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1.0 SUMMARY

We have examined some of the methods available for use in the labora-
tory to measure the inelastic attenuation of seismic waves in rocks. We con-
clude that the forced swept resonance technique is best suited for measuring the
Q of linear anelastic materials, and for defining the transition amplitude from
linear anelastic behavior to nonlinear behavior. For evaluating losses in

-

materials at high amplitudes, which exceed the elastic 1imit, the best technique

s
.

requires simultaneous measurements of the time functions of stress and strain

el S B T
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e
[

under conditions that simulate seismic loading as closely as possible.

YT
4

We have also studied the transition region from linearity to nonlinear-

ity in a test specimen of Westerly granite at elevated effective pressures uysing
the mechanical resonance approach. Nonlinear effects, both in flexure and in
shear, are observed when the strain exceeds 10‘6, increasing slightly with in-
creasing effective pressure, These transition amplitudes probably represent
lower limits on the amplitude of transition from linear to nonlinear behavior
for a compressional pulse propagating through the near-fields of an explosion.

The details of stress-strain hysteresis loops have been examined for a
number of different rock specimens using alternating compressive and tensile
stresses., Our experimental results support the following general observations:
{1) rocks have a larger effective modulus in compression than in tension;

o {2) most of the energy lost during a full cycle of loading occurs as a result of

oS
13

strain in extension, since the hysteresis loops are smaller in compression than
in tension; {(3) stress-strain hysteresis loop traces appear to be independent of

’

.

frequency. These observations indicate a loss mechanism associated with inter-
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granular friction, In compression, intergranular sliding is apparently restric-
ted by the impingement of opposing crack faces, while in tension this does not
occur, Thus, laboratory measurements of attenuation that use alternating com- ég

1Y
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R
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pressive and tensile loads may overestimate the attenuation of high amplitude
compressive waves with the same maximum strain,
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2.0 INTROCUCTION

The mechanics of wave propagation through the near field of an explo-
sive seismic source are not completely understood, particularly in the peak
strain amplitude range between 1074 and 1070, The most complete data sets that
describe free-field wave propagation as a function of scaled distance (distance/
yie1d1/3) in this strain amplitude range have been obtained for explosions in
polycrystalline salt, The data base includes measurements from (a) the 5.3 kT
nuclear event, SALMON (Perret, 1967; Trulio, 1978); (b) the medium to large
scale chemical explosions of the COWBOY experiments, which took place in a
naturel salt dome (Trulio, 1978, 1981); and (c) a series of small scale chemical
explosiors in pressed polycrystalline salt in the laboratory (Larson, 1982).
When all available data are combined, it appears that wave propagation satisfies
cube root of yield scaling, That 3is, the decay of peak particle velocity and
displacement can be defined as a function of distance/yie1d1/3 (Trulio, 1978,
1981; Larson, 1982). This appears to be the case, even though available data
cover approximately 10 decades in yield, 4 decades in peak particle velocity,
and 4 decades in frequency. However, the data fit a line that decays much
faster than r'l, which should be the case if the material behaves in a perfectly
elastic manner, Thus, the behavior of salt in the range of available free field

measurements, to strains as low as approximately 7 x 10’6, cannot be regarded as

E; perfectly elastic (Trulio, 1978, 1981). Because of the uncertainties regarding
:f the amount of erergy that can be dissipated as a seismic pulse propagates at
?; intermediate strains, Bache, et al (1981) have questioned the usefulness of
& reduced displacement potential (RDP) calculations hased on close range data for
: the purpose of defining a seismic source function,
The exact nature of attenuation in the near field of an explosive

: seismic source remains a controversial subject. In fact, the evidence regarding
h} the issue of linearity vs nonlinearity appears to be a bit ambiguous. Larson
E? {1982) measured a Q of 12.5 near 10-3 strain, and a Q of 24.9 near 6 x 104
. strain, in the laboratory using small scale chemical explosions in pressed salt.
;3 The fact that 0 is ampiitude dependent is evidence for nonlinear response, How-
n’ ever, Larson also demonstrated an approximately linear superposition of wave-

