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1. INTRODUCTION

This report describes work carried out under AFSOR Contract No.
F83K0031 entitled "DETECTION, ESTIMATION, AND MULTIDIMENSION-
AL PROCESSING OF SINGLE EVOKED POTENTIALS." The overall objec-
tive of this research has been to develop new methods of processing single event
related potentials (ERPs) to allow more effective information extraction to be
carried out. Considerable progress has been made in developing methods for
detecting the occurrence of ERPs, for distinguishing between ERPs produced
by different stimuli, for separating the ERP waveforms from the ongoing elec-
troencephalogram (EEG), and in obtaining a better understanding of the com-
plexities of the ERP waveforms themselves. In Section 2 of this report, a new
type of classifier is described that gives very good performance in distinguishing
between ERPs generated by different stimuli. The classifier makes use of time .-

samples of bandpass filtered ERP waveforms. Very high classification accura-
cies were obtained with this technique.

Section 3 presents the results of a preliminary study to compare the
accuracy of classification using a quadratic discriminant function when
optimally selected features are used as compared with performance when
suboptimal features are selected by the forward sequential feature selection
procedure. Among the conclusions of this study was the fact that although
performance with the optimal features was somewhat better, it was not enough
to warrant, the extra computation required for their determination.

Section 4 describes a very effective filter for separating the ERP from the
ongoing EEG. The filter is a multidimensional, time-varying linear operator
that makes use of measured or estimated statistical )roperties of tlhe ongoing
EEG or ER 1) waveforms. Tests on both simulated and measured data show
very high rejection of the ongoing EE'EG and retention of the Ell ) when data
from two channels (i.e., two electrode sites) are used. Once the filter is
designed, it is very easy to use and could be used on-line if desired.

Section 5 describes some preliminary studies on modeling the EHli
waveform. It is shown in these studies that visual inspection of an averaged
ERP waveform cannot be relied upon to differentiate between true components

......................................... .



14'.

2

of the waveform and artifacts corresponding to valleys or ridges produced by

the interaction of adjacent components. Analysis of the measured latency
variations of peaks in a given neighborhood appears to provide a method of

distinguishing between true components and artifacts.

Section 6 provides a description of a new data acquisition and processing

system currently in use in the EEG Signal Procesing Laboratory. An IBM
Personal Computer now runs experimenis, collects data, and performs signal

processing tasks. The syst(em is both powr!rfnl and flexible.

The remaining s(,cticns li.3t tie jrof.ssionIJi ptrsoliahd and summarize the

awarded degrees and publications which have r-sulted from 'his contract.

J

.-. ............................... "..-.-.-..."..... ... .".-.-.' '----- " -- L " . ' "?':" .
'
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3

2. IMPROVED CLASSIFICATION TECHNIQUES FOR ERP
WAVEFORMS

2.1. Introduction

The focus of this research was to obtain a better method of feature
transformation. A transformation procedure producing higher classification

accuracies has the potential of bettering our understanding of ways to extract

basic information contained in ERP data because the transformed features may

be more representative of the information bearing components within the data.

This introduction serves as a review of the statistical pattern recognition

problem.

Statistical pattern recognition has been applied to distinguish fealures in %
measured waveforms that may be used to reliably detect or classify an event

related potential (ERP) generated by the brain in response to a different

stimuli (Donchin 1975). The results obtained by using these statistical tools

can increase understanding of the EEG components, event related potentials,

and ultimately brain function.

Pattern recognition may be thought of as a system involving: data

measurement and recording; data transformation; feature selection; and
classification. A feature is some measured value from the data or a value that

is derived from measured values of the data. It is considered a random variable

and is used as an input to the statistical classifier. In EEG signal processing,
the data that are measured are the amplitudes of the voltages measured"

between pairs of electrodes attached to the scalp. These voltages are amplified,
filtered, sampled, quantized, and recorded by a digital measurement system.

The most straightforward procedure for applying statistical pattern
recognition techniques to ERP waveforms is to use the amplitudes of the signal

at the sampling instants as the features (McGillem 1981, Donchin 1975, Aunon
1982a, Aunon 1982b, Sencaj 1979, Vidal 1977, Childers 19G, and Moser 1982).

The signal is usually lowpass filtered and then resampled at a lower rate to

reduce the number of possible features. Other approaches involve feature

transformations such as frequency domain analysis (Moser 1982), p)rincipal
component analysis (Van floek 197.4), factor analysis (,John 1973), or the

.~

[T ]-[-T[-.[[? ( ["[[L[ T]->[?'7]T]":.[]([."[["( "[(]["[. I.. . . . . .. . . . .-. ..-.. . . . . . . .". .-.. . . .,.. . . . . . . . . .' . ... .
'
-. .". .i([ I[T[I"?[[ [[IT[T;TL



4

Karhunen-Loeve transform (Fukunaga 1070) to map the data into orthogonal

components.

Features to be used by the classifier can be based on a variety of criteria
(Mucciardi 1971 and Kanal 197-1). The stepwise linear discriminant analysis
(SLDA) pr,,gram, based on a stepwisf, fUI ire selection method (Kanal 1974)

available in the IIMlD-07 ()ixon Nl75) computer program package, is a
suboptimal feature selection a:l clas-ifier program that has been applied to EP
recognithln (V \w(; ib,n !,xi honchin 1975. Aunofn 1 2b, Vidal 1977, and
l),r'hin V1b ). SuLoptiryt :-tury .. !9",ic thniquvs will not in general

produce th- su'l.-st .,r' riiture, that gives the hest dis(rimr,at ion between the
classes, but th y greatly r, ducc computational requirements over optimal
feature selection techniques. In this study forwarO sequential feature selection

(Mucciardi 1971) % as th( meth(od .'iplyed.

The E'( has been modeled as a nonstationary random process.
Researchers have seginonted the EV't into short time sections and carried out
frequency analyses (Jansen 1981a, Jansen 1981b, and Sanderson 1980). The
EEG is considered to have a time-varying spectrum and tuhis type of analysis
attempts to measure the underlying spectrum for particular portions of the
data. Frequency spectra compted for different data segments showed
significantly different underlying spectra.

Other work hasl focli,., on the computation of the time-varying spectra of
the EEG recorded from subjeds as light-flash stimuli were applied (Aunon
1977). In this study the data were windowed with a short rectangular window
and the spectrum was computed. The window was then moved in time and a
new spectrum was computed. Plotting and observing these spectra in a 3-
dimensional form graphically illustrated a time-varying magnitude of certain
frequencies. Figure 2-1 portras an example of this type of p!ot, in which the
magnitudes are plotted for points on the time-frequency plane. This shows the
time-varying property of the frequency components. Other work has focused
on the computation of the time-varying spectrum by the maximum entropy

method (Pomalaza 1979).

The measured data d(t) of the VFA is considered to be composed of the
evoked signal whith is conposed of ,eterministic components with certain

randomly varying parameters, the ongoing EEC which is an additive random
process consist ing of the superposit i( ,n (f components similar to those of the
signal, plus an indepenwient additive noise: "

d(t) s(t) + e(t) + n(t) (2-1)

"". . - - . - . . . . . - . : - :) .- 7 'k-),- ,,......................... ..... ...... , . .:. ,-.-,
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Figure 2-1 An Example Plot of a Time-Varying Spectrum for an Averaged
Evoked Potential. Taken from Aunon (1077).
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p
where s(t) = El signal,

e(t) = ongoing EEG,
and n(t) = noise.

The components of the EP signal are considered to be generated in a similar
manner for repeated stimulations.

The noise term n(t) accounts for the lump, d instrumentation :iid
measuremwnt noise which should be independent of ,(t) or e(t). Inciuded in
this term arc muscle artilactlial noise Mhich is a time-varying pro( ess.

Attempts are nade to eliminate records cont ai~iiataed with artifactual noise so
that the noise term m:iv be considered to contain only noise generated by an

independent stationary random process.

In the feature transformation method considered here the time-varying
spectrum underlying the signal is exploited to improve classification and

detection accuracy as measured by classification error bounds and to identify

the underlying components and their parameters. lhis, is similar to methods
proposed ror ,.se in spe- h processing (Tanaka 1979) and in noise pollution
source recognition (Moukas 1982). Estimation of the frequency components
over short time intervals will help identify the time-varying components at the
various times. If a particular frequency or band of Frequencies is found to be
prevalent or rv-liat)ly detected in the same small time segments of signals from
an ensemble (w data, that portion may be considered to be mapped into the
signal space corresponding to a short duration sinusoidal component.

The present study tested the efficacy of using selected amplitudes from the
time- frequency plane or, equivalently, portions of the real part of the time-
varying spectrum, as features in classifiers to distinguish brain evoked
potentials. In an early study features were selected from both the time and

frequency <2imensions, but the geometrical relationship between these
dimensioni was not considered to form the two-dimensional space (Moser 1982).
The amphtuds of the time and frequency components were not, taken in pairs
but singly, hence the time varying nature of the spectrum was not taken into
account.

Amplitudes at particular times, or at particular latencies of the evoked
potenltial may ('ontain (iiergy from a wide range of frequencies. In classification
studies the FlU' is usually low-pass filtered before sampling (Aunon 1982b).
The pass band might typically be 0.1 liz to 25 Ilz. If the amplitude of a signal
at a particular time was measured after the signal had been filtered to allow
only a narrow band of frequencies to pass, this would approximate the
amplitude of a region in the time-frequency plane. Such amplitudes can be

+ .- . .. , ... . . ; //5 "" ' " " " . .. . .". . . . ?



used as features for classification and(letection of single evoked potentials. A

two-step feature select ion/classificat ion procedure a-s show a in Iigure 2-2 was

developed and tested to investigate the eflectiveness of features taken fr,,i, the %
time-frequency plane. The meth0d shown in Figure 2-2 greatly reduces the
computational requirements over selecting from all possibhl features of the
time-frequency plane in one step. The two-step classification process first
transforms the windowed signals into frequency components, then it selects the

frequency features giving the best classification performance using the training

set signals. These selected frequencies are then used to set the center
frequencies of a set of hand-pas.s filters which process the raw data. The
amplit udes at the outputs of these filters at various tirnes are then used as a set
of features from which the final feature selection routine chooses the features

that will be used by the classifier. This process is described in detail in Section

2.3.

Artificially generated EI'G data and actual dEt (lata were used to test
the procedure as de-cribed in Section 2.4. Data from four subjects
par'icipating in v ,utal s:mulation evoked potential experiments were tested
and the results ar",lyzed. Several sets ,f artificial data were generated and
tested. They ,'.,re composed of various types of signals added to either real

EEG data or computer gen' rated random noise data with various signal to
noise ratios. The classit,.t ion and detection accuracies are compared with
those attained by more conventional methods and show a significant.
improvement ai most cases.

2.2. Classifier and Feature Selection

The selection of the subset of fe-atures to be used from the complete
feature set )nd the design of the classifier which uses the selected features is of

central imi orr a n ce for obtaining high classification accuracy. The design of the
classifier and feature selection process are discussed together in this section
because the method chosen for feature selection is connected with the design of
the classifier and the results of classifying the data rc( )rds of the training set.
The design of the classifier is discussed followed by a descril)tion of the

procedure for estimation of the necessary statistics from 1he data. Next the
error bound conputation is described, followed by the feature selection process.

The criteria for feature selectioin are based on the error botunds computed by
the classifier from the training data set. lastly, the ,lassifier and feature
select i on algorit hin applied to the (let ett ion roblei i s ' Usced.

.. .- . . .
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Under the assumption that the features are jointly Gaussian random

variables the log-likelihood ratio classifier for the 2 class case is:

(x - mi) T _ (x - M) - (x - m 2 )T E_2 I (x - M 2) (2-2)

+ In T I 1 ".
1Z 2 ,1

where x is the sample feature voctor to he classified,

mi is the mean feature vector of class i,

is the covariance matrix of class i,

+5,i is the inverse covariance matrix of class i,

and T is the decision threshold to which the function is compared.

If the function is less than T, the sample is classified as class 1; if It is larger
than T, then it is classified as class 2. This classifier minimizes the total "'

12
probability of error if it is used as a Bayes classifier where 'F = 2 In -, where

Pi is the probability of occurrence of class i. Various other probability of error

criteria could be used which would change the decision threshold value of the

classifier (Fukunaga 1972). An advantage of this classifier is that, it works well
even if the true probability density is not exactly Caiis. ian, but has a CGaussian
like shape (Kazakos 1982a and 1N82b). In addition, it is a relatively easy
function to compute and conducive to a computerized oi-line real-time detecto)r

once the f,,atures have been selected.

In the det'ection problem, one class is the EE; with no signal or FIIP and

the other is the L+C; with a signal. The ',reshold is then changed to adjs11I
the ratio of the number of false deteclions t, 1he number of c)rrect (eteeliMins.
This is a c( m'en ient parameter for changing the (letector functimin because it

may not be known a priori wl: it the probability of occurrence of the signal is.
and the threshold value can easily be altered to adjust dtection perrornmance

for a particular data set.

This qiuadtratic classifier becomes a linear classifier if it can be assuliled

that both classes have the same covariance matrix. The quadratic classifier is

used here so that assumption need not be made. Evidence is available (Kanal
1071 and Jansen 19811) concerning the non-stationaritv of the EI'C indicating

t hat tle statistics of the background or ongoing FIC during the time the
.signal b, being glenvrated are different than the statistics (if t e I when no

,tirnulu., rclated signal is being generated. .nce. the estimated ci %aiaflee
inatrices will be different and the qiiadratic classifier shoul perform )etter 'S

r., -. - .? , .- .-, , -. "- .. -. : -; _ -. , .; -. 7, / , - . .- -, -; -; . - - - - .- . . .. :- -- +- - . . . -. . .



to

than the linear classifier.

The covariance was estimated by the unl)iased estimator:
K "

- N--I > x (Xk- 1 1 )T {2-. )

wh,,re xl, - O, kth san'ple feattre '. cto- from c,ass I,

ii --- ,stimated mean of class i,

afnd K = qul.t',%. -; C (at ro- vectors.-.

Jht nwe.,fi was estimated by th,- unbiased ,sti.,or:

MiXk (2-4 1

Error 'inah:,*s w ae,,nrOlhi'(d by coJmputing -stnmates of the upper and
lner err:)r bomind, from the lata set using the designed classifier. The lower
Luni of the error ", as compited by the resubstitution method (( method)
where the same lit a samples that were used to train the classifier (i.e.,
compite the estim, ted statistics for the classifier) were also used to test the
classifier. 'Th. ul,per (-rrc)r bound was computed by the leaving-one-out method

(1 method). v.her: the classifier was trained on al but one sample and that one
~.ampDe "as t.n '.eT. This was r+'peated for each sample, each time a
differe-or , '.h is left out I)f the trainirg set and was then tested (Fukunaga
!972). I'in- ,Nas ea.sily imp!,,mented for the quadratic classifier by the
formulatio!- in (Fukunaga 197i and 1972).

Fe:at, rc ele,'ion was accomnplished by a modified forward sequential
feature 'lt ion (I.'SFS) routine (NIticciardi 1071) uqing the criterion of
un it, i;, I!'' 'upper or lower ,>,in of the error or a linear combination of
the tv, V!"g'S 4r:5 by firt picking the siigl feature which minimizes the
,.rror ,ri: iv testiiig all features from the set of possible fe.)tures. Then

1h n,'x* f'iaurv is s lectl oy conibining each possible feature with the one
prI.v , , 1 -ii an s+lh' d ing the best pair. This is further iterated until the
m'i.n1u u t, 1uuder (,4 fe, tur:'s i, selected. FSI"S is not an optimum selection

;dgorithi i, hut it gre,:itlv reiluces the computational burden required for an
,.,littili i .e',E :-,. fi 1t1re -,i ect ion (E'LS S) process. The "S"S roiltine wNa'i
ilnlhm,.n ,t I it n,-th a 1:an),-r thai alternatr - (',om )inatioi's of f1e:tures which
tproduc'ie ihaliy Io- l,,r trrwr bounds, w'r'' tested ihrough the ,,ext iteratiin.
This pr,,',.ntcid Ihe arlitrirv sehtet io of one of Ilic f',+ure ? otinabi ins while
r,'j('(titi- ithers hih my ha l,,ien !wt ter after the next it',ration than the

"lill

• . o . . . , .- •



The size of the subset of features selected1 (N) was determnujed from the

upper error bound. As the number of features selected increases, the upper

error bound generally dlecreases andl levels off at sonie v alie which As the

selected value for N. This error bound generally increases with the selection of

additional features (Ifughes 1968). The selection (f the b~est set of feat ures was

that which had the lowest uipper error boundl of all the feature sets testedi.

The detection problem is set uip as a two) c lass classi fi (at i( 4 to (list inigu ish

between the tw~o hypotheses If,) and 111,

110 d(t) e(t) + 11(t)

and III: ((t) S(t) + e(t )+ n1(t).(-)

This was implemented by t raiiing tOw classifier for the hyp')thesis III with the

recorded data syn clhronized with the stimulation. A port ion of the LL(X (data

recordedI prior to the time of st im uI at i m, the same length as t hat of the signal,
was used to train the classifier for the hv p d thesis 11l0. The sect ion of the EFE(

used for trairing the detector for hypothesis I[(, was selected by using a section

of the pre-st im ili d 1at a whose time rel at 4)nshi1I) to thte signal was a rand(onm

variable to p rev en t anyv timie-lock effec ts betweenii ti tw ) (iat a sets.

2.3. Data Transformation

[eat ures were sclect ed from ai set of the dIat a. TPhe I ra nsf )rin actio n Was

implemented by sampling thte outputs or a baink or thardid.ss filters. A n

imnporta-int p ,art of the (leIgn prole(m wais sele't*()s (f the filter (enter

frequency and shaero the ( lu1

f? eferritig th' lr 2-2, it is secn thait thef ijue:i~uired data1 is firt t1ie

lim1ited bN a v% indow. finet in'iiiw trmi 4rrrired int~iowth frequenc diotainl.

This results iii a 4(,rt t'rni spectriiin iuimputedl iM the manner dIesc'ribedl In
(Allen 1977). 'Fh nmth od Iris hfen ii,(,] etniv SI Jcch an:11%sis

sv~t(e1wh (Tain~a 1979., Allen 1977, White 197t6. s'chaferr 1973. and Portnoll

197t6). Th'le 1):rat niet vrs inold are t liet I we %% it N%-ow I h:t~ idn length.li and(
the rIruu In the frcqieni'v doru:iir. After c)nvert ug tHie dniia la 1,

Het frejuic' iw\ ra the [tA (lassifier/feat tre selector ch o w hse freqiwnic\

I I 1'. Iun I I, h %% v the I(I best performance. Thlese rsu It,~ aire Ien u'ied toI(

et i ti4- itt r fre~itiencies oif the data t ransformat Ion lilt ers. Thie iitpIuts oif

thusi' ti114Vl- ire. used aIs the .. , 4 T'u whichi the 2 1(lasirftu'

ite fi :il fea'tutre subset.

