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A MATHEMATICAL FORMULATION OF
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Hall
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1. Inrroducticr

perer o preseils al avsirali-tatavmatical lor-
a Large Space Structure Control problem
n “Llnk conducted by the Space Controls Branch
Tayiorl) at the NASA langley Research Center.

Bric‘l), the physical apparatus consists of a softly
supported antenna attached to the space shuttle by a
flexible beam=~l1ike truss. The control objective is to
slew the antenna on command within the given accuracy
and maintaining stability, based on noisy sensor data
and limited control authority; allowance must also be
cade for random disturbance. The control forces and
torques are applied at the shuttle end as well as the
antenna end and in addition provision is made for a
small number of 2-axis proof-mass actuators along the
beax.,

The beam motion is modelled by partial differen-
tial equations, and we begin in Section 2 with the equa-
tions of motion as derived by L.W. Taylor.l The ab-
stract fornulation as a nonlinear wave-equation in a
Hilbert space is given in Section 3. Existence and
uniqueness theory is in Section 4. The basic control-
lability results are in Section 5 and the stabilizabi-
lity results in Section 6. Of the variety of Control
problens possible we touch only on the time-optimal pro-
blem, briefly in Section 7.

2, Fquations of Motion

We shall need to be brief here -- for necessary
elaboration see [1]. The equations of motion, using
the continuun model (as opposed to a finite-element
nodel) consist of standard beam bending and torsion
partia. Jif{ferentia. equations with driving end condi-
tions and forces applied at the locations of the proof-
zass actuators,

Roll Beam Bending

z(fond(ss) +g°nss(ss)]

n=1

Pitch Beam Bending
32u 36“8
PA

at 35‘

+ EI

Zu

n=1

6(s-sn) + 29,0 %% (s-s,)])

*
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w, (1)

These are the angular velocity vectors of the shuttle
and the antenna respectively., Let

8y, 1 ()
&g 1(t)

‘w,l(t)
(v)

gl(t)

By.4
8y 4(t)

g, ,‘(t)

and let the force applied

g4 ()

T
Fr = [Fx.Fy,Ol

Then

gl(t) = - u1+ w) OLyw 1'”1([)"%(‘))

~

= (1,2 ‘
g, (t) (1,5 +e GI.,‘UI‘

4 -ML(L)—rQFr(t)) -m

4 LreEL .

where

-u

5 (L)
ue(L-)

z(L-) |

coordinates of beam tip ,
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3. Abstract Formulation

The Hilbert space H 1s L2(0,L)'xR™, O<cL<w,
The points sz, 8y, 0<s;<sy<L are fixed. We de-
fine the operator A on the domain DcH, consisting

of 3x1 functions u®(~), ue(-), UW(.) such that
uc(')a u;(')p ug(.)n ué"(') . LllonL] and ué"(.) has

Li-derivatives in [0,s:]), [s:,s3] and [sy,L]; ué(')
and ué‘(') €1,[{0,L]; the remaining “scalar" part

(tn ®") 1s specified by

x, = u,(0+) X, ° u;(L-)
xg = u(0%) X, = ugll-)
X, = u;(l.-) X.,, = u’(L—')
X, = ouc(ley X1, = u.(sy)
xg = u;(}v) X.o = uy(sy)
X, = ug (0+) X6 " u¢(s3)
X0 ® u‘(0+) Xy, = US(SJ)

The operator A 1s defined by Ax = y;

vy El;u';"'(') Yg * -EIcu;(Oﬂ
¥, = Eleu;"( *) Yo = -Eleu'e'(O'*)
¥y " -leu:(‘) Yio * -cx_’u,:(o-r)
v, " Elcu;" (0+) i1 Elcu';'(L-)
Yo = Eleué"(o-t) Yy, = Elgug(l-)
Yo = -Eltué"(L-) Y3 * leul(L-)

-Eleug"(l.-)
Y14 " Elg(ué"(szﬂoué"(sz-))

v - Ele(u;"(sz*) '“5',”(53'))