-
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forms at strains higher than 10'4, which suggests near-linearity. The experi-

mental results reported in Tittmann (1983) using resonating bars of natural
halite indicate that the linear anelastic Q of halite is quite high, near 500,
with a transition to an amplitude dependent nonlinear Q at strain amplitudes
greater than approximately 2 x 106, Burdick, et al. (1984a) have argued that
it is possible to model a seismic source function for the Amchitka tests,
detonated in volcanic material, assuming linear behavior in the near field just

5:: outside the spall zone {~ 700-1200 m/kT1/3). Furthermore, Burdick, et al

- {1984b) contend that the same model can be used to predict the first vertical
Eflj pulse arrival and rise times even within the spall zone. They used tnhe concept
E:;i of a compressional elastic radius, which in fact may be considerably smaller

f". than a tensional elastic radius, and which must extend at least as far as the

t outer limits of the spall zone. Minster and Day (1985) recently re-examined the
; COWBOY data set, and concluded that it is possible to explain simultaneously the
L radial decay of peak displacement and peak velocity by either (a) a linear

anelastic model with low Q (~ 20} or (b) a nonlinear model with amplitude-

Rl

dependent ), MacCarter and Wortman (1985) conclude that the free-field motion
measurements from the SALMON event are consistent with an amplitude-independent

Q0 of about 10. In any case, these amplitude-independent Q values are too low to

represent the linear anelastic Q of salt accorcdiny to the results of Tittmann
{1983},

In a more recent study of explosive-induced wave propagation in wigget
sandstone, Larson {1984) reported Q measurements between 38 and 20 at strains
between 2 x 10~% and 2 x 10-2, Although low strain (< 10'6) attenuation meas-
urements are not available for Nugget sandstone, Tittmann et al (1981) and
Winkler et al (1979) report relatively high Q values (> 100) for dry Berea and
Boise sandstones under linear conditions,

While generally it is acknowledged that ( is defined rigorously only
when the material through which a wave propagates behaves linearly, it is common
{(McCarter and Wortman, 1985; Minster and Day, 1985) to assume for theoretical
purposes that "“nonlinear ()" can be defined using the equations of Mavko (1979)
and Stewart, et al (1983):
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0-1

(0,6) = Q7 (W) + ae (1)

where 0‘1 is nonlinear attenuation, 00‘1 is linear anelastic attenuation, w is
frequency, a is a constant, and ¢ is strain. This equation considers the com-
bined effects of Coulomb-type friction from many intergranular contacts on the

energy dissipated during one full elastic wave cycle. In their derivations, Q’1
was defined as

0l = (172 =) (aH/W) (2)

where AW is the energy dissipated in one full cycle, and W is the peak strain
energy stored per cycle,

One technique used in the laboratory to estimate nonlinear Q involves
the forced resonance of bars, The resonating bar approach offers a particularly
sensitive tool for detecting the onset of nonlinearity, even at very low strains,
The data reported by Tittmann (1983) indicate that the intrinsic linear attenu-
ation of dome salt is quite low (Q > 500), and that the onset for nonlinear be-
havior is near 2 x 1070 strain, corresponding to approximately 1 bar of stress.
Similar behavior has been reported for other rock types, including granite,
limestones, sandstones, and miscellaneous igneous rocks (cf Mavko, 1979; Stewart
et al, 1983). These measurements suggest that nonlinear response should persist
to large scaled distances from explosions, on the order of 104 m/kt1/3. Fur-
thermore, the low Q values calculated by Larson (1982) [laboratory measure-
ments], Trulio (1979, 1981) [COWBOY], Minster and Day (1985) [COWBOY] and
McCarter and Wortman (1985) [COWBOY, SALMON] from free-field measurements in
salt are much lower. This constitutes additional evidence of nonlinearity in
available free-field measurements,

.