'rItw ,r iie \V %il(4 x funi~ iit w I %is baseql (, ii theiii tki if Ow ITlI

x.io111 i 1 Ii \%i, t-iwr:0It 4 fr44in iv b:iv4'rif1,d FT. It i., i''.'ira!14' t44 vi~ ('4111:41
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weighting to .1ll thle tine points of Owh sampled sipjm! to) prevent distort ion of

the sign, -d by th1e w ind,,". 1i Is alo(lsia)c !o odmd nk, the dat a

containing thle signal ill the traniisf(:ried (iat ai so that the transform wil
- r~iet (livthaIt o'lwrp. The incow sji']sfx in ltlit these c-i'4ria i m

rct 'nii-iuar kkiid()w, but this wind1ow jr '~ sjoirinus frommencv c-mrpcpr'nts

in th-, trafrm, especI1y :I, 1,11 higil.r fre"111i :;es A conhproi~is" %N'u1d v-i

d)if on ti.- [Ii o!Jfailing the( sigmn antl would low(,, or'Iv s niall alnoi: Nf

d:It:t n I !,I i' .- the s r, (T t,:, 1 1 11, t r:r, rmm r r j 'ai. "F!!e

11;" *' .; c r 1;1 *A Nf.V t n'I a t~:(I 2

c*lt 77 (ti~o -0 f1 r( f , - t

2 2
C~ Os p-. f ir to + - a > t > K. +b

2 2 a

f ()r tb t <> t b 0 b

The pnranetcr i, fo I ; s i' wlit h of the ralnad -osine' :egr-iieIIts at the ends of

u c guo m T V~rmetrt dofier's tho- iength cf the constant

;u IaI aT l''09IIUI1 ()f tho f);itant egrment. The va-lue

l-a ,r:metler ti N i() Ths Is Was'1 aI (om'romi;e bet~keon larpe
I)--w ~ i dt w hn e i~~dIn tho trn-n4orm and snall

almiesi I. 11 c~ olI I iI siu fewres 'liw to) tho edpe effect of the

M,~l+ 1aetit i - r:mw~eIr b) %;is 0c tI 'he long~th of the signal

fuel~~\x -~ 1, 1rc- (o -, A u \'le splaved in Figure 2-3 in w~hich an
;r:u'.-I I' r;n th-. a1, 't iiimhl;s I 1eriment is plotted along- with the

l~arl'I-r' t r:1oK fr frvmi' me v uiamrsisedl for classification he

?~ ~h'. '-'nii--~1I1K r~telar! thail they rf';re, ,nt thle inomlinat
bat~-~1 Li ir J o('II I r r Fc a prt ~ ouitmres which are the real or

VatJIa i- in- i F Iran-rimied data NN eri found t ( have

I t I - ~ -7!-- in T i 111 irm - t m r 11 1tI(m (\M s er I TN fea t ,Ires

rr-nrtfi ,I iif.riwi!1,i :i (.l aeb frejrienev 'They -,%v- obtained directly

frfilnl 11he IV FT mi- I!.(. frf-1ilCVl Iriform blockA in tOe block (1.IagT an of the

.:s ep em J1 gprinl 2-21 w;sK .'se.l'\an osf th, d (lst nilei ',m of the
frejif :ic da, an i r- i 0; lignit I-. 1 Igii ne 2- 1,a prtrn na 100 poinit, from

(,r o 2 1:is-:vs : 2 11,, !1t, 1 Fgure 2-Il is, a, i nffiar pkt 0i 1 117. Eyid-l t ill
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this figure, as was typical for the frequencies from the various data sets, is the

inherent lack of separability for single frequencies. There is higher separability

of the classes when higher dimensional distributions are considered.

Dimensionality of up to 10 features was considered for most of the feature

selection processing. Since the real and imaginary parts are each features,

there were twice as many features as frequencies.

A procedure was developed to transform features from the FFT by

projecting the complex frequency data onto a line. The new features X(f) at

various frequencies f are computed by: -.

X(f) =M(f).cos[¢(f)-O(f)] (2-7) ,.

where M(f) Magnitude at frequency f,

O(f) = Phase angle at frequency f,

and O(f) Reference angle at frequency f.

The reference angle was determined from the line which connects the means of

the 2 classes in the complex frequency plane. This maximizes the mean

separation between the classes.

The frequencies of the features producing the best results with the first

classifier/feature selector were used to select the center frequencies of the filters

which process the raw data for use by the second classifier/feature selector.-

Non-causal, symmetric, finite impulse response bandpass filters were used to

filter the raw data in the second step of the 2-step process. This type of filter

has a zero phase response and renders only a small portion of the ends of the

data, equal to one half the filter length, unreliable after filtering. The filter h(t.)

was designed in the time domain by multiplying a sinusoid of the appropriate

frequency and phase by a time window:

h(t) w(t + to) sin (2rfot + O) (2-8)

where t o = time location of window,

fo = sinusoidal frequency,

and 0 = sinusoidal phase.

This is equivalent in the frequency domain to convolving a pair of impulses at

frequency fo and -f. with the transform of the window function:

' . •- . . .
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where 11(f) = Fourier transform of h(t),

and W(f) = Fourier transforni of w(t).

The outputs from the filters were used a., a large feature sel where the

amplitudes at, the times points of each filter were the features (:;ee Figure 2-3).
The nu:,,er u !v ' ,r, s set by the nurm., r of diffrent frequencies sele( ted by
the Jirst classifier/feature T . 'li" rloo.pn features were amp!itudes of

selected filters outputs at selected times.

2.4. Data and Testing

The procedures for implmecn ting the proposed processing techniques were
tested with artificiallv generated data and actual human data from EP

experiments. The human data experiments are discussed in this section and
the results using various artificial data sets are discussed in Appendix A.

The Sternberg paradigm was selected for generating experimental EP
waveforms used in this research (Sternberg 1066). The details of the Sternberg

experiment were summarized in a previous technical report (McGillem 1983).

The plots of the averages of the EP's for electrode Pz for the four subjects used
in subsequent processing are presented in Figure 2-5.

The data from the 4 subjects were processed by the 2-step process with

fixed filter bandwidths of 5, 10, and 15 lz, and proportional bandwidths of
0.25, 0.50, 0.7,1. and 1.00 times the center frequency of the filter. The

bandwidths are measured from null to null in the magnitude spectrum, which
gives a larger value than when measured between the -3dB points of the

spectrum. Tables 2-1 and 2-2 list, the highest lower accuracy bound estimates

along with the nimber of fatures selected to achieve this accuracy for the raw

data, frequency data (step I of the 2-step process) and filtered data (step 2).
The averages of the results across the 4 subjects are listed in the last column of

these tables. Table 2-1 li:-.s the results of processing the frequency data
without transformations, which allows the real and imaginary part of the

frequency data to be used dir,,'lh" by thle first classifier/feat tire selector. In this

case, there is twice tihe number of frequency features from which to choose.

Table 2-2 lists the results of processing using the frequency transformation that
pro jects the frequency data ,ito a line in the com)lex frequency plane, yielding

I feature per frequien'y.
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Table 2-1 Results From the 2-S p 'l)issifier/Feature Selection Processp, Without Frequency Feature Transfornation. Table Entries:
Percent Classification Accuracy / Number of Features.

"" Subjet

a:w 87.=5 176 / ,( J..x

90... . : 1-".I (
-_10 1Z97/8 9.6/ __7 C,__8 92.,/7

Target 15 f~ 
_8/__

FrcqueTarget 0.15tliz _ 9/32 7 ,L2 96/9 99/7 92.4/5
X.25 Fo 95/6 0_IL 90- 88-.3/, 97.
X.50 Fo 93.J j_1 78.1 2 99/8 91.3/3 90. /4.5
X.75 Fo 94/7 80.1/8 97.5/10 929/8l 91.1/8
X!.0 1%o 98.5/10 86.75 _99.5/8 89.3/3 93.5/6

[lest__ Xi.o ,.o x o .0 5 lIz l---Xl.0
1-Raw 7/8.1. _5 . 92/8 80/4 83.1 _

Frequency 97 /7 89/0 9 .56 89/5 92.4/.

5 i1z 95/,5 81.5/7 93/3 92/4 90.4/5
10 11z 98.516 8617 99.5/6 92.5/10 94.1/7

Nontarget 15 hz -96'. 5 97/7 97.5/7 10018 97.8/6
X 25 Fo 87.5 80.5/,l 96.5/6 93/8 90.9/6

X.50 Fo 998 R22/3 96.5/5 90/4 91.9/5
S75 Fo 98.5/13 8.1.5/10 98/8 91/10 93.0/8.5

X!.0 Fo 99/5 80.5/3 99.5/5 95.5/10 93.6/5.5
Best.0 15 lIz XI.0 15 Hz 15 lIz
I? _. 

73 51 70.4/8 3.5 69.9/5 71.8/6
7/ 71.5/10 75/4 9/5 74.9/61iF.euctcy 77/6__7,,.1 _ _74_L4. __ __ 74.9/6_

S lIz i.5 _. 7X._f/9 74.5L4 70.9/2 74.9/4.5

'Target 10 1tz 7,,'1 76/10 76.5/4 71.9/3 78.3/5
vs. 15lz 72. /117 75/5 725 66.31L 71.7/5

Nontrget I X.2, Fo 752 76/10 74.5 2 71.92 55 74.4/5

..5) 1% o 73.5j2 80.60 ___7S3 (17.9 2 74.3/3
-.75 o 71_.L2 7,_ 7_o71 F67.9/2 73.7/5.5

X .0 I'o 75.,L 79.1 5 M8/ 75.0/4.5
tv'; t ,r- z__ o II _ _.

_____________ I L'F.N~)1recq. 1 lZ

.. . . .. .. .. . . ......-. . .. . . .%

' .. ~~~~~~~~~~~~~~~~~~~~~~~~......'..:. -. -.......... ........... -,..-.. ... ,'. .. -.--...-........... ,,, .. ..-.



Table 2-2 Results From the 2-Step Classifier/Feature Selection Process
With Frequency Feature Transformation. Table Entries: Percent
Classification Accuracy / Number of Features.

Subject

Data BW 1 2 3 4 Average

R1aw 93.5/9.5 77.9/4 88.8/7 88.3/5 87.1/6.5

Frequency 98.5/9 84.2/8 94/9 90.3/5 91.8/8
5 liz 93/3 83.7/9 92/8 90.3/7 89.8/7

10 lz 99/10 95.9/9 99.5/7 100/8 98.6/8.5

''argct 15 11z 95.5/6 94.9/10 100/7 100/5 97.6/7

X.25 Fo 95.5/9 80.1/5 89.5/3 90.8/3 89/5

X.50 Fo 99.5/8 99.5/10 99/10 93.4/8 97.9/9

X.75 Fo 97/9 99.5/8 98.5/9 92.4/10 96.9/9

X1.0 Fo 99/6 96.4/5 99.5/8 98.5/9 98.4/7

[test XO.50 XO.75 15 liz 15 11z 10 Ilz
1 :aw 81.5/8 76/5 92/8 80/4 83.1 6

Frequency 90.5/9 80/3 9516 87.5/7 88.3/6

5 ltz 88.5/3 84.5/3 97/8 85/5 88.8/5

10 IN 88.5/3 97.5/10 100/6 89.5/5 93.9/ 6
Nontarget 15 lz 998 08.5 /10 100/6 9210 97.4/8.5

-X.25 Fo 87.57 81.5 95.5/6 79/6 8.6 16

X.50 Fo 86/4 25 97.5 /8 94.12510 0 //7

X.75 Fo 91.5/10 83.5/2 99/7 9019 9 37
Xl1.0 Fo 97. 10 --5 __ I._ _ _ __o i , o9 .,81 : ; .1 1O 0J 6 9 9 J 9 9 .1 .9 / 7

•_"______15 I 1z I5 Ili, Sv(,'ra XI .0 15 IlIz

Raw 73.5/.4 70.1/8 73.5 7 69. 9,/_L, 71.8/6
Frequency 78/3 76.5/9 73.5/6 75.9// 7595.5

5 lIz 79/6 6 : _'__ 713 7_lJ.l 77.7/4
Target 10 ilz 76 _'2 7 _ _7,"rFJ/2 71.9J4 75.8/3

vs. II,, 78/9 7 7 7 191 71_. .j T5,__
Nont arget \.2r, Fo 78/7 -80.1/' 7L , 4]5 7.,..,

X.,50 Io 771 - 82.7/9_ _77/.l___ __WO/t. 7,Y/

X.75 [o 77.:,J75 _82.116 771-.i 72 -)rA__ 77 '1'

X :0 IO <-r) I 7, 3/7 70 ! /

______He_ t .0 xO5 Xw 2)
.

...-.
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In both cases the data window in the first step of the process extended

from 0 ms to 556 ms latency with the flat portion extending from 160 ms to

396 ms, which was also the range over which filtered amplitude features were

searched in the second step of the 2-step process. Sixty frequency features

ranging from 0.98 to 58.6 Liz were used. The frequency spacing was
approximately 1 lIz. In most cases, 100 records from each class were used.

Ninety-eight records were used in the cases where a full set of 100 good ic.ords

was not (;bt'-ined. .
EIach tale includes the results for dteton of the target set EP data (t),

detection of the non-target set EP data (n), and classification between the
target and hon-target sets (t/n). For dete(tion, the ongoing EFG class (no EP)
was taken as the section of data starting at 760 ms before stimulation. This

starting point was randomly varied across the data records over a uniformly

distributed range of ± 100 Ins.

The best averaged accuracy results for detection of the targets are as

follows:
1) 98.6%, W--10 liz, with frequency transformation,

2) 8.4%, 13W=XI.0, with frequency transformation,

3) 97.9%, BW=XO.5, with frequency transformation,

1) 97.6%, BW =15 lIz, with frequency transformation.
The bandwidths with a leading X are proportional bandwidths, tile number

indicating the proportion of the center frequency, with a minimum bandwidth
4 liz. T,'hsc results show i :ignificant improvement over the use of raw

amplitud i attires which produced an averaged a(curacy of 87.1% across the
subjecs. 'he best averaged accuracy result for frequency features was 91.8%-"

using frequency feature t ransformation. 3.7% higher than for raw amplitude

feat.ures. F(,r sorru subhjects lower bound ac'curacies w'ere 100'. As much as

20%c, (,r )r ,inprivemenut was achieved for the filtered data features over raw

data fat ire,' in sone cases. as In sihjt'ct 2, 1W=X0.5 or X0.75, with frequency
transforwaitio (Talble 2-2), where 21.6%" improvement was achieved. If these

results were presentd(' in terns of error iniisteal of accuracy, this case would

improve the error frm 22.1% to 0.5%. a significant, impro)vement.

'The b. a vera ged accu racv result.s for detection of the non-target L's are

I) f)7.8(., 18' X =15 Ilz, Nkit hout frequency transforniat ion,
2) 97.1I(, I, 15 liz, with freqtuency lranwfrniatIi,.

3) 0). t9 i ', -XI.0, Nith frequenrv transforiwition,

.I) 91 1 ,  B \% - 10 liz., \ ilhou frequeneN transf(,rinatt(,M.

r.- 
.
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These results also show a significant, improvement over the averaged accuracy
of 83.1% for raw amplitude features. For frequency features, the best, averaged
accuracy was 92.4%, without frequency transformation, a 9.3c" , improvement
over raw amplitude features. Improvements in the accuracy for using filtered
features over unfiltered features were over 20' J in some cases as in subject 2,
BW=15 Lz, with frequency feature transformation, in which case the error
went from 21t% to 1.5%. In all cases for detertion, the accuracy achieved using
raw amplitude features was improved by using filtered features determined ),
the 2-step classifier/feature selection process.

The best averaged accuracy results for cla-;sification between the two
classes are as follows:

1) 77.7%, B1W=5 Ilz, with frequency transforniatiomn, .
2) 77.7c%, BNW-XO.25, with frequency transformation,
3) 77.3%, BW rX0.75, with frequency transformation,
4) 76.7%, BW=XO.50, with frequency transformation.

These results show a small imlrovement over the unfiltered data features
averaged accuracy of 71.8"' of up to 5.9%. The best averaged accuracy for
frequency features is 75.9%, with frequency transfornation, a .1.l1%
improvement over those achieved using raw amplitude features. The best
filtered data averaged result is 1.8% better than this. Improvements of up to
11.7%c' were achieved for individual subjects as in Subject 2, H\V =XO.50, with
frequency feature transformation.

From this study on a liiited number of .4 subjects and data sets, it is
evident that, the 2-step method pro(uce( very high accuracies for detectin,
representing large improvements over I-step methods using untiltered ir

lowpass filtered a m)litude features. Sinc the etlin ated (let'ectin accuracies
were as high as 100'(' or very near this level, the mthod is an excellent wa v

determine whether single E'E(. recir(Is c(ntain a particular ET. This nav be
used as the basis for an on-line delector. The classific(at ion resultIs showed
smaller gains with the use of filtered over unfiltered amplitude features. These
could possibly be improved further by testing a wider range and finer
resolution of parameter values suich as 1)3n1(N1it hs, data wind,,w paraneters,
and number of frequency features. Furhlermo,,re, different filIer responses <',tild
be tested including non-symnnetric ones. The prelininary results Iook
promising considering the limited number of laranleter valies tested.

.As described in Appendix A, foiur di fferent t yv pes of sign als were used in
artificial data sets to test the 2- step cl.,ssiier/fe:iure select r and conp:ire the

rsults to those using 1-step (r:aw feures ,r frequency features).

A4
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From a limited study on these signals in actual EEG data at different SNR
levels, it was round that the filtered features of the 2-step method produced
significantly improved accuracies (see Table A-5 for a summary of the results).

For detection at the 0dB level, raw features produced very high accuracies of
96.1% to 99.5%i,. 'he best results using frequency features yielded accuracies
of 99'%-100"'/, and 100'% accuracies were achieved for all signals using filtered
features. For detection with SNR's of -6dB, raw features lroduced accur., t-s
ranging from 78 5% to 92.5%. The best results using frequency feature yieded
ac(cur:vwies ranging from l i% 3.5, "Ihis represents .31a1l impr(,e('Wdit

ovtr usirl raw features. The best result using filtered features showed
significani improvements in these accuracies, yielding 100'c for - of the 8 data
sets tested. This represents improvements up to 19.5"C. probably limited by
the fact. that the maximum accuracies of 100%, Nvere achieved in many cases.
These improvemenI s ar. als: r,,u<ch larger than those obtained using frequency
features.

[or det'ct ion of the signals in EIIC at SNR's of -12dB, raw features
produced a%-erage accuracies ranging from 66.2% to 53.5"'. The best results
ri.-ig freqpUency features showed iml)rovements to these accuracies of -1.9 6 to
f5.8"(". Flitcrd features again showed substant ial improvements Of up to
31. S' p r-bablv li ited by the fact that n,.ar maximum accuracies were
aehievvd in all (as, .

