38);
however, CRcor| shall be evaluated with a2 and C7 as independent variables. In the
caleulation of CRp4| and CRRpg2, the effective crack lengths as defined in Equations (39a)

and (39b) shall be used. (39q)

Cio =/ ¢
1e T 1
2

(39b)
C2 = /? C2

Figure 13. Two Asymmetric Corner Cracks Emanating From
A Fastener Hole - Uniform Pressure

For the case of fastener load as shown in Figure 13, the same similarity principle shown in

[Figure 12 is used to estimate SIF of crack No. I.

cp

K - (CPcor1

acor2 = GRE Py ) CPho2 (40)

where CPcor| shall be evaluated with a| and C| as independent variables. Similarly, the
SIF of crack No. 2 in Figure 13 can be estimated with Equation (40); however, CPeor |
shall be evaluated with a2 and C2 as independent variables. In the calculation of CPhol

and CPho2, the effective crack lengths as defined in Equations (39a) and (39b) shall be
used.
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3.1.6 A Corner And A Through Crack Emananting From A Fastener Hole

The SIF of a corner and a through crack emanating from a fastener hole under remote
stress /Figure |4) can be estimated using the same procedure shown in Figure 12. The SIF
of the corner crack is given in Equation (41). The CRcor| shall be evaluated using €2 and

a7 as independent variables. The CRho | and CRho2 shall be evaluated using C| and C2e as

independent variables. The C2e is the effective crack length for the corner crack and is
defined in Equations (39b).

- _K _ {CRcor1
CReoth = o Vicy = <CRho1 CRpo2 an

L2 21C1)
{ ,(‘_%_7 -
a t
S

oy

Figure 14. A Corner and A Through Crack Emanating

From A Fastener Hole - Remote Stress

The SIF for the through crack is given below.

K

CReoth = o Vit, = CRpp2 (42)

where CRpo? shall be evaluated with C| and C2e as independent variables. The C2e is the

effective crack length for the corner crack and is defined in Equation (39b).
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Similarly, the SIF due to uniform internal pressure (Figure 15) is estimated in Equation
(43) for the corner crack. The CPcor| shall be evaluated using C2 and a2 as independent
variables. The CPpry| and CPho?2 shall be evaluated using C| and C2e as independent
variables. The C2e is defined in Equation (39b).

K _ (Cpcoﬂ

CPoshy = —p = cp
coth = o7, CPhot ) ho2 (43)

The SIF for the through crack, shown in Figure 15, is given as,

K_ .
CPeoth = "_,'—f,,—c—T = CPho2 (48)

where CPho?2 shall be evaluated with C| and C2e,

Figure |15, A Corner And A Through Crack Fmanating From A Fastener Hole -
Uniform Pressure
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3.1.7 A Through Crack Emanating From An Internal Notch

The configuration of a through crack emanating from an internal notch under remote
stress, shown in Figure |6, can be modeled as the configuration shown in Figure |7 (Ref.
20) which shows the SIF's are approximately the same when a/(a + b) is not smaller than
0.11 and c/b is not larger than 1.0. When c¢/b equals 1.0, the ellipse becomes a circle.
Therefore, Equation (24) for a circle is applicable to Figure 16 for a/(a+b) being equal to

or larger than 0.11; and the correction factor for Figure |6 is given as,

= _K _ a_
CR2hot = o via CRpo1 at+b = 01 (45)

where CRpq| shall be evaluated by replacing "R" in Equation (24) with "b" in Figure 6.

For the case of af(a + b) being smaller than 0.1 I, Schijve's solution (Ref. 21), as given
below, is applicable.

K

CR2h01 = Ofﬁ = ktg - F (46)
a a 1.5 a 2 a 25
F=1.1215—3.21(ﬁ)+5.16(ﬁ) —3.73(§) + 1.14(ﬁ) 4N

where kiq is given later in Equation (105). According to Schijve (Ref. 21), Equation (47) is
applicable for a/R < I. Normally, the "b" in Figure 16 equals to about 5R. Therefore, the

condition a/(a +b) < .1l results in a/R < 0.62; and Equation (47) is applicable for
a/(a +b) <0.11,

FTT T

L

Figure 16. A Through Crack Emanating From An

Internal Notch - Remote Stress

-30-



{
oo b oto
. (F"J%"?)_ Seg s Ke=t+2(2)

Ky=o/wa.F(s, §&)
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Figure 17. A Through Crack Emanating From An Elliptical Hole -
Remote Stress (Ref. 20)
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3.1.8 A Corner Crack Emanating From An Internal Notch
The SIF of a corner crack emanating from an internal notch, as shown in Figure 18, can
be estimated using the similarity principle shown in Figure 19. The relationship among

the configurations shown in Figure |9 is given in Equations (36) and (37). The SIF for the
corner crack shown in Figure |8 is given in Equation (48).

—<0% ) .cR
CRpo1 ) corl (48)

where CR2ho | is evaluated with Equations (46) and (47) for c¢/(c + b)< 0.11 , and CRoho |
is evaluated with Equation (45) for c/(c + b)2> 0.11.

|

Figure 18. A Corner Crack Emanating From An Internal
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Notch - Remote Stress
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Figure 19. lilustration of Similarity for Figure |18.
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3.1.9 Two Through Cracks Emanating From An Internal Notch

The problem of two through cracks emanating from an internal notch under remote stress,
shown in Figure 20, can be modeled in the manner shown in Figure 21, which shows that
the SIF's are approximately the same when a/(a + b) 2 0.18 and c¢/b £ 1.0. When c/b equals
1.0, the ellipse becomes a circle. Therefore, Equation (26) for a circle is applicable to
Figure 20 for af(a + b) 2 0.18. For crack No. 1,

K a1 a2
CR2ho2 = o T = CRzp91 * F3 for -b-<5 anC_l ;-<5

" 2
CRzho1 = exp [1.2133-2.205 (5775 - 08951 (.%B) ]

F3 = RKO+ RK1 (%) +nx2(:—’) 2

RKO = 0.993522 + 0.157907 (%3) ~ 0.00579398 (:—}) 2

2 3
RK1 = 000457613 — 0.032251927 (:-'f’) +0.00517178 (:—2) — 0.000408155 (:—2)

2 3
RK2 = —0.00031020177 + 0.001974207 ( 32 ) - 0.0005874349 (:—3) + 0.00005767606 ('b—2 )

K 2 a1, 2
CRzno2 = 7= = oxp 1.21009 ~ 2.1114 (ﬁ) 0.92466 (;1;;) for aj=ay

K a1+2b+ap aq 22
CR2no2 = 7755 = CR2ho1 /—2;,71— for & >6.0r =>5

t
£

Figure 20. Two Through Cracks Emanating From An Internal
Notch - Remote Stress
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For the case af(a + b) < 0.18, Schijve's expression (Ref. 21 ) is applicable.

K
CR2ho2 = o Vay keg - F (55)

1.5 2 25

F=11215-321 () +516 ()  —373 () " +1.1a (4 (56)
R) R R R

The ktg in Equation (55) can be calculated from Equation (101). For crack No. 2, a) and a2
in Equations (49) through (56) shall be interchanged.

s'bﬁa ’ Kt"*z(‘tc")

KI - GJ“_G' F(sl%)

$+0(F=0): F=l122-K
FE | (%W). F - '/rs'
u- Loos c»b,a : F - i22
T 4 4
i
- -2 -
&
2 2
) 122 —— = S S —
ol ‘o,c»a 1
1 i | | 1

0.2 0.4 0.6 0.8 1.0

Figure 21. Two Symmetric Cracks Emanating From A Elliptical Hole -
Remote Stress (Ref. 20)
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3.1.10 Two Corner Cracks Emanating From An Internal Notch

The SIF for the configuration shown in Figure 22 can be obtained using the similarity
principle illustrated in Figure 23. The relationship of the configurations shown in Figure
23 is given in Equations (36) and (37). The correction factor for Crack No. | in Figure 22
is given in Equation (57).

CR2ho2

- _K _ _ (CR2ho2
CRZCOI’Z - 0\/1??] - ( CR2h°1) CRZCOI'1 (CRhO1 ) CRCOI'1 (57)

where CR2cor | shall be evaluated with a| and C| as independent variables. Similarly, the
SIF for crack No. 2 can be estimated with Equation (57), where CR9¢cor| should be
evaluated with a2 and C7 as independent variables. The CR2ho| and CR2ho?2 shall be

evaluated using effective crack lengths C|o and C2e as defined in Equations (39a) and
(39b). o

! t !

~Caz|RI~ R 1.

| [ TR
2 | 1 // _i_al g
Gl I
Figure 22. Two Corner Cracks Emanating From An Internal Notch -

Remote Stress

C2] L’!R’ RI{C) AR RG]

Term T - 7
e PRT WD [P

%?Uﬂ ” -RthF_T Rl LJR Fk‘ _
AiHEH BRI

A ! 2 | ] ¥

¥ L

Figure 23. lllustration of Similarity for Figure 22
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3.1.11 A Through And A Corner Crack Emanating From An Internal Notch

The SIF of the configuration shown in Figure 24 can be estimated using the similarity
shown in Figure 23. The correction factor for the corner crack is given in Equation (58).
The CR2cor| shall be evaluated using C2 and a2 as independent variables. The CR2ho?

and CR9ho| shall be evaluated using C| and Ce as independent variables. The effective
crack length C2e is defined in Equation (39b).

_ K _ [CRope2 58
CR2coth = o JTCy <CR2ho1 CR2cor1 (58)

The correction factor for the through crack is given below,

- K -
CRZcoth T o \/ﬂ—cq CRZhOZ (59)

where CR2ho? shall be evaluated with C| and C9e as independent variables. The C)e is
the effective crack length for the corner crack and is defined in Equation (3%b).

1 f 1

¢
{4l LRI C

Sl 1
| plis 4

Figure 24. A Through And A Corner Crack Emanating from

An Internal Notch - Remote Stress
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3.1.12 A Through Crack Emanating From An Edge Notch

The SIF for a through crack emanating from an edge notch under remote stress, shown in
Figure 25, can be approximated by the solution given in Figure 26. This shows that the
SIF's are approximately the same when s = af/(a + b) 2 0.10 and c/b £ 0.5. For the
airframe structures, the c/b is usually less than 0.5.

CRogt = —— = exp [1.622013 — 4.256582 - S + 4.748848 - S2 — 2.002491 - §2]  (60)

oJna
for $>0.1

When s is less than 0.10, Schijve's formula (Ref. 21) is applicable.

K

CRegt = ~—— = keg—4 'F  for §<0.10 (61
where ktg.4 and F are available from Equations (108) and (47), respectively. Note that
ktg-4 for a semi-infinite plate can be calculated by setting "b" (in Figure 101) equal to
infinite in equation (108).

ot

—
Qe

|

Figure 25. A Through Crack Emanating From An
Edge Notch - Remote Stress

For the case of uniform pressure as shown in Figure 27, the SIF can be obtained by the

similarity shown in Figure 28,

KA - Ke 1. CRegy - 0VTa [ 1
CPogt = 75 [(K_D) KB] p/7a [(ca,m-oﬁr—;) CPswes 7% | puma (62)

CR
" [(Eﬁ%q) cpswog] ,‘2,'2

where CRgweqs CPsweg and CRegt are available from Equations (72), (73) and (60) or (61),
respectively.
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Figure 26. A Through Crack Emanating From An Edge Elliptical Notch -
Remote Stress (Ref. 20)
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Figure 27. A Through Crack Emanating From An Edge Notch - Uniform Pressure

Figure 28, lllustration of Similarity for Figure 27
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3.1.13 A Corner Crack Emanating From A Plate Edge

Newman and Raju (Ref. 19) have solved the problem of a corner crack emanating from a

plate edge, shown in Figure 29, using the three-dimensional finite element method. Their
solution is rewritten in the following expression:

= K =‘/.°_ 1 a a
CReoreg o J7c Q Fc(c't'¢) (63)

where Q and F¢ are available in the closed form expression given in Ref. 9.