;[ The experimental results obtained in the previous program (Tittmann,
;?} 1983) indicate that natural dome salt is rather ideally behaved, Linear
?S‘ anelastic behavior is indicated when (1) the attenuation and resonant frequency
%:; are independent of vibration amplitude and (2) a proportionality exists between
aa driving voltage and vibration amplitude. At elevated effective pressures linear
A anelastic behavior is observed at strain amplitudes below about 2 x 10'6, corre-
N
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s sponding to stresses of about 1 bar, The linear anelastic Q for a dry natural
Q%ﬁ dome salt specimen was quite high (~ 500 in extension and ~ 1000 in torsion),
) apparently independent of pressure up to 6.8 x 107 Pa, and very slightly de-
;f‘ pendent on frequency between ~ 80 Hz and ~ 480 Hz. Nonlinear behavior, as re-

flected in an amplitude-dependent Q, was observed at strain amplitudes above

2 x 10'6, at all effective pressures to 6.8 x 107 Pa (corresponding to burial
depths of ~ 2.4 km), The behavior of pressed salt contrasted with that of
natural dome salt. Weakly nonlinear behavior persisted to very low amplitudes
(below 10'8), corresponding to stresses of approximately 0,01 bars, Strongly
nonlinear behavior is observed at strain amplitudes higher than 1076, under
ambient pressure conditions attenuation in pressed salt was sensitive to the
amount of moisture adsorbed either on the surface or within the interior of the
specimen,

The previous study (Tittmann, 1983) raised a number of questions re-
garding the experimental methods used to measure nonlinear Q, and to parameter-
ize the nonlinear inelastic properties of rocks. Solutions to some of these
issues were explored in this program and are contained in this report,
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3.0 Q AND MODULUS MEASUREMENT TECHNIQUES

3.1 Resonance Methods

3.1.1 Linear Regime

Several of the issues addressed in tnis report relate to using resonat-
ing bar measurements for estimating P- and S-wave velocity. The resonance meas-
urements are normally carried out with relatively thin, inertially loaded speci-
mens and involve Q and modulus measurements corresponding to at least two modes
of vibration: flexure or extension, and torsion. Calculations of seismic body
wave properties from laboratory measurements are reasonably good provided that
(1) the resonator is properly designed and constructed, and (2) the response of
the specimen to loading is macroscopically homogeneous.

The apparatus which was used in the previous program (Tittmann, 1983)
has also been used for parts of this study. It is illustrated schematically in
Fig. 3.1. This apparatus is used to generate vibrations and to measure their
amplitude in both flexure and torsion, 1Its design has evolved from earlier
models to include the following features which are essential for obtaining reli-
able measurements of modulus and attenuation: (1) a very stiff clamp-arm-rotor
assembly designed to minimize bending moments in any part of the apparatus other
than the test specimen, (2) rigid mechanical coupling between the test sample
and the rest of the resonator assembly, and (3) minimal internal friction within
the apparatus itself during sample resonance, The resonator has been designed
to minimize instrumental corrections. However, careful measurements have been
performed using low dissipation standards with known modulus in order to
quantify instrumental/system factors, such as aerodynamic drag, which must be
incorporated into modulus and attenuation calculations.

3.1.2 Nonlinear Regime

Although the resonant bar-type measurements are well suited for measur-
ing attenuation and modulus in the linear anelastic regime, and for defining the
transition from Yinear to nonlinear behavior, several other issues need tu be
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Fig. 3.1 Schematic illustration of the resonant bar apparatus used for studies
of dynamic modulus and attenuation as a function of strain amplitude,

considered before one can apply the high amplitude (nonlinear) } measurements to
studies of nhigh amplitude seismic pulse propagation in the near field.

1. Forced Resonant Vibrations - Q can be calculated using the formula

f
_ R
Q=7

where fp is the resonant frequency, measured at peak amplitude, and Af is the
bandwidth of the peak, measured at half-power amplitude, It is well established
{cf, Nowick and Berry, 1972) that this is a sound technique for measuring 0 in a
material with linear response, However, this may not be a particularly satis-
factory technique for measuring energy dissipation in a material with properties
that depend on vibration amplitude., In most rocks, when vibrations exceed the
elastic limit the modulus decreases with increasing vibration amplitude (Mavko,
1979; Tittmann, 1983). This is probably due to frictional sliding along micro-
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cracks, a nonlinear and nonrecoverable process. The shape of the resonance peak
at low amplitude is nearly symmetrical. At high amplitudes the peak becomes
severely skewed toward the high frequency side. This effect, illustrated in
Fig. 3.2 for natural dome salt at 0.68 MPa effective pressure, is a result of
the decrease in modulus with increas-

