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1. INTRODUCTION

This report describes work carried out under AFSOR Contract No.
F83K0031 entitled “DETECTION, ESTIMATION, AND MULTIDIMENSION-
AL PROCESSING OF SINGLE EVOKED POTENTIALS.” The overall objec-
tive of this research has been to develop new methods of processing single event
related potentials (ERPs) to allow more effective information extraction to be
. carried out. Considerable progress has been made in developing methods for
- detecting the occurrence of ERPs, for distinguishing between ERPs produced =,
] by different stimuli, for separating the ERP waveforms from the ongoing elec-
troencephalogram (EEG), and in obtaining a better understanding of the com-
plexities of the ERP waveforms themselves. In Section 2 of this report, a new
type of classifier is described that gives very good performance in distinguishing ~
between ERPs generated by different stimuli. The classifier makes use of time oy
samples of bandpass filtered ERP waveforms. Very high classification accura-
cies were obtained with this technique.

Section 3 presents the results of a preliminary study to compare the .
accuracy of classification using a quadratic discriminant function when .
optimally selected features are used as compared with performance when N
suboptimal features are selected by the forward sequential feature selection
procedure. Among the conclusions of this study was the fact that although
performance with the optimal features was somewhat better, it was not enough
to warrant the extra computation required for their determination.

o
‘o
AN
-
-~
-

Section 4 describes a very effective filter for separating the ERP from the v
ongoing EEG. The filter is a multidimensional, time-varying linecar operator

P
3 (

that makes use of measured or estimated statistical properties of the ongoing

.o, -
. s 3
2

EEG or ERP waveforms. Tests on both simulated and measured data show
very high rejection of the ongoing EEXG and retention of the ERP when data
from two channels (ie., two electrode sites) are used. Once the filter is

v
P

designed, it is very easy to use and could be used on-line if desired.

Section 5 describes some preliminary studies on modeling the ERP
waveform. It is shown in these studies that visual inspection of an averaged
ERP waveform cannot be relied upon to differentiate between true components Ay

W e LT
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of the waveform and artifacts corresponding to valleys or ridges produced by
the interaction of adjacent components. Analysis of the measured latency
variations of peaks in a given neighborhood appears to provide a method of
distinguishing between true components and artifacts.

vy
4

Section 6 provides a description of a new data acquisition and processing
system currently in use in the EIXG Signal Processing Laboratory. An IBM
Personal Computer now runs experimenis, collects data, and performs signal

oo

processing tasks. The system is both powerlel and flexible.

The remaining sections list the professional personuei and summarize the R
awarded degrees and publications which have resulted from this contract. .
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2. IMPROVED CLASSIFICATION TECHNIQUES FOR ERP
WAVEFORMS

2.1. Introduction

The focus of this research was to obtain a better method of feature
transformation. A transformation procedure producing higher classification
accuracies has the potential of bettering our understanding of ways to extract
basic information contained in ERP data because the transformed features may
be more representative of the information bearing components within the data.
This introduction serves as a review of the statistical pattern recognition
problem.

Statistical pattern recognition has been applied to distinguish features in
measured waveforms that may be used to reliably detect or classify an event
related potential (ERP) generated by the brain in response to a different
stimuli (Donchin 1975). The results obtained by using these statistical tools
can increase understanding of the EEG components, event related potentials,
and ultimately brain function.

Pattern recognition may be thought of as a system involving: data
measurement and recording; data transformation; feature selection; and
classification. A feature is some measured value from the data or a value that
is derived from measured values of the data. It is considered a random variable
and is used as an input to the statistical classifier. In EEG signal processing,
the data that are measured are the amplitudes of the voltages measured
between pairs of electrodes attached to the sealp. These voltages are amplified,
filtered, sampled, quantized, and recorded by a digital measurement system.

The most straightforward procedure for applying statistical pattern
recognition techniques to ERP waveforms is to use the amplitudes of the signal
at the sampling instants as the features (McGillem 1981, Donchin 1975, Aunon
1982a, Aunon 1982b, Sencaj 1979, Vidal 1977, Childers 1966, and Moser 1982).
The signal is usually lowpass filtered and then resampled at a lower rate to
reduce the number of possible features. Other approaches involve feature
transformations such as frequency domain analysis (Moser 1982), principal

component analysis (Van Hoek 1974), factor analysis (John 1973), or the

T
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Karhunen-Loeve transform (Fukunaga 1970) to map the data into orthogonal ;
components. 5
Features to be used by the clascifier can be based on a variety of criteria i
(Mucciardi 1971 and Kanal 1974). The stepwise linear discriminant analysis .
(SLDA) program, based on a stepwise featare selection method (Kanal 1974) w
available in the BMD-07 (Dixon 1975) computer program package, is a N

suboptimal feature selection and classifier program that has been applied to EP
recognition (MeGillera 1988 Ponchin 1975, Aunon 1982b, Vidal 1977, and N
Dorchin 1666). Suboptimai Jture selo=tion tochniques will not in general '
produce the subset of features that gives the best discrimination between the N
classes, but they greatly roduce computational requirements over optimal
feature sclection techmiques. In this study forward sequential feature selection
(Muceiardi 1971) was the method employed.

The EEG has been modeled as a nonstationary random process.
Researchers have segmented the EEG into short time sections and carried out
frequency analyses (Jansen 1981a, Jansen 1981b, and Sanderson 1980). The g
EEG is considered to have a time-varying spectrum and this type of analysis

attempts to measure the underlying spectrum for particular portions of the
data. Frequency spectra computed for different data segments showed
significantly different underlying spectra.

Other work has focused on the computation of the time-varying spectra of
the EEG recorded from subjects as light-flash stimuli were applied (Aunon
1977). In this study the data were windowed with a short rectangular window
and the spectrum was computed. The window was then moved in time and a
new spectrum was computed. Plotting and observing these spectra in a 3-
dimensional form graphically illustrated a time-varying magnitude of certain
frequencies. Figure 2-1 portrays an example of this type of plot, in which the
magnitudes are plotted for points on the time-frequency plane. This shows the
time-varying property of the frequency components. Other work has focused !
on the computation of the time-varying spectrum by the maximum entropy :l:'
method (Pomalaza 1979).

NN A A

et
‘. .‘l'-

b

The measurea data dit) of the ERP is considered to be composed of the
evoked signal which 15 composed of deterministic components with certain
randomly varying parameters, the ongoing FEG which is an additive random
process consisting of the superposition of components similar to those of the
signal, plus an independent additive noise:

d(t) = s(t) + e(t) + n(t) (2-1) R
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Figure 2-1  An Example Plot of a Time-Varying Spectrum for an Averaged :
Evoked Potential. Taken from Aunon (1977). o
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where s(t) = EP signal,
e(t) = ongoing EEG,
and n(t) = noise.
The components of the EP signal are considered to be generated in a similar
manner for repeated stimulations.

The noise term n(t) accounts for the lumiped instrumentation naud
measurement noise which should be indepeadent of s(t) or e(t). Inciuded in
this term are muscle artifactual noise which s a time-varying process.
Attempts are made to eliminate records centaminated with artifactual noise so
that the noise term may be considered to contaln only noise generated by an
independent stationary random process.

In the feature transformation methed considered here the time-varying

spectrum underlying the signal 15 cxploited to improve classification and

detection accuracy as measured by classification error bounds and to identify
the underlying components and their parameters. ‘This is similar to methods
proposed for use in speech processing (Tanaka 1979) and in noise pollution
source recogmtion (Moukas 1982). Estimation of the frequency components
over short time intervals will help identify the time-varying components at the
various times. If a particular frequency or band of frequencies is found to be
prevalent or rehiably detected in the same small time segments of signals from
an ensemble of data, that portion may be considered to be mapped into the
signal space corresponding to a short duration sinusoidal component.

The present study tested the eflicacy of using selected amplitudes from the
time-frequency plane or, equivalently, portions of the real part of the time-
varying spectrum, as features in classifiers to distinguish brain evoked
potentials. In an early study features were selected from both the time and
frequency dimensions, but the geometrical relationship between these
dimensions was not considered to form the two-dimensional space (Moser 1982).
The amplitudes of the time and frequency components were not taken in pairs
but singly, hence the time varying nature of the spectrum was not taken into
account.

Amplitudes at particular times, or at particular latencies of the evoked
potential may contain energy from a wide range of frequencies. In classification
studies the ERP is usually low-pass filtered before sampling (Aunon 1982b).
The pass band might typically be 0.1 Hz to 25 Hz. If the amplitude of a signal
at a particular time was measured after the signal had been filtered to allow
only a narrow band of frequencies to pass, this would approximate the
amplitude of a region in the time-frequency plane. Such amplitudes can be
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used as features for classification and detection of single evoked potentials. A
two-step feature selection/classification procedure as shown in Figure 2-2 was
developed and tested to investigate the effectiveness of features taken from the
time-frequency plane. The method shown in Figure 2-2 greatly reduces the
computational requirements over selecting from all possible features of the
time-frequency plane in one step. The two-step classification process first
transforms the windowed signals into frequency components, then it selects the
frequency features giving the best classification performance using the training
set signals. These selected frequencies are then used to set the center
frequencies of a set of band-pass filters which process the raw data. The
amplitudes at the outputs of these filters at various times are then used as a set
of features from which the final feature selection routine chooses the features
that will be used by the classifier. This process is described in detail in Section
2.3.

Artificially generated EEG data and actual EEG data were used to test
the procedure as described in Section 2.4. Data from four subjects
participating in visval si'mulation evoked potential experiments were tested
and the results ar-lyzed. Several sets of artificial data were generated and
tested. They v.ore composed of various types of signals added to either real
EEG data or computer gen-rated random noise data with various signal to
noise ratios. The classification and detection accuracies are compared with
those attained by more conventional methods and show a significant
improvement .n most cases.

2.2. Classifier and Feature Selection

The selection of the subset of features to be used from the complete
feature set nd the design of the classifier which uses the selected features is of
central importance for obtaining high classification accuracy. The design of the
classifier and feature selection process are discussed together in this section
because the method chosen for feature selection is connected with the design of
the classifier and the results of classifyving the data records of the training set.
The design of the classifier is discussed followed by a description of the
procedure for estimation of the necessary statistics from the data. Next the
error bound computation is described, followed by the feature selection process.
The criteria for feature selection are based on the error bounds computed by
the classifier from the training data set. Lastly, the classifier and feature
selection algorithm applied to the detection probleny is discussed,
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Under the assumption that thic features are jointly Gaussian random

variables the log-likelihood ratio classifier for the 2 class case is:

(x ~ m])T }_311 (x —m,) — (x - mg)T Egl (x — my)

| 33

where x is the sample feature vector to be classified,

to
'
[
r s v
-

w1

+1 2T,

.'J.'v‘-,::'-' o,

m; is the mean feature vector of class i,

Ei is the covariance matrix of class i,

Eiiil Is the inverse covariance matrix of class i,
and T is the decision threshold to which the function is compared.

If the function is less than T, the sample is classified as class 1; if it is larger -

than T, then it is classified as class 2. This classtfier minimizes the total
D

probability of error if it is used as a Bayes classifier where T = 2 In —)—g, where

P; is the probability of occurrence of class 1. Various other probability of error
criteria could be used which would change the decision threshold value of the -
classifier (Fukunaga 1972). An advantage of this classifier is that it works well
even if the true probability density i1s not exactly Gaussian, but has a Gaussian
like shape (Kazakos 1982a and 1982b). In addition, it is a relatively easy

.
e, 1,"

LA O

function to compute and conducive to a computerized on-line real-time detector

r

once the features have been selected.

In the detection problem, one class is the EEG with no signal or ERP and
the other is the EEG with a signal. The “reshold is then changed to adjust
the ratio of the number of false detections t. the number of correct detections.

R

This is a convenient parameter for changing the detector function because it
may not be known a priori whkat the probability of occurrence of the signal is,
and the threshold value can easily be altered to adjust detection performance
for a particular data set.

This quadratic classifier becomes a linear classifier if it can be assumed
that both classes have the same covariance matrix. The quadratic classifier is
used here so that assumption need not be made. Evidence is available (Kanal <
1974 and Jansen 1981b) concerning the non-stationarity of the EEG indicating
that the statistics of the background or ongoing EING during the time the

signal 15 being generated are different than the statisties of the EFG when no

v
.
a'a’e

stimulus related signal is being generated. Hence, the estimated covariance

»
e

matrices will be different and the quadratic classifier should perform better ~
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than the linear classifier.

The covariance was estitnated by the unbiased estimator:

- 1 & T ,
2J‘ -1 xm (xl\l - mi) {2-3)
k=1
where xp; = the kth sample feature vector from class i,
m; = estimated mean of class i,
and K = quanti-s «{ sample feature vectors.
The mean was estimated by the unbiased estimator:
1 N
m, = R Miox (2-4)
k=1

Frror analysis was aecomplished by computing estimates of the upper and
lower error bounds from the lata set using the designed classifier. The lower
Lound of the error was computed by the resubstitution method (¢! method)
where the same data samples that were used to train the ciassifier (ie.,
compute the estimated statistics for the classifier) were also used to test the
classifier. The upper error bound was computed by the leaving-one-out method
(L method). wher~ the classifier was trained on a'l but one sample and that one
sample was then tested. This was repeated for each sample, each time a
different sareple 5 lefit cut of the fraining set and was then tested {Fukurnaga
1972).  The was casly implemented for the quadratic classifier by the
formulatior i {(Fukunaga 1971 and 1972).

Featnre sefection was accomplished by a modified forward sequential
feature <olection (FSES) routine (Mucciardi 1971) using the ecriterion of
miniimizing the apper or lower bound of the error or a linear combination of
the two FSES works by first picking the sipgle feature which minimizes the
error criterion Ly testing all features from the set of possible features. Then
the next geature ds solected by combining each possible feature with the one
previowsls chesen and selecting the best pair. This is further iterated until the
maamum number of features s selected. FSFS is not an optimum selection
algonthm. but it greatly reduces the computational burden required for an
cvhaustive seareh feqrnre ~diection (ESEFS) process. The FSES routine was
implement-d 1osuch a maneer that alternate combinatiors of features which
produce equaliy low lower error bounds were tested through the wext iteration.
This presvonted the arbitrary selection of one of the feature corabinations while
rejecting others which may have heen hetter after the next iteration than the

one chosen .
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The size of the subset of features selected (N) was determined from the
upper error bound. As the number of features selected increases, the upper
error bound generally decreases and levels off at some value which was the
selected value for N. This error bound generally increases with the selection of
additional features (Hughes 1968). The selection «f the best set of features was
that which had the lowest upper error bound of all the feature sets tested.

The detection problem is set up as a two class classification to distinguish

between the two hypotheses Hy and H.

Hy @ d(t) = e(t) + n(t),

‘ and H, :d(t) = s(t) + o(t) + u(t). (2-5)
T This was implemented by training the classifier for the hypothesis H; with the
i recorded data synchronized with the stimulation. A portion of the EEG data
1 recordea prior to the time of stimulation, the same length as that of the signal,

was used to train the classifier for the hypothesis Hy. The section of the EEG

:' used for training the detector for hypothesis Hy was selected by using a section
b of the pre-stimulus data whose time relationship to the signal was a random

variable to prevent any time-lock effects between the two data sets,

2.3. Data Transformation

Features were selected from a set of the data. The transform action was
implemented by sampling the outputs of a bank of bandpass filters.  An
important part of the design problem was selections of the filter center

frequency and shape of the pssband.

Referring to Figure 2-2, it 18 seen that the measared data 1s first time
limited by a window function then transformed into the frequency domain.
This results in a short term spectrum computed 1 the manner deseribed in
(Allen 1977). This method has been used extensively in speech analysis
systems (Tanaka 1979, Allen 1977, White 1976, Schafer 1973, and Portnofl
1976). The parameters involved are the time window shape and length. and
the resolution in the frequeney domain. After converting the original data to
the frequency domain the Ist elassifier/feature selector chooses those frequencey
components which give the best performance. These results are then nsed to

~elect the conter frequencies of the data transformation filters. The outputs of

these filters are used as the o oo from which the 28" classifior /feature
solectar <olects the final feature subset.
The anlth of the window funetion was based on the duration of the BP

stenal which was e<timated from the averaged BP0 Tt s desirable to give equal

. LT e e e . . . - . ot e o
. R L YR PR PR R S e e T e RN . . R . R
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weighting to all the time points of the sampled signal to prevent distortion of
the signal by the window. 1t is alo desirable to include only the data
containing the signal in the transfcrined aata so that the transform weauld
refiect onlv that energy. The window sutisfying  both these erperia 1= che
rectangular window, but this window jroduccs spurious freanency compepents
in the transform, especially at the higher frequencies. A congpropuse weuld pot
distort the Jduta containing the signal and would w:low orly 1 small amovs. of

o data n contacenr the wenal ro boousod g the teonsformed datel The
g ey b s o combres, T s roetan atar wandow and aoranaed co-ine
g window =g tukey wondoa (Hackiman 169x a7 e [om
¢
| —])- - ~;l)— cos ;’.]{5 (t-to) oo ferta <t Ot
wlio = ‘-J)- 4 ') cos l: (-t =t fort Hbta >t >t b
2 - a
i o fort, <t <t Hb (2-6)
f) . otherwise,
¥ \
The parameter 2 defines o8 owidth of the raied cosine regments at the ends of
‘he eons ant segment Toe parameter & defines the jength of the constant
sesment and t o deties the beginning of the constant segment. The value
chesen for o rmmeter o was &0 mss This was a compromise between large
: valnes b b albow pon-ansac! data 1o be wsed in the transform and small
values v produce the sperioas frequencies due to the edge effect of the
window T ecpsiant segment parameter b was <et to the length of the signal
found o the averace BP0 An exanple 1- displaved in Figure 2-3 in which an
averaneed PP frome the visad stimulos expeniment is plotted along with the
Cane win bow o selested
Desirable characterisie - for freaueney features used for classification be
thiyt they e Gaos-tan disorbated and that they represent the information at
that T-eqreeney officiontly Forovins separation Features which are the real or
tarveinary pacts o f the PR D transformed  data were found  to have
spprosvimaso v Cosan amg hitude dietributions (Meser 198400 Two featires
representea She anformimtion at eack frequency. They were obtained directly
~ from the FFT and the freqneney transform block in the bloek diagram of the

Cesiep system (Figure 2220 wos bypassed. Foamples of the distribution of the
frequency daty are sthowa in Figure 2-40 Figare 2-1a portrays 100 points from
each of 2 clasces ot 2 Hy s Froure 2-4b s wosimatar plot at 1 Hz. Evident i
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Figure 2-3 A Typical Averaged Evoked Potential Signal from the Sternberg
Paradigin Experiment Plotted Along With the Tukey Window
Applied to This Type of Data
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this figure, as was typical for the frequencies from the various data sets, is the
inherent lack of separability for single frequencies. There is higher separability
of the classes when higher dimensional distributions are considered.
Dimensionality of up to 10 features was considered for most of the feature
selection processing. Since the real and imaginary parts are each features,
there were twice as many features as frequencies.

