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A MATHEMATICAL FORMULAT1ON OF A LARGE SPACE STRUCTURE CONTROL PROBLEM

A. V. Balakrishnan

Department of Elactrica: EngIner±>
6731 Svelter IL:"

UC'.
Los Angeles, CA qJ024

2. In! rodu,,t 1or" " U - .-. r. .

,-vr prLu,.I:s J1,. a*s7,-.r-Z-* :icrit.zal : r- U

: latzn cf a Large Space Structure Control problem Pi, 2 C1. 2 "(S-S)

txperimn: reing conducted by the Space Controls Branch t s n-1

(L.;'. Ta:;i-r
I

) at the NASA Langley Research Center.
Briefly, the physical apparatus consists of a softly %;(tO+) I

supported antenna attached to the space shuttle by a

flexible beam-like truss. The control objective is to W(t) (t,+)

slew the antenna on command within the given accuracy

and maintaining stability, based on noisy sensor data a(tO+)

and limited control authority; allowance must also be
made for random disturbance. The control forces and - '(tC-)
torques are applied at the shuttle end as well as the
antenna end and in addition provision is made for a W W = (tL-)
small number of 2-axis proof-mass actuators along the 4

beam. 6t ,L-)

The beam motion is modelled by partial differen- These are the angular velocity vectors of the shuttle

tial equations, and we begin in Section 2 with the equa- and the antenna respectively. Let

tions of motion as derived by L.W. Taylor.
1  

The ab-

stract formulation as a nonlinear wave-equation in a g W,(t)

Hilbert space is given in Section 3. Existence and

uniqueness theory is in Section 4. The basic control- gl(t) g.1(t)

lability results are in Section 5 and the stabilizabi-

lity results in Section 6. Of the variety of Control (t)
problems possible we touch only on the time-optimal pro-

blem, briefly in Section 7.

2. Enuations of Motion g 4 (t)g4(t) - g0,4(t) ,

We shall need to be brief here -- for necessary

elaboration see [1]. The equations of motion, using g ,4 (t)

the continuum model (as opposed to a finite-element
model) cor..ist of standard beam bending and torsion and let the force applied at reflector center of mass be

partia. Jifferentia. equations with driving end condi- T

tions and forces applied at the locations of the proof- F x y

=ass actuators. Then

Roll Beam Bending 91(t) d Iil + W1 al1IW1 -N 1 (0 -4D(t))

2 4+ - -
PAau Ia u g4 (t) -0 4 4 4w - M4(t) -r(t)) -m4 r4

at
2  0 as

4  where 2

4 1 y x y
+ ry rxr 0

0 r 2 + 2

Pitch Beam Bending x y

2 4

PA + El "u (L-)
at2  

s
at 2su4U(L-) coordinates of beam tip

4 
3

nil f6 n6(sad g0 ,n (S- ] and z(L-)
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-- t .- -... .(s. , - _-, - 3)

flt)  - f,(t) - , - El (u,"(s +) -u" (a3 ))

t(t f 3 (t ) Y17 - e(u e s3+ -u,"(s 3-

It may then be verified that V is dense and A I! ,K:-
adjoint and nonnegatvc definitu. The cur.tro .

f. .(t) f* ,(t) dynamics are then formulated as a nonlinear wave equatiar.
f .over H:

-- t) L\' t Ax' - but -FN t~ K i

where M is :h,' 17 7 matrix spec ifeied t.
M,:-. tO C4-

MJ-(t,C , where all m, . are zero except

M,u. t,S,) +m M 1,1  PA5,- At' - -2 '' '

M - PA m

S3u;.(L,s 3) + m -

4f Wt - 3 3 4,4 m,
3 3-,3 4 m -

3 3 3 ,3 m 13,6 " m6,13 '4r x

1 0 r 1u(L) i IFy m13,7 ' "7,13 - m4 r
*f,(t) x + Y~() +

0 r m
Y u 8 ,8  8,9 8,10

3. Abstract Formulation 9,8 9,9 9,l0 1

The Hilbert space H is L,(OL)' xR', 0<L . 108 M109 1

The points S2, 83, 0<s2 <s3 <L are fixed. We de-
fine the operator A on the domain DcH, consisting m 1
of 3x I functions u u(), such that
.(.), u-(.), u(.), u",'(.). * aOL nd ""' .. ..