ing vibration amplitude, and has been sche 2ese:
. ] ) RESONANCE PEAK SHAPE.
observed at high amplitudes in all but DOME SALT
HIGH AMPLITUDE 1

the most tightly consolidated rock
types. This result casts suspicion on
the usefulness of the swept forced
resonance technique for obtaining re-
1iable measurements of Q and modulus

at high nonlinear amplitudes, t —+ +
g
=}
E
-t
a
3
<
z
[=}
=
g
Fig. 3.2 e
g >

-y i <

Resonance curve shapes at various LOw AMPLITUDER |

strain amplitudes., Low amplitude
vibrations within the linear regime
are generally nearly symmetric, as
shown in the lower frame, Skewness is
apparent at higher nonlinear ampli-
tudes (center and top frames),

375 400 425
FREQUENCY

2. Homogeneity of Strain - Another probiem with measuring nonlinear Q
involves the variation in strain amplitude throughout the speci-
men. In the previous Study (Tittmann, 1983) we reported measure-
ments of Q as a function of strain amplitude, which was calculated
at a position of maximum strain in the specimen. In these meas-
urements first-order strains varied from zero to the value actu-
ally reported for both torsional and flexural vibrations, depend-
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ing on location within the specimen, Maximum strain amplitude is
defined for torsion and flexure in Figs., 3.3 and 3.4, respectively.
Minster and Day (1985) discuss this issue in more detail and esti-

mate the magnitude of its effect on the attenuation-amplitude
curves,

8Ca4 209106

TORSION STRAIN AMPLITUDE

8Cha 2898:

FLEXURE STRAIN AMPLITUDE

-
}_ L
/ L‘éL
\ \/
T
P
¢ 219 ‘MAx=T
MAX = ——
L
Fig. 3.3 Definition of strain Fig. 3.4 Definition of strain am-
amplitude in torsion, plitude in flexure,

3. Tension vs Compression - During both extensional and flexural
resonances each increment of volume within the specimen is sub-
jected to tensile stresses half of the time and to compressive
stresses the other half. A tacit assumption is that the material
behaves the same in compression as it does in tension, The
apparent drop in bar modulus with increasing vibration amplitude

9
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has been noted previously (Tittmann, 1983), and is probably also
related to the distortion of the resonance peak shape with in-
creasing strain, It has not been proven, however, whether either
the frictional losses or the effective modulus of a rock are the
same in tension as they are in compression. Resonating bar-type
measurements are not capable of resolving the details of the
rheological response of materials to nonlinear loading,

3.2 Quasi-Static Stress-Strain Analysis

On the basis of the above discussion it is evident that the laboratory
work most beneficial to resolving the issue of linearity vs nonlinearity would
involve studies of the mechanical response of various test site materials, in-
cluding salt, to realistic seismic pulse loading histories. Such studies would
necessarily require the application of true uniaxial strain while test specimens
are subjected simultaneously to a hydrostatic bias stress. This type of study
is very difficult technically, and results of such studies do not exist, at
least not in the open literature. Several papers have examined the details of
stress-strain hysteresis loops under nonlinear, uniaxial stress loading
conditions (distinguished from uniaxial strain) (Gordon and Davis, 1968;
McKavanagh and Stacey, 1974), but in each of these cases only compressional
measurements were performed.

In this program we have examined the effects of combined high amplitude
tensile and compressive uniaxial loading stress on four different rock types:
Westerly granite, Boise sandstone, Berea sandstone, and Indiana limestone, under

ambient pressure conditions. This represents the first stage of a new effort
with the ultimate goal to examine the mechanical response of test site materi-
als, inctuding dome salt, to high amplitude uniaxial strain loading at elevated
hydrostatic pressures. The details of the stress-strain hysteresis loops are
studied in order to determine whether loss is related to intergranular friction
or to linear anelastic relaxation. The response of the rock to compressive

1 . . . AR .
L :"v PR WAL

loading is compared with that of tensile loading.
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4.0 MECHANICAL RESONANCE STUDIES

We have examined the response of Westerly granite to sinesoidal loading
using flexural and torsional resonances. The measurements clearly define the
amplitude of transition from linearity to nonlinearity at elevated effective
pressures. The results are compared with previous measurements of dome salt
under similar conditions,