A procedure was developed to transform features from the FFT by
projecting the complex frequency data onto a line. The new features X(f) at
various frequencies f are computed by:

X(f)=M{f)-cos[a(f)~0(f)) (2-7)

where M(f) = Magnitude at frequency f,
¢(f) = Phase angle at frequency f,

and 6(f) = Reference angle at frequency f.

The reference angle was determined from the line which connects the means of
the 2 classes in the complex frequency plane. This maximizes the mean
separation between the classes.

The frequencies of the features producing the best results with the first
classifier/feature selector were used to select the center frequencies of the filters
which process the raw data for use by the second classifier/feature selector.
Non-causal, symmetric, finite impulse response bandpass filters were used to
filter the raw data in the second step of the 2-step process. This type of filter
has a zero phase response and renders only a small portion of the ends of the
data, equal to one half the filter length, unreliable after filtering. The filter h(t)
was designed in the time domain by multiplying a sinusoid of the appropriate
frequency and phase by a time window:

hit) = w(t + t ) *sin (27l t + &) (2-R)
where t, = time location of window,

f

and ¢ = sinusoidal phase.

, = sinusoidal frequency,

This is equivalent in the frequency domain to convolving a pair of impulses at
frequency f, and —f, with the transform of the window function:



y 16 4
: f
~ 1 .
% H(n) = Wi« o [4F= 1) + & +1,) (2:9) :

] -
- where H{f) = Fourier transform of h{t),

\ and  W(f) = Fourier transform of w{t).

j:'. The outputs from the filters were used a, a large feature set where the :
o~ amplitudes at the times points of each filter were the features (see Figure 2-3). .
wd The numier of filtore was set by the numuer of difforent frequencies selected by
fE' the darsi classifier/feature seicotor. The chiosen features were amplitudes of
_:: selected filters outputs at selected times. iy

] 2.4. Data and Testing
';:, The procedures for implenmenting the proposed processing techniques were .
5 tested with artifictslly generated data and actual human data from EP
:l_ experiinents. The human data experiments are discussed in this section and :
the results using various artificial data sets are discussed in Appendix A. B
The Sternberg paradigm was selected for generating experimental EP _
“ waveforms used in this research (Sternberg 1966). The details of the Sternberg 2
. experiment were summarized in a previous technical report (McGillem 1983). "
. The plots of the averages of the EP’s for electrode Pz for the four subjects used :

in subsequent processing are presented in Figure 2-5. =
e The data from the 4 subjects were processed by the 2-step process with

_;'. fixed filter bandwidths of 5, 10, and 15 Hz, and proportional bandwidths of g
:;:f 0.25, 0.50. 0.75. and 1.00 times the cenier frequency of the filter. The ‘;:
. bandwidths are measured from null to null in the magnitude spectrum, which o
2 gives o larger value than when measured between the -3dB points of the 3
: spectrum.  Tables 2-1 and 2-2 list the highest lower accuracy bound estimates ..
‘ along with the number of features selected to achieve this accuracy for the raw
. data, frequency data (step 1 of the 2-step process) and filtered data (step 2). 3
The averages of the results across the 4 subjects are listed in the last column of

these tables. Table 2-1 li=ts the results of processing the frequency data N
without transformations, which allows the real and imaginary part of the -
:;'.; frequency data to be used dircetly by the first classifier/feature selector. In this o

i case, there 15 twice the pumber of frequency features from which to choose.

\ Table 2-2 lists the results of processing using the frequency transformation that =
P projects the frequency data onto a line in the complex frequency plane, yielding \

> 1 feature per frequency. N
. \
N :
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Figure 2-5  Averaged Evoked Potentials for Electrode Pz, 4 Subjects, Target
vs. Non-Target, 1 Target in Target Set
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Table 2-1  Results From the 2-S0p Classifier/Feature Selection Process
Without Frequency Feature Transformation. Table Entries:
Percent Classification Accuracy / Number of Features.
e, s
Subject !
S ‘ ;:'—»_-—_—_;!— '''' L
Data BW 1 2 3 ( 4 Average
| Raw 93.5,/9.5 | 77.9/1 | w8aj7 | 83/5 || 87.1/6.5
Frequency |1 985/% | T68/4 | Gi/8 00.3/6 90.1/6 |
i He OafS | TRl SLe/8 | 9UE/S g 901/5
0 || 975/6 | 79.6/4 | 94.5/10 | 0847 | 0257
Target _L_lf) Hz 08/3 76.5/2 96/9 99/7 42.4/5
X.25 Fo Il 95/8 74/t | 90.5/4 | s8.3/2 || s7.0/4
X.50 Fo [l 935/1 | 78172 | 909/8 | 91.3/3 | 90.5/4.5
X.75 Fo 94/7 80.1/8 | 97.5/10 | 92.9/8 || 91.1/8
X1.0Fo || 985/10 | 86.7/5 | 995/8 | 89.3/3 || 93.5/8
Bt |l Xio | X10 | Xt0 | 15Hz || X10
Raw 81.5/8 | 78/5 92/8 20/14 || 83.1/8 |
Frequency 97/7 89/6 54.5/6 89/5 92.4/6
5 Hz 95/s | 81.5/7 | 93/3 92/4 || 90.4/5
10Hz | 985/6 | 8e/7 | 99.5/6 | 92.5/10 |] 94.1/7
Nontarget st [Lessis | o117 | 91577 | 100/8 7.8/6
X g5 Fo || 87.5/5 | 8u5/1 | 96.5/6 | 93/8 || 90.9/6
| X0 Fo 99,8 R2/3 | 985/5 | 90/4 91.9/5
N75 7o || 98575 | s15/10 | 98/2 | e1/10 || 93.0/8.5
X1.0 Fo 99/5 | 20.5/3 | 99.5/5 | 95.5/10 || 93.6/5.5
. Bost ¥1.0 15 Hz_ | XL1.0 15Hz || 15 Hz
Raw 73.5/4 | 70.4/8 | 13.5/7 | 69.9/5 || 71.8/8
I Frequency 77/8 74.5/10 75/4 73/4 74.9/6
I i5.5/2 | 18.6/10 | 74.5/4 | 709/2 || 74.9/4.5
Target | 101z 7871 | 786/10 | 76.5/4 | 71.9/3 [l 76.3/5
vs. 150z |l 725/1 1 76/5 72/5 | 86.3/7 || 11175
Nontarget I X.28 Fo || 75/2 _T8/i0 74.5/2 71.9/5 74.4/5
| <50Fe |l 73572 | s06/6 | 75/3 | 67.9/2 || 74.3/3
X7 Fo || 74579 | mas/7 | 784 | e1.0/2 [[73.9/5.5
X10lo I 755/4 | 700/5 | 785/7 | e6.8/2 || 715.0/4.5
Best i'req X.00 X1.0 Freq. 10 Hz
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7 Table 2-2  Results From the 2-Step Classifier/Feature Selection Process ’
y With Frequency Feature Transformation. Table Entries: Percent N
; Classification Accuracy / Number of Features. ]::: '
:
X ' o

Subject o
A - Ny
Data BW 1 2 3 4 Average
Raw 93.5/9.5 | 77.9/4 | 88.8/7 | 88.3/5 || 87.1/8.5 -
Frequency || 98.5/9 | 84.2/8 94/9 90.3/5 || 91.8/8 o
- 5 H 93/3 | 837/9 | 92/8 | 90.3/7 || 89.8/7
A 10 Hz 99/10 | 95.9/9 | 99.5/7 | 100/8 || 98.6/8.5 5
Target 15 Hz 95.5/6 | 94.9/10 | 100/7 | 100/5 || 97.8/7
X.25 Fo 95.5/9 | 80.1/5 | 89.5/3 | 90.8/3 89/5
X.50 Fo 99.5/8 | 99.5/10 | 99/10 | 93.4/8 || 97.9/9 :
X.75 Fo 97/9 99.5/8 | 98.5/9 | 92.4/10 || 96.9/9 -
X1.0 Fo 99/6 96.4/5 | 99.5/8 | 98.5/9 || 98.4/7
Rest X0.50 X075 | 15Hz | 15Hz 10 Hz, =3
X Raw 84.5/8 76/5 92/8 80/4 83.1/6 b
: Frequency || 90.5/9 80/3 95/8 87.5/7 || 88.3/8 =
5 Hz 88.5/3 | 845/3 | 97/8 85/5 83.8/5
10 Hz ¥8.5/3 | 97.5/10 | 100/6 | 89.5/5 || 93.9/6 -
Nontarget 15 Hz 99/8 | 98.5/10 | 100/6 | 92/10 || 97.4/8.5 o
X2 Fo || 87.5/7 | ®15/14 | 95.5/6 | 79/6 86.6/6 o
X.50 Fo 86/ 4 g2/5 | 97.5/8 | 94.5/10 || 90/7 o
X.75 Fo || 91.5/10 | 83.5/2 99/7 90/9 93.5/7 =3
| X10Fo [ ars/10 | s34 | too/e | oo/9 || 91.9/7
Best 11 15 Hz | 15 He | Severad | X1.0 )| 15 Hz |
Raw || 735/4 | 704/8 | 73577 [ e9.9/5 || 71.8/6 R
Frequency 78/3 T6.5/9 | 73.5/8 | 75.5/4 ] 759/55 o
5 11z 79/6 | wosys | 77 | 7aa || 7r1/4 "'
Target 10Hz || 78/2 | 796/5 | T55/2 | TL/4 || T5.8/3 vy
Vs, 15 Ha AN T35/5 | 71.9/6 75.1/7 o
Nontarget N.25 Fo BT | RO/ LTRSS L Tafs N TTT)5.5 ;::
h)g..-’,_O_l-jo /3 _4_&'2__7/9_ »—~if/{'——~—-“““i;’/"‘—— lrs,./_;’,n -
X175 ko TTA[ | RS L ST p T2A[6 4 T3/
: N10Fo || wge [ soage | mnagn | sowsa fpoteay7 ]
; Best XLO | X0A0 | Newh | Eeeq Sl 4
: -4
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E:j In both cases the data window in the first step of the process extended X
:" from 0 ms to 556 ms latency with the flat portion extending from 160 ms to :
. 396 ms, which was also the range over which filtered amplitude features were

:., searched in the second step of the 2-step process. Sixty frequency features

::: ranging from 098 to 586 Hz were used. The frequency spacing was

N approximately 1 Hz. In most cases, 100 records from each class were used.

>

Ninety-eight records were used in the cases where a full set of 100 good iccords
was not ¢btuined.

Iach table includes the results for detertion of the target set EP data (t),
detection of the non-target set EP data (n), and classification between the
target and non-target sets (t/n). For detection, the ongoing EEG class (no EP)
was taken as the section of data starting at 760 ms before stimulation. This
starting point was randomly varied across the data records over a uniformly
distributed range of £ 100 wms.

The best averaged accuracy results for detection of the targets are as

follows:

1) 98.6%, BW =10 Hz, with frequency transformation,

2) 78.4%:, BW=X1.0, with frequency transformation,

3) 97.97¢, BW=X0.5, with frequency transformation,

1) 97.690, BW =15 Hz, with frequency transformation.
The bandwidths with a leading X are proportional bandwidths, the number
indicating the proportion of the center frequency, with a minimum bandwidth
4 Hz. These results show a significant improvement over the use of raw
amplitude ifcatures which produced an averaged aceuracy of 87.1°¢ across the
subjects. The best averaged accuracy result for frequency features was 91.87%
nsing frequency feature transformation, 3.7 higher than for raw amplitude
features. For some subjects lower bound accuracies were 1009¢. As much as
2000 er more improventent was achieved for the filtered data features over raw
data features in some cases, 3s i subject 20 BW=X0.5 or X0.75, with frequency
transformation (Table 2-2) where 21.6°( improvement was achieved. If these
results were presented in terms of error nstead of accuracy, this case would
improve the error from 22,170 to 0.5%¢. a significant improvement.

The Lest averaged accuracy results for detection of the non-target EP's are

as follows:

1) 9789, BW =15 Hz, without frequency transformation,

2) 97.147°C, BW =15 Hz, with frequency transformation,

3) 91.9°¢C, BW =X1.0, with frequencey transformation,

1) 911%, BW =10 Hz, without frequeney transformation.
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These results also show a significant improvement over the averaged accuracy
of 83.19 for raw amplitude features. For frequency features, the best averaged
accuracy was 92.49¢, without frequency transformation, a 9.3°¢ improvement
over raw amplitude features. Improvements in the accuracy for using filtered
features over unfiltered features were over 20°°¢ in some cases as in subject 2,
BW =15 Hz, with frequency feature transformation, in which case the error
went from 24%% to 1.57¢. In all cases for detection, the accuracy achieved using
raw amplitude features was improved by using filtered features determined by
the 2-step classifier/feature selection process.

The best averaged accuracy results for classification between the two
classes are as follows:

1) 77.7€¢, BW =5 Hz, with frequency transformation,

2) 77.796, BW=X0.25, with frequency transformation,

3) 77.3%%, BW=X0.75. with frequency transformation,

4) 76.79%, BW =X0.50, with frequency transformation.

These results show a small improvement over the unfiltered data features
averaged accuracy of 71.8°¢ of up to 5.9%. The best averaged accuracy for
frequency features is 75.9°0, with frequency transformation, a 419/
improvement over those achieved using raw amplitude features. The best
filtered data averaged result is 1.87G better than this. Improvements of up to
11.7€¢ were achieved for individual subjects as in Subject 2, BW=X0.50, with
frequency feature transformation.

From this study on a limited number of 4 subjects and data sets, it is
evident that the 2-step method produced very high accuracies for detection,
representing large improvements over l-step methods using unfiltered or
lowpass filtered amplitude features. Since the estimated detection accuracies
were as high as 1007¢ or very near this level, the method is an excellent way to
determine whether single EEG records contain a particular EP. This may be
used as the basis for an on-line detector. The classification results showed
smaller gains with the use of filtered over unfiltered amplitude features. These
could possibly be improved further by testing a wider range and finer
resolution of parameter values such as bandwidths, data window parameters,
and number of frequency features. Furthermore, different filter responses could
be tested including  non-symmetric ones. The  prelimmary  results ook
promising considering the limited number of parameter values tested.

As described in Appendix AL four different types of signals were used in
artificial data sets to test the 2-step classifier/feature selector and compare the
results to those using l-step technigques (raw features or frequency features).
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o From a limited study on these signals in actual EEG data at different SNR X
- levels, it was found that the filtered features of the 2-step method produced .

significantly improved accuracies (sce Table A-5 for a summmary of the results).
For detection at the 0dB level, raw features produced very high accuracies of
96.1¢ to 99.5¢¢. The best results using frequency features yielded acenracies
of 99°4-100“¢, and 100°¢ accuracies were achieved for all signals using filter~d

“¥ “»

features. For detection with SNR’s of -6dB, raw features produced accuracies 5

"y ranging from 78 57¢ to 92.5%. The best resulis using frequency feature vielded

accuracies ranging from &17¢ to 93.570 This represents small improveineats

‘
* Lty

over using raw features. The best results nusing filtered features showed
significant improvements in these accuracies, yielding 100% for 4 of the 8 data -4
sets tested. This represents improvements up to 19.5'¢, probably limited by

the fact that the maximum accuracies of 100%) were achieved in many cases.
- These improvements are also much larger than those obtained using frequency

LI OOt

features.

v -

: For detection of the signals in EEG at SNR's of -12dB, raw features

produced average accuracies ranging from 66.29¢ to 83.57¢. The best results '-

using frequency features showed improvements to these accuracies of -1.996 to »

6.2, Filtered features again showed substantial improvements of up to N

. 31870, probably hmited by the fact that near maximum accuracies were N
achieved i all cases.

Classtfication  between  the artifictal data  sets also showed similar
improvements by using the 2-step procedure. At SNR levels of 0dB, the best
frequency [eatures cesults yielded 0.5 to 10.290 improvements, and the best
filiered featnres results yviewded 07¢ to 10.29¢ improvements over the results

using raw features. These improvements were probably limited because the
accuriactes achieved were at or near 10070, At SNR levels of -6dB, the best

frequency Jeatures velded anprovements of 3190 to 12.29., and the best

filtered fearures vielded 6 60 to 13 R9G improvements over the results obtained
s ustng raw features. Siclar improvements were achieved at SNR levels of -
- -12dB 0 with 1 6% to 1027 improvements afforded by the best frequency e
; features resalts) and 5670 o 13290 unprovements afforded by the best filtered .
‘o features results, .

The 2-step process has consistently afforded very high detection accuracies

{

i the data cets tested, cven o FVG noise at SNRR's as fow as P24 Tt ds

'y ‘e %0 Oy

stressed that the aceuractes are ecthimates of the lower bound of the Bayes

accuracy (npper bound of the error) and it as expected that the actual Bayes

accuracy shonld not be Jower than these figures. The consistency  and
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magnitude of the improvements is strong evidence of the validity and
applicability of the technique, especially for low SNR levels where the signal
power is smaller than the noise power.

Comparing the results from testing human data to those from testing
artificial data, the degree of improvement afforded by using filtered features
over raw features for detection were similar, especially for the -6dB SNR
artificial data. lmprovements on the order of 2076 were obtained in both cases.
For both the human and artificial data, frequency features generally produced
improvements over raw features, but not to the extent of the filtered features,
The accuracy levels achieved for the human data for the various features falls
somewhere between those of the artificial data at SNR'’s of -6dB and -12dB.

The number of features used to achicve the resulting accuracies were
similar for the various types of features. The possibility that the improved
accuracies for frequency or filtered features results from the use of a larger
combination of features was considered. There is a large range in the number
of features used, but there is no consistent trend of a much larger set of filtered
features being necessary to achieve the performance increases. In almost all
cases, the maximum lower bound accuracy was achieved with iess than the
maximum of 10 features selected for both the human and artificial data.
Therefore, the maximum number of 10 features was indeed sufficiently large to
prevent this parameter from being a limiting factor in the maximum achievable
accuracy.