M

Voo
_Ll“'c
d
LY

e =}

Figure 29. A Corner Crack Emanating From

A Plate Edge - Remote Stress
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3.1.14 A Corner Crack Emanating From An Edge Notch

(I
%R

C
N

7 a x
ERAE)

Figure 30-a. A Corner Crack Emanating From An Edge
Notch - Remote Stress
The SIF of the configuration shown in Figure 30-a can be obtained by modifying the
solution of the corresponding through crack problem shown in Figure 25.

=K _ . :
CRegc = 777z = CRegt * CReoreg (64)

FFor the case of uniform pressure shown in Figure 30-b, the SIF is approximated as,

CPpgc = = CPgqt * CR
e9c  p J7c egt coreg (65)
.\.E(.
cl-
> Cle—
TP }T
e -L

Figure 30-b. A Corner Crack Emanating From An

Fdge Notch - Uniform Pressure
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3.1.15 The Finite Width Correction

Isida (Ref. 22) has solved the problem of finite width effect for the case of remote stress,
as shown in Figure 31-a. He gave his results in terms of a 19-term series for various
eccentricities of crack locations. His results were curve-fitted into the following simple

expressions in this investigation.

- m (2.65a 0.35a
CR¢wa —‘/S:c 3 (b.‘ + b, ) ) by <b, (660)

_ n {1.45a 1.6ba (66b)
Cwab —/Sec 6 < b1 + b2 > ) .b1 <b2

A comparison of Equations (66a) and (66b) with Isida's 19-term solution is given in Tables 4
and 5 for 0.5< N (= a/b))<0.8. For A <0.5, the agreement between Isida's data and
Fquations (66a) and (66b) is better than 2%. Tables 4 and 5 show that some deviations are
about 10% for A = 0.8, but this would not significantly affect the structural life

prediction because the crack will grow at a high rate to reach the free edge.

A prevailing approach to treat crack eccentricity is to take 2bj and 2b) as the effective
widths for crack tips A and B, respectively; and the crack is assumed to be in the middle,
i.e. € (=e/b) = 0.0. A comparison of this approach with Isida's solution is given in the
bottom line of Tables 4 and 5 for € = 0.9. The tables indicate that when the eccentricity
is high, this prevailing approach gives very conservative SIFs.

FA‘\/\—_—W
> A=l
<~—-b2—|-—><-—bl-—> bl
IB A
e
.|-.1--| L
ala b

oy

Figure 31-a. An Eccentric Crack In A Finite Plate - Remote Stress
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For the case of uniform pressure, as shown in Figure 3l-b, the finite width correction is

obtained by dividing the solution on page 2.32 of Ref. 20 by the solution on page 5.9 of

Ref. 20. The correction factor is rewritten in the following expressions

CP¢wa

CPewb

Bk-—_‘:Q;\_cz—:—
-(—bJ R cl
C
& b >|« b >
— —

Figure 31-b. A Crack In An Finite Plate - Uniform Pressure
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3.1.16 A Crack Approaching A Hole

Isida (Ref. 23) has solved the problem of a crack approaching a hole, as shown in Figure
32. In this investigation, the graph was enlarged to an appropriate size to facilitate
reading the numerical values to two digits after the decimal point. lsida's solution was

then curve-fitted into the following expression.

o

! } }

| { }

Figure 32. A Crack Approaching A Hole

CRan= o= = F3+2(Fg—Fal/m (6%0)

Fg= 1+05u2+15,4 (69b)
)2 u\?

Fg= 1+05 (1_7\) +15 (1_)\) (69¢)

where u=R/band X\=a/bas shown in Figure 32. A comparison of Equations (6%a), (69b)
and (69¢c) with Isida's solution is given in Table 6. The table indicates the deviation is
within 5%.
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3.1.17 The Finite Width Effect For An Edge Crack

The finite width corrections for an edge crack, shown in Figures 33 and 34, are available

from Ref. 20 (Pages 2.1| and 2.27). For the case of remote stress, the correction factor

is given as,
3
O TVRE—— a i A
CR - _K _/2b tan T 0.752 + 2.02 (b )+0.37 (1 —sin Zb)
2b
tor
MA/V\V
—_—
<-a>|
P
b

Figure 33. An Edge Crack In A Finite Plate - Remote Stress

For the case of fastener load, the correction factor is given as,

< K _
Cwaeg"':P—_—z -

. . ' 2
Jra (1-2) 1-2 ]1—(5)

1.
352-(1— &) 435-528¢ 1.30-0.3(%) 5
a a [ a

o

Figure 34. An Edge Crack In A Finite Plate - Fastener Load
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3.1.18 An Edge Crack In A Semi-infinite Plate
The SIF for the crack shown in Figures 35-a and 35-b is available from Ref. 20. For the

case of remote stress, the correction factor is given as,

= 1.1215

CReweg = T o

For the case of fastener load, the correction factor is given as,

1.
kK 2013-03(3) °)
P

CPsweg = = c (73)
m J1-3)

Thad-

oy

Figure 35-a. A Crack In A Semi-infinite = Figure 35-b. A Crack In A Semi-infinite
Plate-Remote Stress Plate - Fastener Load
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3.1.19 The Effect Of A Counter-Sink

The counter-sink will increase the stress concentration factor, kig, because there is less
load-carrying area in a counter-sunk hole. The effect of a counter-sink on the stress
concentration of a hole is usually estimated using engineering judgement coupled with
simplified model representation. In this investigation, the three-dimensional (3-D) finite
element method (FEM) was used to analyze the effect of a counter-sink on ktg and SIF.
The HEXA and HEX20 elements, which are 20-node isoparametric brick elements in the
MSC/NASTRAN, were adopted for modeling.

Fiéure 36 shows the 3-D FEM results for a straight hole and a corresponding counter-sunk
hole whose depth of counter-sink is 21% of the plate thickness. Only one quarter of the
plate is modeled; the model consists of 1047 nodal points. Figure 36-a indicates that the
ktg value on the surface is the lowest, (2.806), and the kig value in the mid-thickness is
highest, (3.338). There is a 6% difference in kig between the surface and the mid-
thickness. This is one of the reasons that an embedded crack tends to initiate in the hole
wall of relatively thick plate. Figure 36-b indicates that the kg value on the counter-
sunk side surface is only 1.781 whereas the kig value on the other side of the plate is
2.731. The highest ktg value occurs at z=0.64t which is near the point of intersection
between the counter-sink and the drilled hole wall. The largest kig value in the counter-

sunk hole, (3.562) is 7% higher than the largest ktg value in the corresponding straight
hole, (3.338).

The 3-D FEM analysis was also made for a straight hole and a corresponding counter-sunk
hole whose depth of counter-sink is 32% of the plate thickness. The results are shown in
Figure 37. The trend of the data is similar to that shown in Figure 36. However, the

largest kiq value for a counter-sunk hole, (3.628) is 8.4% higher than the largest kig value
for a straight hole.

To facilitate the evaluation of the effect of a counter-sink on SIF, the averaged kfg value

through the thickness will be used. Based on the 3-D FEM results, the fraction of increase

in the average kig values due to the presence of a counter-sink is approximated by the
following equation.

G = 0.0021 - csk (74)

where CSK is the percentage of counter-sink depth relative to the plate thickness.
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kt = kt=

HT = 0.21

2.806 1.781

3.121 2.492 H

3,259 3.529 —Y

3.324 3.562

3.338 3.488 T
3.324 3.398

3.258 3.276

3.120 3.09

2.806 2.7131 Y

AVG = 3,151 AVG = 3.297

(@) (b)

Figure 36. Comparison Of kg In Straight Hole And In A
21% Counter-sunk Hole

“g 7 “i HIT = 0.32
2.889 1.892 ! ¥
3.296 3.586 AN 2
3.345 3.628 T
3.296 3.428
2.889 2.748 ]y
AVG - 3.143 AVG = 3.347
(a) (b)

Figure 37. Comparison Of kg In Straight Hole And In A
32% Counter-sunk Hole

-5]-



-

The 3-D FEM was also used to analyze the cracked counter-sunk holes whose depths of
counter-sink are 21% and 32% of the plate thickness. The crack length equals about the
hole radius. The HEX20 element, which is a true 20-noded isoparametric element in
MSC/NASTRAN, was used for the elements immediately surrounding the crack tip. The
/4 position technique due to Barsoum (Ref. 24) was used to impose the desired
strain/stress singularity near a crack tip. The rest of the plate is modeled using the

HEXA element which is a modified 20-noded isoparametric element.

The normalized SIF's from FEM analysis are shown in Table 7 for various locations through

the plate thickness. The largest SIF occurs at the point of intersection between counter-

sink and the drilled hole wall. This location coincides with the location of the largest kig-

TABLE 7. NORMALIZED SIF OF COUNTER-SUNK HOLE

2= 21% Z= 32%
Counter-sink Counter-sink

0.3125 0.8758 0.3125 0.92091
0.2790 0.9250 0.2790 0.9467
0.2455 0.9732 0.2455 0.9862
0.2009 0.9696 0.2078 0.9813
0.1562 0.9629 0.1701 0.9754
0.1116 0.9636 0.1366 0.9263
0.0670 0.9614 0.103! 0.8797
0.0335 0.9091

0.0 0.8564

RMS 0.9339 0.9443

The normalized SIF for a straight hole having the same crack length is 0.926. The Root-
Mean-Square (RMS) of the SIF's for the 21% and 32% counter-sunk holes are only 0.8% and
2% higher than that of a straight hole, respectively. The largest SIF for the 21% and 32%
counter-sunk hole are 5.1% and 6.5% higher than the SIF of a straight hole, respectively.
The largest kig for the 21% and 32% counter-sunk holes are 6.7% and 8.5% higher than
the largest ktg of a straight hole, respectively. However, the averaged ktg for the 21%
and 32% counter-sunk holes are 4.6% and 6.5% higher than the averaged kig of a straight
hole, respectively. It seems that the largest SIF values can be correlated with the

averaged kiq valve.
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Therefore it is proposed to increase the SIF with the same percentage increase of the
average kg due to the presence of a counter-sink. This is incorporated into the following

correction factor using Equation (74).

K |
CRosk ™ 57w~ CRygy - 1 100021 - sk, fora<R (75)

" Since this FEM analysis is performed for the crack length equal to about one hole radius,
Equation (75) would be applicable for a < R. For a >R, the effect of counter-sink can be
neglected. It is noted that the effect of a counter-sink on the SIF will be more

substantial for small cracks.

3.1.20 The Stiffening Effect Of A Central Stringer |

The stiffening effect of a central stringer, shown in Figure 38, was solved by Sanders
(Ref. 25). His numerical data points were curve-fitted into the following expression in
this investigation. The E and Egt are the Young's modulis for the skin and stringer,
respectively. The A is cross section area of the stringer. The "" is the skin thickness.

CRytf = —== = 0.63776 +0.07559 \ — 0.04081 3%+ 0.01058 33 (76a)
_ 2atE
A= 3 E,, , (76b)
[ 4
t t t
—stiffener

i

crack

¢ ¢ ¢

Figure 38. A Cracked Sheet With A Central Stringer
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3.1.21 The Stiffening Effect Due To Non-similar Material

Isida (Ref. 23) has solved the stiffening effect for the configuration shown in Figure 39.

He presented his results graphically. In this investigation, the graph was enlarged to an

appropriate size to facilitate reo_dinq the numerical values up to two digits after the

decimal point. The numerical values were then curve-fitted into the following expression.

=L= . . 2
CRgf = ——= = C1+C2-1+C3- )

C1=1.00753 — 0.01088 § + 0.00218 32 — 0.00013 g3
C2 = — 0.24814 + 033864 3 — 0.10613 32 + 0.01388 83 — 0.00062 g4

C3=0.57494 — 0.77771 3 + 0.23633 {32 —0.03146 63 +0.00145 64

A R E2. %
erbes]

a 4
A= a,b, B = EZtZIEltl

Figure 39. The Stiffening Effect Due To Non-similar Material
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3.2 Stress Intensity Factors for Typical Airframe Structures

The compounded solution method is being used to formulate the stress intensity factors
for the Task IV structural test specimens which are representative of common airframe
design. Two types of specimens are used in Task IV Structural Tests, namely, stringer-
reinforced specimens and lap-joint specimens. The stringer-reinforced specimens are
intended to simulate spar-to-skin attachments. The lap-joint specimens are intended to

_simulate chordwise lap-joints.