4,1 Experimental Techniques

The techniques used for resonance measurements are essentially the same
as t ose described previously (Tittmann, 1983), Briefly, a cylindrical specimen
nf We<terly granite, 13 c¢m long and 0.71 cm radius, was clamped into an appa-

tus used to force flexural and torsional vibrations., In this particular study
the resonant frequency was between 500 and 550 Hz for all measurements., The Q
of the resonance was calculated from the ratio of the resonant frequency to the
bandwidth of the resonance curve, The voltage applied to the electromagnetic
transducer used to drive the resonance was varied in order to affect the ampli-
tude of the vibration., Thus, attenuation and RMS driving voltage were measured
as a function of vibration amplitude in the sample. Provided that the sample
hehaves linearly, the attenuation should be independent of vibration amplitude,
and the RMS driving voltage should be proportional to vibration amplitude (c.f,
Tittmann, 1983)., Measurements were made in both wet and dry Westerly granite at
effective pressures from 0 to 34 MPa,

4.2 Experimental Results

The results of this study are shown in Figs., 4,1 through 4.20. They
are qualitatively consistent with the results of previous studies of natural
dome salt (Tittmann, 1983) in that linear behavior is observed at all low ampli-
tudes, with a transition to nonlinear behavior at high strain. The transition
amplitude is near 1076 in an cases, including both torsion and flexure, regard-
less of water content, increasing very slightly with increasing effective

pressure.
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5.0 QUASI-STATIC STRESS-STRAIN ANALYSIS

)‘;2_ 5.1 Experimental Techniques

;3; Figure 5.1 includes schematic illustrations of the mechanical parts of
iﬁ{ the system used for measurement., Briefly, cylindrical rock specimens 2.54 cm in
gl:‘ diameter and 6.35 cm long were cut from

T larger blocks of material. A resistance- (a}

fﬁ;l type strain gauge was bonded to the sur- LORDCEL T WIS LoD FRAME
,jQ:l face nf each specimen to respond to HYDRAULIC o SAMPLE
L strains in the longitudinal direction, GRIPS !

’[3 The rock was then bonded adhesively to :XBPAUUC

A stainless steel mounting fixtures using a

ﬁl}- semiplastic polymer resin (Crystal Bond o) 3

-‘ #509, Aremco Products) that is quite 11——EXTEN90NBARS
S- ‘ brittle and stiff at room temperature, but ¢
M that softens readily at approximately
Ii:: 70°C. By keeping the specimen warm while STRAIN GAUGE —
?iﬁ mounting it in the apparatus, residual ROCK SPECIMEN ——
O stresses could be removed, Measurements
j; . were made at room temperature and under ADHESIVE BONDING
i ambient pressure conditions,

Fig. 5.1 Schematic illustration of the apparatus
< used for the measurement of stress-
strain response curves. (a) MTS electro-
(a) MTS electro-hydraulic load frame and

A .
L VT I T

Yele
" " " 'I ’l I "
LT

(b) detail of sample and end fixtures,

@ Experiments were run using an MTS electro-hydraulic, closed-loop load
fj;; frame equipped with the hydraulic hardware and controls necessary to apply al-
:f:f ternating tensile and compressive loads. The instrumentation used for the meas-
T urements is illustrated in Fig, 5.2. The frequency of loading was usually 1 Hz,
iﬁ except for two series of measurements on Westerly granite and Berea sandstone at
’iij 9.1 Hz, A series of eight-cycle bursts of load-controlled constant strain rate
:-::ﬁ

.'__.:

b 22

™~ C76217C/jbs

i

i

B

|
Pt s . Fs . e R
e e e e e e T T T T e T T TN T T N I I OO
ofn ot o . R T - v IS SO SIS WP WS W,




oy

e

RIS PSSPl G T 0PI S P - a

’l‘ Rockwell International

Science Center

SC5361,10FR
STRAIN GAUGE
CONDITIONER
{FROM {MEASUREMENTS GROUP)
STRAIN "
GAUGE!