( la.sifi'al i,,u bctweeni the artificial data sets also showed similar
;nproveritentb t uiig the 2-ste'p procedure. At SNIZ levels of 0dB, the best
frequ,.,n(v [u.t ures results yieldd 0.5' i, to 10.2%i improvements, and the best
fi i,,r d fe..r,, rc.ults Niedled 0"1 to l 0.2(T improvements over the results

o'i' r:,,, f,..itures. These iniprovenients were probably limited because the
a ccur:i. i'fs %ie ,, fl v 're, at (,r ear 100'i. t SNI levels (f -6dlH, the best.
Ire ,l1ie ~v /':mtures ' it,,,tlde ,liprfv.iiints of 3.1(' to 12.2('. , an(] lie best

lilr,r.,I fe.i,,ires ihl,, Ii W', to, Io x(' im rVerments over the results obtained
minzi r:tw feature,,. S+itilar inpr,)venwits were achieved at SNI? levels of
-l l, '%kith 1 6(i Ito 10,2', irllrovnmleiils affor(le(1 li the best frequency
fatur,,, renlt, inl 1; , 13 2('i, iiipr,,venient. aff,r,levl by the best filtered
tea+ l ure" r,'sult

hie, 2 -.it'p ir,,, -, h:-.. c<Pnistcntlv a ,rded ve.ry high detect n a cur:wles

in th , ,lat:i -. ,i' tq,Ac ,l , ., ' ,ii I- , io e at 1Nl)\% a .w.s -12,111 It is
st re s.ed th.t lin' t'ilran,'. : et -Atiiatf', 1f thi , wer h,,un t the I ) es
ac'Cur;.v (Upper bi<tii 4 the err, r), :,tIu it is e p ' ,,.!td 1i:1 the actual i aves
a,'cur % , hijd 1h,,h it I,, Iwir th:oi these tiguirc,. Th,, ,',nisiStcwv anrl

-" N. -
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magnitude of the improvements is strong evidence of the validity and .1

applicability of the technique, especially for low SNR levels where the signal

power is smaller than the noise power.

Comparing the results from testing human data to those from testing

artificial data, the degree of improvement afforled by using filtered features

over raw features for detection were similar, especially for the -6dB3 SNI? "

artificial data. Improvements on the order of 20% were obtained in both cases.

For both the human and artificial data, frequency features generally produced

improvements over raw features, but not to the extent of the filtered features.
The accuracy levels achieved for the human data for the various features falls
somewhere betNeen those of the artificial data at SNI?'s of -6d13 and -12dB.

The number of features used to achieve the resulting accuracies were
similar for the various types of features. The possibility that the improved

accuracies for frequency or filtered features results fron the use of a larger
combination of features was considered. There is a large range in the number

of features used, but there is no consistent trend of a much larger set, of filtered
features being necessary to achieve the performance increases. In almost, all

cases, the maximum lower bound accuracy was achieved with iess than the
maximum of 10 features selected for both the human and artificial data.

Therefore, the maximum number of 10 features was indeed sufficiently large to

prevent this parameter from being a limiting factor in the maximum achievable

accuracy.

When accuracies were very high for artificial data with SNR's of 0dB, only
small improvements could be attained with filtered features. But the number
of filtered features necessary to achieve the high accuracies was lower than the

number of raw features, in some cases 100% was achieved with only I or 2
filtered features.

It is not clear which is the single best bandwidth to use for the filtered

features. There are some indications, but with no obvious trend, that the
larger tbandwilths produce better accuracies of detection for both the human
and artificial data. The lowest bandwidth of 5 lIz and XO.25 did the poorest.

The (listinction a()n gst th ( others is not clear. The number of different,
ba ndw Idths tested was limited due to the large amniunt of omputing time

required for each test. A fairly large range was covered by the choice of
t)andlwidths, but it in ly not have been wide enough or of fine enough resolution

to indicate the best ban dwidths. It inav be that even higher accuracies can be
achieved by using different bandNwi(ths for tie different filters in step-2, but

this presents the orlh ,f h these bandw(iths wuld be chosen. This

. .~ - - s -.- - .. . •.
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would extend the 2-step method to a 3-step method, where the chosen

parameters are frequency and time, plus the parameter of bandwidth. The

computational time complexity of this type method would be much larger than

the 2-step method, limiting its usefulness.

2.5 Conclusions

This work F..cicd o- tile development of new methods for extracting

inforniation irm evoked pt,,Yntial iata using time-frequency amplitude

featurs. The inethcds developed show promise for improving the detection

and classification abilities of the computer in distinguishing single ElP's over

conventionally used mnethod. (lassification has generally been impr,,ved

approximately 6' ,, over using raw amplitude features for the limited amount of

data which was t,'sted

E estilts )or detection yere very encouraging, with improvements over

using unfiltered data on the order of 20%. This improvement may have been

influenced heavily by the "phase-alignment" properties of the EP as presented

in (,Jervis 1983). In this work, the F[P and EE( data were transformed into the

frequency do(main and a particular frequency was plotted on the complex plane.

For the EE(; data, the points corresponding to the various sample records had

phases %%hi'h were fairly evenly listributed (i.e., clustered about the origin).

The L1F data points had phases which were distributed more closely about a
mean phase, resulting in a plot with the points clustered about a point offset

from the origin. The 2-step method capitalizes on this separation of the 2

classes in the frequency domain by performing classification based on frequency

information, and b) performing a frequency feature transform which attempts

to maximize the separation of the classes in the frequency domain.

Alteration of parameter values and filters may increase this improvement

further. Although the actual detection or classification is almost instantaneous,

the analys is leading tip to the design requires a substantial amount of computer

time due to the feature selection process. Therefore only a limited variation of

parameters was investigate(d. At, this time there is no direct method for
determining optimum values. Further research could concentrate on methods

to determine improvi.d filter functions which could yield more precise

informatio:. The bandwidths of the filters in this study were either fixed or

had a fixed proportionality constant for the various center frequencies.

Improved results may be obtained by using a combination of different
bandwidths, possibly determined by c(,mbining the best features from tests

* .. . . .. . ... .

i - / i. --- -' " ." - . -- ' -.. " i 2 . .- % i -. ..- " . .



* wr.nnr ~ r~2 ~.5 . -W-

using different bandwidths.

Improvements to these met hods may result from inmprovements in)
amplifier design. Many of the frequency featutres generally selected had
frequencies above 25 Ilz. At these frequencies, the SNI? becomes low since the
spectrum of the EEG falls off rap~id ly with hiiigher frequencies wit lie the
amplifier noise is essent ially constant. [he quieter the amplifiers are, the more
effect ively the in format ion in the higher frequencies c-an ibe used.
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3. OPTIMAL AND SUBOPT[MAL FEATURE SELECTION
FOR QUADRATIC CLASSIFICATION

3.1. Introduction

This preliminary research investigated the exhaustive search feature
selection (ESFS) procedure using a quadratic discriminant function for

classification. The quadratic Bayes classifier under the Gaussian assumption

(as described in the previous chapter) was used to evaluate the feature selection

procedures. A previous investigation compared the ESIS performance with

conventional feature selection procedures using a linear discriminant function

(McGillem 1983 and lalliday 10985). In that research, an efficient algorithm for
implementing the ESFS error criterion was derived which greatly reduced the

computational burden of the ESFS algorithm. The quadratic discriminant

function does not lend itself to efficient evaluation; therefore, no attempt was

made to derive an efficient algorithm. The E.SFS feature selection was

accomplished by examining all possible combinations of features at. each level
of selection (i.e., I feature, 2 f,,atures, 3 features, etc.).

3.2. Methods

Error analysis was accomplished by computing upper and lower error
bounds from the data set using the designed classifier. The lower bound of the

error was computed by the resubstituti( method ((' method) where the sane

data samples that wvre used to train the classifier (i.e., compute the estimated

statistics for the classifier) were also used to test the classifier. The upper error

bound was computed by the leavi ng-oni-out method (I, method), where the

classifier was trained )n all but ne sample and that one sample was then

tested. This was repeated fo r each sample, each time a difTerent sample is left

out of the training set and was then t,,sted (Fiukunaga 1972). This was easily

implemented for the quadratic classifir by the formulation in (Fukunaga 1071
and 1072).

l'eat ure select ion 'as a(''o)11lhed hy a n()dit;ed f)r%% ard sequential
reature sel,,ction ('Sl",) r,,utine (\iucciardi 1971) using the criterin of

nminiiing the upper or lower b, imid ,,f the ,rr,,r ,,r a linear c(mbiination of

-".. " . ° _ -'' , . - . i - , - " - . . . " . " " , - " " , - "

.' f = - " " - ' ' " . .: " - . . • - , ' ' - . -y ' ' -' - 2 - , - : 
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the two. FSFS works by first picking the single feature which minimizes the

error criterion by testing all features fron the set of possible features. Then

the next, feature is selected by combining each possible feature with the one

previously chosen and seiecting the best pair. This is further iteratoed until th'

maximum number of feattires is selected. [SFS is not an optimum selection

algorithm, but. it greatly reduces the computational burdeni over I.sing an

exhaustive selection process. The time complexity of FSFS is approx, -'e y

O(n'm 3) whre m is the niumber of features to be slnclod and n is the number
of po)s.-it,le fttures fro)m Ov to> sJt. Tl'e computational burden for an

isaistie , i (n"'m:). This results in a large diference in

computational burden for selecting sets of up to 10 features as was done in Lhis

study. The term m3 in the time complexity figures is due to the rnxin matrix

inversion. The time complexity for FSFS is somewhat more complex than
shown but this figur+ i a g,,d approximation for in greater than 3 or 4. The

other terms would be small compared to the one shown because they would be

of the form n' - k)3 where I < k < nr-I.

The FSFS routino %kils ;n1t)himent ed in such a manner that alternate

coml)inations of featues which produce equally low lower error hounds were
tested through the next. iteratiofn. This prevented the arbitrary selection of one

of the feature comblinations while rjecting others which may have been better
after the next iteration than the one chosen

Anot ier ',Ii,) iniplm en ed in the feature selection algorithm is to allow

the ch,>oir~g n th,(' st k feat.ires ia an exhaustive search and then continuing
to pick tLe rest of the feattires by SF. The computational burden of this
methol woud be appr,xi mate!y 0( +.3 +1 nm 3). This idea has been previously

su-oste, (lissack 1 N76 f,)r "n exhaustive search for the best set of 2 features.
This ()iIon all,,'wcd testin - varieus traleoffs beteen decreased error and

greater ti,+ne conmplhx ity for in.'reasing k. Further (omparisons could be made
be,, -e.i L,, sn b-optim al feat ure shelection process and the optimal exhaustive

reatire S,e'tion t,ro<,,,es in ljncntcd h setting k equal to the maximum
1il 1)lber 4,f reatuire. , Ibe sehe'te~l. lh( exhaustive search and other feature

selertioins % UIth various k values were run on selected data sets to observe the
ChrtiriG.i," of Owic tr:)leotfs 'nd to) ,ompare the results of the sub-optimal

'eAri'Ct j,r,. edur's to the opt in:l one. The testing, providled a good indication

,'4 h,,. %,eli the +,vb-i..ji ib-p a! t n ,hod., p rform.

Thie size tif the subset of featur,s selected (n) was det,rinined from the
uippier error hound. A.s the numiir of features i I, ,-t,'d increases, the tipper
error ,,iindt gncral. (,crea.ses :iio lvels off at some value which was the

• ~~~~~~~~~~~~~~.. . . . .. . ........-.... i..-.- .-..- "........ .- ....- ."-.-..--.--.
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selected value for m. This error bound then increases with the selection of
additional features (Hughes 1968). The selection of the best set of features was
that which had the lowest upper error bound of all the feature sets tested.

3.3. Results and Conclusions

The following questions were examined while comparing the feature .
selection procedures:

1) whether basing feature selection on the computed upper accuracy bound
(C) produces as high classification accuracies as basing feature selection on

the lower accuracy bound (L), or on a combination of the two bounds,

2) whether using forward sequential feature selection (FSFS) significantly
reduces the resulting classifier accuracies over using exhaustive search
feature selection (ESFS),

3) whether some combination of ESFS and FSFS and basing the feature

selection on criteria other than just the upper bound would significantly
improve the classification accuracies.

The computational burden for the computation of the lower accuracy
bound is very small and the use of this bound alone or in combination with the
upper bound would be justified for small gains in the resulting accuracies. The
computational burden of ESFS is extremely high for selecting a moderate
number of features as described in the introduction. However, there may be

advantages in selecting a small number of features by ESFS and then selecting

additional ones by FSFS.

To reduce the number of possible amplitude features from which to select,
the raw data were low-pass filtered to 251tz (2011z cutoff) and resampled at 50

samples per second. This process yielded one fifth the number of features as
the original data which was sampled at 250 samples, allowing the ESFS to be "-
completed in a reasonable amount of time. The data used was from a pilot run
of the Sternberg paradigm experiment. Only the condition of I target in the
target set. was run in this experiment. The data were contaminated by a small
amount of 601hz interference from the video monitor which was inside the

testing chamber, but this was not a problem since the data were lowpass

filtcied to 5511z, and then again to 25Itz.

Data from electrodes Oz and C. were used in the classification test, and a

combined data set of data from electrodes OZ, Pz, and C. was also tested.
Fifteen amplitude features ranging from 160 ms to 460 ms were employed and
the results tabulated in 'able 3-1. The leftmost column lists the number of

. . .
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Table 3-1 Results From Subject #1 Amplitude Data for Various Levels of
Exhaustive Search Feature Se!ection and Selection Criteria Ile

Tabwo. eiftries: upper bound accuracy (Ierent)/lower bound
accuracy (perccnt),!i/umber or fcaturcs.

No. of eatiure
features de.ctiou ALuplitude rcature - Amplitude features -No.___I.u Cour b,.ie-

selected Criteria lowpass filtered unfiltered
by ESFS Weight anid uhder.ampled

-]l ,Cornl billedI 1 Oz Cz O1,,Ilz,Cz Oz _ _z

0 - (J/__ 73168/7 7I 10 xi/8 x../!1/8
0 - 70/73/5 72/0818 8-V78l0 86/811o 77,_8 7 7

0/ 7 1 ts _7.3/o D V)1 8 1178L'i H1/80J_10_ ?((/7718_
I 0 _., h71 7:1 (L7 7, 8 . 8 -27.x ' L7uJ

S L , '7~ F- 721 9 I]I0 83/78/ItS) 1~7 9 /X
1) '717:jb r 7:V/o/ !)1 8/7_8/1_ 831/80/10- 7J77W"

1 0L ,IL 77/o7/ Xi -,.I10 8 i/8f/9 8J j

) -)-~~7 7) ____t__ ___.l.:l__ _______ "__"_

3_~[ 73/W09/9 8: jfX/1 8:8/9 2/.8

-- - 7(I7X-- OL

I 7j/73/ 77/ )71 ___ __ ______

4i - I - 70i_7 _. 7.:1tj/ o ______/0 _:__l______,__':-

5 L M73/5 73/7 ___ ___ __

-- r 7__ 7:1/5 70/7i/o___ _ _'_ -_-

I......... .................... "
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* features first selected by ESFS, the rest of the features (up to a total of 10)

were selected by FSFS. The first row of entries is for zero features selected by

ESFS and all selected by FSFS. This value may have also been labeled 1

because FSFS and ESFS are equivalent for the selection of 1 feature. The next

2 columns are the relative weightings given to the upper (C) and lower (L)

accuracy bounds. The table entries are the upper bound accuracy followed by

the lower bound accuracy followed by the number of features which produced

the listed highest lower bound accuracy. The righthand columns of entries list

the accuracies for raw amplitude features, with features selected from a set of

75 features. Results were not computed for ESFS over 3 features for the data

sets from combined electrodes data and raw data sets because the computation

time became very great with these larger numbers of features from which to

select for the larger ESFS values.

The general conclusion drawn from these results is that there is no

advantage to using the lower accuracy bound for feature selection, or in

performing ESFS. For the filtered data, electrode O produced almost uniform

results across the various selection conditions with lower bounds of 73-71%.

The features which were selected were the same in most cases. These results

are similar to those of electrode CZ, although this data set produced more

variability across the conditions. The lower bound accuracy varied from 67 to

81%, mostly restricted to 67-69%. Five features selected exhaustively

produced the best accuracy bounds of 85% and 81% for selection based on the

upper bound. This was the only example where ESFS produced significantly

better results (but at a high computational cost). When the lowpass filtered

and undersampled amplitude data from 3 electrodes were used as features from
which to select, bound accuracies ranged rrom 74% to 78% for the lower bound

and 79% to 87%) for the upper bound. In all these cases, the results for the

first row of ESFS=O, C=1, L=0, indicate that this is as good a choice as

almost any other of the conditions for feature selection. Hence, FSFS is used

as the feature selection method by the 2-step procedure.

The above analysis of the results on the filtered data also applies to those

of the raw amplitude data. The lower bound accuracies ranged from 75% to

81%, and the first row results are at the upper end of the range. These results

for the unfiltered data are significantly better than the corresponding results for

the filtered data, ranging from 2% to 8%, mainly 5-8%. More features were

chosen to achieve these higher accuracies, but there were more from which to

choose. Thus, heavy filtering may diminish pertinent information contained in

higher frequencies and, therefore, be detrimental to classification accuracy.

... •
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This is an important reason for including frequencies beyond 251z in the 2-step
method. Adding more features would further reduce the ESFS advantages

because the additional features would lead to a substantial increase in the time

required to exhaustively search for the optimum feature set.

.°
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4. MULTICHANNEL ERP WAVEFORM ESTIMATION

4.1. Introduction

Research into the theory and design of event related potential (ERP)
estimation filters has been extended to include the information available in
multiple electrode recordings. The theoretical work for the continuous case

optimum linear time-varying estimation filter was developed by Booton (1952)
and extended to multiple channels by Wolf (1959). The single channel discrete
ERP filter was derived by Yu (1982 and 1983) and described in an earlier
technical report (McGillem 1983). A detailed analysis of the results of the

discrete multichannel time-varying filter (MTVF) research is available in the
doctoral dissertation of Westerkamp (1985). This chapter summarizes that
research. The theoretical basis of the procedure is reviewed first, a description

of the implementation is presented, and finally experimental results using both
simulated and human ERP data are presented and discussed.

4.2. Theoretical Analysis

The optimum linear MTVF can be formulated by requiring that the signal
estimate be a linear transformation of the input received data.

i - r (4-1)

where d = the estimate of the desired signal,

= - the filter matrix,

r the input multichannel data.