Figures 40 through 45 show the schematic diagrams of the structural test specimens. The
stress intensity factors for each member in a specimen assembly are formulated for the
anticipated cracking sequence according to MIL-A-83444 and the combined crack growth
and initiation method for life prediction. For all types of stringer-reinforced specimens,
the load redistribution accompanying crack growth can be neglected in accordance with
the observation made in Refs. 3, 4, and 5. However, the load redistribution (due to crack
growth) among fasteners in the chordwise lap-joint specimens will be considered to

achieve accurate life predictions.

3.2.1 Skins of Stringer-reinforced Specimens

The fastener load induced by the load redistribution during crack growth need not be
considered in accordance with the observation made in Refs. 3, 4, and 5. Therefore, only
remote stress is considered in the formulation of the SIF for skins. Figures 46 through 59
show the anticipated cracking sequence and the SIF associated with each configuration.
The anticipated cracking sequence with the consideration of crack initiation is merely to
illustrate the formulation of the SIF; the actual cracking sequence shal! be predicted from
crack growth and initiation analyses.

3.2.2 Tee-Stringer

Figures 60-a through 60-e show various configurations where a crack does not extend into
the upright leg of a tee-stringer. In such cases, the tee-stringer can be modeled in the
way shown in Figure 61 for the compounded solution method. The stiffening effect due to
the upright leg can be accounted for using Isida's solution (Ref. 23) given in Equations
(77a) through Equations (77d). The normalized SIF calculated in this manner is shown in

Table 9. The 3-D FEM analyses were performed to validate the modeling technique shown
in Figure 61.
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Figure 41. Central Angle-Stringer

Continuous Skin Specimen

A

A

Fr+++++
+++++++
FH+++++
++4+++++

outslde

| --

Figure 43. Edge-Stringer Continuous
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Seq. 3: Seq. 4:

- CR
oh fva(b)

)

R
K=K ‘CRQeorl. c?vo(b]

1
2ho |
Figure 46. Cracking Sequence and Associated SIF
for the Inside Initial Crack in the Skin of Figure 40 -
Without Crack Initiation

Seq. I|: Seq. 2

| 2

R
K=K -CREM- CR

) =

fwalb)

| 11 ] =) s

|

|(=|(R CR + CR {

K‘KR-CR « CR + CR . CR coth b CR',“(:)or crack no. |
corl ah fwalb) cok K‘KR'CR for erack no.2

eo'l;\ CR fwalb)

Seq. 3: Seq. 4:

) -

R for crock no.2
K=K CR e rt R fvatn)

R
K=K CR ot CRrvatn)

Seq. 5:
=S P _-]

L . for crock nos.2 & 3
K=K CRhcnhCRﬁm(b)

Figure 47. Cracking Sequence and Associated SIF
for the Inside Initial Crack in the Skin
of Figure 40 - With Crack Initiation
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Seq. |I: Seq. 2:

=T LT ] ST ]

KeK" -CR

aort vty O o
Seq. 3: I
m&@:%ru ]

R
K=K ‘CR.“' Can.a CRoh

Figure 48. Cracking Sequence and Associated SIF
for the Qutside Initial Crack in the Skin
of Figure 40 - Without Crack Initiation

Seq. |: Seq. 2

i TS o]
(=S 1 I ] FS P11

]

|

k=k"-CR . CR
[-1-3

R th fwalb)
K=K -CR ) Rovater R ek Kek".CR . CR_ -+ CR
coth oh fweo
Seq. 3: | Seq. 4: |
| 2 1 2

(

for crack no.t

k .
Nfor erack no.2

R
K=K 'CRthCR ;

va(b) for crack no.l

K-KR-CR - CR * CR for crack no.2
he2 ah fvalb)

Figure 49. Cracking Sequence and Associated SIF
for the Qutside Initial Crack in the Skin
of Figure 40 - With Crack Initiation
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! Seq. | I Seq. 2 l

i — BT

i ) K-Kp-CR“ 1 fee() T sk K'Kk'mm' CR feat ]
. Seq. 3: | Seq. 4: | o

=27 ‘.-.\\\%%)))mmmmn
fve (-] ‘1

K-KQ-CR « CR
apt

i Figure 50. Cracking Sequence and Associated SIF
for the Skin of Figure 41 - Without Crack Initiaion
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»
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Seq. | Seq. 2:
| 2 |
I |
] R
K=K 'CR“F’. CR'"“; CR cah KsK 'CR“';‘ CR‘_"‘M for crack nos.! & 2
Seq. 3: ) [
|
| =S B —~|
I
K-KR-CRM‘? CRr..u.) for crack ros.} & 2

Figure 51, Cracking Sequence and Associated SIF
for the Skin of Figure 41 - With Crack Initiation
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Figure 52. Cracking Sequence and Associated SIF
for the Inside Initial Crack in the Skin
of Figure 42 - Without Crack Initiation

Seq. |:

| L+

o :
K=K 'CR‘- CR - CR kfor crack no.l

orl fealb) eos

Seq. 3: 2’,
E—n
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e fweg

for ecrack ne.2

Seq.

Seq.

2 |1
-1
K-KR-CR” . CR. .for crack nos.| & 2

th fwalb)

4:

|

: 2,|
—

K=KR-CR + CR for‘crock no.2
.ﬂ‘ L}

fw

Figure 53. Cracking Sequence and Associated SIF
for the Inside Initial Crack in the Skin
of Figure 42 - With Crack Initiation



Seq. |: l Seq. 2: l
| -—S-J'-ll | #—\@—Hl

R
K=K 'CRM" CR

Kek" .CR

cor‘l caf-o(;) csk fwalb)

Figure 54. Cracking Sequence and Associated SIF
for the Outside Initial Crack in the Skin
of Figure 42 - Without Crack Initiation

Seq. |

wn
o
o
n

| : I I 2
L -—9G [ ] | - S P
K=k -CR - CR. : CR f K | K=K -CR =+ CR. f K | &2
corl fwalb) csk or crac no. ) coth 4‘\10“:)‘,r~ crac hos.
Seq. 3: | 0 Seq. 4: | |2
1 [ )
k=k"-CR . CR Kek".C &Rt K no.
2 r“(tfr crack nos.! & 2 R.°t feed or crack no.

Figure 55. Cracking Sequence and Associated SIF
for the Outside Initial Crack in the Skin
of Figure 42 - With Crack Initiation
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Seq. |: Seq. 2:
!

(P~ _1111] (IIZE- 1]

R
K=K -CR

K=k":CR - CR
ho

oov-.l CRfvo(;) esk ] fealb)

Figure 56. Cracking Sequence and Associated SIF
for the Inside Initial Crack in the Skin
of Figure 43 - Without Crack Initiation

Seq. |

A : Seq. 2:
{ a 2 |
I~ T Bre12 5201000
1 R T
K=K CR * CR for crack no.!
R eoth feolb)
K=K 'CR“-MCR“.“) for crack no.l K=K -CR - CR : CR. for crack no.2
eoth fealb) ah
Seq. 3: Seq. 4:
| 3 |
R R
K=K -CR%.-I CR'““) for crack no.l K=K 'CRQ,,"'QCR“J.S’ crack nos.l & 3
Seq. 5:

3

ST I

R
KoK 'CR”_-z CR;,.(B’" crack nos.l & 3

Figure 57. Cracking Sequence and Associated SIF
for the Inside Initial Crack in the Skin
of Figure 43 - With Crack Initiation
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{ | 2 L
I ! iUl 71 4; LU
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2 1 3 L
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Seq
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B =TT 11

R
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Figure 58. Cracking Sequence and Associated SIF
for the Outside Initial Crack in the Skin
of Figure 43 - Without Crack Initiation
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Figure 59. Cracking Sequence and Associated SIF
for the Outside Initial Crack in the Skin
of Figure 43 - With Crack Initiation
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Figure 61. Tee-Stringer Models for Compounded Solution Method
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The PENTA, HEXA, and HEX20 elements in the MSC/NASTRAN were used in the
analyses. Figure 62 shows an example of the finite element meshes. Only two layers of
elements were usedk in the thickness direction. Since the main purpose is to evaluate the
load transfer between the base and uprigH’r legs of a tee-stringer rather than the stress
distribution along the thickness direction, such a modeling technique is expected to give a

reasonably good representation of load-transfer. The normalized SIF corresponding to

Figures 60-a through 60-e are shown in Table 8 for comparison.

Table 8 indicates that the compounded solution method, in conjunction with the model
shown in Figure 61, gave slightly higher SIF values compared to the 3-D FEM results. The
largest deviation is about 14% for the longest crack length, (Figure 56-b) where the SIF is
high and there is not much life left. Such an accuracy of the compounded solution method

is probably acceptable for practical applications.

When an outside crack, e.g. Figure 60-g, grows into the junction area between the upright
leg and the base leg of a tee-stringer, the normalized SIF is so large such that the crack
virtually grows in a somewhat unstable manner. However, the configuration shown in
Figure 60-f, where an inside crack grows into the junction area, is an important one. In
both cases, the method due to Brussat et al (Ref. 3) is being adopted and rewritten in the
following expression.

CR.e: = st+0.25-1r-r2
si” /a-025-7-(2n (78)

where a, t, r, and s are shown in Figure 60-f. Equation (78) will be applicable until the
crack front reaches circle No. 2 shown in Figures 60-f and 60-g. After this point, the

configurations can be treated as having two cracks shown in Figures 60-h and 60-i.

When a crack grows into the protruding leg of a tee-stringer as shown in Figures 60-h and
60-1, the load eccentricity will induce additional bending stress which needs to be
considered in the analysis. The bending stress, fh, at locations a, b, ¢, and d in Figure 60-h
can be calculated with Equation (79) given in pages 156-157 of Ref. 26. The coordinates

M, I, —MI + M

XY Y X x y'xy ~Mxly Y
I |

-12 I 1, —12
x'y = 'xy x 'y 7 'xy (79)

fb=
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are located at the centroid of the cross section of intact tee-stringer. The moments My

and My are calculated from the stress in the fractured area. The Iy, ly, and Ixy are
moments of inertia. The x and y are the coordinates of locations a, b, ¢, and d,
respectively. A correction factor, CRp, as defined below is included in the SIF.
fb
CRb""' 1 +'('7—

o

(80)

For the branch of the crack in the base leg of a tee-stringer shown in Figure 60- h, the
upright leg is treated as a middie stiffener across a crack. The ancillary solution CRgy¢
given in Equations (76a) and (76b) can be applied to this situation. The effective cross
sectional area of the stiffener shall be only the uncracked ligment of the upright leg.

Thus, the SIF is given as;

K=o J7ma - CRh01 . Cwaa(b) 'CRah . CRstf . CRb
(81)

The root-mean-square of the SIF's calculated from Equation (81) for locations ¢ and d of
Figure 60-h is shown in Table 9 to compare with the FEM result. The root-mean-square of
the SIF calculated from Equation (81), (1.515) is about 13.8% lower than that from the
FEM.

For the branch of the crack in the upright leg of a tee-stringer, shown in Figure 60-h, the
base leg is treated as a middle stiffener across the crack. The effective cross sectional
area of the stiffener shall be only the uncracked ligment of the base leg. To account for
the finite width effect, the crack is treated as an edge crack in a finite plate. Thus, the

SIF is given as

K=¢ JTma - Cwaeg .CRStf . CRb
(82)
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The root-mean-square of the SIF's calculated according to Equation (82), for locations a
and b of Figure 60-h, is shown in Table 8 to compare with the FEM result. The root-
mean-square of the calculated SIF's is 1.469 which is about 8.7% lower than that of the
FEM result. However, the crack growth rate at this stage is very high so that it will not

affect the accuracy of the crack growth life prediction.