(FROM
LOAD ‘
CELL) LoAD
BRIDGE AMPLIFIER—}'——D HP 69424 MULTIPROGRAMMER
(STRESS) EQUIPPED W/BUFFERED A/D
v SyNG - AND INTERNAL A/D TRIGGERING
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FUNCTION
GENERATOR ;I ”
DISC
L e ] [ Pmumj PLOTTER

Fig. 5.2 Schematic illustration of instrumentation used to
acquire and process stress-strain response curves,

triangle wave loading were applied to each specimen, Measurements of load and
strain were collected simultaneously, digitized, and stored in the computer.

Representative time functions of stress and strain are illustrated in
Fig. 5.3. Measurements were obtained on each sample using bursts of increasing
maximum stress, starting with +3.4 x 10° Pa and working up to a maximum of +3.4
x 107 Pa, unless precluded by the breakage of the specimen. As many as 5 bursts
of 8 waves each were applied at low amplitudes in order to enable satisfactory
signal averaging when the signal to noise ratio was low, At higher amplitudes
the signal-to-noise ratio was good, and only one eight-cycle burst was run in
order to avoid excessive damage to the specimen,

5.2 Experimental Results

To test (a) the linearity of the experimental apparatus and (b) the
stiffness of the adhesive bonds, the first phase of the experimental study in-
volved measurements of stress and strain on an aluminum bar which has a rela-
tively ideal linear elastic response. A typical curve of stress vs strain for
an aluminum bar is shown in Fig. 5.4, Extensional stresses and strains are
positive, Only a small amount of hysteresis is observed in this set of measure-
ments, and it is apparent that the relationship between stress and strain is
nearly linear, A small amount of hysteresis is observed and may be attributed

23
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to plastic flow in the resin used to bond the aluminum bar to the loading fix-
tures, This is a relatively insignificant effect compared with the large
amounts of hysteresis and nonlinearity observed in rocks under corresponding

stresses.

Experimental results also show that each rock displays nearly linear
behavior when the loading is very small, around 4,5 x 104 Pa, resulting in
strains between 2 x 1076 and 6 x 10'6, depending on rock type (Figs. 5.5 through
5.8). At higher load levels (Figs. 5.9 through 5,12) there is evidence of
strong nonlinearity and inelasticity in the weakest frame rock, Berea sandstone,
while the nonlinear and inelastic effects are more subtle in the stronger frame
rocks especially Indiana limestone. In all rock specimens except Indiana lime-
stone the effective modulus of the rock is significantly larger in compression
than in tension, In one anomalous case, Indiana limestone has a higher modulus
in tension when the load is sufficiently small (Fig, 5.13).

- . E_I=Zc S/ "7l ZEL-3413
T2 .2LTS , ; ‘ .
Bae3sn! = (TENSION)
AVERASE OF 48 I I_43 h
AXIAL STRESS - i
(Pa) g r N
- .
r (COMPRESSION)
-5.2c+4 J
-5 .26 - +5 . du -9
TRMPLE S_oRFacs DR IN

Fig., 5.5 Stress-strain response for Boise sandstone with a peak l1nad-
ing stress of 4,5 x 10" Pa showing nearly linear behavior,

25
C76217C/ jbs




A SRS A e A i A SAe Saa ahe e - ke e St Sl A% S8e b on S -4 te fta A Sen A hw

’l‘ Rockwell International

Science Center

SC5361.10FR

AXIAL STRESS
(FPa) B r

T

— -
o (COMPRESSION)
-5 ZL + 4 " " I A i Bt
-S.2%c-¢6 3 TS .gE-¢

SAMFLL SURPFACE STRARIN

Fig, 5.6 Stress-strain response for Berea sandstone with a peak
loading stress of 4,5 x 10“ Pa showing nearly linear behavior,
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Fig, 5.7 Stress-strain response for Westerly granite with a peak
loading stress of 4,5 x 10" Pa showing nearly linear behavior,
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McKavanagh and Stacy (1974) argue that it is possible to distinguish
between linear anelastic relaxation and nonlinear relaxation, such as inter-
granular friction, by examining the shape of the hysteresis loop tips. Cusped
tips indicate a nonlinear mechanism, while rounded tips indicate linear anelas-
tic relaxation, Expanded views of the hysteresis loop tips measured on Westerly
granite, Boise sandstone, and Berea sandstone are shown in Figs. 5,14, 5.15, and
5.16, respectively. In each case the tips are cusped and not rounded, which
argues against an anelastic relaxation mechanism,
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In some cases there is clear evidence for large nonrecoverable changes
in the rock during the first excursion to a "new" maximum load, It is reason-
able to assume that these changes are associated with intergranular cracking.
This is apparent when the hysteresis loop is not clearly established until at
least the second cycle of loading, In the case of Berea sandstone subjected to
1.25 x 10° Pa axial stress (Fig. 5.17), the result of the first full loading
cycle was a net shortening of the specimen, The nonrecoverable change at
comparable stress is small in
rocks with a moderately strong