u"-) u;'- t,,10L n u ..(-) has '12,11 '12,13 M 12,13 14
La-derivatives in [O,s2], [S2,s3] and [s,,L]; u' "13,1i r13 ,12 3,13
and u-'() a L2[O,LI; the remaining "scalar" part

(in Rl"
) is specified by " 14,14 m "2 m 16,16 ' 3

"X u' (L-) -"2
xO €15,15 M" "17,17 '3

x5  - uE(OL) x12  - u;(L-)
We note that M defines a self-adjoint positive defi-

x " u.(L-) x.3  " (L-) nite (nonsingular) linear operator on h ont- h.T
13 "control" u(t) is 10" 1:

x7  - u(L-) x1 4 - u:(s
% , . K (t)

• 'x 8  u(' ) x. 5 - u (s,)
•* 8 -4(t)

x 9  - u9(0*) x )16  u .(S3 I

X10  " u (0) 7- u0 (s3) ut)

The operator A Is defined by Ax - y; 2 6,2

YI "8 E u"" ) Y " Eleu ( +) m 3 .
v El" 'a3r,

y, El u'"() y 9  . Eleu (0+)
* 6 and B is correspondingly a 17 , 10 constant matrix

Y3 -G u"') Y1 0  - GI. u'(0 +) given by

0710Y4 - Ellu. (O+) Yll " Elu"(L-) B

+ I

* y.  -ElUpv*(O+) y 2 *El 8u (L-) 1010

" EIu'" (L-) Y GIu'(L-) (07xlO denotes 7x 10 zero matrix)
Y- El 0 1 3  " l,,71

Y7 . -EluI"(L-) (110 10 denotes 10lO 10 identity matrix)

-"(s2 -)) N(t) is the noise disturbance which is 3 1 so that
Y14 El¢u."(s2+) -q 2F is 17 3:

E14 (ut"' (s,+) -u,"(

,1

"--"



07, We also have the M-inner product:

F 1 3 3 ,YZ] M  ( 1[My1 z1 ] + [My 2,z2] (3.4.

0.. We will denote the corresponding completed spaces b'.-
;; and

Final!. Kb(it)) is a nonlinear function of k(t) E

4..n 5We can show that A generates a dissipa::v: s-t -
group over *' and an unbounded s-ru _pver .

The rescivent is compact and in eitner ".nner pr.juc:
have the representation for the semigroup tsee .2i%:

S(t)Y - S(t) P. Y

wnv r= - i.a two-dvmensiona' pr-'ectc I. -:

v., k " 1, and P is the projection on tne null spa- e

A and
P k5(t) Pk S(t) Pk

PkP = 0 j 0 k

00I In the energy inner product, P0  is of course zero.

0 Proportional Damping

0 There is reason to believe that we may assume
"proportional" damping. [Private communication, L.W.

Col. 1i 8 (t), i9 (t), A1 0 (t)] Taylor.] In this case we may modify A to be:
80 1

4 col. J (t), 12 (t), i13 (t)] A (3.6)

denoting vector cross-product and I, I. are non-
singular self-adjoint 3 -3 (moment) matrices, where C is the fixed damping factor. In this case

the semigroup is exponentially damped in the energy
In going over to the state-space form with norm, although not of course in the M-norr., because of

x(t) the nonemptiness of the zero-eigen-function space of
t(t) A (and hence of A), which are not affected by propor-

Y (t) tIonal damping. (We may characterize 'A without

we have: invoking the modes, although we shall not go into this

1) AY(t) +u(t) +FN(t) +K(y(t)) (3.2) here.) See [3] for more on square roots.