To calculate bending stresses at locations a, b, ¢, and d in Figure 60-i, the moments of
i inertia and centroid shall be calculated using the area bounded by the six corners |, 2, 3,
4, 5, and 6, which form an angle shape. However, the stress which contributes to the
bending moments My and My, shall be from the entire fractured area. The two branches
of the crack are treated as an edge crack in a finite plate. The stiffening effect due to
the other leg can be neglected. The effective crack lengths for the two branches are

shown in Figure 60-i. Thus, the SIF is given as

K =0 Vaagg - Cwaeg + CRy, * CR,p (for base leg) (83q)
K =0 J7agfr * CReyeg  CRp ' (for upright leg) (83b)

The root-mean-square of the SIF's calculated according to Equations (83a) and (83b) are
shown in Table 8. |t appears that the root-mean-square values for the SIF calculated with
the compounded solution method agree quite well with the root-mean-square values from
the FEM results. However, the crack growth rate at this stage is very high so that the

accuracy will not significantly affect the crack growth life predictions.

In summary, the SIF's for the cracked tee-stringer configurations pertinent to life

predictions are given in Figures 63 through 66.

3.2.3 Angle-Stringer

Figures 67-a through 67-d show various configurations where a crack does not extend into
the upright leg of an angle-stringer. In such cases, two models for the compounded
solution method were used for each configuration to obtain the SIF as shown in Table 10.
The 3-D FEM analyses were performed to validate the solutions obtained from the
compounded solution method. The first model has an effective width equal to that of the
base leg of an angle-stringer. The stiffening effect due to the upright leg can be
accounted for by using Equations (77a) through (77d). However, such a stiffening effect
turns out to be small.
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Figure 63. Cracking Sequence and Associated SIF
for the Outside Initial Crack in Tee-Stringer-
Without Crack Initiation
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Figure 65. Cracking Sequence and Associated SIF
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Without Crack Initiation
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- l-L/d_lT t=D
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(d) (e)
Figure 67. Cracked Angle-Stringer
TABLE 9. NORMALIZED SIF OF ANGLE-STRINGER
Fig. 67-a Fig. 67-b Fig. 67-c Fig. 67-d Fig. 67-e | Fig. 67-f

Z=0.3125 1.150 4.151 27.439 1.068 2.181 55.068
Z=0.2344 1.183 4.329 27.892 1.089 2.400 33.244
Z2-0.1562 1.236 4.482 27.684 1.126 2.617 13.900
Z2=0.0781 1.181 4.210 24,671 1.064 2.589 0.0
7-0.0 1.146 3.908 20.855 1.016 2.567 | 0.0
RMS* 1.180 4.220 25.849 1.073 2.476
Compounded 12.110
Solution | (Z=0.1562)
Compounded 53.043
Solution 2 (Z2=0.3125)

*RMS = Root-Mean-Square
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Table 9 indicates the agreement between the first model and the FEM results is
reasonably good. The second model has an effective width equal to that of an unbent

angle-stringer. Table 9 indicates such a model gives a very low SIF for long cracks.

When a crack grows into the upright leg of an angle-stringer shown in Figure 67-e, only
the second model described in the last paragraph will be applicable and it gives quite an
accurate solution compared to the FEM results, shown in Table 9. In this case, the load
eccentricity will induce out-of-plane bending. The bending stress can be calculated using
FEquation (79). The moment of inertia shall be calculated using the entire cross section of

the angle-stringer. However, the bending moment shall be calculated using the stress in
the fractured area.

When a crack grows through the entire base-leg and into the upright leg of an angle-
stringer, as shown in Figure 67-f, a severe out-of-plane bending is introduced into the
upright leg. Along the line AB in Figure 67-f, the crack is closed due to bending. But,
along the line CD in Figure 67-f, the bending will further increase the crack opening
displacement. Thus, the two models shown in Figure 68 are used to model the SIF at mid-
thickness and at the line CD where maximum tension due to bending exists. The
estimated maximum tensile stress due to bending is about 27 times that of remote stress.

The SIF obtained in this manner agrees reasonably well with FEM result, as shown in Table
9.

l.__-

|<—L1—’| |<—L2—>|<—L 1—
a. Model for SIF at Mid-thickness

b b t LZ M‘(L1t°0)'h
’ # l_

L] - L1~

b. Model for SIF at Maximum Bending Stress

-
~N

Figure 68. Angle-stringer Models for Compounded Solution Method

In summary, the SIF's for the cracked angle-stringer configurations pertinent to life
predictions are given in Figures 69 through 72.
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Figure 69. Cracking Sequence and Associated SIF
for the Inside Initial Crack in Angle - Stringer -
Without Crack Initiation
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Figure 70. Cracking Sequence and Associated SIF
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3.2.4 Skins and Doublers in Lap-Joints

The crack growth in skins and doublers can be modeled in the manner shown in Figure 73
where a crack grows along an array of holes. The model shown in Figure 73 is applicable
to both single-shear and double-shear lap joints. The skins and doublers in lap-joints are
subjected to both remote stress and fastener load, whereas the skin in stringer-reinforced
panels is subjected to remote stress only (assuming load redistribution due to crack growth
is negligible). The crack in Figure 73 is located in one of the row | holes. To calculate
the contributions of row 2 fastener loads to the SIF, Brussat el al (Ref. 3) treated the
- fastener loads as point loads. Since the typical distance between holes is four diameters
for airframe design, the real loading condition of row 2 fasteners deviates considerably
from the idealized point loads. In this invesﬁgoﬁbn, the total row 2 fastener loads are
converted to a remote stress as shown in Figure 73-b to simplify the analysis. For the
row | fastener loads, P1j, only the holes which are in the crack path will contribute to the
SIF. Thus, only fastener loads P4 and Py5 shown in Figure 73-d will contribute to the
SIF. The total SIF (K) is the sum of K, and Kf which are due to remote stress and
fastener load, respectively. The remote stress is calculated using the gross section area.
The fastener loads are calculated as a function of crack length. The FEM is well suited for
the calculation. The computation of fastener load using on the FEM will be described in
Section 3.3.

Figure 75 shows the cracking sequence without the consideration of crack initiation and
the associated SIF.

[For the case which considers crack initiation, the frictional force between the faying
surfaces of the skin and doubler needs to be included in accordance with the
analytical/experimental correlation due to Brussat et al (Ref. 3). Figure 74 shows a model
which includes this frictional force. The fjj in Figure 74 represents the frictional force
due to each fastener. The external force F equals the sum of the fastener loads and

frictional forces. It is evident that the fastener loads, Pjj, in Figure 74 are smaller than

the Pjj in Figure 73. Thus, the presence of frictional forces reduces the amount of
external load effects to crack growth. The computation of fastener loads with the
consideration of faying surface frictional forces is given in Section 3.3. The frictional
force between the fastener head (or collar) and skin (or doubler) may be neglected in
crack growth analyses because their magnitudes are small compared to the faying surface
frictional forces. “owever, this kind of frictional force needs to be considered in the

analysis of crack initiation which is a very localized event.

Figure 76 shows the cracking sequence with the consideration of crack initiation and the
associated SIF.
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3.3 Fastener Load Distributions in Cracked Lap-Joints

3.3.1 General Approach

In order to obtain accurate stress intensity factors in lap-joints, the fastener load
distributions need to be accurately determined. The two-dimensional FEM is well suvited
to solve the fastener load distributions in the single-shear and double-shear lap-joint
specimens to be used in Task 1V - Structural Tests.

The QUADS element in MSC/NASTRAN is adopted for modeling both the skin and doubler
of a lap-joint. The QUADS8 element, which is an 8-noded quadratic quadrilateral
isoparametric element, can simulate curved boundaries better than other types of
elements. The fastener holes can be idealized as a nodal point except along the row of
holes in the crack path. Here, the boundaries of the holes must be realistically modeled.

The modeling technique to compensate for the loss of stiffness due to these holes is

explained below.

Each fastener is modeled as a spring element (ELAS2 element) in MSC/NASTRAN. The
spring constant of each fastener is calculated as a function of plate thickness, Young's
moduli of plates and fasteners, hole size, plate width, and Poisson's ratio of the
fasteners. Barrois' method (Ref. 27) was used in the calculation. A computer program,
FASTENER, based on Barrois method was developed previously by Fairchild Republic Co.
under a separate funding. Two ELAS2 elements are required to model a fastener; one

ELAS?2 for the loading direction and the other ELAS2 for the direction perpendicular to
loading.

In Ref. 3, an elaborated finite element analysis was performed to obtain the spring
constant for the fasteners. Whether such an analysis will give better result is
questionable. The important point is that the fastener load distribution is only slightly
affected by the magnitude of the fastener spring constant. This fact has been
demonstrated on page |68 of Ref. 27 and was further confirmed herein. In this
investigation, the same finite element model was analyzed using two different spring
constants: the FASTENER program gave a value of 7.4 x 105 I1b/in. while Swift and Wang's
formula (Ref. 28) yielded 9.5 x 105 Ib/in. (a 28.4% increase). The two computer runs give
essentially 'rhelsome results. Incidentally, Swift and Wang's formula indicates that the

spring constant increases with increasing stacking thickness. This functional relationship
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common engineering principles which indicate that as the fastener length increases, its

spring constant decreases.

The interface between the fastener and hole boundary is modeled as a set of rod elements,
i.e. ROD element in MSC/NASTRAN. To determine the actual contact region between the
fastener and hole boundary, iterations of computer runs are made. In the first computer
run, the rod elements are distributed around the entire hole boundary. In each iteration,
-if a tensile load exists in a rod element, that particular rod element is removed in the
next iteration. The iterations continue until no tensile load exists in any rod element. The

final contact region can be determijped in as few as three iterations.

As stated earlier, the faying surface frictional forces need to be considered in the
combhined crack growth and initiation method of life prediction; otherwise, the life
prediction will be overly conservative. The frictional force per faying surface per fastener

F, can be calculated with the following empirical formula where u is static coefficient

hetween faying surfaces and P is preload in a fastener.

(84)

P = 0.25 - (Ultimate Strength of Collar as Specified by Manufacturer) (85)

TABLE 10. EXPERIMENTAL VERIFICATION OF FRICTION FORCE EQUATION

FASTENER DIAMETER EXPERIMENTAL 'f" PREDICTED 'f"

0.375 INCH 979 Ib. 910 Ib,
(Brussat et al, Ref 3)

0.50 INCH 1800 Ib. 1625 Ib.
(Yen & Smillie, Ref. 29)
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Table 10 shows a comparison of faying surface friction force obtained from experiments
and Equations (84) and (85). The wu is experimentally determined by setting a piece of
2024-T3 sheet (0.188 inch thick) on the surface of another piece of 2024-T3 sheet (0.188
inch thick), tilting the sheets until sliding occurs, and measuring the tangent of the angle
with horizontal. The value of u determined in this manner is 0.52. It is noted that the

value depends very much on the finishing of the faying surfaces. The u value of 0.52
. represents the faying surface condition of the Task IV structural test specimens. The
preload in a fastener is nominally about 50% of the ultimate strength of a fastener at
shear-off of collar. Thus, Equation (85) is a very conservative estimation of preload. The
experimental friction force of 979 Ib for a 0.375 inch fastener shown in Table 10 is the
lower estimate from experiment (Ref. 3); the upper estimate is about 1583 Ib.
Considering the complexity of actual airframe structures and the possible loss of preload
due to wear-out, Equation (85) will be a conservative and safe approach to treat the
beneficial effect of faying surface friction force. Table 10 does indicate that predicted

friction force agree well with experiments.

In the FEM analysis, the frictional forces were applied as point . loads in opposite
directions to the pair of nodal points which are connected by the two spring elements used
to simulate a fastener. However, the frictional forces were uniformly applied as surface

tractions to the first-ring elements surrounding the holes in the cracking path.

3.3.2 Single-Shear Lap-Joint Specimen
The basic considerations required to model a lap-joint specimen is already described in

Section 3.3.1. In this section, a step-by-step procedure is given below for a single-shear
lap-joint specimen.

Step I:
The single-shear lap-joint specimen is idealized as shown in Figure 79. The island in

the doubler, if any, and rib need to be considered in the idealized specimen.

