IMPLEMENTATION OF A MICROCOMPUTER-BASED TESTING SYSTEM IN A MILITARY TRAINING ENVIRONMENT (U) ASSESSMENT SYSTEMS CORP ST PAUL MN C D YALE 11 NOV 85 RR-85-2-ONR UNCLASSIFIED N00014-83-C-0634 F/G 5/9
IMPLEMENTATION OF A MICROCOMPUTER-BASED TESTING SYSTEM IN A MILITARY TRAINING ENVIRONMENT

C. David Vale
Assessment Systems Corporation
2233 University Avenue, Suite 310
St. Paul, MN 55114

November 1985

Approved for public release; distribution unlimited. Reproduction in whole or in part is permitted for any purpose of the United States Government.

This research was sponsored by the Personnel and Training Research Program, Psychological Sciences Division, Office of Naval Research, under Contract No. 00014-83-C-0634, Contract Authority Identification No. NR 507-002.
A computerized testing system was installed on an experimental basis at the Basic Electricity and Electronics School of the Naval Training Center in San Diego. The system consisted of a network of IBM Personal Computers running a slightly modified version of the commercially available MicroCAT Testing System. It was configured to fit transparently into the school's computer-managed instruction system. After a few minor adjustments and a few added features, the system met its goal of paralleling the paper-and-pencil version of the tests with a minimum of change in standard testing procedures. Now in place, the system provides a base on which diagnostic testing research can begin.
ABSTRACT

A computerized testing system was installed on an experimental basis at the Basic Electricity and Electronics School of the Naval Training Center in San Diego. The system consisted of a network of IBM Personal Computers running a slightly modified version of the commercially available MicroCAT™ Testing System. It was configured to fit transparently into the school's computer-managed instruction system. After a few minor adjustments and a few added features, the system met its goal of paralleling the paper-and-pencil version of the tests with a minimum of change in standard testing procedures. Now in place, the system provides a base on which diagnostic testing research can begin.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Design of the Testing System</td>
<td>1</td>
</tr>
<tr>
<td>System Requirements</td>
<td>1</td>
</tr>
<tr>
<td>Analysis of the Systems</td>
<td>3</td>
</tr>
<tr>
<td>MIISA: The Navy's Computer-Managed Instruction System</td>
<td>3</td>
</tr>
<tr>
<td>The MicroCAT Testing System</td>
<td>4</td>
</tr>
<tr>
<td>Integrating the Resources</td>
<td>6</td>
</tr>
<tr>
<td>Implementation of the System</td>
<td>7</td>
</tr>
<tr>
<td>Description of the Initial System</td>
<td>7</td>
</tr>
<tr>
<td>Initial Evaluation</td>
<td>8</td>
</tr>
<tr>
<td>System Revisions</td>
<td>8</td>
</tr>
<tr>
<td>Additional Features</td>
<td>8</td>
</tr>
<tr>
<td>Evaluation of the System</td>
<td>10</td>
</tr>
<tr>
<td>References</td>
<td>12</td>
</tr>
</tbody>
</table>
INTRODUCTION

Achievement testing takes up a substantial portion of a trainee's time in a self-paced military service technical school because continual assessment of the trainee's skills is necessary to pace the instruction. Obviously, anything that can be done to make testing more efficient or to extract better information from the testing process will enhance the quality of training. Several forms of computerized testing, including computerized adaptive testing (Weiss, 1982, 1985) and computer-based diagnostic testing (Tatsuoka & Tatsuoka, 1983), offer the promise of such an improvement.

Computer-based instruction and testing in the service schools requires reliable, inexpensive computer equipment that can handle a variety of presentation forms. Among the forms such equipment must handle are standard computer-based instruction and conventional, adaptive, or diagnostic testing. Although a variety of software systems for computer-based instruction are available, very few software systems are available for implementing adaptive or diagnostic testing. The MicroCAT Testing System (Assessment Systems, 1984) is a generic testing system that can be used for most forms of testing and many forms of computer-based instruction.

The development of the MicroCAT system was partially supported by funds from the Office of Naval Research (ONR). A major objective of ONR in supporting this development was to provide a testing system to meet the needs of the training and achievement-testing environment. To test its effectiveness in this environment, MicroCAT was implemented in a Navy Training Center as a means of introducing diagnostic testing into one of the service technical schools.