The desired signal is typically the signal present in one of the input channels.
Figure 4-1 depicts a block diagram of the MTVF. Although it is not necessary
to assume that the input is an additive signal plus noise process, this
assumption is made to derive a more powerful filter. The assumptions used to
derive the optimum filter are summarized subsequently. The input at each

. . . .
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channel is passed through a time-varying filter matrix and the output of each

filter is summed to provide the desired siLnal estimate. It is implicit that. each
filter matrix uses information from all appropriate channels to determine its

output.

The optimum MTVF is derived by minimizing the mean-square error

between the output of the filter and the desired signal. By including a priori

information in the minimization process, a more powerful filter can be derived.

The following assumptions concerning the EP (signal) and EEX; (noise) are

made:

(1) the signal and noise processes in each channel are a(ditive,

(2) the signal processes are uncorrelated with the noise processes in and

across each channel, and

(3) the noise processes are zero mean.

Combining assumptions (2) and (3), it can be concluded that the signal

and noise processes are orthogonal. All cross-correlation matrices between a
signal process and a noise process will therefore be zero and drop out of the

derivation. The resulting set of simultaneous linear equations which must be

solved to obtain the optimum MTVF can be grouped into one large matrix

equation as

1HRrr R e_~ (4-2)

where H is a block row vector containing the channel filter matrices, Rrr is a

block matrix containing the cross-correlation matrices among the input data

channels, and R, is a block row vector containing the cross-correlation

matrices between the desired signal and the signals in each of the input.

channels. If there are k channels and N data points per input data record, PR.

will be a kxk block matrix. Each block of lrr will be an NxN cross-

correlation matrix between two of the input channels. Similarly, 1 is a lxk
row vector of NxN filter matrices, and R. is a I xk block row vector of NxN

cross-correlation matrices between the desired signal and the signals in each of

the input haninels. Note that R r is a symmetric matrix while the others in

. .- • - -.-. .. . ..... • "-... ... . .. .. .......... .•....-... . . . . . . .- . .



35 I

Equation (4-2) are not (since they are not square matrices),

Theoretically solving Equation (4-2) for H gives

H R--Rsdsrr (-3)

It is very in, !cient to solve a set of simultaneous linear equations by inve;rirg

the coeti.Wv: :iarix. ,aus_:iin elim;nati,2n (using the symmetry of R,,)' is the

met hW~i ef '1-oice if tl',e eqa, L:1140 ' -I:cyived. Methods such as Levinson

recu 3ion which take advantage of Toepiitz coefficient matrices are not

applicable here because the- inl)ut processes may be nons!ationary. Experience

has shown, however, that, the system of equations is not well-behaved and that

simplistic solutions often lead to sub-optimum filters which can become
unstable. These rb eiis nave stimulated re.earch into stable
implenrsnt ait ons of the optimum filter involving unique pseudoinverse solutions

to the filter matrix eqoation. Ki)ne such implementation is discussed in the next

section.

4.3. Implementation

The optimum filter solution to the matrix equation is often undefined or

leads to a filter whose output can become unstable. This is because the matrix

Rrr can be ili-,onditioned with respect to inversion. Since matrices may be ill-

conditionvd with respect to many different algebraic operations, it is assumed

throughoot the rest of this report that ill-conditioned means with respect to
inversion. The ill-conditioned matrix is the result of (1) the ill-posed nature of
the original optimum filter problem and (2) the limited precision of the
computer operations. These two problems are considered separately.

An ill-posed problem is one whose solution is highly unstable and
extremely sensitive t,) small changes in the design parameters. In the

continuous case, the optimum linear filter is the solution to a linear Fredholm
integral equation of the first kind. This integral equation is a well-known ill-
posed problem. Vatn Trees (1968) states that, in the absence of white noise, a
boutuded solution to the integral equation does not exist. Hanson (1971) has
derived miunerical !,ivthods for solving Fredholm integral equations of the first
kind and Varah (1973) has described solutions to the general ill-posed problem.
In the case of the a posteriori optimum MTXT, the ill-posed nature of the

problem is the result of three conditions: (1) the absence of a white noise
component, (2) the tise of estimates rather than exact an knowledge of the
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input statistics, and (3) errors in the assumptions used to derive the filter. The

effect of the first condition was considered above. The second condition leads

to a solution which is only an estimate of the optimum MTVF. Since the

solution is only an estimate, it has bias and variance problems which degrade

the filter's performance. The third condition refers to the assumption that

Rrr = .+ ,, (.4-)

It is important that the arr in Equation (4-4) be used when designing the filter.

Using the input data records to estimate R is incorrect because, if tile

assumptions used to derive the filter are wrong, the designed filter will not be

optimum and its output might not minimize the mean-square error criterion.

It is better to design the filter using Equation (4-4) and then optimize the

design to account for the differences between the assumed input processes and

the actual input. This is the basis of the implementation described

subsequently.

A problem which is not ill-posed can still result in a coefficient matrix
which is ill-conditioned. The computed inverse may be significantly different.

from the inverse of the original matrix due to roundoff error and finite machine

precision. Even though the original matrix is invertible, therefore, it, may t)e

ill-conditioned as far as the computer is concerned (Wilkinson 1963).

According to Strang (1976), this undesirable result occurs because linear

algebraic theory assumes that the matrix operations are performed on a closed

algebraic field; the computer obviously does not operate on a closed field

because it is restricted to representations of the matrix elements which have

limited precision.

The optimum linear MTVF is defined by

17_ -sds-rr

The solution described subsequently employs the spectral decomposition of lrr

given by

7.

. ... . .. . .......
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kN

krr 1(4-6)

where the Xi are the eigenvalues 4' r and the ~jare the associated
eigenvectors. The Xi are ordered so that

;(Iving for 11 using F~quatic i (1- 4~) reqiji;es com lutin g the inverse of lr Th

inverse of Rr can be oibtained from Equation (4-6) and is given by

-qj-ql(4-8)

If some of the Xi are zero, the inverse given by Equation (4-8) will be undefined.
Assuming that there are r nonzero eigenvalues (i.e., the matrix krr has rank r),
a pseudeinverse may be defined as

By eplcig~ 12in E'quation (4-5) with the H~of Equation (4-9), a bounded

solution for ft can be computed. In practice, however, the problems described
in the two previous sections may still cause unacceptable errors in the estimate
of UI. These errors would cause LIto differ from the theoretically optimum1.
If the suboptimum (I were used to filter the received data, large oscillations or
undesirable signals could appear In the filter outrput. The pseudoinverse can be
improved by setting small cigenvalues to zero and disregarding the
contriuin of terasctdeigenvectors to the solution. This inverse is
called the -truncated pseudoinverse (Sullivan 198-1) and is defined by

r 1 +-iqT (4-10)

The difficultY lies in determining 1. Sullivan used the singular value
decomposition an(I the inean-square error to define a criterion for determining
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the optimum number of eigenvalues, %opt, to keep for computing the inverse.

The 1-truncated pseudoinverse was used to extrapolate a signal from ill
dimensions to n (n > m) and assumed additive and uncorrelated zero mean

noise. The criterion derived here is for a general class of optimum linear filter
equations and accounts for any perturbation to the assumed mo(el for rr.

The determination of lop t is now derived by considering the effects of a

perturbation in R on the mean-square error. Consider the following

expression for the mean-square error:

trsdd + P' rrtIT -- 2 IT (4-11)

The filter _ which will be used to evaluate "2 is

1- .DT)rr (1-12)

where R+ is the 1-truncated pseudoinverse of 1, as described in Equation (4-

9). Let 1RH be the estimate using the received signal and noise waveforms and

let .rr be the estimate derived from the assumption f~rr Is, + In? If

Rrr Rrr then

tr T (4-13)
[ft d "- tr

This is the theoretical mean-square error. If the assumptions, models, and.

estimates were correct, Equation (4-13) would be the exact mean-square error.

Assume now that Rrr Rrr. In this case the mean-square error is

tr [1 . + ht rrtt - (,1-14 -('14

where

Rr lirr + Err (4-15) A%.

"in which Pr represents a perturbation on the matrix r'"

in w h f

- .1

. - . .
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Rewriting Equation (,1-14) gives

tr[i, + ftkrrj T  T + ftPrrhT

Using Equation (.1-13), this simplifies to

_ 2 -- I ______ ___tl -jl]', l (1-171 .

Inserting the expression for I! into Equation (1-17) gives

I __rK[ T "+ + -1+ T

J' = r 1 L-J ,_R -.ro_ s r

Note that although )-rr is a symmetric matrix, it may have negative

eigenvalues.

The minimum norm least square (MNLS) criterion is as follows:

(I) insert the R t of Equat ion (4-9) into the expression for the mean-square

error gi"vei: by Equation (1-18), .

(2) evAluate Equation (4-18) for all possible values of 1,

(3) determine ]opt as that value of I for which the mean-square error is a
" mriiaimum, r.

(4) set the remaining kN - lop t eigenvalues of Rrr equal to zero, and

(5) compute the MNLS estimate of 11 using f +r ."

The MN LS algorithm just, described could be implemented by computing

a new fI for each value of I and evaluating Equation (4-18), but this method
would be very ineflicient and, as a result, time consuming. There is a good

deal of redundant information available in computed using Rr_+ which can

%g



40

be used to compute for ii This suggests a recursive algorithm for

calculating '(1), which is the mean-square error as a function of 1. The
recursive algorithm is derived in Appendix H. The computational complexity
of the eigenanalysis along with the computational complexity of two NIS Il

algorithms are compared in Table .- I. The simplistic NINLS refers to -'

computing the mean-square error using [quati<,n (.1-18) <directly for each new
eigenvalue. [he table clearly shows that the computational burden of tile

simplistic NINLS algorithm dominates that of the eigenanalysis. The recursive
MNLS algorithm requires fewer computations than the eigenanalysis. The
computer time is dominated by the MNLS computation using the simplistic

algorithm, but by the eigenanalysis (which must be done anyway) using the
recursive algorithm. Using the recursive algorithm can therefore save a great
deal of time and requires only moderately additional overhead to the

eigenanalysis.
There is one problem which arises in this implementation which must be

addressed. The mean-square error can be written as a sum of two parts: (1)
the optimum matrix and (2) the perturbation matrix. Consider again equation

(6.4.16) rewritten to emphasize these parts.

-I? Ii + trIIHU Irl (4l

The part due to the optimum matrix will decrease with increasing I and
approach zero. Theoretically, it could never be less than zero, but may be

slightly negative due to the variance of the estimates or the ill-conditioned

nature of R r (used in obtaining I). Since this cannot be allowed, special
attention is given to this case when determining 1opt in software. The part. due

to the perturbation matrix may also be negative because [,, is not necessarily

positive definite. If such is the case, a slightly optimistic mean-square error is

obtained because the second part subtracts from the first. If the second part is
negative enough, the total mean-square error may become negative and this is
clearly impossible. This situation, although theoretically impossible, can be
explained. The optimum linear filter was derived under certain assumptions.

If these assumptions are invalid, the derived equations for the mean-square
error will also be invalid and as a result, the second part of due to Prr can be

negative. If the second part is negative for all values of 1, then it. is highly,
probable that the assumptions, models, and estimates used to obtain ._ are

incorrect. This situation is also detected in software.

.- I
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Table 4-1 Computational Complexities of Eigenanalysis and MNLS
pMinimui Norm Least Squares) Algorithms

Algorithm Computatious

Simpli:tic MNLS O (kN) I

Eigenaualysis 0[(k N)'J

Recursive MNLS O(k2 N3)

Mi

.....i . .. . . . .. . . . .



42

It is much more likely that the second part will be negative when only a

small number of eigenvalues are kept (I < oFp t << kN). This is because a

suboptimal filter is being used to evaluate the mean-square error. If the

suboptimal filter were used, the filter might not minimize the mean-square

error as designed, but actually increase it by allowing signals larger in the -:

output than the input. As more eigenvalues are kept, the filter approaches the

optimum filter and the second part becomes positive. In order to avoid

obtaining an optimistic mean-square error when the second part is negative, the

absolute value of the second term is used instead. The minimum mean-square
error will be found where the magnitude of the second term is near zero. ,As

the number of eigenvalues kept approaches kN, the mean-square error may

become very large due to the problems discussed in the first two sections.

Practically, this is because relatively small eigenvalues, when inverted, cause

the noise term due to Lrr to increase much faster than the theoretical mean-

square error decreases. There will be a value of 1, designated 'opt, for which the

mean-square error will be a minimum. The largest 1opt eigenvalues are kept

and the remaining kN - lop t eigenvalues are set to zero. The resulting Rr, is

then used to obtain the MNLS solution for ii.

4.4. Simulation Test

In this section, the MNLS criterion is tested on data which simulate the
perturbations described in the previous section. Gaussian signal and noise data

records with zero means and prespecified covariance matrices were generated

according to Fukunaga (1972). The covariance matrices for the signal and

noise data records were chosen according to Standard Data Sets 1 and 2 in
Fukunaga (1972 pp. 46-47). Two hundred signal records and four hundred
noise records were generated. Each data record contained eight sample points.

A set of gaussian received data records were simulated by adding one hundred

noise records to one hundred signal records. A second channel was simulated
by adding a different set of one hundred noise records to the same one hundred

signal records used to simulate the first channel. The SNR was set to -6 dB by
scaling the noise records appropriately. These simulated received data records

are referred to as the testing set. Two different MTVFs were designed using

different training sets (the data records used to estimate the signal and noise
statistics). The first MTVF used identical training and testing sets. The

second MTVT used a training set consisting of the remaining signal and noise
records not used to make up the simulated data but generated from the same

covariance matrices. In practice, the statistics of the signal and noise processes
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are seldom known exactly but must be estimated. The VEP problem, as an

example, requires the indirect estimation of the multichannel cross-correlation

matrices for both the poststimulus EEG and VEP. This is the difference

simulated by the two MTVF designs.

The MTVF designed for each of the two training sets was first computed

by keeping only the largest eigenvalue (and its associated eigenvector) in the

pseudoinverse. The theoretical, actual, and minimum norm mean-square errors

were then calculated. This was repeated sixteen times, adding the next largest

eigenvalue to the pseudoinverse at each step and recalculating the mean-square

errors. The actual mean-square error was computed Ling the actual and

estimated signal records. The MNLS criterion was then checked by comparing
the theoretical and actual mean-square errors to determine whether the
theoretical or the minimum norm mean-square error was a better indicator of

the actual error.

The MTVF designed using identical training and testing sets performed

will considering the low input SNR and similarity between the signal and noise

processes. Table 4-2 summarizes the theoretical, actual, and minimum norm

mean-square errors. The MNLS criterion suggested retaining all sixteen

eigenvalues as did the theoretical mean-square error. The actual mean-square

error was lowest when only fifteen eigenvalues were kept to compute the

pseudoinverse. In this case, both criterion were close to predicting the

optimum number of cigenvalues to keep.

The MTVF designed using different training and testing sets is more

interesting. These results are summarized in Table 4-3. The MNLS criterion

suggests retaining only ten eigenvalues. The theoretical mean-square error is

lowest when keeping all sixteen eigenvalues. The lowest actual mean-square

error was obtained by keeping twelve eigenvalues. Retaining more eigenvalues

causes the actual mean-square error to increase even though the theoretical

error continues to decrease. The theoretical mean-square error will always
continue to decrease as more eigenvalues are retained for computing th

pseudoinverse. The MNLS criterion resulted in an actual mean-square error

which was the second lowest. Figure 4-2 depicts these results more clearly.

Note that initially, the mean-square errors are very high since only one

eigenvalue is kept. The mean-square errors converge when keeping four to six

eigenvalues and begin to diverge when keeping more than seven. After seven

eigenvalues, the theoretical mean-square error continues to decrease but much

more slowly. The theoretical mean-square error converges to the optimum

mean-square error for these data. The minimum norm criterion results in a

-,U



_% ., , -. o. - ..' .~ ;-r'- r.. -, ._. '- _ . _. ,- - . - w_*. *Wg .. .-.. . ,,.4.
-

44

Table 4-2 Minimum Norm Simulation Test Using Identical Training and
Testing Sets

Eigenvalues Theoretical Actual MN
Kept MSE MSE MSE
16 0.384 0.387 0.404

15 0.389 0.384 0.417

14 0.408 0.413 0.428

13 0.413 0.415 0.433

12 0.415 0.415 0.438

11 0.416 0.417 0.437
10 0.424 0.424 0.448

9 0.457 0.442 0.489

8 0.598 0.562 0.614

7 0.623 0.584 0.631
6 0.636 0.604 0.612

5 0.686 0.654 0.701
4 0.786 0.752 0.801

3 0.801 0.768 0.818

2 0.811 0.787 0.826
1 0.950 0.962 0.951

I i ..: : i... / i. i . ~i)/ /: i~'-:! ii ...i iii : ::!:: iiIi
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Table 4-3 Minimum Norm Simulation Test Using Different Training aJ-
Testing Sets

Elgenvalues Theoretical Actual MN
Kept MSE MSE MSE

16 0.359 0.490 0.547
15 0.363 0.492 0.534

14 0.385 0.489 0.514

13 0.391 0.487 0.513
12 0.394 0.481 0.503
11 0.401 0.486 0.408

10 0.405 0.48.1 0.405

9 0.410 0.487 0.499

8 0.411 0.507 0.521
7 0.500 0.56,3 0 587

0.550 O.bOO 0.044

5 0.722 0.742 0.724

4 0.837 0.845 0.858

3 0.864 0.835 0.895

2 0.89,4 0.858 0.914
1 0.800 0.877 0.918

26.
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Figure 4-2 Mean-Square Error Comparisons Using Different Training and
Testing Sets
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mean-square error which begins to increase again after ten eigenvalues. The

actual mean-square error appears to be bounded pessimistically by the

minimum norm error and optimistically by the theoretical error. This result
confirms that using more eigenvalues than necessary can increase tLe actual

mean-square error even though the theoretical error continues to decrease. The

MNLS criterion suggests a near optimum number of eigenvalues for designiig

the MTVF when the training and testing data sets are different. Thi: is

typically the case for practical optimum filtering problems and is certainly the

case for VEP estimation. The implications of this result will be seen later

when t.e dimensionality increases and the differences between the training and

testing sets are magnified. The output of the MTVF will be shown to oscillate

drastically when certain suboptimum numbers of eigenvalues are retained.