Step 2:
Spring elements are used to simulate fasteners. Barrois' method (Ref. 27) is used to
calculate the spring constant. The distance between two fasteners is used as the
effective plate width in the calculation. The spring constant for each row of fasteners

may not be the same. [t depends primarily on the thickness, fastener diameter, and
Young's moduli.
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Step 3:
Figure 79 is modeled as shown in Figure 80 which consists of 632 QUADS elements, 32
TRIA6 elements, 56 ELAS2 elements and |50 ROD elements. There are 2317 nodal
points in the model. The area surrounding the crack path is modeled as shown in
Figure 81. Two nodal points are assigned to each grid point along the crack line. These
two nodal points simulate the upper and lower surfaces of the crack. When there is no
crack, each pair of nodal points along the crack line are connected by a rigid rod to
close up the crack. When a crack of a certain length exists, the rigid rods between the
upper and lower crack surfaces are removed. Such a technique to simulate a crack
allows the use of one finite element model to analyze several cracked lap-joint

configurations of different lengths.

Step 4:
The fasteners are connected to the hole boundaries by rigid rod elements as shown in

Figure 82. lterations of computer runs are made to determine the actual contact
points between fasteners and holes.

Step 5:
Since most of the fastener holes (except those along cracking path) are modeled as
nodal points- in the finite element model, to obtain a realistic fastener load
distribution, a compensation needs to be made for the loss of stiffness due to the
circular cut-outs. This is done by increasing the spring constant of the fasteners in
that particular row. The amount of increase in the spring constant is obtained by
iterating computer runs until the proper load distribution is achieved. For example, the
loads in rows | and 4 of Figure 79 should be the same and the loads in rows 2 and 3
should be the same. Note that the loads in rows | and 2 will not be the same due to

the difference in stacking thickness.

Step 6:
When the faying surface frictional force is to be considered in the analysis, Equations

(84) and (85) are used to calculate the frictional force per faying surface per fastener.

The procedures described above have been used to calculate the fastener load
distributions in single-shear lap-joint specimens. Calculations were made for two cases.
In the first case, no frictional force was considered according to the current MIL-A-

83444; analyses were made for six different crack lengths. In the second case, frictional
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force was considered according to the combined crack growth and initiation method for
life prediction as required by Task lll; analyses were made for seven different crack
lengths.

Table 11 shows the normalized fastener load distributions for the case without frictional
forces. The fastener loads are normalized with respect to the average fastener load which
is defined as the total applied load divided by the number of fasteners. This way of data
presentation will facilitate the application of the computed result for a particular applied
"load level to any other load levels in a stress spectrum. In the table, the number within
the parentheses corresponds to the hole which has an initial crack. For the case without

friction, the spring constants for each row of fasteners are:

row | = 0.8999E6 1b/in.(21.5% increase w.r.t. row 4)
row 2 = 0.6644E6 Ib/in.
row 3 = 0.6644E6 Ib/in.
row 4 = 0.7405E6 |b/in.

Since the stacking thickness of rows 2 and 3 is larger (due to the rib and the island in the
doubler) than that of rows | and 4, the spring constants of rows 2 and 3 are lower than
those of rows | and 4. As expected, Table || shows that the loads in rows | and 4 are
slightly higher than the loads in rows 2 and 3. This is due to the large spring constants for
rows | and 4. The data shown in Table || are plotted in Figure 83 for the row | fasteners
to show the change in fastener loads for various crack lengths. Table Il indicates that
there is no substantial load variation in rows 3 and 4, whereas there is a drastic load
variation in rows | and 2. The crack grows from fastener No. 4 toward fastener No. 3
along row |. Six crack lengths, Aj= 2R, 4R, 6R, I0R, I2R and 4R, were analyzed. Crack
A2 is assumed to be zero in accordance with MIL-A-83444. The crack lengths Ay= 6R and
4R correspond to one and two ligments broken, respectively. As can be seen from Figure
83, there is a drastic decrease of load in fastener No. 3 after one ligment is broken. The

normalized fastener loads for fastener Nos. 3 and 4 are curve-fitted into the following
expressions as a function of Aj.

Ps Aq Aq
5 = 1.00374 — 0.018805 —~ for = <6 (86)
AVG !
Pa Aq Aq
e 0.88896 + 0.00608 (- —8) for—- > 8 (87)
P3 Aq Aq
= 0.89609 — 0.06003 (—- —8) for—— > 8
Pave R . R (88)
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TABLE 11. NORMALIZED FASTENER LOAD DISTRIBUTION
OF SINGLE-SHEAR LAP-JOINT SPECIMEN -- NO FRICTION

SINGLE LAP JOINT MODEL W/0 FRICTION
INTACT MAIN PLATE, KZ(1)=0.8999E6 (21.5% INCR), KRX(2,3)=0.6644E6
NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG = 1§53.125 LBS.)

coL 1 2 3 4 S 6 7
ROW

b 1.0752 1.0226 1.0120 (1.009%) 1.0118 1.0242 1.074S
2 1.0103 0.9589 0.9450 0.5418 0.9447 - 0.9591 1.0098
3 -0.9987 -0.9535 ~-0.9430 ~0.9409 -0.9431 -0.9535 ~-0.9986
4 -1.0730 -1.0304 -1.0212 ~1.0197 -1.0212 -1.0304 -1.0730
SINGLE LAP JOINT MODEL W/0 FRICTION
MAIN PLATE CRACK LENGTH OF (+02R)
NORMALIZED FASTENER LCADS, PI/PAVG, (PAVG = 19%3.125 LBS.)
coL 1 2 3 4 S 6 7
ROW
1 1.0824 1.0304 1.0186 (0.9589) 1.0201 1.0310 1.08C2
2 1.0177 0.9662 0.9431 0.9228 0.9475 0.9656 1.0154
3 -1.0007 -0.9538 -0.9416 -0.9386 -0.9419 -0.9540 -1.0005
4 -1.0748 -1.0306 ~-1.0200 ~1.0179 -1,0202 -1.0307 -1.0747
SINGLE LAP JOINT MODEL W/C FRICTION
MAIN PLATE CRACK LENGTH OF (+04R)
NORMALIZED FASTENER LCADS, PI/PAVG, (PAVG = 1953.125 LBS.)
coL 1 2 3 4 5 6 7
ROW
1 1.0938 1.0406 1.0177 (0.9257) 1.0290 1.0391 1.0663
2 1.029¢ 0.9739 0.825¢ 0.8925 0.9512 0.9736 1.0217
3 -1.0033 -0.9541 -0.9395 -0.9357 -0.9406 -0.9547 -1.0027
¢ -1,0773 -1.0309 -1.0184 -1.0157 -1.0190 -1.0313 -1.076€8
SINGLE LAP JOINT MODEL W/0 FRICTION
MAIN PLATE CRACK LENGTH OF (+06R)
NORMALIZED FASTENER LOADS, PI1/PAVG, (PAVG = 1953.125 LBS.)
cor 1 2 3 4 S 6 7
ROW
1 1.1388 1.0811 0.89%90 (0.8932) 1.0583 1.0621 1.1006

1.07¢8 0.9956 0.8467 0.8422 0.9720 0.9966 1.0368

[~

-1.0122 -0.9542 -0.9317 -0.9277 -0.9377 -0.9572 -1.0089

-

-1.0852 -1.0313 -1.0127 -1.0092 -1.0161 ~1.0331 -1,0826
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TABLE 1. NORMALIZED FASTENER LOAD DISTRIBUTION

SINGLE LAP JOINT MODEL W/O FRICTION
MAIN PLATE CRACK LENGTH OF (+10R)

NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG = 1953.12%
.coL b 2 3 4 ] 6
ROW

1l 1.1788 1.1133 0.7670 (0.8973) 1.0790 1.0759
2 1.1140 1.0052 0.7898 0.8297 0.9891 -1,0105
3 ~-1.0185 -0.9536 -0.9260 -0.9227 -0.9366 -0.9590
4 ~-1.0906 -1.0312 ~1.0087 -1.0052 -1.0147 -1.,0345

SINGLE LAP JOINT MODEL W/0 FRICTION
MAIN PLATE CRACK LENGTH OF (+12R)

NCRMALIZED FASTENER LCADS, PI/PAVG, (PAVG = 1953.125
COL 1 2 3 4 S 6
ROW

1 1.2297 1.1347 0.6653 (0.9022) 1.102% 1.0904
2 1.1606 0.9874 0.71123 0.8207 1.0099 1.02852
3 -1.0250 -0.9525 -0.9199 -0.9181 -0.9358 -0.9609
4 -1.0962 -1.0309 -1.0045 -1.0013 -1.0136 -1.035%

SINGLE LAP JOINT MODEL W/0 FRICTION
MAIN PLATE CRACK LENGTH OF (+1l4R)

NORMALIZED FASTENER LCADS, PI/PAVG, (PAVG = 1953.12%
coL b 2 3 4 ] 6
ROW

1 1.3887 1.0001 0.5327 (0.9341) 1.1622 1.1198
1.2873 0.8888 0.5782 0.8291 1.0637 1.085%8

w

=1.0389 -0.5480 -0.9068 ~-0.9102 ~-0.9360 -0.9652

-

~1.2079 -1.0293 -0.9955 -0.9543 -1.0124 -1.0390
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Table 12 shows the normalized fastener load distributions for the case with frictional
forces. The fastener loads are normalized with respect to the average fastener load,which
is defined as the total fastener load (which equals the total applied load minus total
frictional forces) divided by the number of fasteners. For the case with friction, the
spring constants for each row of fasteners are:

row | = 0.8395E6 Ib/in.(13.4% increase w.r.t. row 4)
row 2 = 0.6644E6 Ib/in.
row 3 = 0.6644E6 Ib/in.
row 4 = 0.7405E6 Ib/in.

Seven models corresponding to the seven crack lengths shown below were analyzed:

(1) A =R, Ay= 0.

) A =4R, Ar= 0.

(3) A| =6R, A2 = 0. One ligment broken
() A =6R, Ar = 2R One ligment broken
(5 A =I0R, A2 = 4R One ligment broken
(6) A =I2R, Ar = 6R Two ligments broken
(7) Ay =14R, Ao = éR Three ligments broken

where A} and A7 are the crack lengths from the R.H.S. and L.H.S. of a hole, respectively
(see Figure 79). The above combination of A} and A7 is expected to be commensurated
with the anticipated crack growth and crack initiation behavior. Table |2 shows the
normalized fastener load distribution for various crack lengths. The data in Table 12 are
plotted in Figure 84 for the row | fasteners. The figure shows that there is a substantial
change in load as the crack grows. Table 12 shows that the loads in fastener Nos. 3 and 4

of rows | and 2 drop drastically after two ligments are broken. This phenomenon can be

explained as follows. When cracks A and A2 become long enough, there is a great

decrease in the local plate stiffness. Hence, the load passing through the fasteners in this
region is also reduced. The little load in these fasteners is then further decreased by the

faying surface frictional forces.
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TABLE 12. NORMALIZED FASTENER LOAD DISTRIBUTION
OF SINGLE-SHEAR LAP-JOINT SPECIMEN -- WITH FRICTION