The system was implemented at the Basic Electricity and Electronics (BE&E) School at the Naval Training Center in San Diego, California. The overall implementation plan was to introduce a computerized testing system into the current testing process and, once this system was in place and tested, to extend the program to diagnostic testing. This report describes the design and initial implementation of this system.

DESIGN OF THE TESTING SYSTEM

When this project began, the design of the MicroCAT Testing System was nearly complete and many of the MicroCAT programs had been developed. The objectives of the design of the testing system for the BE&E School were: (1) to assess the testing needs of the school, (2) to expand the MicroCAT system to allow the strategies for diagnostic testing to be implemented, and (3) to integrate the system into the testing environment and the computer-managed instructional system that were already in place at the school.

System Requirements

Students at the BE&E School are tested approximately once a day. The student studies a particular subject and then takes a test on that subject. The
achievement tests used in the BE&E curriculum contain 8 to 50 questions on basic electricity and electronics knowledge. Typically they consist of some form of graphic (e.g., a schematic or a chart) and a question, often using special symbols (such as an omega for ohms). Figure 1 shows a sample item (not actually used in the BE&E curriculum) on resistance analysis. To solve this problem, the examinee must know how to apply Ohm's law and must either recognize that the bridge on the right of the schematic is balanced (thus providing a computational shortcut) or apply an appropriate network theorem to determine the overall resistance, and thus current, in the system.

Figure 1. Sample Electronics Item

How much current will flow in this circuit?

A. 21 milliamperes
B. 63 milliamperes
C. 127 milliamperes
D. 254 milliamperes

ANSWER:

To take a test in the conventional paper-and-pencil format, a student reports to a testing room and is assigned a microfiche card containing the test. The student then goes to a testing carrel containing a microfiche reader, loads the test into it, and responds to the questions by marking an optically scannable answer sheet. After the student completes the test, he or she puts the answer sheet into an optical scanner, which reads the answer sheet and transmits the information to MIISA, the computer-managed instruction system running on a mainframe computer in Memphis, Tennessee. MIISA determines that the test the examinee took was the proper one, scores it, reports the results, and updates
the student's record in the database. The student receives the reported results on a printing computer terminal connected to the optical scanner. This report tells the student his or her score and what test to take next.

During the initial phases of implementation of the computerized testing system, students could take tests using either the computerized system or the conventional microfiche cards. The computerized tests had to be psychometrically comparable to the microfiche tests because all scores would be interpreted on the same scale. It was important that the tests be psychologically comparable as well, because if students perceived a difference in the difficulty of the tests, either real or imagined, they might avoid the form they considered to be more difficult or troublesome. Three factors that contribute to the psychological comparability of the forms are: (1) speed of system response to the examinee, (2) fault tolerance during system failures, and (3) support of standard test-taking strategies. To avoid giving the examinee the impression that the computerized version is slower than the conventional version, a goal for the maximum system time between the examinee's response and the presentation of the next item was set at less than five seconds. It is also important for examinees to feel confident that their work will not be lost because of equipment failure. And finally, a major test-taking strategy that must be supported is the examinee's ability to skip items and then return to them at the end of the test.

The computerized testing system also had to fit into the existing computer-managed instructional system without requiring any programming on the part of the Navy. This essentially meant that no changes in the testing process could be made that would be detected by MIISA.

Finally, the system had to be able to handle special cases. An example of a special case in the traditional testing mode would be a mis-scanned answer sheet that failed to give credit for all correct responses. Another would be the loss of an examinee's record after its receipt had been acknowledged by MIISA. In the conventional testing format, special cases are handled by the test proctor, who interacts with MIISA on the printer terminals used to return examinee test results. A similar means of proctor intervention had to be made available with the computerized testing system.

Analysis of the Systems

MIISA: The Navy's Computer-Managed Instruction System

All instruction and testing at the BE&E School is managed by MIISA, the program that assigns and scores tests and tracks student progress throughout the entire course of study. It is a very large program running on a mainframe computer at a central computer installation. Because of its size and distance from the BE&E School, it is very difficult to make any changes to the program. Therefore, the computerized testing system had to use existing MIISA interfaces. The most convenient interface was with the printer terminals through which scanned test responses are transmitted and score reports are received.
The printer terminals used are General Electric Terminet terminals. These terminals contain sufficient intelligence to read the data from the optical scanner, add a header of approximately 20 characters, and transmit the transaction to MIISA. Data are transmitted from the Terminet through a standard RS232 serial port. The data are communicated through a 1200-baud modem to a local concentrator and then transmitted to MIISA at 9600 baud.

