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Introduction i'ttL't ' t

This report summarizes the p impiiQ 9 85 period in

the research effort supported by AFOSR under contract #85 0013.

Four major accomplishments were made during this period in:

1. Microstructure semiconductor research.

2. Electron-degeneracy effects on electron optical phonon energy loss rate

for two- and three-dimensional electron systems.

3. Measurement of deformation potential using photoluminescence in mag-

netic semiconductor alloys Cd,_xMnxSe.

4. Spin polarization and dephasing times of carriers in alloy semiconduc-

tors Cd1,_xMnxSe.

The following describes the four areas in greater detail.

1. Microstructure Research

Band-engineering has produced spectacular photonic devices such as quantum

lasers, photodetectors as well as high speed logic elements.' The intrinsic

asymmetry associated with conduction-band-discontinuity (AEc) and valence-band-

discontinuity (AEv ) at the interface plays and important role in this "hot" field.

For this reason, determining AEc and AEv accurately is of considerable interest

and importance.

We have calculated the AE vs Lz for various quantum well structures using

their AEv as a parameter and various sets of masses for heavy-hole (hh) and

light-hole(lh). It was found that there are always two distinct regions for the

well widths Lz to find AEv accurately from those calculated curves. One region

is called sensitive range (15X<Lz<80) in which AE's are very sensitive to the

chosen value of AEv in spite of various sets of masses for hh and lh. In this

region, it is possible to determine AEv very accurately by fitting AE's to experi-

mental data. The other region (L.>801) is called insensitive range for AE's to

I%
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the value of AEv. By this feature, we can state that it is almost impossible to

S determine AEv accurately using the optical transitions in thick quantum wells.

"1 The calculated result 2 of AE vs Lz for GaAs/(Al,Ga)As structure in fig. 1

was compared with the limited data available in the sensitive range yielding a

good agreement with dingle's 15-85 rule: AEv0.15AEg, where AEg is the differ-

ence of the bandgaps at the interface.

By measuring the AE's for two ultrathin 14.5- and 19.3-1 quantum wells

from photoluminescence spectra' (inset of Fig. 1), we determined band-discontinu-

ities for (Ga,In)As/(Al,In)As structure without any ambiguity which agrees with

Dingle's rule.

Our experimental and theoretical work support Dingle's rule and question the

recent work of Miller at Bell Telephone Laboratories who gives the relationship

of AE.O.4 AEg.

The theoretical AE vs Lz curves can be used to determine the band-discontin-

uities accurately for other microstructures. The key is to use ultrathin wells

(Lz<801).I

.1
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Determination of the band-discontinuity of the heterojunctions
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Fig. 1

AE - The calculated energy separation between heavy-hole and light-hole sub-

bands. The width of the quantum well.(La)

2. Electron Deg.e(neracy Effects on Electron-Energty-Loss Rate for two-and three-

dimensional Electron Systems

Information about the hot carrier energy relaxation in semiconductors is

important for the design and fabrication of high speed and high field ultrasmall

devices. It is crucial to understand the underlying mechanisms which lead to a

much smaller electron-energy-loss rate for two-dimensional (2D) electron system

I
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much smaller electron-energy-los 3 rate for two-dimensional (2D) electron system

5 than for three-dimensional (3D) electron system.

Previous studies s - 9 focused on how electron-phonon interaction is modified

in 2D electron system in order to explain why electron-energy-loss rate for 2D

case is much smaller than 3D case. These studies have generated conflicting in-

terpretations regarding the influence of reduced dimensionality and plasma den-

sity on the electron-energy-loss rates. The conventional calculation of the

rates from Fermi's Golden Rule as numerically calculated by Basu et al. 8 with

and without the effects of degeneracy does not clear up this controversial issue.

We' O primarily focused on the final available energy width for electrons to

be scattered back for each electron system without involving intermediate states

,. and the calculation of electron-phonon interaction matrix elements. The calcu-

lated ratio B of electron-energy-loss rates for 3D and 2D electron systems are

shown in Fig. 2 based on difference of electron-degeneracy for 3D and 2D cases

for different quasi-Fermi-energies (in mev).

The striking conclusions 10  extracted from Fig. 2 enable us to uniquely

explain various experimental results. - 7  The circles indicate our result4 that 8

is about 4 obtained from detailed power balance for a set of single quantum

well. The solid triangle and solid circle are the experimental data from Ryan et

al. 6 as well as Xu and Tang 7 , respectively. Comparing our model to the most

recent experimental data by Shah et al. s , not only the much lower electron-

- energy-rate for 2D than 3D can be explained, but also a quantitative agreement of

the trend of 8 vs Tc can be achieved. This is shown in the inset of Fig. 2.