When accuracies were very high for artificial data with SNR's of 0dB, only
small improvements could be attained with filtered features. But the number
of filtered features necessary to achieve the high accuracies was lower than the
number of raw features, in some cases 100°¢ was achieved with only 1 or 2
filtered features.

It is not clear which is the single best bandwidth to use for the filtered
features. There are some indications, but with no obvious trend, that the
larger bandwidths produce better accuracies of detection for both the human
and artificial data. The lowest bandwidth of 5 Hz and X0.25 did the poorest.
The distinction amongst the others i1s not clear. The number of different
bandwidths tested was limited due to the large amount of computing time
required for each test. A fairly large range was covered by the choice of
bandwidths, but it may not have been wide enough or of fine enough resolution
to indicate the best bandwidths. It may be that even higher accuracies can be
achieved by using different bandwidths for the different filters in step-2, but

this presents the problem of how these bandwidths would be chosen. This
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would extend the 2-step method to a 3-step method, where the chosen
parameters are frequency and time, plus the parameter of bandwidth. The
computational time complexity of this type method would be much larger than
the 2-step method, limiting its usefulness.

2.6 Conclusions

This work focused o the development of new methods for extracting
informiation from evoked potential agata  using  time-frequency amplitude
features. The metheds developed show promise for improving the detection
and classification abilities of the computer in distinguishing singie EP’s over
conventionally used methods.  Classification has generally bheen 1mproved
approximately 6 over using raw amplitnde features for the limited amount of
data which was tested

Resalts for detection vere very encouraging, with improvements over
using unfiltered data on the order of 20°¢. This improvement may bave been
influenced heavily by the “phase-alignment™ properties of the EP as presented
in (Jervis 1933). In this work, the EP and EEG data were transformed into the
frequency domain and a particular frequency was plotted on the complex plane.
For the EEG data, the points corresponding to the various sample records had
phases which were fairly evenly distributed (i.e., clustered about the origin).
The EP data points had phases which were distributed more closely about a
mean phase, resulting in a plot with the points clustered about a point offset
from the origin. The 2-step method capitalizes on this separation of the 2
classes in the frequency domain by performing classification based on frequency
information, and by performing a frequency feature transform which attempts
to maximize the separation of the classes in the frequency domain.

Alteration of parameter values and filters may increase this improvement
further. Although the actual detection or classification is almost instantaneous,
the analvsis leading up to the design requires a substantial amount of computer
time due to the feature sclection process. Therefore only a limited variation of
parameters was investigated. At this time there is no direct method for
determining optimum values. Further research could concentrate on methods
to determine improved filter functions which could yield more precise
informatior:. The bandwidths of the filters in this study were either fixed or
had a fixed proportionality constant for the various center frequencies.
Improved results may be obtained by using a combination of different
bandwidths, possibly determined by combining the best features from tests




using different bandwidths.

Improvements to these methods may result from improvements in
amplifier design.  Many of the frequency features generally selected had
frequencies above 25 Hz. At these frequencies, the SNR becomes low since the
spectrum of the EEG falls off rapidly with higher frequencies while the
amplifier noise is essentially constant. The quieter the amplifiers are, the more
effectively the information in the higher frequencies can be used.
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3. OPTIMAL AND SUBOPTIMAL FEATURE SELECTION
FOR QUADRATIC CLASSIFICATION

3.1. Introduction

This preliminary research investigated the exhaustive search feature
selection (ESFS) procedure using a quadratic discriminant function for
classification. The quadratic Bayes classifier under the Gaussian assumption
(as described in the previous chapter) was used to evaluate the feature selection
procedures. A previous investigation compared the ESEFS performance with
conventional feature selection procedures using a linear discriminant function
(McGillem 1983 and Halliday 1985). In that research, an efficient algorithm for
implementing the ESES error criterion was derived which greatly reduced the
computational burden of the ESFS algorithm. The quadratic discriminant
function does not lend itself to efficient evaluation; therefore, no attempt was
made to derive an efficient algorithm. The ESFS feature selection was
accomplished by examining all possible combinations of features at each level
of selection (i.e., 1 feature, 2 features, 3 features, ete.).

3.2. Methods

Error analysis was accomplished by computing upper and lower error
bounds from the data set using the designed classifier. The lower bound of the
error was computed by the resubstitution method (¢ method) where the same
data samples that were used to train the classifier (e, compute the estimated
statistics for the classifier) were also used to test the classifier. The upper error
bound was computed by the leaving-one-out method (. method), where the
classifier was trained on all bnt one sample and that one sample was then
tested. This was repeated for each sample, each time a different sample is left
out of the training set and was then tested (Fukunaga 1972). This was easily
implemented for the quadratic classifier by the formulation in (Fukunaga 1971
and 1972)

Feature selection was accomplished by a modified forward sequential
feature selection (FSES) rontine (Mucciardi 1971) nsing  the criterion of

minimizing the upper or lower bound of the error or a hinear combmation of
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% the two. FSFS works by first picking the single feature which minimizes the
:-_',‘. error criterion by testing all features from the set of possible features. Then
i the next feature is selected by combining each possible feature with the one
:.:j previously chosen and seiecting the best pair. This is further iterated until the
- maximum number of features is selected. FSFS is not an optimum selcetion
T'_'.'- algorithm, but it greatly reduces the computational burden over using an
- exhaustive selection process. The time complexity of FSFS is approxin eeiy
- O(n*r?®) where m is the number of features to be selected and n is the nuinber
[j-:- of possible features from whia to select. The computational burden for an

es;-

exbaustive search s 0(n™m3).  This resa'ts m a large difference in
computational burden for selecting sets of up to 10 features as was done in this
study. The term m® in the time complexity figures is due to the mxm matrix
inversion. The time complexity for FSFS is somewhat more complex than
shown but this figurc is a gaod approximatiion for m greater than 3 or 4. The
other terms would be small compared to the one shown because they would be
of the forne n{m=£k)® where 1t < k < m-1.

The FSES routine was implemented 1in such a manner that alternate
combinations of features which produce equally low lower error bonnds were
tested through the next tteration. This prevented the arbitrary selection of one
of the feature combinations while rejecting others which inay have been better

after the next iteration than the one chosen .

.. Ancthier optiop implemented in the feature selection algorithm is to allow
;'.{ the choosing of the Ist k features via an exhaustive search and then continuing
:'--'. to pick the rest of the features by FSEFS. The computational burden of this

method wouid be approximately 0(n* + nm?). This idea has been previously
supeested (Lissack 1976) for an exhaustive search for the best set of 2 features.
This option allowed testing various tradeofls between decreased error and

greater time complexity for inereasing k- Further comparisons could be made
between the sub-optimal feature selection process and the optimal exhaustive
feature selection process implemented by setting & equal to the maximum
number of features to be selected. The exhaustive search and other feature
selections with various & values were tun on sclected data sets to observe the
characteristics of Whe tradeoffs and to compare the results of the sub-optimal
search procedures to the optimal one. The testing provided a good indication
of how weli the snb-optiumal methods perform.

The size of the subset of Teatures selected (m) was determined from the
upper error bound.  As the number of features «clooted increases, the upper

error bound generally decreases and levels off at some value which was the
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: selected value for m. This error bound then increases with the selection of :‘5
N additional features (IHughes 1968). The selection of the best set of features was ::
. that which had the lowest upper error bound of all the feature sets tested. [i
. 3.3. Results and Conclusions :*
,'; The following questions were examined while comparing the feature b
¥ selection procedures: +
A 1) whether basing feature selection on the computed upper accuracy bound :
(C) produces as high classification accuracies as basing feature selection on -
the lower accuracy bound (L), or on a combination of the two bounds, :i—
- 2) whether using forward sequential feature selection (FSFS) significantly '
a reduces the resulting classifier accuracies over using exhaustive search
feature selection (ESFS), -]
3) whether some combination of ESFS and FSFS and basing the feature \.:_
selection on criteria other than just the upper bound would significantly ::',
;- improve the classification accuracies. ;"
The computational burden for the computation of the lower accuracy e
- bound is very small and the use of this bound alone or in combination with the ’:
N upper bound would be justified for small gains in the resulting accuracies. The :::
computational burden of ESFS is extremely high for selecting a moderate £
number of features as described in the introduction. However, there may be
s advantages in selecting a small number of features by ESFS and then selecting
additional ones by FSFS. =
"‘ To reduce the number of possible amplitude features from which to select, )
. the raw data were low-pass filtered to 25Hz (20Hz cutoff) and resampled at 50 "
\ samples per second. This process yielded one fifth the number of features as ;\
: the original data which was sampled at 250 samples, allowing the ESFS to be o
- completed in a reasonable amount of time. The data used was from a pilot run ::_\‘
of the Sternberg paradigm experiment. Only the condition of 1 target in the -
N target set was run in this experiment. The data were contaminated by a small R
» amount of 60Hz interference from the video monitor which was inside the » ]
. testing chamber, but this was not a problem since the data were lowpass :::
filtcied to 55Hz, and then again to 25Hz. "\_
; Data from electrodes O, and C, were used in the classification test, and a o
\: combined data set of data from electrodes O, P,, and C, was also tested. 3
e Fifteen amplitude features ranging from 160 ms to 460 ms were employed and E,.
N the results tabulated in Table 3-1. The leftmost column lists the number of R,
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Table 3-1 Results From Subject #1 Amplitude Data for Various Levels of
Exhaustive Search Feature Selection and Selection Criteria
Table entries:  upper  bound  accuracy  (percent)/lower  bound
accuracy (percent)/number of features.
No. of Feature
features || Selection Awplivude features - Amplitude features -
selected Criteria lowpass filtered unfiltered
by ESFS Weight and undersampled
| Com bined
C L Oz Cz 01P2,Ce 0z >z
Vo0 1 76/73)5 1 TRIORIT | ST/TT/10 |1 BA/KI/8 | R1[T6/K
o Il | _o Nlzezsys | 72jorse | wagrrjio || megmijro | ae/zeqn |
S | DL T O _7:5_/7_-1_/1_);1;:71/(}_97/»(“_ 7 :NI/TR_/:‘._[__‘ :?il_/f(()j_l_(_!: BOJTTIR
| 0 | 76/78/5 | T3/08/7 TRIT ALY B2JT5/8 1 R3/TU/N
2 | (L3efT3/5 | T2fuRr/e | T9/TH/10_ || R3/TR/I0 | K2/TO/8
I | N 4 TO/T3[5 L TIONR L RUTR | RI/RO10_] TTITH/0 ]
I O L IofT8/5 | 77687/ | N3/77/10 BIfE1[Y | Ke[T1[R |
3 1 ] T6/73/5 | 73/649/9 #3/7R[10 R3/RIJO | B2/TH/X
Lo L TefTa e L TajeT 0 L NUTRIG N ROJTO/T | ROJTS/T
W] o |[7ejsge | oassem |
4 ! ! 76/73/5 | 73/69/9
e ] b Zli/7_.’$/.’3_' ~_7(}[(}‘.)[|()b L __
[0 1 0l 76/73/5 | 85/81/R
s W U0 (Taegzags | a3j3ys
| 0o 1 70/73/5 | 708/71/0
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features first selected by ESFS, the rest of the features (up to a total of 10)
were selected by FSFS. The first row of entries is for zero features selected by
ESFS and all selected by FSKFS. This value may have also been labeled 1
because FSFS and ESFS are equivalent for the selection of 1 feature. The next
2 columns are the relative weightings given to the upper (C) and lower (L)
accuracy bounds. The table entries are the upper bound accuracy followed by
the lower bound accuracy followed by the number of features which produced
the listed highest lower bound accuracy. The righthand columns of entries list
the accuracies for raw amplitude features, with features selected from a set of
75 features. Results were not computed for ESFS over 3 features for the data
sets from combined electrodes data and raw data sets because the computation
time became very great with these larger numbers of features from which to
select for the larger ESFS values.

The general conclusion drawn from these results is that there is no
advantage to using the lower accuracy bound for feature selection, or in
performing ESFS. For the filtered data, electrode O, produced almost uniform
results across the various selection conditions with lower bounds of 73-747¢.
The features which were selected were the same in most cases. These results
are similar to those of electrode C,, although this data set produced more
variability across the conditions. The lower bound accuracy varied from 67 to
8195, mostly restricted to 67-69%. Five features selected exhaustively
produced the best accuracy bounds of 85% and 816 for selection based on the
upper bound. This was the only example where ESFS produced significantly
better results (but at a high computational cost). When the lowpass filtered
and undersampled amplitude data from 3 electrodes were used as features from
which to select, bound accuracies ranged from 749 to 78%¢ for the lower bound
and 79% to 87% for the upper bound. In all these cases, the results for the
first row of ESFS=0, C=1, L=0, indicate that this is as good a choice as
almost any other of the conditions for feature selection. Hence, FSFS is used
as the feature selection method by the 2-step procedure.

The above analysis of the results on the filtered data also applies to those
of the raw amplitude data. The lower bound accuracies ranged from 75% to
81€%, and the first row results are at the upper end of the range. These results
for the unfiltered data are significantly better than the corresponding results for
the filtered data, ranging from 2% to 8%, mainly 5-87:. More features were
chosen to achieve these higher accuracies, but there were more from which to
choose. Thus, heavy filtering may diminish pertinent information contained in
higher frequencies and, therefore, be detrimental to classification accuracy.
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This is an important reason for including frequencies beyond 25Hz in the 2-step
method. Adding more features would further reduce the ESFS advantages
because the additional features would lead to a substantial increase in the time
required to exhaustively search for the optimum feature set.
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4. MULTICHANNEL ERP WAVEFORM ESTIMATION :::-
=
o
4.1. Introduction i
E Research into the theory and design of event related potential (ERP)
: estimation filters has been extended to include the information available in
multiple electrode recordings. The theoretical work for the continuous case
optimum linear time-varying estimation filter was developed by Booton (1952) =
2 and extended to multiple channels by Wolf (1958). The single channel discrete
) ERP filter was derived by Yu (1982 and 1983) and described in an earlier -
technical report (McGillem 1983). A detailed analysis of the results of the -
discrete multichannel time-varying filter (MTVF) research is available in the
doctoral dissertation of Westerkamp (1985). This chapter summarizes that .
research. The theoretical basis of the procedure is reviewed first, a description \
of the implementation is presented, and finally experimental results using both o
simulated and human ERP data are presented and discussed. .
- 4.2. Theoretical Analysis A
The optimum linear MTVF can be formulated by requiring that the signal N
N estimate be a linear transformation of the input received data. "
§4 = Hr (4-1) =
where §; = the estimate of the desired signal, ,\
. H = the filter matrix,
r = the input multichannel data. i,
The desired signal is typically the signal present in one of the input channels. '
: Figure 4-1 depicts a block diagram of the MTVF. Although it is not necessary =
y to assume that the input is an additive signal plus noise process, this {-‘.:
: assumption is made to derive a more powerful filter. The assumptions used to :

derive the optimum filter are summarized subsequently. The input at each <
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channel is passed through a time-varying filter matrix and the output of each
filter is summed to provide the desired si_nal estimate. It is implicit that each
filter matrix uses information from all appropriate channels to determine its
output.

The optimum MTVF is derived by minimizing the mean-square error
between the output of the filter and the desired signal. By including a prior
information in the minimization process, a more powerful filter can be derived.
The following assumptions concerning the EP (signal) and EEG (noise) are

made:
(1) the signal and noise processes in each channel are additive,
(2) the signal processes are uncorrelated with the noise processes in and

across each channel, and
(3) the noise processes are zero mean.

Combining assumptions (2) and (3), it can be concluded that the signal
and noise processes are orthogonal. All cross-correlation matrices between a
signal process and a noise process will therefore be zero and drop out of the
derivation. The resulting set of simultaneous linear equations which must be
solved to obtain the optimum MTVF can be grouped into one large matrix
equation as

HR, =R,

- (4-2)

where H is a block row vector containing the channel filter matrices, R, is a
block matrix containing the cross-correlation matrices among the input data
channels, and R . is a block row vector containing the cross-correlation
matrices between the desired signal and the signals in each of the input
channels. If there are k channels and N data points per input data record, R,,
will be a kxk block matrix. FEach block of R, will be an NxN cross-
correlation matrix between two of the input channels. Similarly, H is a 1xk
row vector of NxN filter matrices, and R, is a 1xk block row vector of NxN
cross-correlation matrices between the desired signal and the signals in each of
the input channels. Note that R,, is a symmetric matrix while the others in
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Equation (4-2) are not (since they are not square matrices).

Theoretically solving Equation (4-2} for H gives

[= R, R, (43)

It 1s very in¢ Hicient to solve a set of simultaneous linear equations by inveting
the coetficicrt ma‘riv. Gaussian elimination {using the symmetry of R,;j is the
method of ~hoice if tue equaiwis e well-behaved. Methods such as Levinson
recursion which take advantuge of Toepbtz coelficient matrices are not
applicable here because the input processes may be nonstationary. Experience
has shown, however, that the system of equations is not well-behaved and that
simplistic solutions often lead to sub-optimum filters which can become
unstable.  These jrebleias  nave  stimulated  research  into  stable
implementations of the optimum filter involving unique pseudoinverse solutions
to the filter matrix equation. One such implementation is discussed in the next
section.

4.3. Implementation

The optimum filter solution to the matrix equation is often undefined or
leads to a fiiter whose output can become unstable. This is because the matrix
R,, can be ili-conditioned with respect to inversion. Since matrices may be ill-
conditioned with respect to many different algebraic operations, it is assumed
throughout the rest of this report that ill-conditioned means with respect to
inversion. The ill-conditioned matrix is the result of (1) the ill-posed nature of
the original optimmum filter problem and (2) the limited precision of the
computer operations. These two problems are considered separately.

An ill-posed problem 1s one whose solution is highly unstable and
extremely sensitive to small changes in the design parameters. In the
continuous case, the optimum linear filter is the solution to a linear Fredholm
integral equation of the first kind. This integral equation is a well-known ill-
posed problem. Van Trees (1968) states that, in the absence of white noise, a
bounded solution to the integral equation does not exist. Hanson (1971) has
derived nuinerical methods for solving Fredholm integral equations of the first
kind and Varah (1973) has described solutions to the general ill-posed problem.
In the case of the a postersori optimuin MTVF, the ill-posed nature of the
problem is the result of three conditions: (1) the absence of a white noise
componert, (2) the use of estimates rather than exact an knowledge of the
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input statistics, and (3) errors in the assumptions used to derive the filter. The
effect of the first condition was considered above. The second condition leads
to a solution which is only an estimate of the optimum MTVF. Since the
solution is only an estimate, it has bias and variance problems which degrade
. the filter’s performance. The third condition refers to the assumption that

Rrr = Bhss + R‘nn (4’4)

It is important that the R,, in Equation (4-4) be used when designing the filter.
Using the input data records to estimate R, . is incorrect because, if the

k- assumptions used to derive the filter are wrong, the designed filter will not be
optimum and its output might not minimize the mean-square error criterion.
It is better to design the filter using kquation (4-4) and then optimize the
design to account for the differences between the assumed input processes and
the actual input. This is the basis of the implementation described
subsequently.