The transactions sent to MIISA are all single lines of ASCII characters terminated with a carriage return. Data returned from MIISA are score reports formatted for the Terminet's printer. Among the transactions of interest to this project are score reports and requests for tests to be taken. It was apparent that a convenient way to connect to the existing system was to emulate the Terminet terminals, sending proper Terminet transactions and receiving score reports.

The MicroCAT Testing System

The MicroCAT Testing System was designed to be a self-contained system for developing, administering, and analyzing adaptive tests. The system is packaged into four subsystems: the Development Subsystem, the Examination Subsystem, the Assessment Subsystem, and the Management Subsystem. The programs available in each of these subsystems are shown in Table 1.

The Development Subsystem contains programs for entering and editing test items consisting of text and graphics and for arranging those items into tests using a number of conventional and adaptive testing strategies. Tests are specified in MCATL, an authoring language designed especially for specifying tests. (This specification may also be accomplished by filling in blanks in pre-defined strategy templates.) MCATL is compiled to an intermediate form of code that can be executed quickly during the testing process.

The Examination Subsystem administers the tests. The programs in this subsystem read the test specification instructions (the intermediate code file generated by compiling the test specification), present the test items, accept the examinee's responses, score the responses, and report the results in a data file.

The Assessment Subsystem contains programs for analyzing tests that have been administered. One program, ASCAL, estimates item response theory (IRT) item parameters. Other programs in this subsystem reformat data for analyses, perform conventional item analyses, evaluate characteristics of item pools, and perform test validation analyses.

The Management Subsystem is intended for use with a network of testing stations. Some programs in the Management Subsystem allow a proctor to monitor testing at a number of testing stations from a single terminal; others store individual examinee data in a master data file.
Table 1. MicroCAT Components

Development Subsystem

BANK: Enters and edits text and graphics items
MAKEFONT: Generates special-purpose character sets
CREATE: Creates tests using pre-defined templates
EDIT: Enters and edits MCATL test specifications
COMPILE: Compiles test specifications

Examination Subsystem

TESTONE: Tests one examinee and writes the score to a file
TESTMANY: Tests examinees repeatedly and writes scores to a file

Assessment Subsystem

COLLECT: Collects and formats item response data
ANALYZE: Performs conventional item and test analyses
ESTIMATE: Estimates IRT item parameters using ASCAL™
EVALUATE: Pre-evaluates a test's potential using IRT
VALIDATE: Performs test validation analyses

Management Subsystem

RESERVE: Reserves disk space for communication
PROCTOR: Proctors test administration from a command station
RETRIEVE: Retrieves data from the master data file

Two substantial modifications to the MicroCAT system were planned to incorporate it into the Naval Training Center (NTC) testing environment. At the time this implementation was planned, the MicroCAT system had no facility by which an examinee could skip an item and later review it, or change responses to any items previously administered. Such capabilities are not typically allowed in adaptive testing. However, to maintain psychological comparability to the existing conventional testing process, such an addition was necessary. The second addition was the incorporation of communication facilities so that the MicroCAT Testing System could communicate with MIISA. The planned approach to this was to enhance the proctoring program so that it could communicate with MIISA by emulating the General Electric Terminet terminals and the standard transaction protocols.
Integrating the Resources

The MicroCAT Testing System runs on IBM Personal Computers. Each individual testing station has one such computer. An IBM Personal Computer consists of three major components: a monitor, a system unit, and a standard keyboard with several additional function keys added at each end.

For the fault-tolerant testing system required for the NTC implementation, 18 IBM Personal Computers were connected via an EtherNet local area network. A diagram of the system is shown in Figure 2.

Figure 2. Structure of the NTC Implementation

![Diagram of the NTC Implementation](image)

The two network servers shown at the top of Figure 2 contain the tests that are administered and the data that are collected. The two servers in the NTC system are IBM PC-XT computers. Each has 256 kb of RAM memory, one 360-kb diskette drive, and one 10-mb hard-disk drive. Each server contains all of the tests to be administered. In normal operation, each server serves half of the testing stations. If either of the servers fails, the other one is capable of handling the entire testing system.
All remaining terminals on the network are IBM PCs with 192 kb of RAM memory and a single diskette drive. The single diskette drive contains only those programs necessary to link each terminal into the network and the current examinee's responses for test recovery in case the testing station fails.