SINGLE LAP JOINT MODEL W/ FRICTION
INTACT MAIN PLATE, KX(1)=0.8395E6 (13.4% INCR), KX(2,3)=0.6644E6
NORMALIZED FASTENER LOADS, PI1/PAVG, (PAVG = 1906.250 LBS.)
CcoL 1 2 3 4 ] 6 7
ROW
1 1.1051 1.0276 1.0123 (1.0087) 1.0121 1.0315 1.10S8
2 1.0425 0.9643 0.9438 0.9393 0.9436 .0.9658 1.0430
3 =-1.0319 -0.9613 -0.9448 =-0.9415 -0.9449 -0.9613 ~1.0319
4 -1.1050 -1.0383 -1.0235 ~1.0209 -1.023%5 -1.0383 ~-1.10S0
SINGLE LAP JOINT MODEL W/ FRICTION
MAIN PLATE CRACK LENGTH OF (+02R)
NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG = 1906.250 LBS.)
coL 1 2 3 4 S € 7
ROW
1 1.1146 1.0380 1.0210 (0.9419) 1.0227 1.0405 1.1129
2 1.0527 0.9745 0.9411 0.9128 0.5472 0.9748 1.0507
3 -1.0346 -0.9618 ~0.9429 -0.9383 -0.9432 -0.9620 ~-1.0344
4 -1.1076 -1.0387 ~1.0218 -1.0185 -1.0221 ~1.0388 -1.1074
SINGLE LAP JOINT MODEL W/ FRICTION
MAIN PLATE CRACK LENGTH OF (+04R)
NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG = 1906.250 LBS.)
COoL 1 2 3 4 S 6 7
ROW
1 1.1303 1.0522 1.0199 (0.89%8) 1.0348 1.0518 1.1215%
2 1.0696 0.9858 0.5161 0.8690 0.9522 0.9863 1.0600
3 ~1.0384 -0.9623 -0.9399 -0.9343 -0.9414 -0.9630 -1.0376
4 -1.1110 -1.0391 -1.0195 -1.0154 -1.0204 -1.0395 -1,1104
SINGLE LAP JOINT MODEL W/ FRICTION
MAIN PLATE CRACK LENGTH OF (+06R)
NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG = 1906.250 LBS.)
coL 1 2 3 4 S 6 7
ROW
1 1.1921 1.1067 0.8592 (0.8540) 1.0746 1.0832 1.1411
2 1.1345 1.0161 0.8038 0.7975 0.9813 1.0192 1.081S
3 -1.0508 -0.9525 -0.9291 -0.9230 -0.9375 -0.9664 -1.0461
4

-1.1220 -1.0396 -1.0117 -1.0064 -1.0164 -1.0421 -1.118B6
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TABLE 12. NORMALIZED FASTENER LOAD DISTRIBUTION
OF SINGLE-SHEAR LAP-JOINT SPECIMEN -- WITH FRICTION (CONT'D)

SINGLE LAP JOINT MODEL W/ FRICTION

MAIN PLATE CRACK LENGTH OF (+06R,=-02R)

NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG = 1906.250 LBS.)

coL b 2 3 4 S 6 7

ROW
1 1.2236 1.1397 0.8610 (0.6741) 1.1062 1.1150 1.1672
? 1.1680 1.0445 0.785¢ 0,.7144 0.9860 , 1.0509 1.1095
3 ~1.0596 -0.9639 -0.9227 -0.9129 -0.9320 -0.9685 ~-1.0544
4 -1.1302 ~1.0408 -1.0066 -0.9987 ~1.0118 -1.0437 -1.1264

SINGLE LAP JOINT MCDEL W/ FRICTION

MAIN PLATE CRACK LENGTH QOF (+10R,-04R)

NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG = 1906.250 LBS.)

coL 1 2 3 4 5 6 7

ROW
1 1.3281 1.2357 0.6543 (0.5012) 1.1%582 1.1823 1.2214
2 1.2769 1.1004 0.6717 0.5575 0.9753 1.1141 1.1683
3 -1:0316 -0.96586 -0.9052 -0.890% -0.9214 -0.9738 -1.072S
4 -1.1500 -1.0428 -0.9933 -0.9813 -1.0025 -1.0478 -1.1434

SINGLE LAP JOINT MODEL W/ FRICTION

MAIN PLATE CRACK LENGTH OF (+12R,-06R)

NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG = 1906.250 LBS.)

coL 1 2 3 4 5 6 7

ROW

1 1.5271 1.3985 0.4551 (0.2524) 0.9560 1.3585 1.3818
2 1.4789 1.1737 0.4939 0.2670 0.8154 1.2475 1.3395
3 -1.1257 -0.9716 -0.8739 -0.8446 -0.8922 -0.9816 -1.1150
4 -1.1904 -1.04B€ -0.9683 -0.9442 -0.9788 -1.0545 -1.1827
SINGLE LAP JOINT MODEL W/ FRICTION

MAIN PLATE CRACK LENGTH OF (+1l4R,-06R)

NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG = 1806.250 LBS.)

coL 1 2 3 4 S 6 7

ROW
b 1.8632 1.1924 0.2164 (0.1955) 1.0429 1.4582 1.4207
2 1.7685 1.0099 0.1823 0.1724 0.8826 1.3442 1.3862

3 -1.1635 -0.9652 -0.8412 -0.8168 -0.8846 -0.9918 -1.1367

¢

-1.2230 ~1.0474 -0.9448 -0.9210 -0.9702 -1.0622 -1.2039
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The normalized fastener loads for fasteners No. 3 and 4 are curve-fitted into the

following expressions as a function of A| and Ao

P A A
_ 1 for _1 < 6

= 1.00163 — 0.02551 — o

Pave R R (89)

Pa Aq A,y Aq Ay

= [0.854 —~ 0.06752 (—ﬁ— —-8)] (1.0 +0.09042—~h—) for—— > 8 and —= < 6(90)

Pava , R R

P3

A1 A2 A1 A2
= [0.8592 — 0.1072 (-5~ — 8)] (1.0 — 0.005059 —~) for > 8 and—=- < 6 (9N

3.3.3 Double-Shear Lap-Joint Specimen

The procedure described in section 3.3.2 was used to analyze the fastener load distribution
in the double-shear lap-joint specimens of Task 1V-Structural Tests. Figure 85 shows the
idealized double-shear lap-joint specimen being analyzed. Fiqure 86 shows the entire
finite element mesh which is similar to Figure 80. The crack is located at fastener No. 4
of row 2 and grows toward fastener No. 3. The detail of row 2 is shown in Figure 87.
Both doublers have cracks of equal length. The main plates are assumed to be intact. As
in the single-shear lap-joint specimen, the fastener stiffness was modeled with one spring
parallel and one spring perpendicular to the load direction. However, for the double-shear
lap-joint specimen, two sets of spring elements are required to simulate one fastener.
One set of spring elements connects a hole in the main plate with the corresponding hole
in the top doubler; the other set of spring elements connects the same hole in main plate
with the corresponding hole in the bottom doubler. Both sets of spring elements have the
same spring constants since the doublers have equal thicknesses. The model shown in

Figure 86 consists of 912 QUADS elements, 48 TRIA6 elements, 112 ELAS2 elements, 225
ROD elements and 3353 nodal points.

Table 13 shows the normalized fastener load distribution for the case without friction. In
the table, the number within the parentheses corresponds to the hole which has an initial

crack. For the case without friction, the spring constants for each row of fasteners are:

row | = 0.6520E6 Ib/in.
row 2 = 0.9694E6 Ib/in.(48.7% increase w.r.t. row |)
row 3 = 0.6520E6 Ib/in.
row 4 = 0.6520E6 Ib/in.
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Figure 86. Finite Element Mode!l for Double-shear Lap-joint Specimen
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TABLFE 13. NORMALIZFD FASTENFER LOAD DISTRIBUTION
OF DOURLF-SHEAR LAP-JOINT SPECIMEN -- NO FRICTION

DOUBLE LAP JOINT MODEL W/O FRICTION
INTACT DOUBLERS, KX(2)=0.9€94E6 (48.7% INCREASE)

NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG = 1953.125
coL 1 2 3 4 5 - 6
ROW

1 1.0505 0.9863 0.9827 0.9835 0.5823 0.9867
2 1.0473 0.9786 0.9752 (0.9751) 0.9748 . 0.9806
3 -1.0440 -0.9865 -0,9798 -0.9790 -0.9799 -0.9874
4 -1.0430 -0.9839 -0.9814 -0.9828 ~-0.981¢ -0.9638

DOUBLE LAP JOINT MODEL W/0 FRICTION
BOTH DOUBLERS HAVING A CRACK LENGTH OF (+C2R)

NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG = 1953,125
coL 1 2 3 4 5 6
ROW

1 1.0580 0.9549 0.9822 0.5623 0.987% 0.9940
2 1.,0536 0.9877 0.9877 (0.9081) 0.98%1 0.9880
3 -1.0494 -0.9925 -0.9777 -0.9587 -0.S820 -0.992¢
4 -1.0485 -0.59863 -0.9767 -0.9740 -0.9794 -0.9868

DOUBLE LAP JOINT MODEL W/0 FRICTION
BOTH DOUBLERS HAVING A CRACK LENGTH OF (+04R)

NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG = 1953.125
coL 1 2 3 4 5 6
ROW

1 1.0700 1.0043 0.9612 0.9254 0.9934 1.0029
2 1.0640 1.0006 0.9915 (0.86%2) 1.0038 0.9967
3 -1.0581 -1.0007 -0.9678 -0.9355 -0.9868 -0.9989
4 -1.0569 -0.9890 ~0.9682 -0.9626 -0.9783 -0.8910

DOUBLE LAP JOINT MODEL W/O FRICTION
BOTH DOUBLERS HAVING A CRACK LENGTH OF (+06R)

NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG = 1953,125
coL 1 2 3 4 S 6
ROW

1 1.1169 1.0335 0.8702 0.8689 1.0207 1.0276
2 1.1058 1.0587 0.8471 (0.8448) 1.0445 1.01S8
3 -1.0923 -1.0228 -0.9020 -0.8975 -1.0061 -1.0163
4 -1.0872 -0.9922 -0.9353 -0.9338 -0.98C7 -1.0038
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7
1.0498
1,0467

-1.0438
-1.0429

LBS.)

7
1.08¢81
1.0508

-1l.0482
~1.0475

LBS.)

1.0613
1.0556
-1.0531
-1.0531

LBS.)

7
1.075¢
1.0661

-1.0639
-1.0661



TABLE 13. NORMALIZED FASTENER LOAD DISTRIBUTION

DOUBLE LAP JOINT MODEL W/O FRICTION
BOTH DOUBLERS HAVING A CRACK LENGTH OF (+10R)

NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG » 19%3.125
coL 1 2 3 4 ] 6
ROW

1 1.1068 1.0147 0.8930 0.9301 1.0124 1.0133
2 1.0990 1.0442 0.8078 (0.9300) 1.0214 .1.0058
3 -1.0841 ~1,0060 -0.9086 -0.9400 -1.0006 ~1.0063
4 =1.0770 -0.9841 -0.9449 ~-0.9541 -0.9848 -0.9977

DOUBLE LAP JOINT MODEL W/O FRICTION
BCTH DOUBLERS HAVING A CRACK LENGTH OF (+12R)

NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG = 1853,125
coL 1 2 3 4 5 6
ROW

1 1.1384 0.9947 0.8343 0.9321 1.0273 1.0215
2 1.1332 1.0627 0.7353 (0.9468) 1.0375 1.0131
3 -1.1080 -1.000% ~-0.8703 ~-0.9420 -1.0109 -1.0122
4 -1.0936 -0.5774¢ ~-0.9271 -0.948%53 -0.989§ -1.0028

DOUBLE LAP JOINT MODEL W/0 FRICTION
BOTH DOUBLERS HAVING A CRACK LENGTH OF (+1l4R)

NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG = 1953.12S
coL 1 2 3 4 ] 6
ROW

1 1.2346 0.8S979 0.7442 0.9554 1.0663 1.0382
2 1.2626 0.9134 0.6704 (0.9975) 1.0783 1.0271
3 -1.1769 -0.937% -0.8091 -0.9610 -1.0377 ~1.0237
4 -1,1348 -0.9507 -0.8883 -0.9482 -1.0058 ~-1.0133
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LBS.)

1.0643
1.0571
-1.0882

-1.0867

LBS.)

7
1.0657
1.0871

-1.0867
-1.088¢%

LBS.)

7
1.0610
1.0491

-1.0834
-1.0597




Table 13 shows that the load distribution among the fastener rows is quite uniform in the

intact joint. As shown in Table |3, analyses were made for crack lengths A|= 2R, 4R, 6R,
I0R, 12R, and 4R, The crack lengths A| = 6R and I4R correspond to one and two
ligments broken. The data in Table 13 are plotted in Figure 88 to show the change of row
?  fastener loads for various crack lengths. Compared to the single-shear lap-joint
specimen, there is quite a substantial load variation in rows 3 and 4. This effect occurs
because rows 3 and 4 are closer to the local loss of stiffness due to crack growth in row 2
than they are in the single-shear lap-joint specimen. The normalized fastener loads for
fasteners No$. 4 and 3 are curve-fitted into the following expressions.