A problem which is not ill-posed can still result in a coefficient matrix
which is ill-conditioned. The computed inverse may be significantly different
from the inverse of the original matrix due to roundoff error and finite machine
precision. Even though the original matrix is invertible, therefore, it may be
ill-conditioned as far as the computer is concerned (Wilkinson 1963).
According to Strang (1976), this undesirable result occurs because linear
algebraic theory assumes that the matrix operations are performed on a closed
algebraic field; the computer obviously does not operate on a closed field
because it is restricted to representations of the matrix elements which have
limited precision.

The optimum linear MTVF is defined by

L‘I_I‘irr = .}Alsds (4'5)
3 I =R,R,
g 12 gaerLrr
i The solution described subsequently employs the spectral decomposition of R,
given by
A OSSP R U o el N



(4-6)

where the X, are the eigenvalues of R” and the g; are the associated
eigenvectors. The X; are ordered so that

M D Ny >

2 AN 2 0.

Solving for H uring Fquaticn (1-4) requizes computing the inverse of B_n The

inverse of R, can be obtained from Equation (4-6) and is given by

—Irr

kl\

1
‘_J —glgl (4-8)
=1

If some of the X; are zero, the inverse given by Equation (4-8) will be undefined.
Assuming that there are r nonzero eigenvalues (i.e., the matrix R, has rank r),
a pseudcinverse may be defined as

= \’—agl (4-9)
=1

By replacing fi,r' in Equation (4-5) with the Ii,: of Equation (4-9), a bounded

solution for H can be computed. In practice, however, the problems described
in the two previous sections may still cause unacceptable errors in the estimate
of H. These errors would cause H to differ from the theoretically optimum H.
f the suboptimum 1 were used to filter the received data, large oscillations or
undesirable signals could appear in the filter output. The pseudoinverse can be
improved by setting small eigenvalues to zero and disregarding the
contributions of their associated eigenvectors to the solution. This inverse is
called the l-truncated pseudoinverse (Sullivan 1984) and is defined by

l
* 4 ]
R, = ——)\ qaT (4-10)

The difficulty lies in determining 1. Sullivan used the singular value
decomposition and the mean-square error to define a criterion for determining
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the optimum number of eigenvalues, 1,,,. to keep for computing the inverse.
The Il-truncated pscudoinverse was used to extrapolate a signal from m
dimensions to n {n > m) and assumed additive and uncorrelated zero mean
noise. The criterion derived here is for a general class of optimum linear filter
equations and accounts for any perturbation to the assumed model for R,.

The determination of 1,,, is now derived by considering the effects of a
perturbation in R, on the mean-square error. Consider the following

expression for the mean-square error:

& = tr[R,, + OR AT - 2R, AT (4-11)

R, H
The filter H which will be used to evaluate ¢ is
H=R R, (4-12)

where R,: is the l-truncated pseudoinverse of R as described in Equation (4-
9). Let B_” be the estimate using the received sngnal and noise waveforms and
let R, be the estimate derived from the assumption R,, =R + R,,. If

R R then

—Ir =ro

¢ =tr [&dsd - Rs,sﬂ’“] (4-13)

This is the theoretical mean-square error. If the assumptions, models, and
estimates were correct, Equation (4-13) would be the exact mean-square error.

- At
Assume now that R,, # R,,. In this case the mean-square error is

S =R+ HR AT -2 M7 (4-14)

SHNP —S45—
where
Bkrr = RLrr + El’l’ (4'15)

in which P,, represents a perturbation on the matrix R,
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Rewriting Equation (4-14) gives
— ' 11 3 T — ‘) 3 " T + 3 3 T n
* (2 =tr Rsﬁd + mirru “desu H.R”u (“l\))
+
A Using Equation (4-13), this simplifies to
+
2=l R (T Lﬂ_’,,ﬂT} (4-17)
L .

Inserting the expressicn for i into Equation {4-17) gives

2=k --ug_xjg,wx_‘z_,;g;]qntr[rz_wrwp 5] IR

{—-—s,,sd AL TP ART T SXS S

Note that although P, is a symmetric matrix, it may bave negative
eigenvalues.

The minimum norm least square (MNLS) criterion is as follows:

I insert the R.T of Equation (4-9) into the expression for the mean-square
4 q

v,

error giver by Equation (4-18),
(2} evaluate Equation (4-18) for all possible values of 1,

(3) determine 1 . as that value of | for which the mean-square error is a

op
minirum,

(4) set the remaining kN — |, eigenvalues of R” equal to zero, and

(5) compute the MNLS estimate of H using Er: .
ops

The MNLS algorithm just described could be implemented by computing
a new [1 for each value of 1 and evaluating Equation (4-18), but this method
would be very inefficient and, as s result, time consuming. There is a good
deal of redundant information available in ¢ computed using R,:_l which can

CSH " :
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be used to compute ¢* for R,; This suggests a recursive algorithm for
calculating ¢*(1), which is the mean-square error as a function of 1. The :
recursive algorithm is derived in Appendix B. The computational complexity -l
of the eigenanalysis along with the computational complexity of two MNLS _'
algorithms are compared in Table 4-1. The simplistic MNLS refers to 0y

L)
[

’
{/n’-»-

computing the mean-square error using Equation (4-18) directly for each new

s
2

eigenvalue. The table clearly shows that the computational burden of the

1

simplistic MNLS algorithm dominates that of the ecigenanalysis. The recursive
MNLS algorithm requires fewer computations than the eigenanalysis. The
computer time is dominated by the MNLS computation using the simplistic
algorithm, but by the eigenanalysis (which must be done anyway) using the
recursive algorithm. Using the recursive algorithm can therefore save a great
deal of time and requires only moderately additional overhead to the
eigenanalysis.

There 1s one problem which arises in this implementation which must be
addressed. The mean-square error can be written as a sum of two parts: (1)
the optimum matrix and (2) the perturbation matrix. Consider again equation
(6.4.16) rewritten to emphasize these parts.

&= tr[&m - &,,SLIT] + tr[l‘inl’_ﬁ] (4-19) <

The part due to the optimum matrix will decrease with increasing | and
approach zero. Theoretically, it could never be less than zero, but may be
slightly negative due to the variance of the estimates or the ill-conditioned o
nature of R” (used in obtaining H). Since this cannot be allowed, special
attention is given to this case when determining 1, in software. The part due
to the perturbation matrix may also be negative because P, is not necessarily
positive definite. If such is the case, a slightly optimistic mean-square error is
obtained because the second part subtracts from the first. If the second part is

negative enough, the total mean-square error may become negative and this is .
clearly impossible. This situation, although theoretically impossible, can be -
explained. The optimum linear filter was derived under certain assumptions. ‘
If these assumptions are invalid, the derived equations for the mean-square 2
error will also be invalid and as a result, the second part of <2 due to P/, can be
negative. If the second part is negative for all values of I, then it is highly -
probable that the assumptions, models, and estimates used to obtain H are

incorrect. This situation is also detected in software.




Table 4-1

4]

Computational Complexities of Eigenanalysis

{Minimum Norm Least Squares) Algorithms

|

Algorithin Computations
Simplistic MNLS O[(kN)‘]
Eigenanalysis 0[(kN)3] |
Recursive MNLS O{k>N?¥)
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It is much more likely that the second part will be negative when only a g
small number of eigenvalues are kept (I < I,,, << kN). This is because a o

A o

>

suboptimal filter is being used to evaluate the mean-square error. If the P~
suboptimal filter were used, the filter might not minimize the mean-square :
error as designed, but actually increase it by allowing signals larger in the
output than the input. As more eigenvalues are kept, the filter approaches the %
optimum filter and the second part becomes positive. In order to avoid
: obtaining an optimistic mean-square error when the second part is negative, the
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absolute value of the second term is used instead. The minimum mean-square
error will be found where the magnitude of the second term is near zero. As
the number of eigenvalues kept approaches kN, the mean-square error may
become very large due to the problems discussed in the first two scctions.
Practically, this is because relatively small eigenvalues, when inverted, cause
the noise term due to P,, to increase much faster than the theoretical mean-
square error decreases. There will be a value of 1, designated 1 ,,, for which the
mean-square error will be a minimum. The largest 1, eigenvalues are kept
;2 and the remaining kN — 1, eigenvalues are set to zero. The resulting R,: is

N then used to obtain the MNLS solution for H.

4.4. Simulation Test

In this section, the MNLS criterion is tested on data which simulate the
perturbations described in the previous section. Gaussian signal and noise data
records with zero means and prespecified covariance matrices were generated
according to Fukunaga (1972). The covariance matrices for the signal and
noise data records were chosen according to Standard Data Sets 1 and 2 in
Fukunaga (1972 pp. 46-47). Two hundred signal records and four hundred
noise records were generated. Each data record contained eight sample points.

A set of gaussian received data records were simulated by adding one hundred

noise records to one hundred signal records. A second channel was simulated

by adding a different set of one hundred noise records to the same one hundred

signal records used to simulate the first channel. The SNR was set to -6 dB by :
scaling the noise records appropriately. These simulated received data records '
are referred to as the testing set. Two different MTVFs were designed using -
different training sets (the data records used to estimate the signal and noise ~
statistics). The first MTVF used identical training and testing sets. The _
second MTVF used a training set consisting of the remaining signal and noise N
records not used to make up the simulated data but generated from the same

. covariance matrices. In practice, the statistics of the signal and noise processes -
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are seldom known exactly but must be estimated. The VEP problem, as an
example, requires the indirect estimation of the multichannel cross-correlation
matrices for both the poststimulus EEG and VEP. This is the difference
simulated by the two MTVF designs.

The MTVF designed for each of the two training sets was first computed
by keeping only the largest eigenvalue (and its associated eigenvector) in the
pseudoinverse. The theoretical, actual, and minimum norm mean-square errors
were then calculated. This was repeated sixteen times, adding the next largest
eigenvalue to the pseudoinverse at each step and recalculating the mean-square
errors. The actual mean-square error was computed vcing the actual and
estimated signal records. The MNLS criterion was then checked by comparing
the theoretical and actual mean-square errors to determine whether the
theoretical or the minimum norm mean-square error was a better indicator of
the actual error.

The MTVF designed using identical training and testing sets performed
weil considering the low input SNR and similarity between the signal and noise
processes. Table 4-2 summarizes the theoretical, actual, and minimum norm
mean-square errors., The MNLS criterion suggested retaining all sixteen
eigenvalues as did the theoretical mean-square error. The actual mean-square
error was lowest when only fifteen eigenvalues were kept to compute the
pseudoinverse. In this case, both criterion were close to predicting the
optimum number of eigenvalues to keep.

The MTVF designed using different training and testing sets is more
interesting. These results are summarized in Table 4-3. The MNLS criterion
suggesis retaining only ten eigenvalues. The theoretical mean-square error is
lowest when keeping all sixteen eigenvaiues. The lowest actual mean-square
error was obtained by keeping twelve eigenvalues. Retaining more eigenvalues
causes the actual mean-square error to increase even though the theoretical
error continues to decrease. The theoretical mean-square error will always
continue to decrease as more eigenvalues are retained for computing th
pseudoinverse. The MNLS criterion resulted in an actual mean-square error
which was the second lowest. Figure 4-2 depicts these results more clearly.
Note that initially, the mean-square errors are very high since only one
eigenvalue is kept. The mean-square errors converge when keeping four to six
eigenvalues and begin to diverge when keeping more than seven. After seven
eigenvalues, the theoretical mean-square error continues to decrease but much
more slowly. The theoretical mean-square error converges to the optimum
mean-square error for these data. The minimum norm criterion results in a
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Table 42 Minimum Norm Simulation Test Using Identical Training and

Eigenvalues | Theoretical | Actual | MN
Kept MSE MSE MSE
16 0.384 0.387 0.404
15 0.389 0.384 0.417
14 0.408 0.413 0.428
13 0.413 0.415 0.433
12 0.415 0.415 0.436
11 0.416 0.417 0.437
10 0.424 0.424 0.448
9 0.457 0.442 0.489
8 0.598 0.562 0614
7 0.623 0.584 0.631
6 0.636 0.604 0.642
5 0.686 0.654 0.701
4 0.786 0.752 0.801
3 0.801 0.768 0.818
2 0.811 0.787 0.826
1 0.950 0.962 | 0.951
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. Table 43 Minimum Norm Simulation Test Using Different Training and
Testing Sets

Eigenvalues | Theoretical | Actual | MN

Kept MSE MSE | MSE |
16 0.359 0.490 | 0.547
15 0.363 0.492 | 0.534
14 0.385 0.489 | 0.514
13 0.391 0.487 | 0513
12 0.384 0.481 | 0.503
11 0.401 0.486 | 0.49%
10 0.405 0.484 | 0.495
9 0.410 0.487 | 0.409
8 0.411 0.507 | 0.521
7 0.500 0563 | 0587
6 0.550 0.600 | 0.644
5 0.722 0.742 | 0.724
4 0.837 0.845 | 0.858
3 0.864 0.835 | 0.895
2 0.894 0.858 | 0.814
1 0.899 0877 | 0.918
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Number of Eigenvalues Kept in Pseudoinverse

Figure 4-2 Mean-Square Error Comparisons Using Different Training and
Testing Sets
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mean-square error which begins to increase again after ten eigenvalues. The
actual mean-square error appears to be bounded pessimistically by the
minimum norm error and optimistically by the theoretical error. This result
confirms that using more eigenvalues than necessary can increase the actual
mean-square error even though the theoretical error continues to decrease. The
MNLS criterion suggests a near optimum number of eigenvalues for designing
the MTVF when the training and testing data sets are different. Thi- is
typically the case for practical optimum filtering problems and is certainly the
case for VEP estimation. The implications of this result will be seen later
when the dimensionality increases and the differences between the training and
testing sets are magnified. The output of the MTVF will be shown to oscillate
drastically when certain suboptimum numbers of eigenvalues are retained.

4.56. Evoked Potential Duta Tests

Scalp-recorded brain responses following checkerboard patterned
stimulation of the lower visual field of human subjects were used to test the
performance of the optimum MTVF. Prestimulus on-going EEG data were
also recorded for the purposes of artifact rejection and estimation of the noise
cross-correlation matrix. The EP was modeled as 2 sum of raised cosine
components with randomly varying amplitudes and latencies. Random signal
component data records were generated and used in an initial simulation to
establish an optimistic bound on the two channel performance. The
parameters used to generate the simulated EPs were obtained from a latency
corrected average (LCA) of the scalp-recorded responses at electrode Pz
(McGillem 1977 and Aunon 1979). Table 4-4 summarizes the LCA results at
electrode Pz and Table 4-5 at electrode Cz. These signals were added to the
on-going EEG data records recorded at electrode Pz prior to stimulus
presentation. The noise records were scaled to provide a desired input SNR. A
second channel of simulated scalp-recordings was obtained by adding the
simulated VEP signals (scaled by a factor of ©.8) to the prestimulus EEG
recorded at electrode Cz. Using a uniform scale factor for each component is
not a requirement of the random signal model, but is convenient and should
provide an optimistic bound on the filter performance when the filter is applied
to the human VEP data. Example waveforms (-6 dB SNR) are plotted in
Figure 4-3. They appear to resemble scalp-recorded responses. Depending on
the latencies of larger EEG components, the signal peaks are either obscured or
exaggerated.

.........................

...........




Table 4-4 Lower Checkerboard Latency Corrected Average Results at

.........

Electrode Pz (Subject #5)

Latency
Peak | Latency (ms) | St. Dev. (ms) | Amplitude (uV)
1 74.14 7.41 6.28
2 111.60 6.65 -13.07
3 146.87 8.99 3.11
4 170.00 781 -2.22
5 202.95 11.32 8.42

Table 4-5 Lower Checkerboard Latency Corrected Average Results at

Electrode Cz (Subject #5)

Latency
Peak | Latency (ms) | St. Dev. (ms) | Amplitude (uV)
1 73.31 8.76 5.17
2 113.79 10.97 -12.42
3 166.40 5.72 -3.19
4 169.58 11.72 11.16
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Figure 43 Example Waveforms (solid) for Simulated Evoked Potential
Signal (dash) in Prestimulus Electroencephalogram (Electrode Pz)

(-6 dB SNR)
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Single and two channel filters were designed using the simulated scalp-
recordings. The cross-correlation matrix of the VEP signals was derived from
the random signal component model under the assumptions of independent
components and gaussian distributions for both the amplitudes and latencies.
The single and two channel filters were designed according to the method
outlined in the implementation subsection. The performance criteria are
summarized in Table 4-6. Figure 4-1 depicts these performance improvements
vs. the input SNR. Considerable improvements are realized ranging from a
26°¢ (-9 dB) to a 307¢ (0 dB) reduction in the actual MSE using the two
channel filter. The output SNR is improved by approximately 2 dB. Note
that even at low input SNRs, the two channel filter provides considerable
performance improvements.

Example waveforms (-6 dB input SNR) reflecting the mean-square error
(MSE), noise reduction factor (NRF), and bias factor (BF) of the optimum
filters are plotted in Figures 4-5 through 4-7. Examples of the single and two
channel filter outputs for simulated VEP plus human EEG input are plotted in
Figure 4-5. The two channel filter reduces the MSE in the signal estimate
especially at latencies where the SNR is small, such as near the second positive
and negative signal peaks. Examples of the noise reduction improvements
realizable using the two channel filter are plotted in Figure 4-6. Note especially
Record #1 in which a component in the output of the single channel filter at
200 ms is suppressed by the two channel filter. The filter bias is depicted in
Figure 4-7. Noiseless random signals were passed through the optimum filters
to determine the degree of signal distortion. As predicted by the performance
criteria, there is little bias in either filter output.