frame, such as Boise sandstone < . 8E46 PFDZ,: SQ"‘?STFN; REcc-ert
and Westerly granite (Figs. L oerzes -
5.18 and 5.19). Indiana - {TENSION! -
Jimestone, the rock with the i 7
RxIA_ TTRCGC _
strongest frame, shows no s T T o
. =a 2 F 3 -
hysteresis and no nonrecover-
able changes after comparable N 4
Yoading (Fig. 5.20). L (COMPRESSION) -
- -
o |
S zlzzee 2 ~z.50-¢
cEvE_D SURTRIE STERI:
+c . SE+¢E T
| Ss2rreE 3 B
‘ CYI.ED £-¢
[ (TENSION) -
RXIAL ZTFCZZ
(Fa C / -
Fig. 5.17 i / i
Comparison of the first load- - (COMPRESSION) 4
ingcycle for Berea sandstone L 4
at 1,25 x 10 Pa with the sub- e ) o
sequent 7 cycles showing non- TeLTErs = —
recoverable changes after the -¢.Si-s e *c.tb-d
first, The previous maximum gaME_E SUETSTE STEAIN
load was 4,39 x 10° Pa, T T
33
€76217C/ jbs

-

T L et e S AR
PPN SN P T WPy DYV ¥ ™

~

A At - L. a PR B A S
v T alalateaftatitaXomana.




AR AAS A Adn. SAS AR e She e SSie it T LT RTRT AR

m s A e em e o a8 Ga AAn e
had

‘ ' Rockwell International

Science Center

SC5361.10FR
BOISE SANDSTONE BBR-34R
+2 . SE+8 1 T T T 1 L T T T
paR34m_3)
~ cveLes 1-8 m
i (TENSION)

AXIAL STRESS ¢
(Pa) O t+

~ (COMPRESSION) -

|
n
omn
m
+
n
=
-

1

|
)
m

|
I
Y

+1.@E-¢

n

58!

MELE SURFRCE STRRIN

Fig, 5.18 Stress-strain response for the first eight loading cycles for Boise
sandstone at 1,25 x 106 Pa., A small amount of nonrecoverable change
is observed after the first cycle, but the following seven are super-
imposed, The previous maximum load was 4,39 x 10° Pa.
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Fig. 5.20 Stress-strain response for the first eight loading cycles for Indiana
limestone at 1.25 x 10® Pa, The material appears to be nearly linear
elastic and nonrecoverable changes are not observed.

By reversing the direction of initial loading it is possible to examine
the shape of tensional hysteresis loops and compressive hysteresis loops. In
Figs. 5.21 through 5,24 we show the effects of reversing the loading direction
from tension-first to compression-first, and from compression-first to tension-
first, respectively, for two different rock types., It is apparent that in Boise
sandstone the opening of the loop is due primarily to tensile stresses, and that
the behavior in compression is nearly nonlinear elastic. In Westerly granite
these effects are similar, but the contrast between compressional hysteresis and
tensignal hysteresis is less pronounced. A hysteresis loop exists in both
compression and tension, but it is smaller in compression.