4.5. Evoked Potential Data Tests

Scalp-recorded brain responses following checkerboard patterned

stimulation of the lower visual field of human subjects were used to test the

performance of the optimum MTVF. Prestimulus on-going EEG data were

also recorded for the purposes of artifact rejection and estimation of the noise

cross-correlation matrix. The EP was modeled as a sum of raised cosine

components with randomly varying amplitudes and latencies. Random signal
component data records were generated and used in an initial simulation to

establish an optimistic bound on the two channel performance. The

parameters used to generate the simulated EPs were obtained from a latency

corrected average (LCA) of the scalp-recorded responses at electrode Pz

(McGillem 1977 and Aunon 1979). Table 4-4 summarizes the LCA results at

electrode Pz and Table 4-5 at electrode Cz. These signals were added to the

on-going EEG data records recorded at electrode Pz prior to stimulus

presentation. The noise records were scaled to provide a desired input SNR. A

second channel of simulated scalp-recordings was obtained by adding the
simulated VEP signals (scaled by a factor of 0.8) to the prestimulus EEG

recorded at electrode Cz. Using a uniform scale factor for each component is

not. a requirement of the random signal model, but is convenient and should

provide an optimistic bound on the filter performance when the filter is applied
to the human VEP data. Example waveforms (-6 dB SNR) are plotted in

Figure 4-3. They appear to resemble scalp-recorded responses. Depending on
the latencies of larger EEG components, the signal peaks are either obscured or

exaggerated.

U
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Table 4-4 Lower Checkerboard Latency Corrected Average Results at
Electrode Pz (Subject #5)

Latency
Peak Latency (ms) St. Dev. (ms) Amplitude (uV)

1 74.14 7.41 6.28

2 111.60 6.65 -13.07
3 146.87 8.99 3.11

4 170.00 7.81 -2.22
5 202.95 11.32 8.42

Table 4-5 Lower Checkerboard Latency Corrected Average Results at
Electrode Cz (Subject #5)

Latency
Peak Latency (ms) St. Dev. (ins) Amplitude (uV)

1 73.31 8.76 5.17
2 113.79 10.97 -12.42
3 166.40 5.72 -3.19
4 199.58 11.72 11.18

'a,

-F. . . . . . . . . .. . . . .. - -- - ."-'-.- - . ." - ' - - -
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Record #1 Record #2

Record #3Reod#

10 14V

100 ms

Figure 4-3 Example Waveforms (solid) for Simulated Evoked Potential
Signal (dash) In Prestimulus Electroencephalogram (Electrode Pz)
(-6 dBi SNII)
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Single and two channel filters were designed using the simulated scalp-

recordings. The cross-correlation matrix of the VEI signals was derived from

the random signal component model under the assumptions of independent

components and gaussian distributions for both the amplitudes and latencies.

The single and two channel filters were designed according to the method

outlined in the implementation subsection. The perrormance criteria are

summarized in Table 4-6. Figure 4-4 depicts these performance iml)rovements

vs. the input SNR. Considerable improvements are realized ranging from a

26c (-9 dB) to a 30' (0 dB) reduction in the actual NISE, using the two

channel filter. The output SNI? is improved by approximately 2 (dll. Note

that even at low input SNIs, the two channel filter provides considerable

performance improvements.

Example waveforms (-6 dB input SNR) reflecting the mean-square error

(MSE), noise reduction factor (NRF), and bias factor (13F) of the optimum

filters are plotted in Figures 4-5 through 4-7. Examples or the single and two

channel filter outputs for simulated VEP plus human EEC, input are plotted in

Figure 4-5. The two channel filter reduces the MSE in the signal estimate

especially at latencies where the SNR is small, such as near the second positive

and negative signal peaks. Examples of the noise reduction improvements

realizable using the two channel filter are plotted in Figure 4-6. Note especially

Record #1 in which a component in the output of the single channel filter at

200 ms is suppressed by the two channel filter. The filter bias is depicted in

Figure 4-7. Noiseless random signals were passed through the optimum filters

to determine the degree of signal distortion. As predicted by the performance

criteria, there is little bias in either filter output.

The performances of the single and two channel filters on the human

scalp-recorded data are now considered. Figure 4-8 depicts the average VEPs

to lower checkerboard stimulation for Subject #5 recorded at. electrodes Pz and

Cz. Note that the on-going EEG in Figure 4-8a is very nearly zero mean and

that the average VEPs are quite similar in both electrodes. The average PVEP

is a transient signal with a distinct onset. Because the VEP also varies

ra'idomly from one response to the next, the scalp-recorded random process

must be considered nonstationary. Example scalp-recorded responses are

plotted in Figure 4-9. The VEP is buried in the on-going EEG and only a

trained eye could detect the locations of the larger peaks in the VEP and only

then by knowing the time of stimulus presentation. The input SNIZ is

approximately -7 dB (as determined from the random signal model and the

prestimulus EEG).

+ ...... . . . . .::::::::::::::::.. . . . . . . . . . . . . . . . . . .... ..:::::::: ::::::,::" :: - .:" " . . . .: . ..: • .. :. . . . . . . . . . . .!"
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Table 4-6 Performance Comparisons vs. Input Signal-to-Noise Ratio for

Simulated Evoked Potential Signal in Pr estimulus
Electroencephalogram. Abbreviations Used are MSE (Mean-
Square Error), MNLS (Minimum Norm Least Square), BF (Bias
Factor), NRF (Noise Reduction Factor), SNR1 (Input Signal-to-
Noise Ratio), and SNR0 (Output Signal-to-Noise Ratio). MSE
and BF are Normalized.

Number of Input SNR (0B) ____

Criterion Channels 0 -3 -6 _____

Theoretical Single 0.037 0.06 0.085 0.125

MSE Two 0.025 0.039 0.060 0.091

Actual Single 0.037 0.055 0.084 0.125

MSE Two 0.026 0.040 0.061 0.092

*MNLS Single 0.050 0.061 0.086 0.138

Error Two 0.051 0.057 0.077 0.104

Single 0.016 0.024 0.037 0.054

BF____ Two 0.011 0.018 0.026 0.042

Single -16.635 -17.009 -119.130 -20.482

NRF (dB) Two -18.321 -10.518 -20.745 -22.066

Single 1.372 14.508 12.506 10.536

SNR0 (dii) Two 1813 16.246 14.320 12.407
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.20.2

S.2

0 0.

0.01 0.01
-g -6 -3 0 - 6 -3 0

Input SNR (dB) Input SNR (dB)

-10, 30

aT25

~~~~~~~ -2............ 20

-25 15

-301___________ 10
.9 -- 3 0 -9 -63 0

Input SNR (0B) Input SNR (0B)

Figure 4-4 Performance Comparison vs. Signal-to-Noise Ratio for Single
(dash) and Two Channel (solid) Filters on Simulated Evoked
Potential Data. Abbreviations Used are Actual MSE (Mean-
Square Error), 13F (Bias r~ ac-)r), NRF (Noise Reduction Factor),
and SNR0 (Output Signal- to- Noise Ratio).
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Single Channel Two Channel

Record #1

~~~Record #2 :,.,

* -,

Record #3

Record #4

10 J4V

100 ms

Figure i-5 Examples of Single and Two Channel Filter Output (solid) foi"
Simulated Evoked Potential Signal (dash) Plus
Electroencephalogram Input (-6 dB SNR)
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Single Channel Two Channel

Record #1

~ * **~ ~ aa;* *eA. : .1.. .

Record #2

.. • a.. ,,, . ... . -:
a a

Record #3
I''

Record #4:::

: e" "I. .. 4 ,,.* .•

*. : , . .. !
**a.. -.

*.*Record #4 ' -"

.. . . a, . ,

10 jiV

100 ins

Figure 4-6 Examples of Single and Two Channel Filter Output (solid) for
Prestimulus Electroencephalogram Only Input (dash)
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Simulated Evoked Potential Signal Only Input (dash)
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Figure 4-8 Average Visual Evoked Potentials to Lower Checkerboard
Stimulus (Subject #5). a) Electrode Pz Including Prestimulus and
b) Electrodes Pz (solid) and Cz (dash) Following Stimulus.
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Single and two channel optimum filters were designed according to the

method outlined in the implementation subsection. The filters were designed

to estimate the VEP in electrode Pz. The VEP cross-correlation matrix was

obtained using the random signal model. The necessary statistics of the
individual components of the VEP for subject #5 were determined from the

LCA. These statistics were summarized in Table 4-4 for electrode Pz and
Table 4-5 for electrode Cz. The lower checkerboard average VEP is typically
largest in electrodes Oz and Pz (Jeffreys 1971). Electrodes Pz and Cz were

chosen to design the two channel filter (estimating the signal in electrode Pz)

because the LCA for both of these channels detected a negative component at
160 ms which did not appear in the LCA for electrode Oz. Since it was desired

to estimate this component more effectively, the scalp-recorded responses from

electrode Cz were chosen instead of those from electrode Oz.

The MNLS criterion was an important factor in obtaining a stable two

channel filter for the human VEP data. The cross-correlation matrices used to

design the filter may both be slightly different than those for the scalp-recorded

responses. The prestimulus EEG may not be a good model of the post-stimulus
EEG if the statistics of the EEG change due to the presence of the VEP. The
random signal model may also be imperfect. If the VEP and EEG are in fact

correlated, the assumptions used to design the filter would be violated and it is

possible that the output of the filter would become unstable if the MNLS

criterion were not used.

Figure 4-10 summarizes the MNLS error vs. the number of eigenvalues
used to compute the pseudoinverse. In the single channel case, the MNLS error

decreased rapidly until the 10th eigenvalue (approximately the number of

significant eigenvectors required to span the output signal space). After the
10th eigenvalue, the MNLS error remained fairly constant, but slowly began to
decrease again after the 50th eigenvalue. The optimum number of eigenvalues

to retain was 74 and the MNLS error remained bounded at all times. The two

channel results were quite different. Once again, the MNLS error decreased

rapidly until the 15th eigenvalue from which point it. continued to decrease but

at a much slower rate. The optimum number of eigenvalues to keep was 112.

After 112 eigenvalucs, however, the MNLS error began to increase rapidly.

After 130 eigenvalues, the MNLS error was greater than 1.0 suggesting that the
output of the two channel filter was highly unstable.

Example waveforms depicting the output of the two channel filter are

plotted in Figure 4-11. It is apparent that, the individual components in the
VEP estimates are varying ran(mly in both amplitde amd latency. This

.,.
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Figure 4-11 Examples of Two Channel Filtered Scalp-Recorded Responses
From Electrodes Pz and Cz Following Lower Checkerboard
Stimulus (Subject #5). a) Ten Superimposed Filtered VEPs and
b) Three Dimensional View Showing Variability with Each
Response. Estimating Visual Evoked Potential in Electrode Pz.



suggests that the random signal model is providing the intended result.

The performance criteria for the single and two channel filters are e
summarized in Table 4-7. The theoretical MSE and MNLS error suggest a
reduction in the actual MSE of between 32% and 35% using the two channel
filter. The output SNR should improve by more than 2 dB. Examples of the
filter outputs and the scalp-recorded inputs are plotted in Figures 4-12 and 4-
13. Note in Record #5 that the two channel filter appears to improvw the
estimate of the third positive peak because of the additional information
provided by the larger and narrower peak in electrode Cz. The estimate of the
second negative peak is improved in the same manner in Record #9 and
Record #26. In Record #9, the single channel estimate looks quite adequate.
By examining the response in electrode Cz, however, it appears that the single
channel filter has incorrectly located the second negative peak. In electrode Pz,
there are two negative deflections in the response near where the second
negative VEP component should be. Without additional information, the
single channel filter chooses the later deflection. The response in electrode Cz,
however, shows only the first deflection and as a result, the two channel filter
attempts to place the component nearer to the first deflection. The additional
information in the Cz response also helps to place the second negative VEP
component in Record #26.

Figures 4-14 and 4-15 depict examples of the noise reduction capabilities
of the optimum filter. Note in Records #8 and #10 especially the ability of
the two channel filter to suppress EEG components which appear in the output
of the single channel filter. It is important that the on-going EEG be reduced
as much as possible so that noise components are not construed as VEP.

Examples of the bias associated with the single and two channel filters are
plotted in Figure 4-16. Note especially that the two channel filter does not
distort the smaller signal components (the second positive and negative
components) as much as the single channel filter.

It is important to realize that the estimate is only as good as the signal
model. Improved signal models using better physiologically descriptive
components may improve the VEP estimates even further. The simple raised
cosine model is useful if the peak amplitudes and latencies are more importapt
than the morphology of the VEP. The use of additional channels may or may
not improve the VEP estimates. Additional channels may improve the
estimates of the eigenvectors (both for the signal output space and the noise
space) and thus improve the VEP estimates, but the computational burden and
limitations of the computer precision may override the modest gains

P_ . .A, . .. .. . ' . . . . . .. . - - - - . . . . . . . . . . . . . ... . .. -
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Table 4-7 Performance Comparisons Single vs. Two Channel Filter on
Lower Checkerboard Visual Evoked Potentials (Subject #5).
Abbreviations Used are MSE (Mean-Square Error), MNLSE
(Minimum Norm Least Square Error), BF (Bias Factor), NRF
(Noise Reduction Factor), and SNRO (Output Signal-to-Noise
Ratio). MSE and BF are Normalized.

Criterion Single Two h.

Theoretical
MSE 0.156 0.106

MNLSE 0.227 0.147

BF 0.068 0.048

SNR ! (dB) -7.756 -7.756

NRF (dB) -18.312 -20.109

SNR o (dB) 9.342 11.5761

. . . . .. . . . . . ..

,. . . . . .. . . . . . . . . . . . . - -

- . . . . . . . . .. - - .. . . . . . .- - b .. . . .



63

Single Channel Two Channuel

Record #5

ee #6

Record #7

10 V

00 ms_

uman Sclp-Recorded Responses Following a Lower

Checkerboard Stimulus (Subject #5). Pz (dash), Cz (dash with

wider gap), and Filter Output (solid). !

* a

.. . .. - . " . . - . . - . . - . . - - • "' " . .
5.1.- 

a ' . . .. . " - . . - , - . - ,.- • - . ' - ,- %

S... . ..I. 
*.' 

. .' . - . ". " . . " . " '. " .- ' ,. ' .-. . ,. - . ' ' ' ' ' . . ' ' ', , . .



7K7 64

Single Channel Two Channel '.

Record #0

.°, a
S..S I \ ,

Ir v

S..

''Si

Record #26

.. , , .. , "** j ,:':- :!

10 pV

100 ms

Figure 4-13 Comparison of Single and Two Channel Filter Outputs Using
Human Scalp-Recorded Responses Following a Lower
Checkerboard Stimulus (Subject #5). Pz (dash), Cz (dash with
wider gap), and Filter Output (solid).
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Figure 4-16 Comparisou of Single and Two Channel Filter Outputs for Signal
Only at Input (Subject #5 Signal Model). Signal Model (dash)
and Filter Output (solid).
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obtainablee using extra channels.

In order to better understand the importance of the MNLS criterion, a

second two channel filter was designed ,nsing more eigenvalues than necessary

to compute the pseudoinverse and solve the filter normal equations. The

original ]opt truncated pseudoinverse filter was designated the LOPT filter ard

the non-Iopt truncated pseudoinverse filter was designated the NLOPT filter.

The same scalp-recorded data records (Subject #5) used to design the LOPT

filter were used to design the NLOPT filter. Table 4-8 summarizes the

performances of the LOPT and NLOPT two channel filters. The key result is

that even though the theoretical MSE is reduced by keeping 132 eigenvalues

(instead of the 112 suggested by the MNLS criterion), the MNLS error is not.

It is actually very large (since theoretically it cannot be greater than 1.0)

suggesting that the filter output is unstable. Figure 4-17 depicts several

examples of the NLOPT filter output along with the LOPT filter output for

the identical input. It is obvious that the NLOPT filter output is unstable and

that it is not minimizing the MSE. When designing a posteriori filters,

therefore, it is necessary to use the MNLS criterion to account for possible i

instabilities in the filter due to the differences in the modeled cross-correlation

matrices and those of the actual input process.

b. .
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Table 4-8 Performance Comparisons Using LOPT and NLOPT Filters.
LOPT F ilter Retained 112 Eigenvalues to Compute
Pseudoinverse and NL.OPT Filter Retained 132. Abbreviations
Used are MSE (Mean-Squa',re Error), MNLSE (Minimum Norm
Least Square Error), BF (Bias Factor), NRF (Noise Reduction
Factor), SNR1 (Input S'ignal-to-Noise Ratio), and SNR0 (Output
Signal- to--Noise Ratio). MSE and BF are Normalized.

Criterion NLOPT LOPT

Theoretical
MSE 0.028 0.106

MNLSE 2.485 0.147

BF 0.022 0.048

SNRI (d113) -7.756 -7.756

NRF (dB) -30.878 -20.109

SNR0 (dB) L22.967 11.57
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5. MATHEMATICAL MODELING OF THE VEP

5.1. Introduction

The object of this study was to mathematically model the ERP r,-(-ordod .
"" at the surface of the cortex. These waves deseribe the net result of ;'he "-

electrical activity generated by the simultaneous activation of a large number .
' t of thalamocortical axons (Mountcastle 1974). In some reco)ding situations, a

, very precise correlation has been found between the ERP recorded with (
, microelectrodes within the cortex and the surface recorded ERP (Creutzfeldt :

1966 and Cooper 1965). Thns since both types of recordings are generated by"-
the same events, they should be mathematically related. Yet, a one to one :
relationship between the potentials generated by a single neuron or section of a i

neuron and the recorded surface potential does not exist. The reasons for this-".
are that the surface electrodes are large enough to record the activity of many,--.-
cells and that the neuronal membrane potentials do not vary in a synchronous ''

way. Nevertheless, representing the ERP as the addition of a set of components

or basis functions which might be similar to these neuronal discharges will aid ;'
in the development of effective signal processing algorithms for extracting the :::.
ERP.

5.2. The Model

The model proposed is given by Equation (5-1)

i (t)- aks~t--tk) -1"',
k=1 '

where the coefficients ak are statistically inndnent identically
distriuted(i.i.d. random variables as ire the a tk  The function of time i(t)

is the approximation to the measured surface potential and s(t) is an
elementary waveform capable of representing a component in the ERP. This

representation is useful because it provides a model for analyzing experimental

results and for carr) ing out simulation studies. The average waveform is given
by the expected value of i(t) which can be expressed as

reatoshpbewenth otnias eertd y inl nuonorscto oI
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ni~) E[ak]E[s(t-tk)](52
k--I

K
"- k f s(t-tk)P(tk) dtkIN1

k--I -oo

K V
--- " ks(t-tk)
k=1

where pMtk is the probability density function Of tk, aik is the mean Of ak, tk is

the mean of tk, and s- is the convolution of the component waveform with the

probability density function.

Two models similar to the above were used by Moser (Moser 1980). In one

of his models the evoked potential was depicted as the sum of gaussian shaped

wavelets multiplied by an amplitude factor as shown in Equation (5-3)

n (t-t_)2 ""

'(t)- rakexp[_' j (5-3) ..
k =1 2or2  2

where the i(t) represented the measured surface potential, the a k were the

amplitude factors for each of the k-th components, ar was a measure of the

width of the wavelets and tj was a random variable representing the time of

occurrence of the wavelet's peak. An alternative model (Yu 1983) was based

on the same principle but the wavelet shape used was that of a raised cosine
pulse.