The performances of the single and two channel filters on the human
scalp-recorded data are now considered. Figure 4-8 depicts the average VEPs
to lower checkerboard stimulation for Subject #5 recorded at electrodes Pz and
Cz. Note that the on-going EEG in Figure 4-8a is very nearly zero mean and
that the average VEPs are quite similar in both electrodes. The average VEP
is a transient signal with a distinct onset. Because the VEP also varies
randomly from one response to the next, the scalp-recorded random process
must be considered nonstationary. Example scalp-recorded responses are
plotted in Figure 4-9. The VEP is buried in the on-going EEG and only a
trained eye could detect the locations of the larger peaks in the VEP and only
then by knowing the time of stimulus presentation. The input SNR is
approximately -7 dB (as determined from the random signal model and the
prestimulus EEG).
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Table 4-6 Performance Comparisons vs. Input Signal-to-Noise Ratio for
Simulated  Evoked Potential Signal in  Prestimulus
Electroencephalogram. Abbreviations Used are MSE (Mean-
Square Error), MNLS (Minimum Norm Least Square), BF (Bias
Factor), NRF (Noise Reduction Factor), SNR; (Input Signal-to-
Noise Ratio), and SNRy (Output Signal-to-Noise Ratio). MSE
and BF are Normalized.

Number of Input SNR (dB)
Criterion Channels 1] 0 -3 -6 -9
| Theoretical | Single 0.037 | 0056 | 0085 | 0.125
MSE Two 0.025 0.039 0.060 0.091
Actual Single 0.037 0.055 0.084 0.125
MSE Two 0.026 0.040 0.061 0.092
MNLS Single 0.050 0.061 0.086 0.138
Error Two 0.051 0.057 0.077 0.104
Single 0016 | 0024 | 0037 | 0.054
BF Two 0.011 0.016 0.026 0.042
Single -16.635 | -17.909 | -19.130 | -20.482
NRF (dB) Two -18.321 | -19.518 | -20.745 | -22.066
Single 16.372 | 14.508 | 12.506 | 10.536
SNR, (dB) | Two 18.143 | 16.246 | 14.320 | 12.407
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Performance Comparison vs. Signal-to-Noise Ratio for Single

(dash) and Two Channel (solid)

Filters on Simulated Evoked

Potential Data. Abbreviations Used are Actual MSE (Mean-
Square Error), BF (Bias t ac*or), NRF (Noise Reduction Factor),
and SNR (Output Signal-to-Noise Ratio).
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Single Channel Two Channel
Record #1

Record #3

Record #4

10 yV|

100 ms

Figure +-5 Exsmples of Single and Two Channel Filter Output (solid) for
Simulated Evoked Potential Sigual (dash) Plus
Electroencephalogram lnput (-8 dB SNR)
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Figure 4-6  Examples of Single and Two Channel Filter Qutput (solid) for
Prestimulus Electroencephalogram Only Input (dash)
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Figure 47 Examples of Single and Two Channel Filter Output (solid) for
Simulated Evoked Potential Signal Ouly Input (dash)
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Figure 4-8 Average Visual Evoked Potentials to Lower Checkerboard
Stimulus (Subject #5). a) Electrode Pz Including Prestimulus and
b) Electrodes Pz (solid) and Cz (dash) Following Stimulus.
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Single and two channel optimum filters were designed according to the
method outlined in the implementation subsection. The filters were designed
to estimate the VEP in electrode Pz. The VEP cross-correlation matrix was
obtained using the random signal model. The necessary statistics of the
individual components of the VEP for subject #5 were determined from the
LCA. These statistics were summarized in Table 4-4 for electrode Pz and
Table 4-5 for electrode Cz. The lower checkerboard average VEP is typically
largest in electrodes Oz and Pz (Jefireys 1971). Electrodes Pz and Cz were
chosen to design the two channel filter (estimating the signal in electrode Pz)
because the LCA for both of these channels detected a negative component at
160 ms which did not appear in the LCA for electrode Oz. Since it was desired
to estimate this component more effectively, the scalp-recorded responses from
electrode Cz were chosen instead of those from electrode Oz.

The MNLS criterion was an important factor in obtaining a stable two
channel filter for the human VEP data. The cross-correlation matrices used to
design the filter may both be slightly different than those for the scalp-recorded
responses. The prestimulus EEG may not be a good model of the post-stimulus
EEG if the statistics of the EEG change due to the presence of the VEP. The
random signal model may also be imperfect. If the VEP and EEG are in fact
correlated, the assumptions used to design the filter would be violated and it 1s
possible that the output of the filter would become unstable if the MNLS
criterion were not used.

Figure 4-10 summarizes the MNLS error vs. the number of eigenvalues
used to compute the pseudoinverse. In the single channel case, the MNLS error
decreased rapidly until the 10th eigenvalue (approximately the number of
significant eigenvectors required to span the output signal space). After the
10th eigenvalue, the MNLS error remained fairly constant, but slowly began to
decrease again after the 50th eigenvalue. The optimum number of eigenvalues
to retain was 74 and the MNLS error remained bounded at all times. The two
channel results were quite different. Once again, the MNLS error decreased
rapidly until the 15th eigenvalue from which point it continued to decrease but
at a much slower rate. The optimum number of eigenvalues to keep was 112.
After 112 eigenvalues, however, the MNLS error began to increase rapidly.
After 130 eigenvalues, the MNLS error was greater than 1.0 suggesting that the
output of the two channel filter was highly unstable.

Example waveforms depicting the output of the two channel filter are
plotted in Figure 4-11. It is apparent that the individual components in the

VEP estimates are varying randomly in both amplitude and latency. This
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Figure 4-10  Mean-Square Error vs. Number of Eigenvalues Kept in
Pseudoinverse for Minimum Norm Criterion Using Lower
Checkerboard Responses from Electrodes Pz and Cz (Subject
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Figure 4-11 Examples of Two Channel Filtered Scalp-Recorded Responses
From Electrodes Pz and Cz Following Lower Checkerboard
Stimulus (Subject #5). a) Ten Superimposed Filtered VEPs and
b) Three Dimensional View Showing Variability with Each
Response. Estimating Visual Evoked Potential in Electrode Pz.
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second negative peak is improved in the same manner in Record #9 and
Record #26. In Record #9, the single channel estimate looks quite adequate.
By examining the response in electrode Cz, however, it appears that the single \
channel filter has incorrectly located the second negative peak. In electrode Pz, A
there are two negative deflections in the response near where the second
negative VEP component should be. Without additional information, the ‘,}::
single channel filter chooses the later deflection. The response in electrode Cz, .
however, shows only the first deflection and as a result, the two channel filter

attempts to place the component nearer to the first deflection. The additional N
information in the Cz response also helps to place the second negative VEP ;j::
" component in Record #26. i

) .
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2
2 suggests that the random signal model is providing the intended result. L:'-
A The performance criteria for the single and two channel filters are %
summarized in Table 4-7. The theoretical MSE and MNLS error suggest a .
reduction in the actual MSE of between 32% and 35% using the two channel ,..
N filter. The output SNR should improve by more than 2 dB. Examples of the A
. filter outputs and the scalp-recorded inputs are plotted in Figures 4-12 and 4- ‘A
‘ 13. Note in Record #5 that the two chanrel filter appears to improve the
estimate of the third positive peak because of the additional information ;
provided by the larger and narrower peak in electrode Cz. The estimate of the o

Figures 4-14 and 4-15 depict examples of the noise reduction capabilities 5
of the optimum filter. Note in Records #8 and #10 especially the ability of :;Z_
the two channel filter to suppress EEG components which appear in the output -

of the single channel filter. It is important that the on-going EEG be reduced
as much as possible so that noise components are not construed as VEP.

Examples of the bias associated with the single and two channel filters are
plotted in Figure 4-16. Note especially that the two channel filter does not ”.
distort the smaller signal components (the second positive and negative
components) as much as the single channel filter.

It is important to realize that the estimate is only as good as the signal
model. Improved signal models using better physiologically descriptive
components may improve the VEP estimates even further. The simple raised

cosine model is useful if the pcak amplitudes and latencies are more important )
than the morphology of the VEP. The use of additional channels may or may o
not improve the VEP estimates. Additional channels may improve the \
estimates of the eigenvectors (both for the signal output space and the noise »
space) and thus improve the VEP estimates, but the computational burden and :

limitations of the computer precision may override the modest gains ..
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\ Table 4-7 Performance Comparisons Single vs. Two Channel Filter on 2
Lower Checkerboard Visual Evoked Potentials (Subject #5).
y Abbreviations Used are MSE (Mean-Square Error), MNLSE o
(Minimum Norm Least Square Error), BF (Bias Factor), NRF
(Noise Reduction Factor), and SNRy (Output Signal-to-Noise i
Ratio). MSE and BF are Normalized. o
z
; Criterion Single Two 2
r’l‘heoretical S
i MSE 0.156 | 0.106
2 MNLSE 0.227 | 0.147
: BF 0.068 | 0.048
: SNR, (dB) || -7.756 | -7.756 -
NRF (dB) || -18.312 | -20.100
SNR,, (dB) 9.342 | 11.576
& 3
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Comparison of Single and Two Channel Filter Output Using

Prestimulus Electroencephalogram as Input (Subject #5). Pz
Input (dash) and Filter Output (solid).
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Figure 4-16 Comparison of Single and Two Channel Filter Outputs for Signal

Ouly at Input (Subject #5 Signal Model). Signal Model (dash)
aad Filter Output (solid).
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obtainablee using extra channels.

In order to better understand the importance of the MNLS criterion, a
second two channel filter was designed nsing more eigenvalues than necessary
to compute the pseudcinverse and solve the filter normal equations. The
original 1., truncated pseudoinverse filter was designated the LOPT filter and
the non-l,, truncated pseudoinverse filter was designated the NLOPT filter.
The same scalp-recorded data records (Subject #5) used to design the LOPT
filter were used to design the NLOPT filter. Table 4-8 summarizes the
performances of the LOPT and NLOPT two channel filters. The key result 1s
that even though the theoretical MSE is reduced by keeping 132 eigenvalues
(instead of the 112 suggested by the MNLS criterion), the MNLS error is not.
It is actually very large (since theoretically it cannot be greater than 1.0)
suggesting that the filter output is unstable. Figure 4-17 depicts several
examples of the NLOPT filter output along with the LOPT filter output for
the identical input. It is obvious that the NLOPT filter output is unstable and
that it is not minimizing the MSE. When designing a postersors filters,
therefore, it is necessary to use the MNLS criterion to account for possible
instabilities in the filter due to the differences in the modeled cross-correlation
matrices and those of the actual input process.
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Table 48 Performance Comparisons Using LOPT and NLOPT Filters. e
LOPT Filter Retained = 112 Eigenvalues to Compute N,
Pseudoinverse and NLOPT Filter Retained 132. Abbreviations o
Used are MSE (Mean-Square Error), MNLSE (Minimum Norm

Least Square Error), BF (Bias Factor), NRF (Noise Reduction .-
Factor), SNR; (Input Signal-to-Noise Ratio), and SNRy (Output -
Signal-vo-Noise Ratio). MSE and BF are Normalized. -
Criteriun || NLOPT | LOPT %
Theoretical 3

MSE 0.028 0.106
MNLSE 2.485 0.147 o
BF 0.022 | 0.048 -
rl
SNR, (dB) || -7.756 | -7.756 X
NRF (dB) || -30.878 | -20.100 :

SNR,, (dB) || 22.967 | 11.576
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6. MATHEMATICAL MODELING OF THE VEP

6.1. Introduction

The object of this study was to mathematically model the ERP rccorded
at the surface of the cortex. These waves describe the net result of ihe
electrical activity generated by the simultaneous activation of a large number
of thalamocortical axons (Mountcastle 1974). In some recoding situations, a
very precise correlation has been found between the ERP recorded with
microelectrodes within the cortex and the surface recorded ERP (Creutzfeldt
1966 and Cooper 1965). Thus since both types of recordings are generated by
the same events, they should be mathematically related. Yet, a one to one
relationship between the potentials generated by a single neuron or section of a
neuron and the recorded surface potential does not exist. The reasouns for this
are that the surface electrodes are large enough to record the activity of many
cells and that the neuronal membrane potentials do not vary in a synchronous
way. Nevertheless, representing the ERP as the addition of a set of components
or basis functions which might be similar to these neuronal discharges will aid

in the development of effective signal processing algorithms for extracting the
ERP.

5.2. The Model
The model proposed is given by Equation (5-1)

X(U)= 3 ays(t-t) (5-1)
k=t

where the coefficients {a,} are statistically independent identically
distributed(i.i.d.) random variables as are the { t, }. The function of time %(t)

is the approximation to the measured surface potential and s(t) is an
elementary wavceform capable of representing a component in the ERP. This
representation is useful because it provides a model for analyzing experimental
results and for carrying out simulation studies. The average waveform is given
by the expected value of x(t) which can be expressed as

~x ¢ v e m v,
)“r/ S
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L: A n
- x(t)= 3 Elay]E[s(t=t;)] (5-2)
: k=1

K oo
: =Y 5 J s(t-tp(ty) dy,
. k=1 -o
. K

=3 ys(t-ty)
k=1

. where p(ty) is the probability density function of t;, &, is the mean of a,, fk 1S
\ the mean of ty, and s is the convolution of the component waveform with the

probability density function.

Two models similar to the above were used by Moser (Moser 1980). In one
of his models the evoked potential was depicted as the sum of gaussian shaped
wavelets multiplied by an amplitude factor as shown in Equation (5-3)

(t-t;)?

s ﬁ(t)=kz::lakexpl— — (5-3)

where the %(t) represented the measured surface potential, the a, were the

amplitude factors for each of the k-th components, & was a measure of the

width of the wavelets and t; was a random variable representing the time of

occurrence of the wavelet’s peak. An alternative model (Yu 1983) was based
- on the same principle but the wavelet shape used was that of a raised cosine
- pulse.

5.3. Statistical Analyses

: In most of the models mentioned as well as in other applications aimed
- toward the improvement of waveform estimation of event-related potentials
g (McGillem 1985) the assumption has been made the the latencies of each
“ component behave as if they were normally distributed. This assumption is
- supported by the histograms of the latencies of individual peaks detected
- during computation of the LCA which indicate that the gaussian density
. function is a reasonable approximation for their distribution. Also, it seems
o likely that the latency of each component corresponds to the instant in time at
which the greatest number of neurons fired. The large number of contributing
neurons also suggests a gaussian behavior.

In order to strengthen the supposition, some preliminary nonparametric
statistical tests have been performed on evoked potential data. The data were
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- obtained from subjects who sat in a dark and quiet room viewing a cathode-
A ray-tube screen(Grass System) which subtended a 11.5 by 8.5 visua! angle.

Beckman silver-silver chloride electrodes were attached on their heads with
g conductive paste at Cz, Pz, Oz, and In, according to the 10-20 system {Jasper
' 1958). All the electrodes were referenced to linked mastoids and the forehead

was used as ground. Interelectrode impedance was kept below 5 kohms . ‘The
L stimulus consisted of upper and lower checkerboard patterns of check size
approximately 18'. The stimulus duration was 1000 msec. with interstimulus
interval varying between 3 t¢ 5 sec. The average luminance was kept constant
throughout the experiment at 6.0 foot Lamberts. Grass 7p511 EEG amplifiers
with a low frequency cutoff of 0.1 Hz and high frequency cut off of 100 Hz were
used. Analog-to-digital conversion was performed at a rate of 250 samples per
- second with an A/D converter having 12 bit precision. The data was later
s searched for artifacts due to eye movement. If the eye channel signal amplitude
changed more than 50 gv in 100ms the record was rejected.

s

The tests were only executed on the lower checkerboard pattern data
recorded at Oz and Pz. The first step was to acquire from the LCA program
the latency and amplitude values for each component that was a member of
. the sample population. The statistics for each peak in the signal are given in
! Tables 5-21 & 5-22 and only those peaks detected more than 30% of the time
were later anslyzed.

Four different nonparametric statistical methods were used. These are the
: run test, the chi-square goodness of fit, the Kolmogorov-Smirnov one sample
. test and the Kolmogorov-Smirnov two sample test. These tests were chosen

mainly because they are distribution-free techniques and do not depend on the
characteristics of the population from which the samples are acquired. In fact
- there are only two main requirements, one being that the sample variates be
5 continuously distributed and the other is for the observations to be drawn
’ randomly and independently of the outcome of previous draws.

The first requirement was assumed true while the second was tested using
the run test. The hypothesis of independence was tested at the .05 level of
significance and all the latencies and amplitudes variates for each component
passed the test. The results are presented in Tables 5-1 through 5-4 where the
number o{ runs is given under the label r and the columns to its left and right
represent the limiting values of r under which the hypothesis of independence is
accepted.

The skew and kurtosis of the variables were also measured. The skew
describes the degree of asymmetry of a density function and it is zero for a

............................................................................................................................
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Table 5-2
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Peak# || N | a | ry;myap r Tn/2,0/2
pl 36 | .05 12 18 25
p2 77 | .05 29.8 33 48.2
p3 95 | .05 | 38 45 58
nl 48 | .05 17.2 26 31.8
n2 97 | .05 38.8 48.5 59.2
n3 45 | .05 16 24 30
Results of Run Test on Latencies (Pz)

Peak # || N | a | rypyop2 | T | Toj2ap2
pl 79 | .05 30.6 35 49 .4
p2 50 | .05 | 18 27 | 33
p3 80 | .05 31 34 50

nl 32 | .05 11 17 22

n2 99 | .05 39.6 53 60

n4 30 | .05 18.44 26 33.7

.......
AT TR




Table 5-3  Results of Run Test on Amplitudes (Oz)

Peak # Th/2,1-0/2
pl . 12

p2 . 29.8
p3 . 38

nl : O 17.2
n2 . 38.8
n4 . 16

Table 5-4  Results of Run Test on Amplitudes (Oz)

Peak # Tn/2,1-a/2
pl . 30.6

p2 . 18

p3 . 31

nl . 11

n2
n4




normal distribution. The kurtosis describes the extend to which a frequency
distribution is concentrated about the mean and it is equal to three for
gaussian distributions. The skew is defined as the ratio of the third moment to
the cube of the standard deviation and the kurtosis is defined as the ratio of
the fourth moment to the square of the second central moment.

The meaning of the values obtained for the skew is difficult to assess since
they do not follow any distinct pattern. Yet, it should be pointed out that if
the figures in the tables are rounded off to the nearest integer, in only one case
of the amplitude measurements does the skew deviate from zero, while in the
case of the latency measurements, it deviates on three occasions. It therefore
seems that the amplitude distributions tend to be more symmetric than the
latency distributions.