The effect of frequency on the shape of the hysteresis loop has also
been examined, The results of measurements on Boise sandstone and Westerly

P Y 'l._'l Y 'v_'-. W RS h et ._' LA

granite at 1 Hz and at 0.1 Hz are shown in Figs, 5,25 and 5,26, The curves
superimpose very well, which is consistent with a frictional relaxation mecha-

nism, even though this evidence alone does not preclude anelastic relaxation.
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Fig. 5.23
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Finally, we have estimated the effective attenuation from the areas under
the hysteresis loops. In most cases the hysteresis loops used for these calcula-
tions were obtained using alternating compressive and tensile loading, as shown in
Figs. 5.1 through 5.20. The results for all four rock types are plotted as a
function of maximum strain amplitude in Fig. 5.27. In two cases it was also
possible to calculate Q from hysteresis loops that represented only tensional or
only compressional loading, as in Figs, 5.21 through 5,24, The results, shown in
Tadle 5.1, show clearly that the effective attenuation in compression is
significantly less than in tension, although significant differences do exist

between Boise sandstone and Westerly granite,

ATTENUATION VS AMPLITUDE

0.07
[ -6~ Berea sandstone
00e '-0 Westerly Grante
-0 Indiana fimestore .
0.5 -+ Boise sandstone F’lg. 5.27
0.04 )
1Q { Attenuation calculated from whole
’ 003 cycle hysteresis loop areas as a
0.02 function of maximum strain amplitude,
0.01
0.00
106 10°° 104 1073

AMPLITUDE

Table 5,1

Estimates of Q from Hysteresis Loop Areas Measured in Tension Only,
in Compression Only, and in Both Tension and Compression,

TENSION | COMPRESSION| TENSION & COMPRESSION

WESTERLY GRANITE 186 236 21.2
MAXIMUM STRAIN = 1.5 E4

BOISE SANDSTONE 225 200 41.8
MAXIMUM STRAIN « 2E4
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- 6.0 CONCLUSIONS

m We have evaluated the techniques currently in use in the laboratory for
.. measuring the attenuation of seismic waves. We conclude that the forced swept
resonance technique is best suited for measuring the Q of linear anelastic ma-
terials, and for defining the transition amplitude from linear anelastic behavior

to nonlinear behavior, For evaluating losses in materials at high amplitudes,

which exceed the elastic limit, the best technique requires simultaneous

P4
.l.’

»

Ry

s 2

measurements of the time functions of stress and strain under conditions that

Sty
L h

simulate seismic loading as closely as possible,

.«
! s N 2
iriala

Using the mechanical resonance approach we have studied the transition

.
i

S,
DAL N B

region from linearity to nonlinearity in a test specimen of Westerly granite at
elevated effective pressures. Nonlinear effects in shear are observed when the
maximum shear strain exceeds approximately 10‘6, increasing slightly with in-
creasing effective pressure, Nonlinear effects in flexure are also observed when
the strain exceeds 10'6, also increasing very slightly with increasing effective

pressure. These transition amplitudes probably represent a lower 1imit on the
amplitude of transition from linear to nonlinear behavior for the compressional
pulse propagating through the near-field of an explosion,

In this study we have also examined experimentally the details of stress-
strain hysteresis loops when a number of different rock specimens are subjected to
alternating compressive and tensile stresses., In general at nonlinear amplitudes
the stiffness of the rock is greater in compression than in tension. Furthermore,

}, preliminary results indicate that most of the energy loss during a full cycle of
if loading occurs as a result of strain in extension: the hysteresis loop in compres-
:; sion is smaller than the hysteresis loop in tension. The shape of the hysteresis
E; loops also appear to be independent of frequency. These observations indicate a
c: Yoss mechanism associated with intergranular friction, Intergranular sliding

kﬁ appears to be restricted by the impingement of opposing crack faces in compres-

E; sion, since the rock is stiffer in compression than in tension and a large

v hysteresis loop develops only when the rock is subjected to tensile stresses.
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The results of this study indicate that the mechanical behavior of rocks
can be significantly different in compression than in tension and that the onset
of nonlinear effects with increasing strain may not be the same for tensile loads
as for compressive loads. All available evidence indicates that the primary
relaxation mechanism at nonlinear amplitudes between 1076 strain and 10-% strain
involves intergranular friction. More experimental work in this area will shed
light on the issue of linearity vs nonlinearity at intermediate strains, and also
will provide realistic detailed information about rock rheology for the numerical
modeling of near-field seismic pulse propagation. For this work to be most

meaningful true uniaxial strain is necessary, and specimens must be exposed to
elevated confining pressures.
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