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SUMMARY

The problem of predicting, on the basis of an observed sample of
size n from an inverse Gaussian distribution, a future observation

from the same distribution is discussed. Two prediction intervals that have

been proposed in the literature, one of which is an approximate prediction

interval, are compared using Monte Carlo simulations. The results indicate

that in many of the simulated cases the approximate prediction interval is

superior with respect to larger estimated coverage probabilities and smaller

estimated mean lengths. This is true in particular for n at least 15 and

for 95% and 99% prediction intervals.
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1. INTRODUCTION

The inverse Gaussian distribution has been proposed as a lifetime model,
and its properties have been studied by Chhikara & Folks [1], Chhikara &
Guttman [2], Padgett (5], and Padgett & Wei [7], among others. This model
applies to accelerated life testing and repair time situations where early
failures dominate, and it has a nonzero asymptotic failure rate [1].

Statistical prediction intervals have many applications in quality control

and in reliability problems, and such intervals have been derived for the

ﬁ: inverse Gaussian distribution by Padgett [6] and Chhikara & Guttman [2]

5N :

Ej7 independently. Padgett [6] proposed an approximate prediction interval for
EE: the mean of future observations from the inverse Gaussian distribution.
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Monte Carlo simulation results indicated that his approximate prediction

interval performed very well with respect to coverage probabilities.

Chhikara & Guttman [2] obtained exact prediction intervals for a single future
observation from the inverse Gaussian from both a frequentist and a Bayesian
viewpoint. Their frequentist approach did not always provide two-sided
prediction intervals, however. In this note, Padgett’s [6] approximate
interval will be compared with Chhikara & Guttman’s [2] exact frequentist
approach based on Monte Carlo simulation results.
The pdf of the inverse Gaussian distribution appears in several forms [3].
The form used here is that given by Tweedie [9] with parameters y and A:
£(x;u,0) = (A2mx3)% expl-A(x-u)2/2u%x], x > 0 (u > 0,X > 0).
The mean of this distribution is w4, and X is a shape parameter. The
variance is u3/\, so u is not a simple location parameter. It will be

assumed in section 3 that both u and A are unknown.
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Notation List

MLE Maximum Likelihood Estimator
u,ﬁ mean of inverse Gaussian distribution and its MLE
PPN shape parameter of inverse Gaussian distribution and its MLE
I(u, M) refers to inverse Gaussian distribution with parameters u,X
Y denotes probability level of prediction interval
n,m size of current, future random samples
X1s-++4%n current random sample from inverse Gaussian distribution
; Y1000 ¥p future random sample from inverse Gaussian distribution;
Ei:. :+ independent of X;,...,X,
E:;s in _g X;/n, sample mean
o i=1
o xzv(v) y Cdf point of chi-square distribution with v degrees of
freedom
F (v1,v2) v Cdf point of P-distribution with (vi,vy) degrees of
freedom

Other, standard notation is given in "Information for Readers & Authors” at

the rear of each issue.

2. THE PREDICTION INTERVALS

n
=- ifl ( l/Xi-l/Xn)/n
[1,9]. Tweedie [9] showed that in and \ are independent, in has

The MLEs of uw and A\ are u = in and A%

I(u,n\) distribution, and nk/i has chi-square distribution with n-1
degrees of freedom. Since ?m has I(u,m\) distribution, by a result of
Shuster (8], mA(¥y-u)2/w2¥; has chi-square distribution with one degree
of freedom. Thus, (n-1)mA\(¥p-»)2/(nu?¥,) has P-distribution with

(1,n-1) degrees of freedom. For a value 0 ¢ y < 1, then
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3 2
(Y) HFY(l,n-l)

P =Y. (2.1)

25 S z
U Yh m(n-1)Xx

If w 1is known, (2.1) can be solved for an exact 100v% prediction
interval for Yﬁ, the mean of m future observations from the inverse
Gaussian distribution. However, in the more practical case that yu is
unknown, Padgett [6] proposed an approximation to (2.1) which was simple and

always produced a two-sided prediction interval for Ym given by the roots

of the quadratic equation

§i - c(X)?m + iﬁ = 0, (2.2)

2

c(X) = [(n+m) iﬁ FY(l,n—l)/hm(n—l)i] + Zin.

Denoting the smaller of the two roots by Lj(X) and the larger by U;(X), an
approximate 100y% prediction interval for ?m is (Ll(X),Ul(x)). For me=l,
this method gives an approximate 100v% prediction interval for a single

"future" observation, Yl’ based on the "current" sample xl,...,xn.
Chhikara & Guttman [2] obtained the exact 100y% prediction interval for

the single future observation Yl as (Lz(x), UZ(X))' where

o -1 b -1
LZ(X) = [Vi+Vé ] . UZ(X) = [Vi— 2 17,

v, = 1R+ nFY(l,n—l)/(Z(n-l);\),

1
s . 2.2 272
V2 = (n+1)FY(1,n—1)/((n—l)an) +n Fy(l,n-l)/(d(n—l) A%).