The significance of the figures derived for the kurtosis is also hard to
interpret. Nevertheless, it can be said that in both the amplitude and latency
cases most of the distributions are platykurtic(kurtosis<3) with a few
leptokurtic ones(kurtosis>3). Once again, if the values are rounded off to the
nearest integer, most of the distributions assume mesokurtic characteristics.

The pext test performed was the Chi-Square goodness-of-fit which is one
of the best known and more used distribution-free procedures for data
evaluation. The scope of its utility is limited because of requirements that can
only be fulfilled when the sample size is infinite. For instance, the assumption
that the chi-square distribution supplies a good approximation for the
distribution of the test statistic is true if, the number of observations tends to
infinity. Likewise some consideration must be given to the number of intervals
that are used, since it may affect the resultant probabilities (Williams 1950). In
any event the test is simple and a subroutine such as the one existing in IMSL
simplifies its usage.

Tables 5-9 through 5-12 present the results of using the chi-square test.
The first column identifies the peak, the second column indicates the number of
cells into which the observations were distributed, The third indicates the
degrees of freedom, the fourth the computed chi-square statistics and the last
provides the probability of the null hypothesis being true.

The figures in the tables indicate that the amplitude variates satisfy the
null hypothesis, but not the latencies. Nevertheless, the number of
observations in most of the cases is less than 100, thus the results can not be
totally accepted.

The next test used was the Kolmogorov-Smirnov one sample test which is
exact for small sample sizes. There is some controversy over which test is more
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X Table 5-5  Skew and Kurtosis for Latencies (Oz) o
B “al

. peak pl p2 p3 nl n2 n3 '
: skew 029 [ 012 | -057 | -0.13 | 0.04 | -0.08 N
. kurtosis || 1.71 | 3.18 | 2.80 | 1.70 | 278 | 2.17 )

| Table 5-6  Skew and Kurtosis for Latencies (Pz) :
F_'
peak pl p2 p3 nl n2 n4 -

skew || -0.10 [ -0.63 | 0.17 | -0.19 | 0.02 | -0.66 %
kurtosis || 3.18 | 2.63 | 2.59 | 1.60 | 3.81 | 2.50
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Table 5-7  Skew and Kurtosis for Amplitudes (Oz)

_ peak pl p2 p3 nl n2 n3 "
. s
4 skew -0.36 | 0.32 | 0.01 | -0.15 | -0.05 | -0.04 N
o
- kurtosis || 2.43 | 2.96 | 277 | 258 | 2.75 | 261 £
] )t
Table 5-8  Skew and Kurtosis for Amplitudes (Pz) '
peak pl p2 p3 nl n2 n3 .
skew 0.16 | -0.06 | -0.23 | 0.75 | -0.17 | 0.02 08
kurtosis || 3.96 2.22 3.28 ( 4.19 2.55 | 2.98 :TE:
o
s -‘
< f:'.:
\ o
.: f'
o,
R
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\. \

-',E Table 5-9  Results of Chi-Square Test on Latencies (Oz)

&y

* Peak # |[ # of cells | df | s P "3

N pl 8 5 | 2489 | 0.00 ]

h p2 8 5 | 32.61 | 0.00 N

X p3 8 5 | 1254 | 0.03

- nl 8 5 | 24.67 | 0.00

- n2 8 5 | 39.16 | 0.00

= n3 8 5 | 16.69 | 0.01

Table 5-10  Results of Chi-Square Test on Latencies (Pz)

& Peak # || # ofcells [ df | e | P 3

2 pl 8 5 | 62.06 | 0.00

3 p2 8 5 | 12.40 | 0.03 .

- p3 8 5 | 600031 3

- nl 8 5 | 30.50 | 0.00

N n2 8 5 | 53.48 | 0.00

n4 8 5 | 29.16 | 0.00

r
R
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Table 5-11 Results of Chi-Square Test on Amplitudes (Oz)

Peak # || # of cells | df cs P

pl 8 5 3.11 | 0.68
p2 8 5 7.05 | 0.22
p3 8 5 1.76 | 0.88
nl 8 ) 11.00 | 0.05
n2 8 5 00.73 | 0.98
n3 8 ) 1.40 | 0.92

Table 5-12  Results of Chi-Square Test on Amplitudes {Pz)

Peak # || # of cells | df cs P

pl 8 5 | 556 | 0.35
p2 8 5 | 472 | 045
p3 8 5 | 800 | 0.16
nl 8 5 5.50 | 0.36
n2 8 5 8.56 | 0.13
n4 8 ) 3.43 | 0.63
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powerful but, in general, the Kolmogorov-Smirnov is considered to be more
efficient. Further comparisons of the tests are presented by Slakter (1965).

Tables 5-13 through 5-16 present the outcome resulting from the IMSL
subroutine NSK1. The first column gives the peaks, the second column presents
the Kolmogorov statistics, and the third the probability for accepting the
hypothesis of equality. The results substantiate those obtained by the chi-
square test. In other words, the amplitude variates are normally distrituted
random variabies while the latency variates are not.

Another supposition for the model that can be tested is whether the
amplitude variables and latency variables are respectively, identically
distributed random variables. This is done by applying the Kolmogorov-
Smirnov two-sample test. This test resembles the one-sample test and the final
outcomes are given in Tables 5-17 through 5-20. The results indicates that this
condition is only true for the amplitude case.

These results are surprising but they can not be taken as final since more
data is needed to reach a conclusive decision. However they have not provided
a satisfactory response to the initial question about the type of distribution
these variables have. Current research is aimed toward understanding the
effects of removing the best-fit linear trend on the results of the statistical test,
and the effects of the technique that it is used to define the latency range of
each peak. The studies consist of generating and testing data under the
characteristics of the model specified by Equation (5-1). The nonparametric
tests are run on the data before and after removing the best-fit linear trend and
so far the indications point toward the fact that the results are not affected by
this. A similar test will be performed to review the effects of the range finding
technique.

6.4. Simulation Tests

Up to now nothing has been said about the major difference between this
model and those used before. This is the acknowledgment that certain of the
observed peaks are just "valleys” between contiguous components of the same
polarity and not an isolated component. Determining which peaks are
components and which are artifacts is not a simple task and can not be done
by just examining the latency corrected average or average of the signal. An
investigation of the shapes of the signal peaks and the correlation between their
latencies and amplitudes must be performed.

It was suggested that the movement of a “valley” must be highly
correlated with the movement of the two positive peaks which give origin to it

I P
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Table 5-13 Results of Kolmogorov-Smirnov I Test on Latencies (Oz)

Peak# || D P
pl 0.33 | 0.0009

p2 0.32 | 0.00000012
p3 0.21 | 0.000325
nl 0.34 | 0.000039
n2 0.30 | 0.00

n3 0.29 | 0.00084

Table 5-14 Results of Kolmogorov-Smirnov I Test on Latencies (Pz)

Peak # D P
pl 0.17 | 0.0217
p2 0.15 | 0.21
p3 9.51 { 0.46
nl 0.22 | 0.0866
n2 0.13 | 0.0627
n4 0.16 | 0.17

...........
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\ Table 5-15 Results of Kolmogorov-Smirnov I Test on Amplitudes (Oz) ;
- Peak# || D | P %
pl 0.0850 | 0.96 }
- p2 0.0837 | 0.65 N
Q p3 0.0520 | 0.96 »
nl 0.0714 | 0.97 v

n2 0.0399 | 0.998 -
n3 0.0637 | 0.99
3
Table 5-16  Results of Kolmogorov-Smirnov I Test on Amplitudes (Pz)
Peak# | D | P
pl 0.0814 | 0.67 -
p2 0.0756 | 0.94 |
p3 0.0839 | 0.63
nl 0.0985 | 0.92 =
02 0.0726 | 0.67
n4 0.0782 | 0.91 ‘.
5
3
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Table 5-18 Results of Kolmogorov-Smirnov II Test on Latencies (Pz)

Peak # || D P =
pl-p2 || 0.25 | 0.0388 ol
pl-p3 0.25 | 0.0125 ;?-.
pl-nl [ 0.27 | 0.0616 -

pl-n2 | 0.20 | 0.0812 :
pl-n3 |/ 0.20 | 0.13 ‘
p2-p3 | 0.22 | 0.0815 o
p2-nl || 0.35 | 0.0131 v

p2-n2 | 0.22 | 0.0732 3
p2nd [/ 0.23 | 0.0959 e

p3nl || 0.32 | 0.0146
p3n2 | 022 | 0.0253
p3nd4 || 0.25 | 0.0348
nl-n2 0.24 0.0909
nl-nd || 0.41 | 0.0020 -
n2nd || 0.17 | 0.24 =




86

)

Table 5-19  Results of Kolmogorov-Smirnov Il Test on Amplitudes (Oz) N
%

Peak # D P .
pl-p2 ([ 0.14 | 0.63 *r

pl-p3 ({012 | 0.77 ‘
pl-nl || 0.13 | 078 Y
pl-n2 [ 0.0767 | 0.99
pl-n3 0.13 0.78 li:;-_
p2-p3 || 0.0801 | 0.91 2
p2-n1 || 0.0906 | 0.94 =2
p2-n2 || 0.0952 | 0.77 5
p2-n3 || 0.0087 | 0.90 3
p3-nl || 0.0798 | 0.97 w
p3-n2 |/ 0.0598 | 0.99 J
p3-n3 |/ 0.0702 | 0.99 ;
nl-n2 || 0.0872 | 0.94 o
ni-n3 || 0.0833 | 0.98 2
n2-n3 || 0.0733 | 0.99 -




Table 5-20  Results of Kolmogorov-Smirnov II Test on Amplitudes (Pz)

Peak #
pl-p2
pl-p3
pl-nl

pi-n2

pl-n4
p2-p3
p2-nl
p2-n2
p2-n4
p3-nl
p3-n2
p3-n4
nl-n2
nl-n4
n2-n4
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) as it can be seen in the simple case illustrated below. In this illustration the :’-:
: components are given by Equation (5-5) :'f
Y
= (t-m,)
8)(t)=a exp[~———] (5-5)
b, >

P, 2

t (t-my)? %

. so(t)=agexpl- 2]

; by ne
For the purpose of illustrating the previous statement the variables a, and a,
are considered to be deterministic and of equal value. Also the variables b, and
b, were set to one. The final waveform is given by the sum of these two %
wavelets as shown in Equation (5-6)

N (t-my)? (t-my)? :;:

2 X(t) =sy(t) +so(t) =ajexp[~————| +agexp[-———]| (5-6) 0

:" bl bl :}..

> Setting the derivative to zero and solving for t provides the location of the false -4

s peak which is given in Equation (5-7) o

. a;ta, v

;: t= 9 (5-7) :'.
which is the average value of the latencies of the contiguous peaks. In the case o

g a negative component exist, the correlation between its latency jitter and that o

l:'. of its adjacent peaks must be low although it will probably depend on the E}'

amplitudes of these nearby components. j:,':

In order to corroborate this statement and search for ways of NS

' differentiating between false and real components data following the properties

2 of Equation (5-4) was generated. Six sets of signals were produced. The first g

¥ three consisted of two positive gaussian shaped components with amplitudes P

- varying from one to two units. Their mean latency was taken to be 78.03 and 5

R 176.46 ms which are the corresponding means for the second and third positive )
peaks in the LCA as can be scen from Table 5-21. The standard deviation for .

: the latencies was taken from the same table and they are 7.04 and 14.49 ms,

N respectively. The width of the peaks was set to 22 ms, this value might a be -

. little high when compared to the width of the components of the evoked

i potential but it assures the interaction of the components simulated. Figure 5-1 Ty

3:: shows nine out of the one hundred signals generated for each set. Columns one :f'..

% ,three and five represent the two positive components before they are added :::_

5 together while columns two,four and six are the result of their summation. The \,,

: 2

) >

N




)
2 Table 5-21 LCA Results for Subject #5 (Oz)
N

Positive Peaks v
peak # || range | mean st.d. pet. max. { min. | amp.st.d. 3
- 1 6-10 26.67 5.66 | 36.00 425 | -1.28 6.03 p!
, 2 17-26 78.03 7.04 | 77.00 5.28 | -4.57 7.32 .
2 3 || 3451 | 176.46 | 14.49 [ 9500 | 532 | 099 | 726
:' ] Negative Peaks y

&

1 12-18 | 56.75 | 7.41 | 48.00 | 3.13 | -2.90 7.07
2 24-35 | 113.90 | 7.44 | 97.00 | -1.71 | -9.14 8.77
3 53-59 | 22098 | 7.44 | 4500 | 2.27 | -2.21 7.62 _
4 63-67 | 256.43 | 6.38 | 28.00 | 1.56 | -2.42 5.81 g
: 5 69-71 | 276.87 | 3.18 | 23.00 | 044 | -4.26 | 9.25
2
Table 5-22 LCA Results for Subject #5 (Pz) -
j;i Positive Peaks N
- peak # || range | mean st.d. pct. max. min. amp.st.d. -
1 16-25 | 7565 | 574 | 79.00 | 6.23 | -5.93 11.39 i:_“
- 2 32-41 | 146.40 | 9.21 [ 50.00 | 2.88 | -3.48 9.85 "
= 3 46-58 | 202.75 | 11.52 | 80.00 | 896 | 3.01 13.01
= Negative Peaks
1 12-17 | 5500 | 556 | 32.00 | 318 | -3.75 9.12
2 2 23-34 | 111.76 | 6.78 | 99.00 | -3.09 | -13.11 15.80
& 3 41-46 | 16893 | 582 | 3000 | 1.56 | -2.87 10.30
- 4 65-71 | 271.92 | 7.57 | 51.00 | 1.54 | -3.37 8.28 }:}
5 69-71 | 276.87 | 3.18 | 2300 | 044 | -426 | 925
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vertical scale varies from 0.0 to 2.0 while the horizontal scale goes from 0.0 to
3.0 ms. The other three sets of signals are similarly illustrated in Figure 5-2
with the exception that the vertical scale varies from -2.0 to 2.0. These sets of
signals were generated by adding two positive peaks with the same
characteristics as those described above and a negative peak. The latency of “
the negative peak was assumed to be 113.90 ms which from Table 5-21 is seen
to correspond to the second negative peak in the LCA. The standard deviation
of its latency was taken to be 7.44 ms and its width was kept at 22 ms. Note
that since the position of the baseline is known, it is easy to identify which
signals contained false components and which have a negative signal. In evoked _
potentials, however, the actual position of the baseline is not known and ;
distinguishing between "valleys” and negative peaks is not as easy. .

Once the sets of signals were generated, each of the 100 signals in a set N
was searched for the position of its peaks. The process consisted of successively :
computing the difference between three consecutive points and storing their
location and values. A quadratic polynomial was then fitted to these three
points obtaining in this manner the position of the maxima and minima. In
order to detect the amount each peak moved from its presupposed location(the *
mean), the average latency of each component was subtracted from the g
measurement taken. The average movement of the two positive peaks was -
computed and compared to the movement of the valley or negative peak <
between them.

Table 5-23 presents the correlation coefficients obtained between the
average movement of the two positive peaks and the valley or negative
component in between. Note that when the two positive components have the
same amplitude and, no negative peak exists, the correlation coefficients had a
value of one. In fact in all the cases were the signal consisted of the sum of two -
positive peaks, the correlation was above .9. When the signal contained a ~
negative component, the correlation was much lower with one exception
occurring when the amplitude of the positive peaks was twice that of the R
negative one. 2
Figures 5-3 through 5-8 are plots of the negative peak latency shift versus
the average latency shift of the positive peaks and are another way of X
illustrating the relationship between them. These figures can be thought of as
being the sample distributions of two dimensional classes with different mean
vectors and covariance matrices and can be used to estimate the probability of
error in discriminating these two classes. The probability of error was
computed using the algorithm deveioped by Fukunaga and Krile (1972) which
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Figure 5-2  Signals Formed By Adding Two Positive Peaks and One Negative
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:;. Table 5-23 Correlation Coefficients Between the Amplitudes of Actual and 3
> Artifactual Peaks ?.
N Signal: Sum of two positive peaks 3
'{ Amplitudes of peaks Correlation _,.-

1,1 1.00

d LL5 0.99 -
- 21 0.94 2

Signal: Sum of two positive and a negative peak -
1,-1,1 0.49
1,-2,1 0.27 -
2-12 0.77 D
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converts multidimensional integration to one dimensional integration. In most
cases, the resulting probability of error was 22% which indicates a classification
accuracy of 787. This result can probably be improved by using other
features that might help in performing the differentiation between the two
classes. One such feature might be found by studying the relationship between
the amplitudes of the components and the effe s they might have on the
amplitudes and latencies of the adjacent components.

65.6. Conclusions

Based on the preliminary studies that have been carried out, it appears
likely that there is sufficient interaction between the latencies of artifactual
components and the adjacent true components to make possible the
identification of artifacts in a number of cases. A great deal of further study
involving both simulation and measured data will be required before the most
effective methods of making this determination are found.
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6. DATA ACQUISITION SYSTEM IMPROVEMENTS

6.1. Modification

The EEG Signal Processing l.aboratory has improved its data acquisition
capabilities considerably with the addition of an IBM Personal Computer (PC).
Figure 6-1 describes the current system. The IBM computer performs three
important tasks: (1) experiment timing, (2) stimulus presentation, and (3) data
collection. The PC includes a TECMAR [.ab Master board with the following

hardware:

(I)  one 16 channel 12 bit analog-to-digital (A/D) converter with a maximum
sampling rate of 40 kHz,

(2) two 12 bit digital-to-analog converters (D/A),

(3) five 16 bit counters, and

(4) three 8 bit parallel ports.

In addition, the PC has two 360 kbyte floppy disks for storing sampled
data and a baud rate selectable serial port for transferring sampled data files to
the PDP 11/45. The data files can then be transferred to the Engineering
Computer Network (ECN) for signal processing on a Vax 11/780. The PC is
also equipped with an 8087 math coprocessor which performs hardware
multiply and divide operations at ten times the speed of the same software
operations.

As depicted in Figure 6-1, subjects are seated in an IAC environmental
chamber which is soundproofed and electromagnetically shielded. Scalp-
electrode leads pass outside the chamber into a bank of Grass 7P511 EEG
amplifiers and bandpass filters. The outputs of the EEG amplifiers are
connected via coaxial cables to the input of the TECMAR A/D unit. Sampling
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can be triggered automatically under the control of one of the 16 bit counters
or manually under the control of software. Data are stored temporarily in
RAM memory during sampling and transferred to a floppy disk file during the
interstimulus interval.