5.3. Statistical Analyses

In most of the models mentioned as well as in other applications aimed

toward the improvement of waveform estimation of event-related potentials

(McGillem 1085) the assumption has been made the the latencies of each

component behave as if they were normally distributed. This assumption is

supported by the histograms of the latencies of individual peaks detected

during computation of the LCA which indicate that the gaussian density

function is a reasonable approximation for their distribution. Also, it seems

likely that the latency of each component corresponds to the instant in time at
which the greatest number of neurons fired. The large number of contributing

neurons also suggests a gaussian behavior.

In order to strengthen the supposition, some preliminary nonparametric

statistical tests have been performed on evoked potential data. The data were

.',-',-. . ."',.,, -.-". amplitude,,,,'.-..'. factors'.'.," ,',.:'," . . .' - .fo"ah ofte kt compo ents .. was.". a measure . - of. the. . . ..--. • '
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obtained from subjects who sat in a dark and quiet room viewing a cathode-

ray-tube screen(Grass System) which subtended a 11.5 by 8.5 visual angle.

Beckman silver-silver chloride electrodes were attached on their heads with
conductive paste at Cz, Pz, Oz, and In, according to the 10-20 system (Jasper

1958). All the electrodes were referenced to linked mastoids and the forehead
was used as ground. Interelectrode impedance was kept below 5 kohms . The

stimulus consisted of upper and lower checkerboard patterns of check size

approximately 18'. The stimulus duration was 1000 msec. with interstimulus
interval varying between 3 t(; 5 sec. The average luminance was kept constant
throughout the experiment at 6.0 foot Lamberts. Grass 7p511 EEG amplifiers
with a low frequency cutoff of 0.1 1-z and high frequency cut off of 100 Hz were

used. Analog-to-digital conversion was performed at a rate of 250 samples per
second with an A/D converter having 12 bit precision. The data was later
searched for artifacts due to eye movement. If the eye channel signal amplitude
changed more than 50 pv in lOOms the record was rejected.

The tests were only executed on the lower checkerboard pattern data
recorded at Oz and Pz. The first step was to acquire from the LCA program
the latency and amplitude values for each component that was a member of v.
the sample population. The statistics for each peak in the signal are given in

Tables 5-21 & 5-22 and only those peaks detected more than 30% of the time
were later analyzed.

Four different nonparametric statistical methods were used. These are the
run test, the chi-square goodness of fit, the Kolmogorov-Smirnov one sample
test and the Kolmogorov-Smirnov two sample test. These tests were chosen
mainly because they are distribution-free techniques and do not depend on the
characteristics of the population from which the samples are acquired. In fact
there are only two main requirements, one being that the sample variates be
continuous!y distributed and the other is for the observations to be drawn

randomly and independently of the outcome of previous draws.

The first requirement was assumed true while the second was tested using
the run test. The hypothesis of independence was tested at the .05 level of
significance and all the latencies and amplitudes variates for each component

passed the test. The results are presented in Tables 5-1 through 5-4 where the
number oi' runs is given under the label r and the columns to its left and right
represent the limiting values of r under which the hypothesis of independence is

accepted.

The skew and kurtosis of the variables were also measured. The skew
describes the degree of asymmetry of a density function and it is zero for a

-7l
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Table 5-1 Results of Run Test on Latencies (Oz)

Peak # N rn/2,1-a/2 r rnl2,a/2

pl 36 .05 12 18 25

p2 77 .05 29.8 33 48.2

p3  95 .05 38 45 58

nI 48 .05 17.2 26 31.8

n2 97 .05 38.8 48.5 59.2

n3 45 .05 16 24 30

Table 5-2 Results of Run Test on Latencies (Pz)

Peak # N & rn/2,1-a/2 r n/2,/2

p1 79 .05 30.6 35 49.4

p2 50 .05 18 27 33

p3  80 .05 31 34 50

nI 32 .05 11 17 22

n2 99 .05 39.6 53 60 -

n4 30 .05 18.44 26 33.7

dd

ft . . .
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Table 5-3 Results of Run Test on Amplitudes (Oz)

Peak # N at r,,,-/ r n2c2
p1  36 .05 12 19 25 1

p2  77 .05 29.8 43 48.2

p3  95 .05 38 49 58

nI1 48 .05 17.2 21 31.8

n2 97 .05 38.8 53 59.2

n14 45 .05 16 i 9 30

Table 5-4 Results of Run Test on Amplitudes (Oz)

Peak # N a rn/,-/2 r r/,/

p1  79 .05 30.6 39 49.4

p2 50 .05 18 31 33

p3 80 .05 31 41 50

ni 32 .05 11 21 22

n2 099 .05 .39.6 47 60

n4 30 .05 118.44 127 133.
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normal distribution. The kurtosis describes the extend to which a frequency

distribution is concentrated about the mean and it is equal to three for

gaussian distributions. The skew is defined as the ratio of the third moment to

the cube of the standard deviation and the kurtosis is defined as the ratio of

the fourth moment to the square of the second central moment.

The meaning of the values obtained for the skew is difficult to assess since
they do not follow any distinct pattern. Yet, it should be pointed out that if

the figures in the tables are rounded off to the nearest integer, in only one case

of the amplitude measurements does the skew deviate from zero, while in the

case of the latency measurements, it deviates on three occasions. It therefore

seems that the amplitude distributions tend to be more symmetric than the

latency distributions.

The significance of the figures derived for the kurtosis is also hard to

interpret. Nevertheless, it can be said that in both the amplitude and latency

cases most of the distributions are platykurtic(kurtosis<3) with a few

leptokurtic ones(kurtosis>3). Once again, if the values are rounded off to the

nearest integer, most of the distributions assume mesokurtic characteristics.

The next test performed was the Chi-Square goodness-of-fit which is one

of the best known and more used distribution-free procedures for data

evaluation. The scope of its utility is limited because of requirements that can

only be fulfilled when the sample size is infinite. For instance, the assumption

that the chi-square distribution supplies a good approximation for the

distribution of the test statistic is true if, the number of observations tends to

infinity. Likewise some consideration must be given to the number of intervals

that are used, since it may affect the resultant probabilities (Williams 1950). In

any event the test is simple and a subroutine such as the one existing in IMSL
simplifies its usage.

Tables 5-9 through 5-12 present the results of using the chi-square test.

The first column identifies the peak, the second column indicates the number of

cells into which the observations were distributed, The third indicates the
degrees of freedom, the fourth the computed chi-square statistics and the last

provides the probability of the null hypothesis being true.

The figures in the tables indicate that the amplitude variates satisfy the
null hypothesis, but not the latencies. Nevertheless, the number of

observations in most of the cases is less than 100, thus ihe results can not be

totally accepted.

The next test used was the Kolmogorov-Smirnov one sample test which is

exact for small sample sizes. There is some controversy over which test is more

• "
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Table 5-5 Skew and Kurtosis for Latencies (Oz)

peak p1 p2 p3 n I n2 n3

skew 0.29 0.12 -0.57 -0.13 0.04 -0.08

kurtosis 1 71 3.18 2.90 1.70 2.78 2.17

Table 5-6 Skew and Kurtosis for Latencies (Pz)

peak p1 p2 p3 nI n2 n4

skew -0.10 -0.63 0.17 -0.19 0.02 -0.66

kurtosis 3.18 2.63 2.59 1.69 3.81 2.50

:1~

. . ..-.
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Table 5-7 Skew and Kurtosis for Amplitudes (Oz)

peak p1 p2 p3 nI n2 n3

skew -0.36 0.32 0.01 -0.15 -0.05 -0.04

kurtosis 2.43 2.96 2.77 2.58 2.75 2.61

Table 5-8 Skew and Kurtosis for Amplitudes (Pz)

peak pI p2 p3  nI n2 n3

skew 0.16 -0.06 -0.23 0.75 -0.17 0.02

kurtosis 3.96 2.22 3.28 4.10 2.55 2.98

~.

A

,p

. V V
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Table 5-9 Results of Chi-Square Test on Latencies (Oz)

Peak # # of cells df cs P

p1 8 5 24.89 0.00

p2 8 5 32.61 0.00

p3 8 5 12.54 0.03

n1 8 5 24.67 0.00

n2 8 5 39.16 0.00

n3 8 5 16.69 0.01

Table 5-10 Results of Chi-Square Test on Latencies (Pz)

Peak # # of cells df cs P

p1  8 5 62.06 0.00

p2 8 5 12.40 0.03

p3 8 5 6.00 0.31

nI 8 5 30.50 0.00

n2 8 5 53.48 0.00

n4 8 5 29.16 0.00

'.
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Table 5-11 Results of Chi-Square Test on Amplitudes (Oz)

Peak # # of cells df es P
p1  8 5 3.11 0.68

p 2 85 7.05 0.22

p3 8 5 1.76 0.88

nI 8 5 11.00 0.05

n2 8 5 00.73 0.98

n13 8 5 1.40 0.92

Table 5-12 Results of Chi-Square Test on Amplitudes (Pz)

Peak # # of cells cit cs P

p1 8 5 5.56 0.35

p2  8 5 4.72 0.45

p3  8 5 8.00 0.16

DI 8 5 5.50 0.36

n2 8 5 8.56 0.13

n4 8 5 3.43 0.63
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powerful but, in general, the Kolmogorov-Smirnov is considered to be more

efficient. Further comparisons of the tests are presented by Slakter (1965).

Tables 5-13 through 5-16 present the outcome resulting from the IMSL

subroutine NSKI. The first column gives the peaks, the second column presents

the Kolmogorov statistics, and the third the probability for accepting the

hypothesis of equality. The results substantiate those obtained by the chi-

square test. In other words, the amplitude variates are normally distrib'uted

random variables while the latency variates are not.

Another supposition for the model that can be tested is whether the

amplitude variables and latency variables are respectively, identically

distributed random variables. This is done by applying the Kolmogorov-

Smirnov two-sample test. This test resembles the one-sample test and the final

outcomes are given in Tables 5-17 through 5-20. The results indicates that this

condition is only true for the amplitude case.

These results are surprising but they can not be taken as final since more

data is needed to reach a conclusive decision. However they have not provided

a satisfactory response to the initial question about the type of distribution

these variables have. Current research is aimed toward understanding the

effects of removing the best-fit linear trend on the results of the statistical test,

and the effects of the technique that it is used to define the latency range of

each peak. The studies consist of generating and testing data under the

characteristics of the model specified by Equation (5-1). The nonparametric

tests are run on the data before and after removing the best-fit linear trend and

so far the indications point toward the fact that the results are not affected by

this. A similar test will be performed to review the effects of the range finding

technique.

5.4. Simulation Tests

Up to now nothing has been said about the major difference between this

model and those used before. This is the acknowledgment that certain of the

observed peaks are just "valleys" between contiguous components of the same

polarity and not an isolated component. Determining which peaks are

components and which are artifacts is not a simple task and can not be done

by just examining the latency corrected average or average of the signal. An

investigation of the shapes of the signal peaks and the correlation between their

latencies and amplitudes must be performed.

It was suggested that the movement of a "valley" must be highly

correlated with the movement of the two positive peaks which give origin to it,
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Table 5-13 Results of Kolmogorov-Smirnov I Test on Latencies (Oz)

Peak# D P

p1 0.33 0.0009

p2 0.32 0.00000012

p3  0.21 0.000325

nI1 0.34 0.000030

n2 0.30 0.00

n3 0.29 0.00084

Table 5-14 Results of Kolmogorov-Smirnov I Test on Latencies (Pz)

Peak# D P

p1  0.17 0.0217

p2  0.15 0.21

p3  9.54 0.46

nI 0.22 0.0866

n2 0.13 0.0627

n4 0.16 0.17
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Table 5-15 Results of Kolmogorov-Smirnov I Test on Amplitudes (Oz)

Peak # D P

p1 0.0850 0.96

p2  0.0837 0.65

p3  0.0520 0.96

nI 0.0714 0.97

n2 0.0399 0.998

n3 0.0637 0.99

Table 5-16 Results of Kolmogorov-Smirnov I Test on Amplitudes (Pz)

Peak # D P

p1 0.0814 0.67

p2 0.0756 0.94

p3 0.0839 0.63

111 0.0985 0.92

n2 0.0726 0.67

0.0782 0.91

• . ....... ,•,.. ,.. •.. .o,,... ._- ,%, .- ' ...- ,....... . ,-." -... -.... ..-..... ,..
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Table 5-17 Results of Kolmogorov-Smirnov 11 Test on Latencies (Oz) .

Peak# D P

p1-p2 0.21 0.17

pl-p3 0.25 0.0571

p1-ni 0.27 0.0732

pl-n2 0.23 0.0874

pl-n3 0.22 0.22

p2-p3 0.22 0.0235

p2-ni1 0.23 0.0803

p2-n2 0.24 0.017

p2-n3 0.19 0.19

p3-BI 0.22 0.0837

p3-n2 0.22 0.0143

p3-n3 0.22 0.0939

nI-n2 0.23 0.0508

nl-n3 0.19 0.31

n2-n3 0.0 0.15 -
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Table 5-18 Results of Kolmogorov-Smirnov H Test on Latencies (Pz)

Peak # D P

pl-p2 0.25 0.0388

p1-p3 0.25 0.0125

p1-ni 0.27 0.0616

pl-n2 0.29 0.0812

pl-n3 0.20 0.13

p2-p3 0.22 0.0815

p2-ni 0.35 0.0131

p2-n2 0.22 0.0732

p2-n4 0.23 0.050

p3-ni 0.32 0.0146

p3-n2 0.22 0.0253

p3-n4 0.25 0.0348

nl-n2 0.24 0.0909

ni-n4 0.41 0.0020

n2-n4 0.17 0.24

- .4, .. .. .. . . . . . ~ 4** - ..
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Table 5-19 Results of Kolmogorov-Smirnov H Test on Amplitudes (Oz)

Sw

Peak # D P

pl-p2 0.14 0.63

pI-p3 0.12 0.77

pl-ni 0.13 0.78

pl-n2 0.0767 0.99

pl-n3 0.13 0.78 ,r:-

p2-p3 0.0801 0.91

p2-nI 0.0906 0.9,1

p2-n2 0.0952 0.77

p2-n3 0.0987 0.90

p3-n I 0.0798 0.97

p3-n2 0.0598 0.99

p3-n3 0.0702 0.99

nl-n2 0.0872 0.94

n l-n3 0.0833 0.98

n2-n3 0.0733 0.99

.....................................

%°7

- . . . . . .. . . . . . .
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Table 5-20 Results of Kolmogorov-Smirnov II Test on Amplitudes (Pz)

pI-p2 0.14 0.70

p2-p3 0.115 0.76

p2-ni 0.12 0.86

p2t-n2 0.12 0.68 I

p2-n4 0.12 0.75

p3-ni 0.16 0.76

p2-n2 0.13 0.38

p3-n4 0.11 0.73 
0

nI-n2 0.0972 0.95

n2-n4 0.077 0.d75

-n4 0.077

-1
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as it can be seen in the simple case illustrated below. In this illustration the

components are given by Equation (5-5) "

sl(t)=alexp[- b12 (5-5)

(t-im2 )2

s2 (t) a2exp[- b2
2

For the purpose of illustrating the previous statement the variables a1 and a"
are considered to be deterministic and of equal value. Also the variables b, and
b2 were set to one. The final waveform is given by the sum of these two
wavelets as shown in Equation (5-6)

(t-m1 )2  (t-m 1)2

XM)=S1(t) + s2(t)= alex p b 2  1+a 2exp[- 2  J (5-6)

Setting the derivative to zero and solving for t provides the location of the false
peak which is given in Equation (5-7)

al + a. .
t= (5-7)'"S 2

which is the average value of the latencies of the contiguous peaks. In the case

a negative component exist, the correlation between its latency jitter and that
of its adjacent peaks must be low although it will probably depend on the
amplitudes of these nearby components.

In order to corroborate this statement and search for ways of
differentiating between false and real components data following the properties
of Equation (5-4) was generated. Six sets of signals were produced. The first
three consisted of two positive gaussian shaped components with amplitudes
varying from one to two units. Their mean latency was taken to be 78.03 and

176.46 ms which are the corresponding means for the second and third positive
peaks in the LCA as can be seen from Table 5-21. The standard deviation for
the latencies was taken from the same table and they are 7.04 and 14.49 ms,
respectively. The width of the peaks was set to 22 ms, this value might a be
little high when compared to the width of the components of the evoked
potential but it assures the interaction of the components simulated. Figure 5-1
shows nine out of the one hundred signals generated for each set. Columns one

,three and five represent the two positive components before they are added

together while columns two,four and six are the result of their summation. The

........................... ... . . ...%-.-... .
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Table 5-21 LCA Results for Subject #5 (Oz)

peak # range mean st.d. pet. max. mini. amp.st.d.

1 6-10 26.67 5.66 36.00 4.25 -1.28 6.03
21117-26 78.03 7.04 77.00 5.28 -4.57 7.32
3___ 34-51 176.46 1 14.49 1 05.00j 5.32 10.99 7.26

________________Negative Peaks________ _____

1 12-18 56.75 7.41 48.00 3.13 -2.90 7.07

2 24-35 113.90 7.44 97.00 -1.71 -9.14 6.77

3 53-59) 220.98 7.41 45.00 2.27 -2.21 7.62

4 63-67 256.43 6.38 28.00 1.56 -2.42 5.81

5 69-71 276.87 3.18 23.00 0.44 -4.26 9.25

Table 5-22 LCA Results for SubjeJt #5 (Pz)

Positive Peaks
pek# 1range Imean st.d. pet. max. min. amp.st.d.
1__ 16-25 75.65 5.74 79.00 6.23 -5.93 11.39

2 32-41 146.40 9.21 50.00 2.88 -3.48 9.85

3 4 6-5 8 202.75 11.52 80.00 8.96 3.01 13.01

_____ _____________Negative Peaks _____________

1 12-17 55.00 5.56 32.00 3.18 -3.75 9.12

2 23-34 111.76 6.78 99.00 -3.09 -13.11 15.80

3 41-46 168.93 5.82 30.00 1.56 -2.87 10.30

4 65-71 271.02 7.57 51.00 1.54 -3.37 8.28

5 69-71 276.87 3.18 23.00 0.441 -4.26 = 9.25
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vertical scale varies from 0.0 to 2.0 while the horizontal scale goes from 0.0 to
3.0 ms. The other three sets of signals are similarly illustrated in Figure 5-2
with the exception that the vertical scale varies from -2.0 to 2.0. These sets of

signals were generated by adding two positive peaks with the same
characteristics as those described above and a negative peak. The latency of
the negative peak was assumed to be 113.90 ms which from Table 5-21 is seen
to correspond to the second negative peak in the LCA. The standard deviation
of its latency was taken to be 7.44 ms and its width was kept at 22 mis. Note
that since the position of the baseline is known, it is easy to identify which
signals contained false components and which have a negative signal. In evoked
potentials, however, the actual position of the baseline is not known and
distinguishing between "valleys" and negative peaks is not as easy.