-- - I-_ -_



-5-

Fig. 2 Electron-degeneracy effects on electron-energy-loss rate

g for two- and three-dimensional electron systems

60 30 to

6 A

~2. A

401 23
2

12 40 60 80 100 120 140

2 0 5

0
40 140 240 340N T (K)

B - The calculated ratio of electron-energy-loss rates for 3D and 2D electron

systems. Tc - The electron temperature.

3. Measurement of Deformation Potential using Photoluminescence Cdl.Mne

Alloys

For the first time, we have pointed out an unique method of measuring opti-

cal deformation potential in semiconductors using laser induced fluorescence. In

CdMnSe (semi-magnetic semiconductor), the substitution of Mn at cation site (Cd),

-, introduces a local pressurized environment. The pressure is equivalent to exter-

,.-.i
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nally applied hydrostatic pressure on pure CdSe. This pressure manifested itself

as optical deformation potential, will cause the conduction band and valence band

to shift in opposite directions with respect to vacuum level. The increased or

decreased bandgap could be monitored using the above bandgap laser photon exci-

tation photoluminescence. This is a first time separate determination of conduc-

tion and valence band deformation potential. In the past only the difference was

measured. This also points out a large valence band deformation potential in

wurtzite crystals compared to the one in zinc blende.

In figure 3, the increase in the bandgap is shown as a function of Mn con-

centration. Up to Mn concentration of 30%, the Mn localized states remain above

the conduction band and the photoluminescence peak shifts are corresponding to

band-band transition. The slope for x<.3 corresponds to joint (conduction and

valence band (1.2 ev/x)) optical deformation potential) for x>.3 the photolumi-

nescence peak is due to Mn (4G)-valence band transition. In this case, the slope

(0.4 ev/x) corresponds only to the valence band as 4G Mn is almost stationary

with respect to the vacuum level. Using the x-ray data of lattice change with

Mn concentration we deduced the conduction and valence band optical determina-

tion potential as shown in the figure.

- -
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Fig,. 3 Bandgap shif ts
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4. Spin Polarization and Dephasing Time of Carriers in Alloy Semiconductors

For over 10 years, it was known that the dipole allowed circularly polar-

ized above bandgap photon can induce a net spin alignment of photogenerated elec-

trons. The observed ratio of spin up:spin down is reflected in the recombination

photoluminescence. Most past work used steady state techniques to estimate spin

alignment. One can now determine the percentage of spin ilignment and spin

dephasing time. The experiments we carried out were with single pulse excitation

>" using Nd:glass laser having pulse width of 6 psec. The time resolved detection

was achieved using high resolution streak camera. This is a major accomplish-

ment.

Here we review the first direct measurements of spin relaxation times in

wurtzite CdSe and semi-magnetic semiconductor CdMnSe. Our past work was on spin

Srelaxation and alignment in GaAs which was previously reported to you.

The figures 4a, b, and c show time resolved photoluminescence from CdSe and

magnetic semiconductor Cd. 9 5Mno. 0 5Se and Cd 0,.Mno.,Se. The photoluminescence has

Sthe degree of polarization on the order of 30% at t=O, which also corresponds to

spin polarization factor of - 30%. Spin polarization factor is defined as p(t) =

nt-n and decays in time with a single exponential. Each curve shows circularn +n

polarized luminescence for 6+ and 6- (right and left handed, respectively). The

measured values of p(O) and spin relaxation time T s in CdSe are - 45 and 30 psec,

respectively. The measured values of p(O) and spin relaxation time Ts in CdMnSe

with 57Mn are 20 and 16 psec, respectively. The measured value of p(0) and spin

relaxation time in CdMnSe with 10 Mn are 28 and 20 psec, respectively. The spin

relaxation in pure CdSe is assigned to a mechanism due to non-centrosymmetric

nature of crystal lattice. In CdMnSe the spin relaxation occurs due to two

,d4

.. . ... , .. .. ... . . .. .. .



equally important mechanisms - one due to non-centrosymmetricity of lattice and

the other due to spin exchange interaction between free electrons and localized

Mn 2+ ions.

The spin relaxation rates are plotted in the figure 4(d) and compared to a

theoretical fit based on spin exchange interaction. More work is needed with

higher concentration of Mn in CdMnSe in order to check the validity of the theo-

retical model.

4.
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Figure 14 Spin Dephasing time and polarization
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