6.2. Experiment Design and Control

A versatile set of assembly language programs has been written to perform
specific functions at maximum efficiency. These subroutines were designed to
be called from BASIC programs:

(1) initialization of the TECMAR board,

(2) calibration of the Grass EEG amplifiers,

(3)  A/D conversion of amplified and filtered multiclectrode EEG data,

(4) rapid transfers of sampled data to disk files during an experiment, and

(5)  on-line plots of sampled multielectrode EEG data on the PC video
montitor.

Simple BASIC programs can be written to design an EP experiment,
obtain timing and stimulus parameters from the user, and then call specific
functions (in assembly language) to run the experiment. The combination of
BASIC user interface and assembly language drivers provides a powerful
system for rapid development of versatile EP experiments. Facilities are also
available for programming in (' and FORTRAN.

6.3. Capabilities

Besides being the basis of a powerful data acquisition system, the PC can
also perform on-line filtering, detection, and classification of sampled data using
the capabilities of the 8087 hardware math coprocessor. By significantly
increasing the speed of the math operations, the on-line processing can be
performed in virtually real time.

The PC can also simultaneously control several instruments now present
in the EEG Signal Processing Lab using the individual bits in the parallel
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(1)  Grass Pattern Generator for checkerboard patterned stimulation, R

: (2) a video monitor for more complex patterns (figures, numbers, or letters), -'_::
(3) auditory equipment for auditory evoked potentials, '»tf:

(4)  a set of LED goggles for flash evoked potentials, and

(5) an on-line averager for monitoring EPs over the course of an
experiment.

The PC-based data acquisition system offers the advantages of versatility -
(casy to design and modify experiments), ease of operation (any user with little oy
training can run the experiments), and low cost. Future developments include
the purchase of an IBM XT with a 100 Mbyte hard disk or the faster and more
powerful IBM AT. On-line signal processing software will also be developed to
perform near real time detection, estimation, and classification of EPs.
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Appendix A: Classifier Evaluation Using Simulated Data

The artificial data sets were generated by summing simulated signals and
ongoing EEG. The signals were generated by several methods based on
different ways of modeling data. Data sets were generated which contained
different signals added to the ongoing EEG (noise) at various signal-to-noise
ratios (SNRs). These data sets were processed by the algorithms described in
Section 2.

The signal represents the brain generated waveform in response to the
applied stimulus. The first signal used was an averaged EP taken from human
data. The EP was windowed with a Tukey Window and added to the noise.
The second signal was composed of a summation of basic components of the
same form with arbitrarily chosen amplitudes and latencies. The signal was
the same in each generated record. g;he representation of this signal sy(t) is

so(t) = Y5 A; - f(t — T)), (A-1)

i=1
where A; is the amplitude of the i*" component,
f(t) is the functional form of the component,
T, is the time location of the i*" component,
and M is total number of components in the signal.

Two forms of the component f(t} were tested. The first was a Gaussian
pulse of the form

(t - T))°

fi{t) = exp >

; (A-2)

20

where o represents the width. The value of o was set to 15 ms, a typical value
found in past research (McGillem 1977). The second component was a
sinusoidal pulse or a windowed sinusoid. The window function chosen was a
raised cosine window, the same as that chosen in forming the filter in the 2

step process. The equation of this component fy(t) is:




............................
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fo(t) = cos[21rf(t-Ti)]'[~;— + é—cos [*E(t—Ti)]],for Ti-a<t<T;+a (A-3)

= 0, otherwise

where f = the sinusoidal frequency,

and a = one-sided width of window in seconds.

The background noise used for this data was human cngoing EEG data
which also included instrumentation noise. The known signal was added to
this data with various signal to ongoing EEG power ratios. The background
noise data records were first normalized by removing the estimated mean of
each data record and then scaling to make the root-mean-square (RMS)
amplitude =1. The signal was also normalized by scaling to make the RMS
amplitude =1. The mean of the signal was not removed to preserve polarity
asymmetries which may be characteristic of the EP signal. The amplitude of
the cignal was then adjusted before being added to noise to produce data
records with predetermined SNR's.

Four types of tests signals were used. The first used the averaged EP’s
from subject €. The portion of the EP from 0 to 500 ms was used with the end
100 m: of data windowed by a raised cosine to provide smooth transitions at
its ends when it. was added to th2 noise. The t1 (target set, 1 target in set) aud
nl (nontarget set 1 target in set) sets were used. The 1 second segments of the
data records from subject 2 before stimulation were normalized and the signal
added to give SNR’s of 0dB, -6dB, and -12dB for all of the generated data sets.
These values were chosen because they bound the estimated SNR of the actual
I'P data. Figure A-1 portrays these two data sets. Four generated data
records and the signal are displayed for the t1 data (top) and nl data (bottom).
The SNR in these data records as in all of the following artificially generated
data records 15 -6dB.

Figure A-2 portrays EP’s composed of 15 Gaussian pulse components
embrdded in human EEG data. Eight of the components in the signals in data
set 2 are the same as in data set 1. The other 7 components have the same
amplitudes but increased latencies with respect to those components in the

signals of data set 1. A component’s latency shift was made proportional to its
latencies so that latter componeits were shifted further. The largest latency
component shifted 72 ms. The amplitudes of the corresponding components in
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Figure A-1  Examples of Artificial Data Records and the Signals for Averaged
Evoked Potentials Embedded in On-Going EEG, SNR = -6 dB
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these data sets remained the same, only the latencies of the components were
increased.

Another type of signal was also generated which was composed of
windowed sinusoids. Two sets of data with different signals composed of just
) one sinusoid were generated. Both data sets used a 400 ms wide raised cosine
. to window different arbitrarily selected frequency sinusoids with cosine phase of
‘ zero. The latencies in each data set were identical. Figure A-3 portrays these
signals and the signals embedded in EEG data.

Two classes of signals composed of 3 windowed sinusoids of different
frequencies and latencies were generated. The second class had the same type
of components with the same frequencies and amplitudes but 2 components
had increased latencies, They were embedded in EEG data and are portrayed
in Figure A-4.

The artificial data sets were processed in the same manner as the human
data. Tables A-1 through A-4 list the accuracies and number of selected
features for the data containing the 4 types of signals generated. In all of these
tables, each column lists the results for a different SNR for processing with or
without frequency transformation. The upper third contains the results for
detection of the first data set and the middle third the results for detection of
the second set. The lower third contains the results for classification between
the two sets. Table A-5 summarizes the results of processing the artificial data.
The table entries are the highest accuracies achieved for processing either with
or without frequency transformation. The entries in all of these tables for raw
features used in detection are averages of four runs. Each run used different
segments of ongoing EEG prior to stimulation for the class 2 data. This
resulted in slightly different results for each run due to the different data.

Data sets composed of windowed averaged EP’s in EEG were tested

{Table A-1). Detection at SNR's of 0dB produced very high accuracies for all

types of features, 9990 and 99.19 for 6-8 raw features and 99.5C¢ for 5

frequency features for the two data sets. Filtered features yielded 1007¢

accuracy with 3 features. For classification between the two signals, 9 raw

features yielded 85.7% accuracy and frequency features yielded up to 91.8¢ at

_ 5 features. Filtered features increased these accuracies to 95.9% for 8 features,
. a 10.2% improvement.

Detection at SNR's of -6dB yielded accuracies of 8.9 and 92.57¢ for 7
raw features, and up to 89.3° for 6 frequency features and 93.5% for R
features for the two data sets. Filtered features produced increased accuracies
of up to 99°¢ and 100% for 8 and 5 features. For classification between the
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Table A-1  Results From the 2-Step Classifier/Feature Selection Process for
Artificial Data Composed of Windowed Averaged Evoked
Potentials in EEG. Table Entries: Percent Classification Accuracy
/ Number of Features

'_ Frequency transformation— Without With
Data BW| SNR— O dB -6dB | -12dB || OdB -6dB | -12dB
Raw 99/7.5 | 89.8/7 | 13.8/5 |l 93/7.5 | 89.8/7 | 78.8/5
Frequency 99.5/5 89.3/86 | 82.1/6 | 985/6 86.7/4 78.1/6
5 Hz 99/4 92.4/5 | 96.4/9 || 98/8 | 90.8/10 | 78.6/8
10 Hz 100/4 ! 92.9/3 | 97.5/4 || 57.5/c | 91.3/7 | 88.8/10
Detect 15 Hz 100/3 | 95.9/8 | 98.5/5 1| 100/5 | 93.9/9 | 96.9/10
1 X0.25 Fo 99/3 | 92.4/10 | 98.5/8 || 98.5/5 | 89.8/6 | 80.1/4
X0.5 Fo 99.5/4 | 91.8/5 | 83.7/5 || 99/8 | 91.3/10 | 98.5/8
X0.75 Fo 98.5/3 | 91.8/9 | 85.7/6 || 99/4 92.9/9 | 96.9/10
X1.0 Fo 99.5/4 | 95.4/7 | 88.3/8 || 97.5/4 99/8 | 97.5/10
Best. 15 Hz 15 Hz 15 Hz 15 Hz X1.0 X0.5
Raw 99.1/6 | 92.5/7 | 83.5/6 || 95.1/6 | 92.5/7 | 83.5/6
Frequency 99.5/5 | 90.5/9 | 85.5/7 || 98.5/4 93.5/8 83/7
5 Hz 100/3 | 96.5/5 | 89/8 || 98.5/3 | 92.5/4 84/5
| 10 Hz 99.5/2 98/6 93.5/9 || 98.5/3 | 99.5/8 83/9
Detect | 15 Hz 100/3 100/5 | 98/10 99/3 98.5/7 87/8
2 X025 Fo 99/3 96/8 98/10 || 97.5/3 | 93.5/6 | 87.5/6
' X0 5 Fo 99.5/3 | 94.5/5 | 97.5/8 || 99/4 91/3 90/10
X0.75 Fo 100/4 08/7 | 99.5/8 || 98/3 | 93.5/10 | 98/10
X1.0 Fo 99.5/3 99/8 | 98.5/8 || 97.5/2 97/7 | 97.5/10
| Best Several | 15 Hz X.75 15 Hz 10 Hz X0.75
Raw 25.7/9 | 80.1/8 | 71.4/5 || 85.7/9 | 80.1/8 | 71.4/5
I requency 91.8/5 832.2/5 73/3 92.1/10 | 83.2/8 72.5/4
5 Hz 90.5/6 | 85.2/4 | 75/3 || 91.8/8 | 85.7/5 | 75.5/2
, 10 He 80.8/4 | &1.8/5 | 74/5 1l 92.9/5 | 85.7/5 | 79.1/8
! Classify 15 He 88.3/7 | 81.1/5 | 74/7 11 93.9/10 | 85.2/9 | 71.9/8
’ 1 vs. 2 X023 Fo |l o24/5 | R6.2/8 | 75.5/5 || 91.8/6 | 88.2/4 77/4
\0.5 Fo 91.8/6 | &5.7/5 | 77/9 || 95.9/8 | 83.7/8 77/4
| X075Fo |l e34/5 | ®3.2/4 | 80.1/8 || 93.4/9 | 87.8/7 | 79.8/10
_ X10Fo |l 914/8 | 83.7/10 | 798/9 || 90.3/9 | 83.2/8 | 76.5/7
Best NILO | X258 | X35 X0.5 X0.75 X0.75
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Results From the 2-Step Classifier/Feature Selection Process for

Artificial Data Composed of 15 Gaussian Components in EEG.
Table Entries: Percent Classification Accuracy / Number of

Features.

Frequency transformation— Without With
Data BW| SNR-— O dB -6 dB -12 dB O dB -6 dB -12 dB
Raw 98.5/6.5 | 836/5 | 66.2/8 || 98.5/8.5 | 836/5 | 66.2/6
Frequency 99/6 85.7/8 73/5 98/4 85.7/6 67.9/2
5 Hz 98/2 83.2/5 | 98/10 99/4 85.7/7 | 76.5/8
10 Hz 98.5/2 | 98/10 98/9 100/4 | 91.8/10 | 66.3/3
Detect 15 Hz 99/3 | 99.5/8 | 95.4/8 || 100/4 100/9 | 88.7/10
1 X0.25 Fo 99/3 80.6/2 | 95.4/10 |[ 97.5/2 86.2/4 76/10
X0.5 Fo 99.5/4 | 86.7/10 | 98/7 (| 97.5/3 | 90.8/9 | 70.9/10
X0.75 Fo 08.5/2 | 88.8/10 | 95.9/7 [ 100/4 | 87.8/8 | 65.8/8
X1.0 Fo 98.5/2 | 98.9/9 | 98/9 99.5/6 | 85.7/5 | 65.3/2
Best X.50 15 Hz X.50 Several 15 Hz 15 Hz
Raw 96.1/8 | 78.5/6 | 708/6 || 96.1/8 | 78.5/8 | 70.6/8
Frequency 100/6 80/7 71.5/6 99/8 81/8 74/3
5 Hz 99.5/4 | 92.5/9 | 94/10 [ 99.5/4 | 88.5/4 | 72/9
10 Hz 98.5/3 | 95.5/9 | 80/10 98/2 88.5/9 | 97/10
Detect 15 Hz 99.5/5 | 94/10 | 98.5/9 | 98.5/3 | 98/10 98/8
2 X0.25 Fo 99/2 87.5/9 70/5 100/ 4 85.5/3 | 93.5/10
X0.5 Fo 99.5/2 | 89/10 | 83/10 99/5 | 85.5/10 | 95.5/10
X0.75 Fo 99.5/3 98/10 92/10 98/2 88/6 97/10
X1.0 Fo 99.5/4 95/8 92/8 || 100/4 | 91.5/6 | 96.5/9
Best Freq. X.75 15 Hz Several 15 Hz 15 Hz
Raw 89.8/5 | 778/6 | 63.8/5 || 89.8/5 | 77.6/86 | 63.8/5
Frequency 100/ 4 86.2/6 74/8 100/4 84.7/4 73/8
5 Hz 100/2 | 90.3/8 | 74.5/8 || 99.5/2 | 87.9/9 | 75.5/5
10 Hz 99.5/2 87.8/5 76.5/8 99.5/2 87.2/6 75/9
Classify 15 Hz 99.5/6 85.7/7 69.4/5 99/6 84.7/5 63.3/8
[ vs. 2 X0.25 Fo 100/2 | 86.7/4 | 725/3 || 99.5/3 | 89.3/9 | 77/8
X0.5 Fo 100/2 | 87.2/7 | 75.5/8 || 99.5/3 | 87.9/5 | 79/5
X0.75 Fo 100/2 | 85.7/4 | 74.5/5 || 99.5/3 | 88.2/9 | 70.4/7
X1.0 Fo 100/2 | 89.3/9 | 73/5 99.5/2 | 86.2/10 | 71.9/9
Best Several 5 Hz 10 Hz Freq. X0.25 X0.25
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Table A-3  Results From the 2-Step Classifier/Feature Selection Process for :
Artificial Data Composed of 1 Windowed Sinusoid in EEG.
Table Entries: Percent Classification Accuracy / Number of ~:
Features. "
Frequency transformation— Without. With :'.'_
o
Data BW] SNR— 0O dB -6 dB -12 dB 0O dB -6 dB -12 dB X
Raw 98.1/5 | 34.7/7.5 [ 73.4/4.5 [[ 98.1/4 | 84.7/7.5 | 73.4/4.5 N
Frequency 100/2 | 929/4 75/4 100/3 | 91.8/4 | 79.1/5 -
5 Hz 100/2 | 97.5/5 | 81.1/4 || 100/2 | 95.4/3 | 99.5/10
10 Hz 100/2 | 99.5/8 | 96.4/8 |l 100/1 | 96.9/7 | 99.5/10 i
Detect 15 Hz 100/2 | 985/7 | 98/7 | 99/1 | 98.5/7 | 99.5/8
1 X0.25 Fo 99.5/2 | 100/7 | 91.3/8 || 100/2 | 95.4/6 [ 99/9
X0.5 Fo 100/2 | 100/7 | 90.8/7 |l 100/2 | 94.4/6 | 98.4/7
X0.75 Fo 99.5/2 | 95.4/5 | 93.4/8 || 100/1 | 95.9/7 | 99.5/10 0
X10 Fo 100/2 | 96.4/8 | 98/8 || 100/1 | 93.9/4 | 98.5/7 )
_ Best Severai | Several | 15 Hz |[{Several | 15 Hz 15 Hz -
= Raw 99/4.5 | 88.5/7 | 74.4/5 || 99/4.5 | 88.5/7 | 74.4/5 -
Frequency 99.5/3 | o1/6 | 71.5/5 || 100/5 | 90.5/6 | 72.5/7
5 Ha 99.5/4 | 98/8 84/8 || 99/4 | 98.5/9 | 77.5/10
i 10 Hz 99.5/4 | 99/8 | 88.5/8 |l 100/3 | 100/8 | 93/9 _
Detect || 15 Hz 990.5/2 | 100/5 | 93/8 [{ 100/2 | 99.5/7 | 99.5/8 i
2 X0.25 Fo 99.5/5 | 93.5/6 | 85.5/7 [[97.5/2 | 98.5/10 | 75.5/3 N
X0.5 Fo 97.5/3 | 99/7 98/8 |l99.5/2 | 97/7 | 82.5/9 o
X0.75 Fo 98.5/3 | 99.5/6 | 98.5/7 |l 100/3 | 100/7 | 100/9 v
X1.0 Fe 99/2 | 99/5 o8/8 || 100/2 | 98/5 99/8 '
Best 15 Hz 15 Hz X.75 _||Several | X0.75 X0.75 Y
Raw 99.5/4 | 83.7/10 | 71.9/3 |1 99.5/4 | 83.7/10 | 71.9/3 3
Frequency 100/3 | 95.9/8 | 76.5/7 |l 100/3 | 93.9/7 | 78.1/8 o
5 Hz 99.5/3 | 95.9/8 | 76.5/5 || 99.5/2 | 94.4/5 | 76.5/3 y
10 Hz 100/2 | 95.4/7 | 82.7/8 || 100/2 | 95.9/5 | 78.6/3 A
Classify 15 Hz 100/3 | 95.9/4 | 81.1/3 || 100/2 | 95.9/7 | 78.1/5 R
I vs. 2 X0.25 Fo 99.5/4 | 92.4/3 | 75.5/8 1| 100/3 | 93.4/5 | 73.5/2 e
X0.5 Fo 99.5/2 | 91.9/6 | 76.5/3 [[100/2 | 95.9/6 [ 78/4 b8
NU.75 Fo 100/2 | 91.9/5 | ao.6/4 |l 100/2 | 97.5/7 | 788/5 -
X1.0 ¥o 100/2 | 95.9/4 | &1.1/3 || 100/3 | 96.4/8 | 79.1/4
Best Several | Several 10 Hz || Several | X0.75 X1.0 ::::
R
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N Table A-4  Results From the 2-Step Classifier/Feature Sclection Process for X
N Artificial Data Composed of 3 Windowed Sinusoids in EEG. b
\ Table Entries: Percent Classification Accuracy / Number of pt
: Features. Y
N ::’::
_*: Frequency transformation— Without With ::::
¢ "I
! Data BW] SNR-— 0O dB -6 dB -12 dB O dB -8 dB -12 dB
Raw 99.4/7 | 86.2/9 | 73.9/5 |[99.4/7 | 86.2/9 | 73.9/5 | S
Frequency 100/7 | 84.7/5 68.4/5 || 99.5/4 | 87.8/6 74/7
5 Hz 100/4 | 88.3/8 | 68.9/7 || 99/3 | 87.8/6 | 69.9/5 N
10 Hz 100/2 | 92.4/8 | 76.5/6 || 100/2 | 96.4/10 | 81.6/5
o> Detect 15 Hz 100/4 | 95.4/10 | 81.1/10 || 100/3 | 93.4/10 | 95.4/9
f._ 1 X0.25 Fo 98.5/4 85.2/3 73.5/10 98/5 89.8/10 73/6
= X0.5 Fo 99.5/6 | 88.3/10 | 88.3/10 || 98.5/3 | 91.3/5 | 88.8/10
" X0.75 Fo 100/4 | 89.3/6 | 96.4/10 || 99.5/4 | 90.8/9 | 79.1/5 =
X1.0 Fo 99/3 | 92.9/10 | 100/10 || 100/5 | 94.4/10 | 96.9/10
g Best 10 Hz 15 Hz X1.0 10 Hz 10 Hz X1.0 ’
M Raw 99.5/8 | 81.9/5 | 71.3/6 |/ 99.5/8 | 81.9/5 | 71.3/6 L
N Frequency 98.5/5 81/4 87/5 99.5/5 | 83.5/7 70/8 mi
5 Hz 99/5 | 83710 | 69.5/8 || 99/7 | 84.5/7 | 67.5/9 A
i 10 Hz 99/8 | 83.5/5 | 73/4 || 100/3 | 90.5/6 | 84/10 i
Detect 15 Hz 99/8 | 99/10 71/4 |l 99.5/4 | 99/10 | 99.5/10 S
2 X0.25 Fo 97/6 81/6 87/2 |l 97.5/5 | 83.5/10 | 84/10 N
» X0.5 Fo 99/8 83/6 | 66.5/7 || 98/4 | 85.5/4 | 74.5/9 P
» X0.75 Fo 100/7 | 84.5/6 | 65/4 99/5 85/5 | 99.5/10 oA
X1.0 Fo 99/4 | 83/5 | 71.5/8 || 100/5 | 92.5/10 | 89/10
- Best X.75 15 Hz 10 Hz 10 Hz 15 Hz Several o
E Raw 99.5/8 | 83.7/5 | 68.9/9 |[99.5/8 | 83.7/5 | 68.9/9
: Frequency 99.5/5 | 86.7/6 | 73.5/4 (| 100/4 | 89.3/7 | 73.5/6 =
¥ 5 Hz 98/1 | 88.2/5 | 73.5/4 |[99.5/3 | 87.2/6 | 70.9/2
» 10 Hz 99.5/2 | 86.7/2 | 74.5/4 | 99.5/2 | 88.3/3 | 73/6
y Classify 15 Hz 08.5/2 | 87.2/3 | 74.5/4 [ 99/3 | 90.3/6 | 74/7
: 1vs. 2 X0.25 Fo 99/4 84.7/3 | 73.5/5 |[98.5/4 | 84.7/3 | 73.5/4 o
- X0.5 Fo 99/3 | 86.2/5 | 69.4/2 | 99.5/4 | 86.7/5 | 68.4/1 o
4 X0.75 Fo 99/2 | 88.3/4 | 735/4 || 99/2 | 88.3/6 | 71.9/5
X1.0 Fo 99.5/3 | 90.3/5 73/9 || 99.5/3 | 83.8/4 | 73.5/4 o
X Best 10 Hz X1.0 Several Freq. 15 Hz 15 Hz <
:.
A} )
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4 Table A-5 Summary of Results for Artificial Data. Detection and e
Ls Classification Accuracies in Percent. X
» et
. :
N Signals in || SNR— 0 dB -6 dB -12 dB "
p Data Sets . ‘ : \
Q) I eatures— |[R aw |Freq. [Filt.{{[Raw |Freq. |Filt.|[Raw |[Freq.|Filt. h,
Windowed || Detect 1 || 99 | 99.5 | 100(/|89.8 | 89.3 | 99 {|78.8 | 82.1 |98.5 ~
Averaged Detect 2 1199.1 ) 99.5 | 100 {{92.5 | 93.5 | 100 {i23.5 | 85.5 {99.5 '_:
EP Classify I|85.7 [ 92.1 {95.9]130.1 | #3.2 |s7.8]l71.4] 73 [80.1 =]
Detect 1 {198.5] 99 |100]{|83.6|85.7 {100}68.2| 73 98 :::
15 Gaussians|| Detect 2 |[{96.1 | 100 [ 100|785 81 | 98 ||706]| 74 | 98 :
Classify |[89.8] 100 |100]|77.6]86.2 {90.31163.81 74 | 77 N
1 Windowed || Detect 1 {[98.1 ] 100 1100 ||84.7 {92.9 | 100 {{73.4] 79.1 {99.5
Sinusoid || Detect 2 || 99 ! 100 | 100|/88.56]| 91 |100 74.4172.5 100 :;::
Classify []99.5] 100 |100(|83.7 1959 197.5[|71.9 ] 78.1 182.7 ;.:
3 Windowed || Detect 1 [(99.4 | 100 | 100 |{86.2 | 87.8 {96.4]]73.9| 74 ]100 =
Sinusoids Detect 2 1]99.5199.5 | 100 1/81.9]83.5 ] 99 {i71.3] 70 ]99.5 -T'
Classify [199.5 | 100 }199.5({83.7 | 89.3 [90.3}|68.9 | 73.5 |74.5 _'t;'
X
e
< N
3 i