Once the sets of signals were generated, each of the 100 signals in a set
was searched for the position of its peaks. The process consisted of successively
computing the difference between three consecutive points and storing their
location and values. A quadratic polynomial was then fitted to these three
points obtaining in this manner the position of the maxima and minima. In
order to detect the amount each peak moved from its presupposed location(the
mean), the average latency of each component was subtracted from the
measurement taken. The average movement of the two positive peaks was
computed and compared to the movement of the valley or negative peak
between them.

Table 5-23 presents the correlation coefficients obtained between the
average movement of the two positive peaks and the valley or negative
component in between. Note that when the two positive components have the

same amplitude and, no negative peak exists, the correlation coefficients had a
value of one. In fact in all the cases were the signal consisted of the sum of two

positive peaks, the correlation was above .9. When the signal contained a

negative component, the correlation was much lower with one exception
occurring when the amplitude of the positive peaks was twice that of the

negative one.

Figures 5-3 through 5-8 are plots of the negative peak latency shift versus
the average latency shift of the positive peaks and are another way of

illustrating the relationship between them. These figures can be thought of as

being the sample distributions of two dimensional classes with different mean
vectors and covariance matrices and can be used to estimate the probability of

error in discriminating these two classes. The probability of error was

computed using the algorithm developed by Fukiunaga and Krile (1972) which

II
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Table 5-23 Correlation Coefficients Between the Amplitudes of Actual and

Artifactual Peaks

-." Signal: Sum of two positive peaks

Amplitudes of peaks Correlation

1,1 1.00

ll.)J 0.99

2,1 0.94

Signal: Sum of two positive and a negative peak i

1,-1,1 0.49

1,-2,1 0.27

2,-1,2 0.77

-t
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o .
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converts multidimensional integration to one dimensional integration. In most %
cases, the resulting probability of error was 22% which indicates a classification

accuracy of 78%. This result can probably be improved by using other
features that might help in performing the differentiation between the two
classes. One such feature might be found by studying the relationship between

the amplitudes of the components and the effe s they might have on the
amplitudes and latencies of the adjacent components.

5.5. Conclusions

Based on the preliminary studies that have been carried out, it appears

likely that there is sufficient interaction between the latencies of artifactual
components and the adjacent true components to make possible the

identification of artifacts in a number of cases. A great deal of further study

involving both simulation and measured data will be required before the most

effective methods or making this determination are found.
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6. DATA ACQUISITION SYSTEM IMPROVEMENTS

6.1. Modification

The EEG Signal Processing Laboratory has improved its data acquisition
capabilities considerably with the addition of an IBM P~ersonal Computer (PC).
Figure 6-1 describes the current system. The IBM computer performs three
important tasks: (1) experiment timing, (2) stimulus presentation, and (3) data
collection. The PC includes a TECMAR? Lab Master board with the following
hardware:

(1) one 16 channel 12 bit analog-to-digital (A/D) converter with a maximum
sampling rate of 40 kliz,

(2) two 12 bit digital-to-analog converters (D/A),

(3) five 16 bit counters, and

(4) three 8 bit parallel ports.

In addition, the PC has two 360 kbyte floppy disks for storing sampled
data and a baud rate selectable serial port for transferring sampled data files to
the PDP 11/45. The data files can then be transferred to the Engineering
Computer Network (ECN) for signal processing on a Vax 11/780. The PC is
also equipped with an 8087 math coprocessor which performs hardware
multiply, and divide operations at ten times the speed of the same software
op erat ions.

As depicted in Figure 6-1, subjects are seated in an IAC environmental
chamber which is soundproofed and electromagnetically shielded. Scalp-
electrode leads pass outside the chamber into a bank of Grass 7P511 EEG

5-.

amplifiers and bandpass filters. The outputs of the EEG amplifiers are
connected via coaxial cables to the input of the TECMAR A/I) unit. Sampling

Figure ... .... s rie th curn sytm The B computerperform thre ..-
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can be triggered automatically under the control of one of the 16 bit counters

or manually under the control of software. Data are stored temporarily in

RAM memory during sampling and transferred to a floppy disk file during the

interstimulus interval.

6.2. Experiment Design and Control

A versatile set of assembly language programs has been written to perform

specific functions at maximum efficiency. These subroutines were designed to

be called from BASIC programs:

(1) initialization of the TECMAR board,

(2) calibration of the Grass EEG amplifiers,

(3) A/D conversion of amplified and filtered multielectrode EEG data,

(4) rapid transfers of sampled data to disk files during an experiment, and

(5) on-line plots of sampled multielectrode EEG data on the PC video

monitor.

Simple BASIC programs can be written to design an EP experiment,

obtain timing and stimulus parameters from the user, and then call specific

functions (in assembly language) to run the experiment. The combination of

BASIC user interface and assembly language drivers provides a powerful

system for rapid development of versatile EP experiments. Facilities are also

available for programming in C and FORTRAN.

6.3. Capabilities

Besides being the basis of a powerful data acquisition system, the PC can

also perform on-line filtering, detection, and classification of sampled data using

the capabilities of the 8087 hardware math coprocessor. By significantly -

increasing the speed of the math operations, the on-line processing can be
performed in virtually real time.

The P)C can also simultaneously control several instruments now present

in the EE(G Signal lProce-sing Lab using the individual bits in the parallel



ports:

(1) Grass Pattern Generator for checkerboard patterned stimulation,

(2) a video monitor for more complex patterns (figures, numbers, or letters),

(3) auditory equipment for auditory evoked potentials.

(4) a set of LED goggles for flash evoked potentials, and

(5) an on-line averager for monitoring EPs over the course of an
experiment.

The PC-based data acquisition system offers the advantages of versatility

(easy to design and modify experiments), ease of operation (any user with little
training can run the experiments), and low cost. Future developments include
the purchase of an IBM XT with a 100 Mbyte hard disk or the faster and more
powerful IBM AT. On-line signal processing software will also be developed to
perform near real time detection, estimation, and classification of EPs.

.J.
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Appendix A: Classifier Evaluation Using Simulated Data

The artificial data sets were generated by summing simulated signals and
ongoing EEG. The signals were generated by several methods based on
different ways of modeling data. Data sets were generated which contained
different signals added to the ongoing EEG (noise) at various signal-to-noise
ratios (SNRs). These data sets were processed by the algorithms described in
Section 2.

The signal represents the brain generated waveform in response to the
applied stimulus. The first signal used was an averaged EP taken from human
data. The EP was windowed with a Tukey Window and added to the noise.
The second signal was composed of a summation of basic components of the
same form with arbitrarily chosen amplitudes and latencies. The signal was
the same in each generated record. The representation of this signal s2(t) is

.2 M
s2(t) A h f(t - T), (A-I)

i=l

where A i is the amplitude of the th component,

f(t) is the functional form of the component,

T i is the time location of the ith component, -?

and M is total number of components in the signal.

Two forms of the component f(t) were tested. The first was a Gaussian
pulse of the form

f1 (t) exp , (A-2)22

where a represents the width. The value of or was set to 15 ms, a typical value
found in past research (McGillem 1977). The second component was a
sinusoidal pulse or a windowed sinusoid. The window function chosen was a
raised cosine window, the same as that chosen in forming the filter in the 2
step process. The equation of this component f2 (t) is:

. . -..

.. . .-. . . .
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f2(t) cos[27f(t-Ti)] L + -Lcos [!.(t-T i for Ti-a<t<Ti +a (A-3)

0, otherwise

where f = the sinusoidal frequency,

and a one-sided width of window in seconds.

'fhe background noise used for this data was human ongoing EEG data

which also included instrumentation noise. The known signal was added to

this data with various signal to ongoing EEG power ratios. The background

noise data records were first normalized by removing the estimated mean of

each data record and then scaling to make the root-mean-square (RMS)

amplitude =1. The signal was also normalized by scaling to make the RMS

amplitude =1. The mean of the signal was not removed to preserve polarity

asymmetries which may be characteristic of the EP signal. The amplitude of

the signal was then adjusted before being added to noise to produce data

records with predetermined SNR's.

Four types of tests signals were used. The first used the averaged EP's

from subje'ct Q. The portion of the EP from 0 to 500 ms was used with the end

100 m'.i of data windowed by a raised cosine to provide smooth transitions at

its ends when it. was added to th2 nois . The tl (target set, 1 target in set) aud

il (nont.arget :,et 1 target in set) sets were used. The 1 second segments of the

data rewords from subject 2 beforc stimulation were normalized and the signal
added to give SNR's of 0dB, -6dB, and -12dB for all of the generated data sets.

These values were chosen because they bound the estimated SNR of the actual

EP data. Figure A-I portrays these two data sets. Four generated data " -

records and the signal are displayed for the ti data (top) and ni data (bottom).

The SNR in these data records as in all of the following artificially generated

data records is -6dB.

Figure A-2 portrays LP's composed of 15 Gaussian pulse components

emlt, -dded in human EE data. Eight of the components in the signals in data

set 2 are the same as in data set. 1. The other 7 components have the same

amplitudes buit increased Ihtvncies with respect to those components in the

signals of data set 1. A component's latency shift was made proportional to its

latencies so that latter compon oits were shifted further. The largest latency

component shifted 72 nns. The aniplitudhs of the coriespondin" components Ill
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these data sets remained the same, .nlv the latencies of the components were

increased.

Another type of signal was also generated which was composed of
windowed sinusoids. Two sets of data with different signals composed of just

one sinusoid were generated. Both data sets used a 400 ms wide raised cosine
to window different arbitrarily selected frequency sinusoids with cosine phase of
zero. The latencies in each data set were identical. Figure A-3 portrays these
signals and the signals embedded in EEG data.

Two classes of signals composed of 3 windowed sinusoids of different
frequencies and latencies were generated. The second class had the same type
of components with the same frequencies and amplitudes but 2 components
had increased latencies, They were embedded in EEG data and are portrayed
in Figure A-4.

The artificial data sets were processed in the same manner as the human
data. Tables A-i through A-4 list the accuracies and number of selected
features for the data containing the 4 types of signals generated. In all of these
tables, each column lists the results for a different SNR for processing with or

without frequency transformation. The upper third contains the results for
detection of the first data set and the middle third the results for detection of
the second set. The lower third contains the results for classification between
the two sets. Table A-5 summarizes the results of processing the artificial data.

The table entries are the highest accuracies achieved for processing either with
or without frequency transformation. The entries in all of these tables for raw
features used in detection are averages of four runs. Each run used different

segments of ongoing EEG prior to stimulation for the class 2 data. This
resulted in slightly different results for each run due to the different data.

Data sets composed of windowed averaged EP's in EEG were tested
(Table A-]). Detection at SNR's of 0dB produced very high accuracies for all

types of features, 99' and 90.1% for 6-8 raw features and 90.5%5 for 5
frequency features for the two data sets. Filtered features yielded 100c("

accuracy with 3 features. For classification between the two signals, 9 raw
features yielded 85.7%) accuracy and frequency features yielded up to 91.8' , at
5 features. Filtered features increased these accuracies to (5.9c for 8 features,

a 10.2 improvement.

Detection at SNP's of -6dB yielded accuracies of 89.0% and 92.5% , for 7
raw features, and up to 89.3% for 6 frequency features and 93.5% for 8
features for the two data sets. Filtered features produced increased accuracies
of up to 99%'i and 100C for 8 and 5 features. For classification between the

. ............................................ ...........
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Table A-I Results From the 2-Step Classifier/Feature Selection Process for
Artificial Data Composed of Windowed Averaged Evoked

Potentials in EEG. Table Entries: Percent Classification Accuracy
/ Number of Features

Frequency transformation- Without With

Data I BWI SNR-- 1 dB -6 (IB 12 dB 0 dB -6 dB -12 dB

Raw 99/7.5 89.8/7 78.8/5 939/7.5 89.8/7 78.8/5
Frequency 99.5/5 89.3/6 82.1/6 98.5/6 86.7/4 78.1/6

5 1z 99/4 92.4/5 06.4/9 98/6 90.8/10 78.6/8

10 11z 100/4 92.9/3 97.5/4 97.5/2 91.3/7 88.8/10
Detect. 15 l1z 100 3 j95.-98 98.5/5 100/5 93.9/9 96.9/10

1 XO.25 Fo 99/3 92.4/10 98.5/8 98.5/5 89.8/6 80.1/4

XO.5 Fo 99.5/4 91.8/5 83.7/5 99/8 91.3/10 98.5/8

X0.75 Fo 98.5/3 91.8/9 85.7/6 99/4 92.9/9 96.9/10i
X!.0 Fo 99.5/4 95.4/7 88.3/8 97.5/4 99/8 97.5/10

Best 15 Hz 15 Hz 15 Hz 15 11z X1.0 XO.5 __

Raw 99.1/6 92.5/7 83.5/6 99.1/8 92.5/7 83.5/6
Frequency 99.5/5 90.5/9 85.5/7 98.5/4 93.5/8 83/7

5Hz 100/3 96.5/5 89/8 98.5 3 92.5/4 84/5

10 liz 99.5/2 98/6 93.5/9 98.5/3 99.5/8 83/9
Detect 15 llz 10013 100/5 98/10 99/3 98.5/7 878/8

2 XO 25 Fo 99/3 96/8 98/10 97.5/3 93.5/6 87.5/6

YO .5 Fo 99.5/3 94.5/5 97.5/8 99/4 91/3 90/10

X0.75 Fo 100/4 98/7 99.5/8 98/3 93.5/10 98/10

XI.0 Fo 99.5/3 99/8 98.5/8 97.5/2 97/7 97.5/10
_ est Several 15 Hz X.75 15 H1z 10 tiz XO.75

P aw 85.7/ 9.. 80.-/8 71.4/5 85.7/9 80.1/8 71.4/5

_ ire(luency 918/5 83.2/5 73/3 92.1/10 83.2/8 72.5/4

5 11z 90.3/6 85.2/4 75/3 91.8/8 85.7/5 75.5/2

10 1tZ 89.8/4 81.6/5 74/5 92.9/5 85.7/5 79.1/8

(1" 1ir- IS liz 88.317 81.1/5 74/7 93.9/10 85.2/9 71.9/8
I. 2 , 2 En Q2.415 86.2/8 _ 75.5 5 1 91.8/6 86.2/4 77/4

SF9..Eo 91. .6 8575 77/9 95.9/8 83.7/8 77/4
XO.,7q I_ 93.1/5 (83.2, 80.1/8 93.4/9 87.8 7 79.6/10

x1.0 E 9 1j/8 8:3.7o10 79.6 9 90.3/, 83.2/6 76.517
Best X .0 \. -.L 75 1 o.5 XO.75 XO.75

. ..... . .. .. .. .
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Table A-2 Results From the 2-Step Classifier/Feature Selection Process for
Artificial Data Composed of 15 Gaussian Components in EEG.
Table Entries: Percent Classification Accuracy /Number of
Features.

Frequency transformation- Without With

Data 13W1 SNR- 0 dB -6 dB -12 dB 0 dB -6 dB -12 dB

Raw 98.5/6.5 83.6/5 66.2/8 98.5/6.5 83.6/5 66.2/6
Frequency 99/6 85.7/8 73/5 98/4 85.7/6 67.9/2

5 H~z 98/2 83.2/5 98/10 99/4 85.7/7 76.5/8
10 Hz 98.5/2 98/10 98/9 100/4 91.8/10 66.3/3

Detect 15 Hz 99/3 99.5/8 95.4/8 100/4 100/9 86.7/10
1 XO.25 Fo 99/3 80.6/2 95.4/10 97.5/2 86.2/4 76/10

XO.5 Fo 99.5/4 86.7/10 98/7 97.5/3 90.8/9 70.9/10

XO.75 Fo 9J8.5/ 2 88.8/10 95.9/7 100/4 87.8/8 65.8/6
X1.0 Fo 98.5/2 96-9/9 98/9 99.5/6 85.7/5 65.3/2

_____Best X.50 15 Hz X.50 Several 15 Hz 15 Hz
R aw 96.1/8 78.5/6 70.6/6 96.1/8 78.5/6 70.6/6

Frequency 100/6 80/7 71.5/6 99/8 81/8 74/3
5 Hz 99.5/4 92.5/9 94/10 99.5/4 86.5/4 172/9

10 Hz 98.5/3 95.5/9 80/10 98/2 88.5/91 97/10

Detect 15 Hz 9J9.5/5 94/10 96.5/9 98.5/3 96/10 98/8

2 XO.25 Fo 99/2 87.5/9 70/5 100/4 85.5/3 93.5 10
XO.5 Fo 99.5/2 89/10 83/10 99/5 85.5/10 , 95.5/ 10

XO.75 Fo 99.5/3 98/10 92/10 98/2 88/6 97/10

X1.0 Fo 99.5/4 95/8 92/8 100/4 91.5/6 96.519
Best Freq. X.75 15 Hz Several 15 Hiz 15 liz

R aw 89.8/5 77.6/6 63.8/5 89.8/5 77.6/6 63.8/5

Frequency 100/4 86.2/6 74/8 100/4 84.7/4 73/8

5 HIz 100/2 90.3/8 74.5/6 99.5/2 87.2/9 75.5/5

10 Hz 99.5/2 87.8/5 76.5/8 99.5/2 87.2/6 75/9

Classify 15 H1z 99.5/6 85.7/7 69.4/5 99/8 84.7/5 63.3/8

I vs. 2 XO.25 Fo 100/2 86.7/4 72.5/3 99.5/3 89.3/9 77/6~

XO.S Fo 100/2 87.2,/7 75.5/6 99.5/3 87.2/5 72/5

XO.75 Fo 100/2 85.7/4 74.5/5 99.5/3 86.2/9 70.4/7

XI.0 Fo 100/2 89.3 ' 9 73/5 99.5/2 86.2/10 71.9/9

_____Best Several 5 Ilz 10 H1z Freq. XO.25 X0.25 -

...................................... . . . . . . . .
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Table A-3 Results From the 2-Step Classifier/Feature Selection Process for
Artificial Data Composed of I Windowed Sinusoid in EEG.

Table Entries: Percent Classification Accuracy / Number of

Features.