Two of the testing stations are configured to function as proctoring stations. In addition to the standard testing system hardware, they contain a serial port to communicate with MIISA and a printer to print test results. In normal operation only one proctoring station is used; the other is used as a standard testing station and is available as a backup if the proctoring station fails.

IMPLEMENTATION OF THE SYSTEM

Description of the Initial System

The initial system was organized functionally as described above and in Figure 2. To operate the system, the test proctor first has to start the network servers by turning on the power, entering the date and time, and making a single keystroke to start the network server in a normal fashion.

After starting the servers, the proctor turns on the proctor station and all of the testing stations. All of these terminals automatically link into the network and establish a connection with the proper server. The server to which each testing station connects is determined by data contained on the diskette within the testing station.

The proctoring station presents a message asking the proctor if the test request queue should be cleared. In the case of a normal start, this is always done. Only in unusual circumstances, such as recovery after a power failure, would the proctor not clear the test request queue. The communications link with MIISA is automatically established by turning on the modem. At this point the system is ready for operation.

When an examinee arrives to take a test, the proctor assigns him or her to one of the available testing stations. Each available testing station displays the message that the examinee should enter his or her Social Security number and press the return key. When the examinee does this, the Social Security number is passed through the network to the server and from the server to the proctoring station, where it is formatted into a transaction asking MIISA what test should be assigned to the examinee. MIISA then responds with a report, and the program running on the proctoring station extracts the test identifier from that report. It passes the test identifier back through the network to the testing station where the examinee is waiting for a test. This process typically takes between 5 and 10 seconds.

As items are administered at the testing station, each response is edited to ensure that it is valid. When the examinee finishes a test, the response record is passed through the network to the proctoring station, which formats it into a transaction and transmits it to MIISA. MIISA then scores the test, updates the
examinee's course record, and transmits a report to the proctoring station. The proctoring station then passes this report to the system printer, from which the examinee obtains his or her score report. The testing process is complete at this point.

Initial Evaluation

For the most part, the initial system ran without error. Students taking tests on the system were reliably tested and always received proper reports from MIISA. However, the Navy chiefs in charge of the testing process noticed two potential difficulties with the system. First, they determined that it was possible for a student to run two terminals simultaneously. By doing this, a student could preview the items on one station and then answer them on a second station. Since there was no feedback given about the correctness of responses, there was really no advantage to be gained from doing this, but it was nevertheless of concern to the chiefs. The second potential problem was that students could reset their testing stations with several combinations of keys (e.g., control-c, and the system reset combination of control-alt-delete).

System Revisions

To alleviate the first problem identified in the initial evaluation, a lockout buffer was incorporated into the proctoring station to prevent a student from operating more than one station at a time. When a student logs into the system, his or her Social Security number is kept in a buffer and is not deleted until he or she completes the test. If the student tries to log in at another station, a message appears informing him or her that this is not allowed, and the proctor is alerted at the proctoring station.

To solve the reset problem, most of the control key combinations that could reset the testing station were disabled. However, the control-alt-delete combination is buried deep in the hardware of the IBM Personal Computer as the system reset and there is no way to disable it from the software. This was considered a relatively minor problem, however, because it is extremely unlikely that a student would hit this combination of keys accidentally, and anyone who was determined to reset the station could always do so by turning the power off, even if the control-alt-delete combination could have been disabled.

Additional Features

Several additional features were added to the system, some of which had not been initially intended. The first was a modification to allow students to take remedial tests on the computerized testing system. (Remedial tests are for students who fail a particular portion of a test and must retake only that portion after additional study.) In the microfiche mode, the student simply answers the questions in that section and leaves all of the other sections on the answer sheet blank. If the student accidentally answers items in any other section of the test, the test record is rejected by MIISA. To allow remedial examinations in the computerized testing system, two modifications were made. First, standard testing mode was altered to allow students in remedial mode to
skip sections of the test. Remedial test sections without any responses are simply ignored by MIISA. Another modification was necessary to solve the problem that occurred when an examinee accidentally answered an item in the wrong section, causing MIISA to reject the entire test record. In this case, the response vector is analyzed at the proctoring station, and any section in the test that has some but not all of the items answered is completely blanked as if the examinee had answered no items in that section. That section is then ignored by MIISA, and only the section that has all items answered is scored. With these modifications, the computerized mode is virtually identical to the paper-and-pencil mode of remedial testing.