15

Yi6 ° Elo(ua',",(sa-f)-ué"(s]-))

Y17 = Elglug"(sy#) =ul"(s,-))
It may then be verified that [ 1is dense and A 1s scii-
adjoint and nonnegative definite. The contro.l s.ster
dynamics are then formulated as a nonlinear wave equatiocr
over H:
MK e aAx L - FN(t

+ Buse “bixiLy, =

where M is the 17-.7 matrix specified b

‘.

where all m are zero excep:

ml,l = PaA K'S,} = .'.'.:
B2 ToFA o0 T M
m3'3 = PI‘; m7'.l. - o,
Ppe T0™
13,6 T Tp,13 T 4T
™3,7 T P73 T My )
8,8 "8,9 8,10
B3, P9,9 9,10 =1
0,8 10,9 ™10,10
i Py1,11 1,12 Mi1,13 !
i“’lz,u ©12,13 m12.13‘3 -1,
PR3 ™13,12 ™13,13 ¢
Ba,16 T M 6,16 = T3
™15,15 my TMyar TOBy e

We note that M defines a self-adjoint positive def:-

nite (nonsingular) linear operator on h ont. Hh, T4
“eontrol” wu(t) 1s 10~ 1:
M
l
R RS
P '
o A
| Byse 2
ey = 28
my8g 2
" .
PR e W
t . 1
P Bale g
and B s correspondingly a 17 =10 constant matrix
given by
0 !
B - : 7x10 .
P igxio !
(07,(10 denotes 7x10 zero matrix)
(110‘10 denotes 10x10 "identity matrix) ,
N(t) 4s the noise disturbance which is 3 =1 so that
F is 17> 3:




K{x(t))

S o o <

w o= col, [ia(t), ig(t), ilO(L)]

<y = eols Bhp (0), %, (0), &;5(0))

€ denoting vector cross-product and

singular self-adjoint 3 =3

In going over to the state-space form with
x(t)
x(t})

Y(t)

wve have:

P(r) = AY(t) +Bulr) + FN(t) + K(Y(L))

where
, 0 1
A = -1
M A 0
0
Bu - 0
-M "BU
ard {n the notataon,
A
Yy o= 1 .
" VY4
we have:
K(Y) = -1
. =M k(yz)
i 0
FN(t)y = -1
, =M OUEN(R)

We now have a chofce of inner products,

inner product is:

v,21;
where

oY

¥

is a nonlinear function of

lHyz,zZ] + [-Ayl, vA zll

x(ty

are non-
(moment) matrices.

(3.2)

The energy

(3.3)

We also have the M-inner product:
.

I\f.zl,1 [Myl.zll + Myy,2z,) (3.4

We will denote the corresponding completed spaces b
EE and 5“.

We can show that A generates a dissipative sem:-
group over 4. and an unbounded semiproup_over

e
The resclvent is compact and in either inner pruducl e
have the representation for the semigroup t(see [2;;:

sy P Y, (2.0
- K

S(L)Yy =

is 4 LWO=dlmensional pProleci.on lol edl:
k -1, and PO is the projection on the nulil spa-e o:
p.S() P = S(t) P

PkPj = 0

k
itk
In the energy inner product, PO is of course zero,

Proportional Damping

There 1is reason to believe that we may assume
“proportional’ damping. ([Private communication, L.W.
Taylor,] 1In this case we may modify A to be:

0 1 {
(3.6)
RS TR TLY VO A

where ({ is the fixed damping factor. In this case

the semigroup is exponentially damped in the energv
norm, although not of course in the M-norm, because of
the nonemptiness of the zero-eigen-function space of

A (and hence of A), which are not affected by propor-
tional damping. (We may characterize A without
invoking the modes, although we shall not go into this
here.) See [3) for more on square roots.