Frequency transformation- Without With

Data BW} SNR- 0 dB -6 dB -12 dB 0 dB -6 dB -12 dB

Raw 98.1/5 31.7/7.5. 73.4/4.5 98.1/4 84.7/7.5 73.4/4.5
Frequency 10012 92.9/4 7 100/3 91.8/4 79.1/5

5 Hz 100/2 97.5/5 81.1/4 100/2 95.4/3 99.5/10
10 Hz 100/2 99.5/8 96.4/8 100/1 96.9/7 99.5/10

Detect 15 Ilz 100/2 98.5/7 98/7 99/1 98.5/7 99.5/8

1 XO.25 Fo 99.5/2 100/7 91.3/8 100/2 95.4/6 99/9

XO.5 Fo 100/2 100/7 90.8/7 100/2 94.4/6 96.4/7

X0.75 Fo 99.5/2 95.415 93.4/8 100/1 95.9 7 99.5/10

XI-0 Fo 100/2 96.4/8 98/8 100/1 93.9/4 98.5/7

Best Several Several 15 Hz Several 15 Hz 15 Hz

Raw 99/4.5 88.5/7 74.4/5 99/4.5 88.5/7 74.4/5

Frequency 99.53_ 91/6 71.5/5 100/5 90.5/6 72.5/7

5 Hz 99.5/4 9818 84/8 99/4 98.5/9 77.5/10

10 lIz 99.5/4 99/8 88.5/8 100/3 100/8 93/9

Detect i 15 Hiz 99.5/2 100/5 93/8 100/2 99.5/7 99.5/8

2 XO.25 Fo 99.V/5 __93.5/6 85.5/7 97.5/2 98.5/10 75.5/3
N0.5 Fo 97.5/3 99/7 98/8 99.5/2 97/7 82.5/9

X0.75 Yo 98.5/3 99.5/6 98.5/7 100/3 100/7 100/9

XI.O FO 99/2 99/5 98/8 100/2 98/5 99/8

Rest 15 Hz 15 tlz X.75 Several XO.75 XO.75

Raw 99.5/4 83.7/10 71.9/3 99.5 4 83.7/10 71.9/3

Frequencv 100/3 95.9/8 76.5/7 100/3 93.9/7 78.1/6

5 Hlz 99.5/3 95.9/6 76.5/5 99.5/2 94.4/5 76.5/3

10 liz 100/2 95.4/ 7 82.7/8 100/2 95.9/5 78.6/3

Classify 15 111 100/3 95.9/4 81.1/3 100/2 95.9/7 78.1/5

I vs. 2 N0.25 Fo 99.5 4 J 92.4/3 75.5/8 100/3 93.4/5 73.5/2

NO.5 Fo 99.52 91.9/6 76.5/3 100/2 95.9/6 76/4

NO.7, Fo 100/2 9.85 80.614 100/2 97.5/7 78.6/5

XI.0 [o 100/2 95.9 .1 81.113 100/3 96.4/6 79.114

,_ [l I,,Best Several Several 0iz Several XO.75 XI.O

.47

.......... .... _...... .... -......... •.........-..............:.....-...'.......-.............. ..................-. .............. . . ., ,
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Table A-4 Results From the 2-Step Classifier/Feature Selection Process for

Table Entries: Percent C1lssification Accuracy /Number of
Features.

Frequency transformation- Without With

Data BW4 SNR-. 0 dB -6 dB -12 dB 0 dB -6 dIB -12 dB

Raw 99.4/7 86.2/9 73.9/5 199.4/7 86.2/9 73.9/.5
Frequency 100/7 84.7/5 68.4/5 99.5/4 87.8/6 74/7

5 Hz 100/4 88.3/8 68.9/7 99/3 87.8/6 69.9/5
10 Hz 100/2 92.4/8 76.5/6 100/2 96.4/10 81.6/5

Detec t 15 Hlz 100/4 95.4/10 81.1/10 100/3 93.4/10 05.4/9

1 XO.25 Fo 98.5/4 85.2/3 73.5/10 98/5 89,8/10 73/6

XO.5 Fo 99.5/6 88.3/10 88.3/10 98.5/3 91.3/5 88.8/10
XO.75 Fo 100/4 89.3/6 96.4/10 99.5/4 90.8/9 79.1/5
X1.0 Fo 99/3 92.9/10 100/10 100/5 94.4/10 96.0/10

_____Best 10 Hz 15 Ilz X1.0 10 Hz 10 Hz X1.0
Raw 99.5/8 81.9/5 71.3/6 99.518 81.9/5 71.3/6

Frequency 08.5/5 81/4 67/5 99.5/5 83.5/7 70/8
5 Hlz 99/5 83/10 69.5/8 99/7 84.5/7 67.5L 9
10 Hz 99/8 83.5/5 73/4 100/3 190.5/6 84110

Detec t 15 Ilz 99/6 99/10 71/4 99.5/4 99/10 99.5/10

2 XO.25 Fo 97/6 81/6 67/2 97.5/5 83.5/10 84/10

XO.5 Fo 99/8 83/6 66.5/7 98/4 85.5/4 74.5/9

XO.75 Fo 100/7 84.5/6 65/4 99/5 855 99.5/10
X1.0 Fo 99/4 83/5 71.5/8 100/5 92.5/10 89/10
Best X.75 15 Hz 10 Hz 10 Hz 15 Hz Several
Raw 99.5/8 83.7/5 68.9/9 99.5/8 83.7/5 68.9/9

Frequency 99.5/5 86.7/6 73.5/4 100/4 89.3/7 73.5/6
5 Hz 98/1 86.2/5 73.5/4 99.5/3 87.2/6 70.9/2
10 Hz 99.5/2 86.7/2 74.5/4 99.5/2 88.3/3 73/6

Clsif 5 i 8.5/2 87.2/3 74.5/4 99/3 00.3/6 74/7

I vs. 2 XO.25 Fo 99/4 84.7/3 73.5/5 98.5/4 84.7/3 73.5/4
XO.5 Fo 99/3 862/ 69.4/2 199.5/4 86.7/5 68.4/1

XO.75 Fo 99/2 88.3/4 754 9/2 88.3/6 71.9/5
X1.0 Fo 99.5/3 90.3/5 73/9 99.5/3 89.8/4 73.5/4

_____Best 10 Hiz X1.0 Several [Freg. 15 Hz 1's z -

'r W.. . . .. . . . .
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Table A-5 Summary of Results for Artificial Data. Detection and
Classification Accuracies in Percent.

Signals in SNR- 0 dB -6 dB -12 dB
Data Sets 'DataSetsFeatures- Raw Freq. Filt. Raw Freq. Filt. Raw Freq. Filt.

Windowed Detect 1 99 99.5 100 89.8 89.3 99 78.8 82.1 98.5

Averaged Detect 2 99.1 9-. 5 100 92.5 93.5 100 83.5 85.5 99.5

f"EP Classify 85.7 92.A 95.9 8t).1 L 3.2 87.8 71.4 73 80.1

Detect 1 98.5 99 100 83.6 85.7 100 66.2 73 98

15 Gaussians Detect 2 96.1 100 100 78.5 81 98 70.6 74 98

Classify 89.8 100 100 77.6 86.2 90.3 63.8 74 77

I Windowed Detect 1 98.1 100 100 84.7 92.9 100 73.4 79.1 99.5

Sinusoid Detect 2 99 100 100 88.5 91 100 74.4 72.5 100

Classify 99.5 100 100 83.7 95.9 97.5 71.9 78.1 82.7
3 Windowed Detect 1 99.4 100 100 86.2 87.8 96.4 73.9 74 100

Sinusoids Detect 2 99.5 99.5 100 81.9 83.5 99 71.3 70 99.5
Classify 199.5 100 99.5 83.7 89.3 90.3 68.9 73.5 74.5

.!
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two signals at -6dB, raw features yielded an accuracy of 80.1% at 8 features.

Frequency features yielded accuracies up to 83.2% at 5 features. Filtered
features yielded accuracies to 87.8% at 7 features, which represents an 7.7%

improvement over the raw feature accuracy.

Detection of these signals at SNR's of -12dB produced accuracies of 78.8% 
for 5 and 83.5% for 6 raw features, and 82.1% and 85.5% for 6 and 7 4
frequency features for the two data sets. Filtered features yielded significant
improvements over these accuracies with 98.5% at 5 features and 99.5% at 8

features for the two data sets. These are improvements over raw feature

accuracies of 19.7% and 16%. For classification between these two signals at
SNR's of -12dB, 5 raw features yielded an accuracy of 71.4%, and frequency

features yielded up to 73% accuracy at 3 features. Filtered features yielded up
to 80.1% accuracy with 8 features. This is an improvement over the raw

feature accuracy of 8.7%.

Signals which were composed of 15 Gaussian components, all with a width

measured by the standard deviation of 15ms, represent complex signals that
may be similar to EP's. Data containing these signals were tested and the
results presented in Table A-2. At SNR levels of 0dB, averaged detection
accuracies for raw features were 98.5% and 96.1% for 6 and 8 features for the
two data sets. Frequency features yielded up to 99% and 100% at 6 features,
and 4 filtered features produced 100% accuracies. Most bandwidths yielded

similar accuracies. Classification between the two sets of data yielded an
accuracy of 89.8% using 5 raw features. 100% was obtained using 4 frequency
features. Accuracies of 100% were also achieved with filtered features, using

only 2 features in some cases. .

For detection of these Gaussian component signals in EEG at SNR's of
-6dB, raw features yielded averaged accuracies of 83.6% for 5 features and
78.5% for 6 features for the two sets. Frequency features yielded 85.7% at 6

features and 81% at 7 features for the two sets, improvements over raw
features of 2.1% and 2.5%. Filtered features produced improvements of up to

20.5% with accuracies of 100% and 98% achieved for 10 and 9 features for the
two data sets. Classification between the two sets yielded 77.6% for 6 raw
features, up to 86.2% for 6 frequency features, and 90.3% for 8 filtered features

which represents a 12.7% improvement. The various bandwidths produced

similar accuracies.

For detection of these Gaussian component signals with SNR's of -12dB, 6
raw features produced average accuracies of 66.2% and 70.6%. Frequency

features improved on these results somewhat to 73% and 71.5% for 5 and 6

. . .. . . . ". . .
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features. Filtered features yielded accuracies of 98% at 9 and 8 features for the

two data sets. Classification between these data sets at SNR's of -12dB yielded

63.8% at 5 raw features, and frequency features yielded a 10.2% improvement

to an accuracy of 74% for 8 features. Filtered features further improved these

figures to 77% for 6 features, a 13.2% improvement in accuracy over the

results using raw features.

For signals composed of windowed single sinusoids (Table A-3), the 1.wer

bound a(curacies at 0dD were mostly 100% for the filtered amplitude features,
while the raw amplitude features yielded accuracies of 98.1% and 99% for the

t%(o sets. Five raw features were selected to achieve this compared to 1 filtered

feature selected to achieve 100% for several different bandwidths. Other

bandwidths produced 100% accuracy with only 2 features. Two frequency

features were selected to achieve 100% accuracy for frequency features without

transformation. Claszification aecuracies were similar with 2 filtered features

yielding 100% in some cases and 100" was achieved in most cases. Four raw

features yielded 99.5% accuracy. and 100% for 3 frequency features was

obtained.

For detection of the same signals in EEG at SNR's of -6dB, raw features

yielded averaged accuracies of 84.7% and 88.5% with 7 features. Frequency
features yielded tip to 92.9/ at 4 features. Filtered features produced

improvements to 100% with 5 to 8 features for the two classes of data. For

classification at -6dB, 83.7% at 10 raw features was achieved, and 8 frequency

features yielded up to 95.9%. Filter features yielded accuracies of up to 97.5%

with 7 features.

For detection of the same signals in EEG at SNR's of -12dB, raw features

produced averaged accuracies of 73.4% and 74.4% for the two sets at 5
features. Accuracies for frequency features of up to 79.1% and 72.5% were

achieved for the two sets at 5 and 7 features. Filtered features produced
accuracies up to 100% at 9 features with 98 to 09% achieved in several other

cases, representing improvements of up to 26% over the results for detection
using only raw features. There is a small trend for higher accuracies achieved
with the larger bandwidths. For classification at -12dB, raw features produced

71.19% a(( uracv with 3 features. Frequency features yielded improvements to
78.1% at 6 features. Filtered features yielded further improvements to 82.7%

at 8 features, a 10.8Cl improvement over classification using only raw features.

Generally the larger bandwidths yielded slightly higher classification accuracies.

For detection of signals composed of 3 windowed sinusoids in EEG (Table

A-4) atr SNR's of Wd3, rtw featurcs yielded 99.4% accuracy at 7 features, and

. N11
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frequency features yielded up to 100% at 7 featu.es and 99.5% at 5 features for

the two data sets. Accuracies of 100% were achieved for many cases of filtered

features with as little as 2 features. Classification of data with SNR's of OdB

produced accuracies of 99.5% for 8 raw features, up to 100% for 4 frequency

features, and 99.5% for 2 filtered features.

For detection of the same signals in EEG with SNR's of -6dB, 86.2% and

81.9% averaged accuracies for 9 and 5 raw features were achieved for detection

of the two data sets. Frequency features yielded similar accuracies, and filtered

features achieved 100% with 10 features. There was a slight trend of larger

bandwidths producing higher accuracies, and the best value of bandwidth was

15 Hz. Classification between these two data sets produced 83.7% accuracy for

5 raw features. Frequency features yielded up to 89.3% for 7 features, and

filtered features increased the accuracy up to 90.3% for 5 features, representing

a 6.6% improvement over the use of raw features alone.

For detection of the same signals in EEG at SNR's of -12dB, 73.9% and

71.3% average accuracies were achieved with 5 and 6 raw features. Frequency

features yielded similar accuracies of up to 74% and 70% for 7 and 8 features.

Filtered features yielded up to 100% using 10 features for the first set, and

99.5% using 10 features for the second set. Classification between the classes .4

yielded 68.9% for 9 raw features. Four frequency features yielded

improvements to 73.5% accuracy. Filtered features yielded 74.5% accuracy
with 4 features.

Comparing the results for detection of the signals composed of I windowed

sinusoid with those of the more complex signals composed of 3 windowed

sinusoids, the accuracies achieved were quite similar at the various SNR levels.

Raw features produced very similar accuracies, and filtered features improved

the accuracies to almost 100% for both type signals at the 3 SNR levels. At

SNR's of -12dB, the improvements in the accuracies for filtered features over

raw features were very significant, ranging from 25.5% to 28.5%.

. . . . " -.. '. . , ".i-:. ?. " . -. ...... .. - . : -. -. .. -:. .'"."?..:. '".:.:!~
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Appendix B: Recursive Algorithm for Mean-Square Error

A large part of the linear filter literature is dedicated to special computer

algorithms which improve the speed of the calculations required to design the
filters. When the matrix R]rr is Toeplitz (as it is when the received data are

stationary), an algorithm developed by Levinson (1946) is commonly used to
efficiently invert the matrix. Morf (1977) has also described an efficient

solution to the linear prediction equations. The second algorithm described in

this chapter was developed by this author and is an efficient method for solving
the robust matrix normal equations when the data are nonstationary. In order
to begin, recall the dimensions of the matrices involved in Equation (4-18).

(1) II is NxkN,
(2) R is NxkN,

(3) " + (B- 1)
(3) Rrr is kNxkN and (-."

(4) Err is kNxkN

where N is the number of sample points in each data record and k is the

number of channels. The spectral decomposition of Prr is defined as

kN
Err =(B3-2)

and the singular value decomposition of RtdS as

N T
do YPilUiV. (B-3)

where

S-2 kN (B-4)

and

• "" - '"""" '"" "" " "-" -'""' ." "" " "-""."" ' " ' "" "" "' "' 'T" "" ",'" "" """" '"" ' :
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P1 P 2 " P N 0. (B-5)

The Oi are the unit norm eigenvectors of Prr- The u are the N-dimensional,
unit norm eigenvectors of R, and the vi are the kN-dimensional, unit

norm eigenvectors of

In order to derive the recursive algorithm for computing the MNLS
implementation, the three terms in Equation (4-18) are again considered
separately. The first term is the trRg. This term is independent of I and is

therefore constant. It is computed once and stored.

After inserting the matrix decompositions, the second term becomes

tr I (qjqj E 'UmVmu  (B-6)

Now the following definition is made:

v~i = vY i  (B-7)

Inserting (B-7) into Equation (B-6) and rearranging a few terms gives

IN Ivi. N

tr T (B-8)
Lil j=l "j m=l

By noting that

tr u_ =-- = {(-9)
Equation (13-8) simplifies to

-- N I v..? I N
N I . 2  N(13- 10)

=• "" ~~i=I j=i ' ~ ~
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Equation (B-10) can be updated with a minimum number of calculations by
evaluating vii for all i and j beforehand and using the first 1-1 values to

compute the lth value.

Consider now the third term

tr rli£ Ei ] ~ -%T E tY- it(-I

j=1s SQ

Using Equation (B-0) and the following definition

drj = _q= _r (13-12)

Equation (B-Il) can be simplified to

N I Vi - kN I drs
fldi (B- 13)

il j=l Xj r=l 1 s '.'

The recursive algorithm for computing the mean-square error due to the third
term vs. I can be derived inductively. Let 2(l) be the mean-square error due to

the third term when keeping I eigenvalues. When keeping only the largest
eigenvalue,

N v.. kN d, "
2(") Ep "kr. ""v. (1B-14)

i= ^1 1

The mean-square error when using only the two largest eigenvalues is

N v. kNd2 - 2

+,,- + d 1 .r
2

..
+ ---- Ord r2{ - -Vil + Y Vi2J'\2 x~ I X" 2

This result can be written in terms of S(I) as

. - . • -. . • . . .• • % - . " .. . . . -
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;'.N .N d,,
.(2) =.(1) + ix- ,dr,, vi 2 (-16) -',

Vj 2 kN 2 drs b

+ , 0,d2 XVisI

r=1 SI

This can be simplified by factoring V out toward the left to obtain

3(2) = (1) + N- pi2vi2 E/ rdr2 [2-f-vil + 2 V-17)

X2 j=1 r=1 L2

This can be extended to the general case when keeping 1 eigenvalues with the
recursive algorithm

1  N kN I-I drj r-

(l) = ll-l) + -'-Ep22 v dvi + Lvl (BiS) 18)

Equation (B-18) can be made even more efficient by recursively defining the

summation from j=I to 1-1 as

dsum(l) = dsum(l-1) + "IIL Vi(]l 1) (B-19)

X1-1

where dsum(l) = 0. Using this definition, Equation (B-23) becomes

1  kN
+VrN kN [rl

4(l) 4 (l-1) -- -- 2 VilY rdr 2 dsum(l) + -vii (B-20)
^1i l r=l x I-

The general recursive algorithm for computing the mean-square error when
keeping the largest I eigenvalues is given by combining the three foregoing
terms.

. , ,.....
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p V .

Ng I.

g2(i) = f (l-l) + (- vi) (B=21)"

•N 2kN [dri ".

+ -A d dsum(l) + -vij
1\1 i=1 r=l x I..

The initial values with which to start the recursion are

-1) tr + L N ivil) (B-22)

+l+ _L N #V2 2

"2 .- (E iVi)-/rdrl
X1 i=1 r=1

and

dsum(l) 0. (B-23)

By using Equation (B-21), the mean-square error can be evaluated for all values
of I in order to determine lop t,. This ]opt can then be used to compute krr, in
order to find the unique MNLS solution to the filter equations.

! -.
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