.:
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two signals at -6dB, raw features yielded an accuracy of 80.19 at 8 features.
Frequency features yielded accuracies up to 83.2% at 5 features. Filtered
features yielded accuracies to 87.8%¢ at 7 features, which represents an 7.7%
improvement over the raw feature accuracy.

Detection of these signals at SNR’s of -12dB produced accuracies of 78.8%
for 5 and 83.5% for 6 raw features, and 82.1% and 85.5% for 6 and 7
frequency features for the two data sets. Filtered features yielded significant
improvements over these accuracies with 98.5% at 5 features and 99.5% at 8
features for the two data sets. These are improvements over raw feature
accuracies of 19.79 and 16%. For classification between these two signals at
SNR'’s of -12dB, 5 raw features yielded an accuracy of 71.4%, and frequency
features yielded up to 739 accuracy at 3 features. Filtered features yielded up
to 80.1% accuracy with 8 features. This is an improvement over the raw
feature accuracy of 8.7%.

Signals which were composed of 15 Gaussian components, all with a width
measured by the standard deviation of 15ms, represent complex signals that
may be similar to EP’s. Data containing these signals were tested and the
results presented in Table A-2. At SNR levels of 0dB, averaged detection
accuracies for raw features were 98.5% and 96.19% for 6 and 8 features for the
two data sets. Frequency features yielded up to 999 and 1009 at 6 features,
and 4 filtered features produced 1006 accuracies. Most bandwidths yielded
similar accuracies. Classification between the two sets of data yielded an
accuracy of 89.8% using 5 raw features. 100% was obtained using 4 frequency
features. Accuracies of 1009% were also achieved with filtered features, using
only 2 features in some cases.

For detection of these Gaussian component signals in EEG at SNR'’s of
-6dB, raw features yielded averaged accuracies of 83.6%% for 5 features and
78.5% for 6 features for the two sets. Frequency features yielded 85.79 at 6
features and 81°% at 7 features for the two sets, improvements over raw
features of 2.19% and 2.5%%. Filtered features produced improvements of up to
20.5% with accuracies of 100% and 98% achieved for 10 and 9 features for the
two data sets. Classification between the two sets yielded 77.6% for 6 raw
features, up to 86.2% for 6 frequency features, and 90.3%% for 8 filtered features
which represents a 12.7% improvement. The various bandwidths produced
similar accuracies.

For detection of these Gaussian component signals with SNR's of -12dB, 6
raw features produced average accuracies of 66.20 and 70.6%. Frequency
features improved on these results somewhat to 7396 and 71.56 for 5 and 6
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features. Filtered features yielded accuracies of 98%% at 9 and 8 features for the
two data sets. Classification between these data sets at SNR's of -12dB yielded
63.8% at 5 raw features, and frequency features yielded a 10.2% improvement
to an accuracy of 74% for 8 features. Filtered features further improved these
figures to 77% for 6 features, a 13.2% improvement in accuracy over the
>, results using raw features.

AN

AN

A,

For signals composed of windowed single sinusoids (Table A-3), the lower
bound accuracies at 0dB were mostly 1009 for the filtered amplitude features, -
while the raw amplitude features yielded accuracies of 98.1% and 995 for the -
two sets. Five raw features were selected to achieve this compared to 1 filtered :
feature selected to achieve 100% for several different bandwidths. Other =
bandwidths produced 1009 accuracy with only 2 features. Two frequency T
features were selected to achieve 1007¢ accuracy for frequency features without
- transformation. Classification accuracies were similar with 2 filtered features
yielding 100”¢ in some cases and 1007C was achieved in most cases. Four raw
features yielded 99.5°% accuracy. and 100% for 3 frequency features was
obtained. =

For detection of the same signals in EEG at SNR's of -6dB, raw features
yielded averaged accuracies of 84.7% and 88.5%% with 7 features. Frequency
features yielded up to 92.9% at 4 features. Filtered features produced
improvements to 1007¢ with 5 to 8 features for the two classes of data. For
classification at -6dB, 83.79 at 10 raw features was achieved, and 8 frequency
features yielded up to 95.9%. Filter features yielded accuracies of up to 97.5%
with 7 features.

For detection of the same signals in EEG at SNR's of -12dB, raw features
produced averaged accuracies of 73.4% and 74.4 for the two sets at 5
features. Accuracies for frequency features of up to 79.1°¢ and 72.5% were
achieved for the two sets at 5 and 7 features. Filtered features produced
acenracies up to 1007¢ at 9 features with 98 to 997¢ achieved in several other
cascs, representing improvements of up to 26°¢ over the results for detection
using only raw features. There is a small trend for higher accuracies achieved S
with the larger bandwidths. For classification at -12dB, raw features produced
71.9%0 accuracy with 3 features. Frequency features yielded improvements to
78.1% at 6 features. Filtered features yielded further improvements to 82.77%
at 8 features, a 10.87 improvement over classification using only raw features.
Generally the larger bandwidths yielded slightly higher classification accuracies.

For detection of signals composed of 3 windowed sinusoids in EEG (Table
A-4) at SNR's of 0dB, raw features yielded 99.47¢ accuracy at 7 features, and
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frequency features yielded up to 100% at 7 featu.es and 99.5% at 5 features for
the two data sets. Accuracies of 100%% were achieved for many cases of filtered
features with as little as 2 features. Classification of data with SNR’s of 0dB
produced accuracies of 99.5% for 8 raw features, up to 100% for 4 frequency
features, and 99.5% for 2 filtered features.

For detection of the same signals in EEG with SNR's of -6dB, 86.2% and
81.9% averaged accuracies for 9 and 5 raw features were achieved for detection
of the two data sets. Frequency features yielded similar accuracies, and filtered
features achieved 1009 with 10 features. There was a slight trend of larger
bandwidths producing higher accuracies, and the best value of bandwidth was
15 Hz. Classification between these two data sets produced 83.7S% accuracy for
5 raw features. Frequency features yielded up to 89.3% for 7 features, and
filtered features increased the accuracy up to 90.3% for 5 features, representing
a 6.6% improvement over the use of raw features alone.

For detection of the same signals in EEG at SNR's of -12dB, 73.9% and
71.3% average accuracies were achieved with 5 and 6 raw features. Frequency
features yielded similar accuracies of up to 74% and 70% for 7 and 8 features.
Filtered features yielded up to 100%% using 10 features for the first set, and
99.5% using 10 features for the second set. Classification between the classes
yielded 68.9% for 9 raw features. Four frequency features yielded
improvements to 73.5% accuracy. Filtered features yielded 74.5% accuracy

with 4 features.

Comparing the results for detection of the signals composed of 1 windowed
sinusoid with those of the more complex signals composed of 3 windowed
sinusoids, the accuracies achieved were quite similar at the various SNR levels.
Raw features produced very similar accuracies, and filtered features improved
the accuracies to almost 100% for both type signals at the 3 SNR levels. At
SNR'’s of -12dB, the improvements in the accuracies for filtered features over
raw features were very significant, ranging from 25.5%% to 28.5%.
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Appendix B: Recursive Algorithm for Mean-Square Error

A large part of the linear filter literature is dedicated to special computer
algorithms which improve the speed of the calculations required to design the
filters. When the matrix R, is Toeplitz (as it is when the received data are
stationary), an algorithm developed by Levinson (1946) is commonly used to
efficiently invert the matrix. Morf (1977) has also described an efficient
solition to the linear prediction equations. The second algorithm described in
this chapter was developed by this author and is an efficient method for solving
the robust matrix normal equations when the data are nonstationary. In order
to begin, recall the dimensions of the matrices involved in Equation (4-18).

(1) H is NxkN,

(2) Ry is NxkN,

(3) R, is kNxkN, and
(4) P,, is kNxkN

(B-1)

where N is the number of sample points in each data record and k is the
number of channels. The spectral decomposition of P, is defined as

kN
Err = Eﬂiéiéi'r (B-?)
1=1
and the singular value decomposition of des as
. N T
R.e = Yruy; (B-3)

where

Bi=2By2 - 2 BN (B-4)

and
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B 2pe2 0 2puN20. (B-5)

The ¢; are the unit norm eigenvectors of P,,. The y; are the N-dimensional,

unit norm eigenvectors of Rmﬁs’;, and the v; are the kN-dimensional, unit
norm eigenvectors of B;Reds.

In order to derive the recursive algorithm for computing the MNLS
implementation, the three terms in Equation (4-18) are again considered
separately. The first term is the trﬁwd. This term is independent of 1 and is
therefore constant. It is computed once and stored.

After inserting the matrix decompositions, the second term becomes

tr Zﬂ 9.._.TZ 3 %9 E#m_m_g (B-6)
i=1 = l m=1

Now the following definition is made:
vi =yTg =gy (B-7)

Inserting (B-7) into Equation (B-6) and rearranging a few terms gives

N l v.. N
tr IZ”iE .K!L Z “mvmjglum] (B'8)

i=l j=1 %) m=1

By noting that

1, i=m
tr[uuT] ylu, = { 0, i#m (B-9)
Equation (B-8) simplifies to
N oJdvE 1N .
Eﬂ. ET _L T'E(ﬂivij)“ (B-10)

=1 j=1 "] )= =l
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Equation (B-10) can be updated with a minimum number of calculations by
evaluating vy for all i and j beforehand and using the first -1 values to
compute the lth value.

Consider now the third term

tr EN:”IM E-—Q, Zﬂ 60T Zl ; Tg:ym&{r (B-11)
Using Equation (B-9) and the following definition
d; = ¢Tq = g, (B-12)
Equation (B-11) can be simplified to
% 213 i %ﬂr nZ—'—sv (B-13)
=l j=1 J r=1 8= l

The recursive algorithm for computing the mean-square error due to the third
term vs. | can be derived inductively. Let ¢¥(1) be the mean-square error due to
the third term when keeping | eigenvalues. When keeping only the largest
eigenvalue,

N
ﬁﬂ)=§)¥£12ﬂdnx (B-14)
i=1 ¢ )

The mean-square error when using only the two largest eigenvalues is

d
+4%4 (B-15)

d d

Vie rl r2
_“ﬂ dr —Vi + —V-:!
x u r 2[ Xl 1 ]

This result can be written in terms of ¢£(1) as
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S
=
7
N vy kN d,o : e
$(2) = (1) + Y[~ L hdus vie (B-16)
i=1 Ir= Ao L
Vig kN 2 d, —
+ Tzﬂrdr2L Tvis '._\..
2r=1 s=1 3 RS
.}}
23
v.
This can be simplified by factoring —)"—2- out toward the left to obtain .
2 e
LN o Ldy dy ]
G(2) = G1) + = uiveY Ad 2 vy + TV (B-17)
) Pl e A\ Xy
This can be extended to the general case when keeping | eigenvalues with the
recursive algorithm
_ I N , kN -1 d,; dn -
(1) = ¢f(-1) + —;Epi2V;12ﬂ,d,1[2Z _)‘D"Vij + f“’u (B-18) R
li=1 r=1 i=1 % 1 N
Equation (B-18) can be made even more efficient by recursively defining the -
summation from j=1 to I-1 as -
dsum(l) = dsum(l-1) + de(1 B-19
sum(l) = dsum(l-1) o Vig-1) ( ) .
where dsum(1) = 0. Using this definition, Equation (B-23) becomes ‘

,) 9 1 N 9 kN drl
s3(l) = ¢3(1-1) + ;;'El‘i vad, Bidy|2 dsum(l) + —)\‘I’Vn (B-20)
=1 r=1

The general recursive algorithm for computing the mean-square error when
keeping the largest 1 eigenvalues is given by combining the three foregoing
terms.
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N
&) = &(1-1) + %Iz(uivu)z (B-21)
i=1

1N, KN d, :
+ T pva ) Bdy |2 dsum(l) + —vy ‘
kI i=1 r=1 Xl

The initial values with which to start the recursion are ’-

Ly Ve

. N .
f = R, + Sl (B-22)

; 1 N 2kN 0
S + Tz(ﬂi"n) Zﬂrdrl
:" )\1 i=1 r=1

and

R
L ay

dsum(1} = 0. (B-23)

()

By using Equation (B-21), the mean-square error can be evaluated for all values
of 1 in order to determine I .. This l,, can then be used to compute R,:: in
order to find the nnique MNLS solution to the filter equations.
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