where If we omit the nonlinearity for the momrent, the

0 I linear equation
A MR + Ax + 2',M, Ax + Bu(t) - (0.7- A 0 0

has the energy-norm solution (modal expansion, zero iTv-

0 itial conditions)Sc - t

*M- BU x(t) 1k0 ak(t-.)lu(.. ' d.

ar.d in tne notation,

SYl Iwhere k are the eigen-functions

A 
2

Y, k Y kNk '(k > 0
we have:

¢ k,8

-.- K(y 2 ) ;k

U Ok,13
Ft I (indices denote components)

SM rN(t)
-Ctsin )kt

1. now have a choice of inner products. The energy ak(t) e k s k

inner prodict is:

where IY'Z]E - [My 2 5 Z2 ] + [Ayl, AZl) (3.3) ck -

Y1  1 k " f "k
3.- • 2- .

Y ' z~ 2 For the M-norm case we must of course add

Ih 
tE2k 

_ _



-' _jrd-a - -F- ------------ -7M

S(u.)d also implies that

(t- [K(y), x 0 for ever y

to (3.8,. We note that ,here exists nonzero x such and hence such an x cannot be reached from the o
to .. no hteax so x by using any control ,i. for both th linear ar..

lx,Bul C linear equations.

t.. Time-optimal Control

2r tne variet-, of control problems, we sha.. :r_ -

k for an'. K . ly mention time-optimal control. The "rapid slewin<"
requirement to anv given direction w:thin ar. errcr cx.

Extstence and '_niqueness of So-;tion!, would translate at :ne firs: level to an open-loot z-
ter.inistic t:.e-o-:inml control vroblem !c a tarz-

:n.':n -. ?r t2 nt.... c e[ at[r.: .. .

, A'%t -Su(t) +K Y(t). (.- lIf the target set be such that we car fine a kmir:n:z::.

i('
1  

is a homogeneous polynomial of de- sequence of contruls u k.) satisfying the constraint

gret two and is only locally Lipschitzian. Neverthe- with corresponding times T , and we may as well as-
less because of the fact that sume that

K(y2), y2
] 

- 0 To  lim Tn

we can show that there is no explosion and that the in- It is not difficult to prove the existence of an optimal

tegral version: control uo(*) corresponding to the time To. We may

then invoke the maximum principle of Fattorini
4 

(for an

Y(t) - t S(t-O)Su(O) dc + f S(t-o)K(Y(c)) do appropriate class of target sets).

0 0 7. Stabilizability

+ (t) Y 0 < t (4.2) The abstract formulation does make the problem of

either stabilization by feedback control quite accessible.

hasm) aiuniue ouin, cntrnou d ing) t(This is because (setting noise-disturbance to zero) it
norm) with the bound (under no damping) is immediate from (2.2) that setting

t

11"0),,E ,Y(0),;E + fI u(o)1do E(t) - EllY(t)lI:
0 we have

Moreover the usual Picard-iteration d-" E(t) S -[Buft), 5(t)]
t t

Y (t) - i S(t-c)K(Yn-l (:)) dc + f S(t-c)Bu(c) dc (see [51 for more on this), since
n 0 0 I0((t), (t)] -

converges to the solution ("mild" solution!). The Hence we can also ensure that the energy decreases
corresponding theory for the input disturbance will (does not increase):

appear elsewhere.
d

5. Controllability dT E(t) ! -[PA(t), i(t)]

Our main result is that the system is (approxima- by taking

tel., :ntrcXlable in the energy-norm (in some time)

and controllable in the M-norm. First of all we
observ that we can define control u (t so that 4 4
* fBu~~ (t (t,s,)

1hi, f!edback control makes the svste linear in other I u
* ., -. _:.:r l '', in ".( envrg,-nor :hen fol-

1o-$ fro= (3.8), since followin s2], if 3

jat 0 6,(t,s 3 )

1 for any matrix P which is positive definite.

for all t >0, the linear independence of the func-
tins a k(t) implies that References
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