Chhikara & Guttman point out that this procedure does not always provide two-
sided intervals since there is a positive probability that the difference
V,-V, can be negative. In this case, only a lower one-sided interval is

admissible.
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Since the exact procedure of Chhikara & Guttman (2] might not yield a two-
sided interval for Y,, where Padgett’s [6) approximation always gives one,
it is of interest to compare the two approaches. This is done by Monte Carlo
simulations in section 3.

3. COMPARISON OF THE PREDICTION INTERVALS

To compare Padgett’s [6] approximate prediction interval for a single
future observation, Y, from the inverse Gaussian with the prediction interval
of Chhikara & Guttman (2], Monte Carlo simulations were performed to estimate
the coverage probabilities and average widths of the intervals. The procedure
for generating a random number from the inverse Gaussian distribution given by
Michael, Schucany & Haas [4] was used. The simulations were performed as
follows:

i. For given values of n, v and A, 1000 pairs of samples (xl,...,xn),y

were generated.

ii. For each pair of samples, the 100vy% prediction intervals for Y,
(Li(x), Ui(X))’ i=1,2, were computed, and the lengths of the
intervals and the number of intervals containing’ Y were obtained.

iii. The average interval lengths from the 1000 pairs of samples were com-
puted and the proportions of intervals containing Y were obtained
as estimates of the mean interval lengths and coverage probabilities,
respectively.

iv. Steps i-iii were repeated for several values of n,u,A and for
vy = .90, .95, .99.

In the simulations, when A was small, a significant proportion (often
as high as 90% for X = .25) of the samples did not yield a two-sided interval
from Chhikara & Guttman’s [2) procedure. In addition, the estimated coverage

probabilities for samples resulting in two-sided intervals were quite low for
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small n. Tables 1-3 show some of the simulation results.

Surprisingly, as vy increases, the approximate prediction interval pro-
posed by Padgett appears to be superior to the interval of Chhikara & Folks.
In all of the cases simulated, Padgett’s interval had larger estimated coverage
probabilities and/or smaller estimated mean widths, and for larger n values

had smaller estimated mean widths. Also, the estimated coverage probabilities

for Padgett’s interval were always close to .
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Table 1
Simulation Results for y = .99
Average Width Coverage
Probability
U Y n C&G Padgett CsG Padgett
1 0.25 5 30.225 208.308 0.806 0.983
1 0.25 30 583.178 38.365 0.991 0.989
3 0.25 5 36.460 3430.014 0.933 0.977
3 0.25 30 1895.497 368.060 0.957 0.990
1 1 15 103.805 12.354 0.988 0.993
1 4 5 47.602 9.157 0.986 0.988
1 4 15 4.568 4,084 0.993 0.994
1 4 30 3.714 3.531 0.990 0.991
5 1 15 550.348 332.821 0.947 0.990
S 4 5 403.608 220.023 0.945 0.989
5 4 30 96.125 62.778 0.987 0.992
Table 2
Simulation Results for y = .95
Average Width Coverage
Probability
7] A n C&G Padgett C&G Padgett
1 0.25 5 25.999 73.393 0.828 0.942
1 0.25 30 849.066 21.850 0.945 0.962
g 3 0.25 S 28.096 1441.764 0.759 0.948
0 3 0.25 30 577.047 226.021 0.932 0.957
¥ 1 1l 15 11.995 7.161 0.951 0.956
. 1 1 50 6.449 5.964 0.963 0.960
- 1 4 5 30.269 4.420 0.946 0.959
‘P 1 4 30 2.391 2.387 0.937 0.944
E:j‘ 5 1 15 782.390 198.000 0.940 0.973
}}}; 5 1 30 776.896 138.490 0.948 0.948
(o 5 4 5 200.971 100.599 0.905 0.956
Eij- 5 4 30 45.309 37.529 0.961 0.942
oo
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Table 3
Simulation Results for y = .90

(1]

(2]

(3]

(4]

[5]

(6]

(7]

Ta ot o m ms ot e ot ms

Average Width Coverage
Probability
7 A n C&G Padgett CaG Padgett
1 0.25 5 30.249 46.122 0.705 0.897
3 0.25 5 24.420 739.880 0.738 0.895
1 4 15 2.089 2.027 0.903 0.893
5 4 15 51.448 31.853 0.903 0.887
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