A second feature that was added to the system was the capability to retransmit an examinee's test record directly from the proctoring station. Occasionally, the MIISA system would accept a test record and produce a report but then lose the test record. The proctors then had to re-enter the record by hand using the communication capability provided in the proctoring station. To solve this problem, a facility was incorporated into the proctoring program that would retransmit the entire test record from the recovery file on the testing station's diskette.

Because the data collected by computer administration were to be analyzed by the University of Illinois, a data transfer scheme was needed. The MIISA link is a real-time link in that testing waits for communication. Transferring the data to the University of Illinois, on the other hand, had to be done only when the data were needed or when the disks on the NTC network were full. A system was developed whereby the test proctor periodically dumped the data from the system disks to two sets of diskettes, one for the University of Illinois and one for backup. After dumping the data, the proctor was instructed to mail one set to the University of Illinois and to keep the backup set until receipt was confirmed. The data on the system disk were erased after the diskettes were made. Except for the difficulty of getting the proctor to make the data diskettes on a regular basis, this scheme worked well.

Testing has not been interrupted because of any system problems. It was interrupted for several weeks, however, by the implementation of new versions of the tests. The frequent changes in tests, which had not been anticipated when the system was installed, required frequent communication with the University of Illinois. It had been intended that the University of Illinois would do the test development and then either manually install the tests in the San Diego system or mail complete test files with installation programs to be run by the proctor. However, as the test changes became more frequent, it became apparent that it would be more efficient for NTC personnel to make the changes themselves and install the tests.

Test development in the MicroCAT system is a three-stage process. First, the items are authored using the system's Graphics Item Banker. Then the test is specified using an authoring language. Finally, the authoring language is compiled, a process that reformats the items and processes the instructions in a manner that allows items to be presented rapidly. Implementing a test in the NTC system required the further step of copying the compiled test onto the appropriate disk volume.
NTC test administration personnel mastered the process with relative ease. However, a few problems did arise. One problem was that if diskettes were swapped while the item banker was running, a bank would be destroyed. Although this problem is easily circumvented by not swapping diskettes, this solution was obviously not optimal. A utility program that could recover a bank destroyed in this manner was developed.

A second problem that was encountered was that two people sharing a disk volume using the Ethernet network from 3Com can, under certain circumstances, destroy each other's work. For example, NTC personnel destroyed an item bank by writing portions of a memo over it. Fortunately, the new program was able to restore most of what was lost.

EVALUATION OF THE SYSTEM

The MicroCAT Testing System was implemented at the BE&E School to provide a vehicle for diagnostic testing and to evaluate the MicroCAT system in a full-scale operational testing environment. In general, the MicroCAT system has performed admirably. To date, approximately 2,400 items have been banked for this application. From these, approximately 50 different tests have been implemented, and approximately 1,500 tests have been administered. Informal evidence from the BE&E School suggests that the system is fast enough for all testing needs, that examinee's perceive it as psychologically parallel to the microfiche form of testing, and that it is adequately fault-tolerant. Although the local testing system rarely fails, the capability to retransmit data if MIISA loses the original transmission has been very valuable.

As an evaluation site for the MicroCAT system, the NTC environment has been less than optimal. To date, only the conventional testing capabilities of the MicroCAT Testing System have been evaluated to any degree. The considerable power for adaptive test administration and analysis that is a major strength of the MicroCAT system has not been evaluated at all in the NTC implementation. Fortunately, some of the commercial sites in which the MicroCAT Testing System is used have provided more thorough tests of the system's adaptive testing capabilities. Even there, however, it may be several years before all of the extensive capabilities of the MicroCAT Testing System are given a challenging test.

FUTURE PLANS FOR DIAGNOSTIC TESTING

The MicroCAT Testing System has not yet been used for diagnostic testing; insufficient data have been collected to allow diagnostic tests to be developed. The programs are ready to implement such testing, however.