P A Aq
4_ - 0.96417 — 0.02154 —- for =< 6 (92)
Pave '
p A Aq
4 _ - 0.85854 + 0.023745 (= — 8) for =-> 8 93)
Pave '
P A A
53— - 0.85554 — 0.03013 (- — 8) for —-> 8 (9%)
AVG '

For the case with friction,the snring constant for each row of fasteners are:

row | = 0.6520E6 Ib/in.
row?2 = 07277E6 1b/in.(11.6% increase w.r.t. row |)
row 3 = 0.6520E6 Ib/in.
row 4 = 0.6520E6 Ib/in.

Seven models corresponding to the seven combinations of crack lengths shown on page 96
have been analyzed. It should be mentioned that there are two pairs of faying surfaces
associated with a fastener. Therefore, the total frictional force in the double-shear lap-
joints is twice that in the single-shear lap-joints. Table 14 shows the normalized fastener
load distribution for various crack lengths. The data in Table 14 are plotted in Figure 89
for the row 2 fasteners. The figure shows that there are substantial changes in fastener
loads as the crack grows. Table [4 show that the loads of fastener Nos. 3 and 4 in rows |

and 2 drop to almost zero after two ligments are broken. This phenomenon is similar to
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TABLE 14, NORMALIZED FASTENER LOAD DISTRIBUTION
OF DOUBLE-SHEAR LAP-JOINT SPECIMEN--WITH FRICTION

DOUBLE LAP JOINT MODEL W/ FRICTION

INTACT DOUBLERS, KRX(2)=0.7277E6 (11.6% INCREASE)

NORMALIZED FASTENER LOADS, PI1/PAVG, (PAVG = 1906,250 LBS.)

coL b 2 3 4 8 6 ?

ROW
b 1.0933 0.9634 0.9562 0.9581 0.9560 0.9674 1.0940
2 1.0840 0.9600 0.9523 (0.9518) 0.9519 - 0.9679 1.0B46
3 -1.0891 -0.9733 -0.9596 -0.9580 -0.9598 -0.9738 -1.088S
4 -1.0878 ~0.9665 -0.9620 -0.9651 -0.9620 -0.9663 ~1.0877

DOUBLE LAP JOINT MODEL W/ FRICTION

BOTH DOUBLERS HAVING A CRACK LENGTH OF (+02R)

NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG = 1906.250 LBS.)

coL 1 2 3 4 5 6 7

ROW

1 1.1062 0.9784 0.9551 0.9198 0.9638 0.9802 1.1037
2 1.0943 0.9740 0.5708 (0.8509) 0.9726 0.9795 1.0916
3 -1.0982 -0.9827 -0.9555 ~0.9242 -0.9638 -0.9822 ~1.0955
4 -1.0971 -0.9705 -0.9539 -0.9505 -0.958% -0,8714 -1.0953

DOUBLE LAP JOINT MODEL W/ FRICTION

BOTH DOUBLERS HAVING A CRACK LENGTH OF (+04R)

NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG = 1906.250 LBS.)

coL 1 2 3 4 5 6 7

ROW

1 1.129¢ 0.9969 0.9173 0.8506 0.9743 0.9%70 1.11%58
2 1.1116 0.9959 0.9772 (0.7844) 0.9962 0.9943 1.1001
3 ©1.1144 -0.9973 -0.9367 -0.8823 -0.9731 -0.5941 -1.1048
4 -1.1127 -0.9752 -0.9380 -0.9298 -0.9572 ~0.97%92 -1.1082

DOUBLE LAP JOINT MODEL W/ FRICTION

BCTH DOUBLERS HAVING A CRACK LENGTH OF (+06R)

NORMALIZED FASTENER LOADS, PI1/PAVG, (PAVG = 1906.250 LBS.)

coL 1 2 3 4 S 6 ?

ROW

1 1.2166 1.0485 0.7495 0.7472 1.0243 1.0427 1.1422
2 1.1815 1.08B71 0.7467 (0.7426) 1.0615 1.0326 L2179

3 -1.1747 -1.0373 ~0.8211 -0.8132 -1.0068 -1.0250 ~1.1245S

4

-1.1663 -0.9816 -0.B799 -0.8780 -0.9609 -1.0019 ~1.1289
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TABLE 4. NORMALIZED FASTENER LOAD DISTRIBUTION
OF DOUBLE-SHEAR LAP-JOINT SPECIMEN -- WITH FRICTION (CONT'D)

DOUBLE LAP JOINT MODEL W/ FRICTION
BOTH DOJBLERS HAVING A CRACK LENGTH OF (+06R,-02R)
NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG = 1906.250 LBS.)
coL 1 2 3 4 5 6 7
ROW
1 1.2591 1.0896 0.7291 0.62%¢ 1.0381 1.0880 1.1769
2 1.2136 1.1323 0.7650 (0.4800) 1,1223 .1.0737 1.1437
3 -1.2034 -1.0679 -0.8098 -0.7103 -1.0060 -1.0536 -1.151S
4 -1.1957 -0.9963 -0.85%7 -0.8302 -0.9423 -1.0164 -1.1569
DOUBLE LAP JOINT MOPEL W/ FRICTION
BOTH DOUBLERS HAVING A CRACK LENGTH OF (+1CR,-04R)
NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG = 1906.250 LBS.)
coL 1 2 ‘a 4 5 6 7
ROW
b 1.4038 1.1772 0.5690 0.3942 1.0250 1.1781 1.2516
2 1.3303 1.2813 0.4753 (0.2777) 1.2179 1.1619 1.1977
3 ~1.3038 -1.1226 -0.6815 -0.5586 -1.0131 -1.1195 -1.203C
4 ~1.2839 -1.0078 -0.7826 -0.7371 -0.9204 -1.0534 -1.2126
DOUBLE LAP JOINT MODEL W/ FRICTION
BOTH DOUBLERS HAVING A CRACK LENGTH OF (+12R,-06R)
NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG = 1906.250 LBS.)
coL 1 2 3 4 5 6 7
ROW
1 1.6739 1.2715 0.2773 0.0000 0.7714 1.3758 1.4745
2 1.5558 1.5192 0.2526 (0.1141) 0.9410 1.4197 1.3673
3 -1.4991 -1.2196 -0.5122 -0.2813 -0.8623 ~-1.2682 -1.35S2
4 -1.4560 -1.2431 -0.6613 -0.5385 -0.B174 -1.1182 -1.3656
DOUBLE LAP JOINT MODEL W/ FRICTION
BOTH DOUBLERS HAVING A CRACK LENGTH OF (+l14R,-06R)
NORMALIZED FASTENER LOADS, PI/PAVG, (PAVG = 1906.250 LBS.)
coL 1 2 3 4 5 6 7
ROW
1 2.0889 0.9896 0.0000 0.0000 0.8606 1.5109 1.5320
2 2.0053 1.1986 0.1110 (0.1034) 1.0626 1.5472 1.3983
3 -1.7924 -1.9807 -0.2318 ~0.1994 -0.5274 ~-1.3620 -1.4045
4

~1.6570 -0.9785 -0.4806 ~0.4470 ~0.8B370 -1.1784 -1.4233
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DOUBLE LAP JOINT MODEL W/ FRICTION

BOTH DOUBLERS W/ EQ CRACK LENGTHS IN ROW 2
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that observed in the single-shear lap-joint specimen. When the cracks become long
enough, fastener Nos. 3 and 4 in rows | and 2 transfer very little of the applied load due
to the local loss of stiffness. The slight load transfer in these fasteners was almost
negated by the faying surface frictional forces. The normalized fastener loads for

fastener Nos. 3 and 4 are curve-fitted into the following expressions.

P4 _ 003654 — 0.034705 2] for 2 (g

P4 . (07426 - 0.02815 (=] _ 8 ar A1 a2 g
PAVG . -V, ( R - )] (1.0 + 0.1408 _R—), for—R- = 8 an R (96)
P3_ . (07467 —0.1079 (=) _g Az M s B2 ¢
PAVG . —-0. (—F-(— - 8)] (1.0 +0.01888 _R_)- for-ﬁ— = 8 an R S (97)
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4.0 STRESS CONCENTRATION FACTORS

According to Equations (2) and (3), the stress concentration factors due to remote stress
(Ktg) and fastener load (Ktp), are required to calculate stress severity factor, k, which is
used in the crack initiation analysis. The kig and kih for the pertinent configurations are
given in section 4.1. These configurations are applicable to all the members in a specimen

assembly for all Task IV structural test specimens.

In view of the similarity between the stress intensity factor and the stress concentration
factor, the compounded solution method is also adopted to obtain stress concentration
factors. The correction factors to account for various structural boundaries are
considered to be the same as those for stress intensity factors. The two-dimensional
finite element analyses were performed to validate some of the stress concentration

factors obtained by the compounded solution method.

4.1 The kg and ki, for Pertinent Configurations
4.1.1 A Circular Hole

The ktq for a circular hole, as shown in Figure 90, is given in Equation (98).

ktg-1 = 3.0 - Cwaa(b) (98)

where CRfwa(b) is the finite width correction factor as given in Equations (66a) and (66b).
Note that the "a" in Figure 31-a shall be replaced by "R" in Figure 90.

The case of the bearing stress concentration factor due to fastener load (kip), as shown in
Figure 91, was investigated by performing several finite element analyses to obtain a
realistic solution. A detailed description of the finite element analysis and discussion
regarding to the current solution is given in Section 4.2. The results are summarized
below. Equation (99) shows that for E/D>> 2, ktb—l equals 0.8349 for an infinite plate.
This result is in contrast to the common belief that as the plate width approaches infinity,
the value of k4. | approaches 1.0.

d d 2 d 3 E o5y (99)
2 3 E
d g d E_,
ktb-1 = 1.2069 + 0.7599 (—vv-) —1.4748 ( w) + 71797 ( ~ ), 5 (o0
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h.1.?2 A Circular Hole With A Crack

The configuration shown in Figure 92 can be modeled as an ellipse.

ktg-z = (1 +2v A/R) - CRshape . Cwab (1o

I I I R, 3
CRshape = 1+ g [ Sin " (1 -3 (102)
where CRfwb is the finite width correction factor and is available from Equation (66) And
(102) given by Brussat et al (Ref. 3). CRghgpe is to account for the difference between an

ellipse and a cracked hole.

-----

Figure 92. Cracked Fastener Hole in Finite Plate - Remote Stress

For the case of fastener load shown in Figure 93, the similarity shown in Figure 94 can be
applied to obtain ktp for Figure 93. The relationship among the configurations shown in

Figure 94 is given in Equation (103). The desired ki is given in Equation (104).

(kep)a  _ Kp
(ktb)C - KD (|03)

K
kb2 = (Kepla = (K—z-) ke (106)

where KB and KD are available from page 2.32 of Ref. 20, and (ktb)C is given in Equation
(99) for £/D >>2 and Equation (100) for E/D = 2.
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4.1.3 Two Holes Connected By A Slot

The ktq for the problem of two holes connected by a slot under remote stress, as shown in
Fiqure 95, was obtained by Brussat et al (Ref. 3) using the compounded solution method.
This solution was verified to be accurate with the finite element analysis in this

investigation. The kiq is further modified herein to account for the eccentricity as shown
in Figure 3l-a,

JR/4A

kigs = (1+2/ATR) - (sec 22 )  CRwa(b) (105)

where CRfyq(b) is available from FEquations (66a) and (66b) for the finite width
correction.

o
4 4 4
w
R~~~ -~ ~

Figure 95. Two Holes Connected By A Slot - Remote Stress

For the case of fastener load shown in Figure 96, the similarity principle shown in Figure
97 is used to obtain kip.

(ktb)A _ (ktb)B (106)
Ke Kp

Ke
kip-3 = (kepla = (—KT) } (kep)g (107

where K¢ and Kpy are available from Ref. 20, and {(k4p)3 is available from Equation (99)
for £/D>>2 and Equation (100) for E/D = 2. Several finite element analyses (described in
Section 4.2.2) were performed to validate Equation (107). The results from the
compounded solution method are within |1.8% higher than that from the FEM as shown in
Table 17. It needstokemention that Equation (107) is for load P only. Superposition
principle needs to be.opplied to obtain kth_3 due to both Pj and P2 shown in Figure 96.
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4.1.4 A Crack Emanating From An Internal Notch

The configuration for a crack emanating from an internal notch under remote stress, as

shown in Figure 98, can be modeled as an ellipse. Equation (101) is applicable to this
configuration.