1f we omit the nonlinearity for the morent, the
linear equation
MK+ Ax + 25 MAx + Bu(r) = 0 (3.7

has the energv-norm solution (modal expansicn, zerc in-
itial conditions)

® t
x(r) = ¢ la (t=)u(ny, ) dn {28
[ ’
i o k K
where ¢k are the eigen-functions
Ar = e v, >0
"k (k ko0 'k b
C%y,8
. [ !
1 SR A
l |
i ok.l} i

(indices denote components)
- \
Syt sin At
A

a (t) = e
k K

T Ty

2
A o= 1-1¢ T *

For the M-norm case we must of course add
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t
(t=2) Pj(Bu(:)) d-
A ;

te (3.8,., We note that there exists nonzero X such
thas

I

[x,Bu} = ¢

As = o . -~

tr the ~tner hand

.. s L for anv « s 1.
k

«. Ixistence and Un:.gueness of Solutions

e3uat

Ll .. T Ll AonLiiNedT Gete
ey = AV = Bult)y « K(Y(2i . (&2

The tunction A(*; 1s a nomogeneous polvnomial of de-
gree two and 1s only locally lipschitzian., Neverthe-
less becausy of the fact that

(K(y,)y ¥,] = 0,

we can show that there is no explosion and that the in-
tegral version:

t t
Y(r) = [ s(t=0)Bu(o) dc + [ S(t-0)K(¥(c)) do
0 0
+ S(B)Y 0 <t (4.2)

has a unique solution, continuous in t (in either
norm) with the bound (under no damping)

t
HY(Z)“E Y0  luto)ldo .
0
Moreover the usual Picard-iteration

t t
Y (t) = [ S(-c)K(Y__.(c)) dc + [ S(t-0)Bu(c) dc
n 0 n-1 o

converges to the solution ("mild" solution!). The
corresponding theory for the input disturbance will
appear elsewhere,

5. Contrullabilitv

Our main result is that the svstem is (approxima-
tel.. zontreslanle in the energy-norm (in some time)
and not contrellabie in the M-norm. First of all we
observe that we can define control ui(t) 50 that

Bu{(t) = =K(x(t)) .

This feedback control maxkes the svstem linear in other

.

.ooontrgllatilits in the energr-norm then fol-
lows froz (3.8), since following (2], if
=
-
:

. , MZ)..a (t) = O
1

k “kok

for all t >0, the linear independence of the func-
tions .ak(t)} implies that

I:k. Hiluk = 0
and ve have Qk ¢ 0 for any k21.

The existence of a nonzero x (a "tumbling mode')
such that

{x,Buj = 0,

Ax = 0

alsy 1mplies that

also implies that
[Kiyv), x; = 0 for everv v

and hence such an x cannot be reached from the orip::
bv using any control u(*) for both the linear anli - - -
linear equations.

t. Time-optimal Contro!l

o tne varieln of conirol problems, we shall brie. -
1y mention time-optimal control. The "rapid slewin:”
reguirement tc anv given direction within ar errcr cor.
would translate ai tne €irst level to an open-loop ce-
tersinistic time=oncimal contrcl problem tc a3 tarpe

T ot o2

»CI 8T e TTL. TAnAtTAITST

u o < dets

1¢ the target se: be such that we car finc a txinimizzic,,
sequence of controuls u () satisfying the constrain:

with corresponding times Tn' and we may as well as-
sume that

T, = 1lim T
0 S

It is not difficulr to prove the existence of an optimal
control wup(*) corresponding to the time Ts. We may

then invoke the waximum principle of Fattorini™ (for an
appropriate class of target sets).

7. Stabilizability

The abstract formulation does make the problem of
stabilization by feedback control quite accessible.
This 1s because (setting noise-disturbance to zero) it
is immediate from (2.2) that setting

E(t)

o2

we have

-di’;m) < -{Bu(t), %(1))

(see [5) for more on this), since
[K(x(t), x(t)} = 0 .

Hence we can also ensure that the energy decreases
(does not increase):

) PR R(0)
3¢ BE(v) = -[pPx(t), %x(1)]
by taking
-l(t)
A .
i )
. u,(t,s,)
ulty = P~ ;
poUL(t,s,)

1
|
{
for any matrix P which is positive definite,
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