R LTI s\\
-~ //

i el
b, by

Figure 98. Crack Emanating From An Internal Notch - Remote Stress

For the case of fastener loads, as shown in Figure 99, the similarity illustrated in Figure
100 was used to obtain k¢h. In this case, Fquation (107) is applicable.

Figure 100. Illustration of Similarity for Figure 99
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4.1.5. An Edge Notch

The kig for an edge notch in a semi-infinite plate is given on page 19.13 of Ref. 20. The
solution is modified with the finite width correction factor to obtain kigq for Figure 101.

(108)

1 ) 25 Cwaeg

kig—4 = (1+2JVAJR) - [1+0.122 (1+c/a CRoweq

where CRfweqg and CRswegq are given in Equations (70) and (72), respectively.

i
e——hH——>

L~
#i#

Figure 101, Edge Notch - Remote Stress

4.1.6 Fastener Tilting and Deflection

Barrois (Ref. 27) has used beam on elastic foundation theory and Timoshenko's beam
theory to solve the stress concentration factor due to fastener tiiting and deflection
(Ktd). He has given a system of simultaneous equations as a function of plate thickness,
Young's moduli, fastener diameter and Poisson's ratio. The effect of shear force on beam
deflection is considered in Timoshenko's beam theory, whereas it is not considered in
conventional beam theory. Unless shear forces in short beams are considered, beam on
elastic foundation theory will provide unconservative values of kid. It is noted that shear

forces have an insignificant effect on long beams.
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The Barrois imethod was used to calculate kg for various combinations of thicknesses in
the lap-joints shown in Figure 102. The calculation was based on aluminum plates and
steel fosteners. The calculated kid are shown in Table 15 glong with the data reported in
Ref.3. In general, Barrois's method gives higher values of kiq than Ref. 3. This is

expected as a consequence of Timoshenko's beam theory.

TABLE 5. COMPARISON OF kg

Single-Shear
kid for Plate | kiq for Plate 2
1o/t t)/d Ref. 3 This Study Ref. 3 This Study

1.0 0.50 1.05 1.5 1.05 115
1.0 0.60 1.09 1.24 1.09 1.24
1.0 0.75 1.21 .44 1.21 .44
1.0 1.00 1.50 1.98 1.50 1.98
0.75 1.00 1.43 |.88 1.23 1.49
0.53 1.00 1.35 1.77 1.00 1.21

Double-Shear

:l kid for Plate | kid for Plote 2

L 219/t t/d Ref. 3 This Study Ref. 3 This Study
f 1.0 0.75 1.04 1.07 1.04 1.07
L 1.0 L 1.00 1.07 116 1.07 .16

d
_L —.12,“ R 1_’1 - _?—Li
1 T2
4 Y i 1 3! L ; A
T ﬁth T 1 gt

Fiqure 102. Single-shear and Daubla-shear !an-joints
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The Barrois method was used to calculate kig for various combinations of thicknesses in
the lap-joints shown in Figure 102. The calculation was based on aluminum plates and
steel fasteners. The calculated kidq are shown in Table |5 along with the data reported in

Ref.3. In general, Barrois's method gives higher values of kiq than Ref. 3. This is
expected as a consequence of Timoshenko's beam theory.

TABLE 5. COMPARISON OF kiqg

Single-Shear
kid for Plate | kid for Plate 2
1o/t t/d Ref. 3 This Study Ref. 3 This Study

1.0 0.50 1.05 I.15 1.05 .15
1.0 0.60 1.09 1.24 1.09 1.24
1.0 0.75 1.21 1.44 1.21 .44
1.0 1.00 1.50 1.98 1.50 1.98
0.75 1.00 1.43 1.88 1.23 1.49
0.53 1.00 1.35 1.77 1.08 1.21

Double-Shear

kid for Plate | kid for Plate 2
219/t ty/d Ref. 3 This Study Ref. 3 This Study
1.0 0.75 1.04 1.07 1.04 1.07
1.0 1.00 1.07 .16 1.07 .16

{
!
A
_f'

_L t j_ | ?:t__tz
4 i i3 by X
T | ; iTtZ T 1 \th

Figure 102. Single-shear and Double-shear Lap-joints
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4.2 The Finite Element Analysis of A Loaded Hole

4.2.1 A Single Hole

The stress concentration factor, kih, due to fastener load, shown in Figure 91, was
analyzed with the 2-D FEM. The 8-noded quadratic quadrilateral isoparametric element,
QUADS in MSC/NASTRAN, was used in the analysis. The interface between the fastener

and hole was realistically treated using an iteration procedure to determine the actual

‘contact point. The "multiple point constraint" technique in MSC/NASTRAN was employed

to simulate the interface. The load was applied to the center of the fastener.

Analyses were performed for two E/D ratios and various D/W ratios. Figures 103 and 104
show examples of the FEM models. The shaded region represents the fastener. There is no
clearance between the hole and fastener. The results are shown in Table 16. In the
table, ktb-max is defined as the maximum principal stress divided by the average bearing
pressure and kth-900 is defined as the principal stress at ¢ = 90° divided by the average
bearing pressure. The numerical results have been curve-fitted into two expressions as
shown in Equations (99) and (100). Except for the case of D/W = 0.5, kip_max occurs at
0 = 909 thus, kth-max equals ktb-900. For D/W = 0.5, ktb_max occurs at 95.6259;

ktb-max is slightly larger than ktb-900. The E/D ratio has a great effect on the ki as

indicated in Table 16. However, the effect of E/D diminishes when D/W is larger than
0.375.

Analyses were also performed to investigate the effect of loading on k. Figure 105
shows the models used in the analysis. The hole in Figure 105-a and 105-b is subjected to
a uniform internal pressure on a half circle to simulate the fastener load. The hole in
Figure 105-c is subjected to a uniform internal pressure on the entire circle. The kip for
each case is shown in Table 16. It is interesting to observe that (i) for Figures 105-a
and 105-b, kth_-max is much larger than kip-90o; (ii) for the same D/W ratios, the kip_900

for the uniform internal pressure case is much smaller than the kih-900 for actual

fastener loading and; (iii) for actual fastener loading, the kib-max is the same as the ktb-

900. For the case of Figure 105-c, the kip is 1.006 which is very close to the theoretical
value 1.00.

The FEM result of kib_900 for Figures 105-a and 105-b can also be obtained by the
superposition principle shown in Figure 106. For the case of an infinite plate, the reactive

remote stress in Figure 106 approaches zero; accordingly, the kih-900 equals 0.5.
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However, FEM results (Table 16) indicate that the ki,_90o for actual fastener loading is
N.917 for the case of D/W = 0.05 which approaches an infinite plate. Therefore, the

uniform internal pressure shown in Figure 106 is not appropriate to simulate the fastener
loading for determining ki mainly because of the fastener-hole contact problem involved.
The important point to be emphasized is that the prevailing concept of kyh_900 being

equal to 1.0 for an infinite plate is misleading.

TABLE 16. FEM RESULTS OF k;3p FOR A SINGLE HOLE

D/W E/D Ktb-max Omax kib-900 | Kib-900(Ref. 27
(degree)

Actual Fastener - Hole Contact (Figures 103 and 104)

32 0.917 900 0.917 1.055
0.050

2 1.244 900 1.244

32 1.044 900 1.044 1.161
0.125

2 1.285 900 1.285

32 1.123 900 1.123 1.234
0.167

2 1.333 900 1.333

32 1.299 900 1.299 1.4al7
0.250

2 1.417 900 .417

32 1.639 900 1.639 1.825
0.375

2 1.662 900 1.662

32 2.130 95.6250 2.115 2.5
0.500

2 2.131 95.6250 2.116

Uniform Internal Pressure on Half-Circle (Figures 105-a and 105-b)

0.050 32 0.942 95.6250 0.579
0.167 32 1.133 95.6250 0.768

Uniform Internal Pressure on Entire Circle (Figure 105-c)

0.050 32 1.006 900 1.006
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Figure 106. Illlustration of Superposition For A LLoaded Hole
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4.2.2 Two Holes Connected By A Slot

The k41, of two holes connected by a slot, as shown in Figure 107, was solved with the 2-D
FEM. The fastener-hole interface was realistically treated as described in Section 4.2.1.
Analyses were performed for five models having different 2A/W ratios. For each 2A/W
ratio, two models with E/D ratio equal to 32 and 2 were analyzed. The results are shown

in Table 17.

| | ¢

¢
Figure 107. Two-Holes Connected By A Slot-Fastener Load

TABLE 17. FEM RESULTS OF k4, FOR TWO HOLES CONNECTED BY A SLOT

Compounded |Deviation
2A/W E/D | ktb-max ®max ktb-900 Solution (%)
(degree)
32 1.242 84.375 1.232 1.324 6.6%
0.050
2 3.222 78.75 2.684 - -
32 1.3330 90.0 1.330 1.442 8.4%
0.125
2 3.216 78.75 2.701 - -
32 1.452 90.0 1.452 1.584 9.1%
0.208
2 3.212 78.75 2.727 - -
32 1.856 90.0 1.856 2.075 11.8%
0.417
2 3.219 78.75 2.932 - -
32 2.604 90.0 2.604 2.864 10.0%
0.625
2 3.855 84.375 3.615 -

The kip obtained with the compounded solution method which is described in Section
4.1.3 is also shown in Table 17. It can be seen that the agreement between the FEM
results and the compounded solutions is within an accuracy of about 12%. Table |7 also
indicates that the E/D ratio has a great effect on kih, but that the effect of D/W on kih
is small for E/D = 2.
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5.0 DAMGRO COMPUTER PROGRAM
A computer program "DAMGRO" (Damage Growth) has been developed based upon the
analytical results described in Sections 2, 3, and 4. The computer program was written in
terms of FORTRAN language. Using the DAMGRO, structural life can be predicted with
any one of the following three methods, namely, (i) crack growth only, (ii) combined crack
growth and initiation, or (iii) crack initiation only. Method (i) - crack growth only and
method (ii) - combined crack growth and initiation will be validated later in Task VIII
" based upon Task 1V structural test result. Improvements, if necessary, will then be made.
Method (iii) is similar to the old fatigue analysis as adopted in the safe life approach; thus
no experimental verification of this method is required in this contract. A user's manual

will be developed after the completion of experimental validation of computer program.

The "DAMGRO" computer program contains |0 subroutines to calculate the stress
intensity factors and six subroutines to calculate the stress concentration factors. The
structural models corresponding to these sixteen subroutines are shown in Figures 108
through 123. The cracks in all of the models can be either a through-thickness crack or a
corner crack. The load on each model can be either remote stress only or a combination of

remote stress and fastener load.
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6.0 CONCLUSIONS

. Two damage tolerance analysis methods have been developed. The first method is
based on the growth of one crack only. The second is based on the combination of crack
initiation and growth. This latter method also deals with the simultaneous growth of two

cracks emanating from the same hole or internal notch.

2. The strain energy density is proposed as the governing parameter for crack initiation
analysis. The load interaction, stress ratio, and material size effect are considered in the

analysis.

3. The stress intensity factors and stress concentration factors associated with simple
configurations representative of airframe structures are integrated, improved, and
simplified. Some of the factors are validated with or obtained from the two-dimensional

and three-dimensional finite element method.

4. Based on the comparison with the results from the finite element analyses, it has heen
shown that the compounded solution method can give quite accurate stress intensity
factors and stress concentration factors provided, appropriate modeling and accurate

ancillary solutions are used.

5. The two-dimensional finite element method is an indispensable tool to analyze fastener
load distributions of lap-joints as a function of crack length. The faying surfaces'

frictional force can also be included in the analysis.
6. The computer program "DAMGRO" has been developed for structural life prediction.

"DAMGRO" has three options to predict structural life: (i) crack growth only, (i)

combined crack growth and initiation, or (iii) crack initiation only.
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