MicroCAT does not include the diagnostic testing strategies because they are still under development and are not widely used. Diagnostic testing will be implemented using the custom interface included in MicroCAT. The custom interface allows users to link FORTRAN or Pascal procedures to MicroCAT. New scoring procedures can be included this way and are treated by MicroCAT in a manner similar to the standard scoring procedures (i.e., they are executed
each time a score is needed). Similarly, test execution can jump directly to a
custom procedure through the execution of a procedure call in the test
specification.

Using these custom interfaces, programmers at the University of Illinois
will develop and revise the diagnostic procedures as needed. No modification
to the MicroCAT Testing System itself will be required.
REFERENCES

Distribution List

Personnel Analysis Division, AF/MPXA
5C360, The Pentagon
Washington, DC 20330

Air Force Human Resources Lab
AFHRL/MPD
Brooks AFB, TX 78235

Dr. Earl A. Alluisi
HQ, AFHRL (AFSC)
Brooks AFB, TX 78235

Dr. Erling B. Andersen
Department of Statistics
Studiestraede 6
1455 Copenhagen
DENMARK

Dr. Phipps Arabie
University of Illinois
Department of Psychology
603 E. Daniel St.
Champaign, IL 61820

Technical Director, ARI
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Eva L. Baker
UCLA Center for the Study
of Evaluation
145 Moore Hall
University of California
Los Angeles, CA 90024

Dr. Isaac Bejar
Educational Testing Service
Princeton, NJ 08450

Dr. Menucha Birenbaum
School of Education
Tel Aviv University
Tel Aviv, Ramat Aviv 69978
ISRAEL

Dr. Arthur S. Blaiwes
Code N711
Naval Training Equipment Center
Orlando, FL 32813

Dr. R. Darrell Bock
University of Chicago
Department of Education
Chicago, IL 60637

Cdt. Arnold Bohrer
Sectie Psychologisch Onderzoek
Rekruterings-En Selectiecentrum
Kwartier Koningen Astrid
Bruijnstraat
1120 Brussels, BELGIUM

Dr. Robert Breaux
Code N-095R
NAVTRAECEN
Orlando, FL 32813

Dr. Robert Brennan
American College Testing
Programs
P. O. Box 168
Iowa City, IA 52243

Dr. Patricia A. Butler
NIE Mail Stop 1806
1200 19th St., NW
Washington, DC 20208

Mr. James W. Carey
Commandant (G-PTE)
U.S. Coast Guard
2100 Second Street, S.W.
Washington, DC 20593

Dr. James Carlson
American College Testing
Program
P.O. Box 168
Iowa City, IA 52243

Dr. John B. Carroll
409 Elliott Rd.
Chapel Hill, NC 27514

Dr. Robert Carroll
NAVOP 01B7
Washington, DC 20370

Dr. Norman Cliff
Department of Psychology
Univ. of So. California
University Park
Los Angeles, CA 90007
Distribution List (Continued)

Director,
Manpower Support and
Readiness Program
Center for Naval Analysis
2000 North Beauregard Street
Alexandria, VA 22311

Dr. Stanley Collyer
Office of Naval Technology
Code 222
800 N. Quincy Street
Arlington, VA 22217-5000

Dr. Hans Crombag
University of Leyden
Education Research Center
Boerhaavelaan 2
2334 EN Leyden
The NETHERLANDS

CTB/McGraw-Hill Library
2500 Garden Road
Monterey, CA 93940

Dr. Dattprasad Divgi
Center for Naval Analysis
4401 Ford Avenue
P.O. Box 16268
Alexandria, VA 22302-0268

Dr. Hei-Ki Dong
Ball Foundation
300 Roosevelt Road
Building C, Suite 206
Glen Ellyn, IL 60137

Defense Technical
Information Center
Cameron Station, Bldg 5
Alexandria, VA 22314
Attn: TC
(12 Copies)

Dr. Stephen Dunbar
Lindquist Center
for Measurement
University of Iowa
Iowa City, IA 52242

Dr. Kent Eaton
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. John M. Eddins
University of Illinois
252 Engineering Research
Laboratory
103 South Mathews Street
Urbana, IL 61801

Dr. Susan Embretson
University of Kansas
Psychology Department
Lawrence, KS 66045

ERIC Facility-Acquisitions
4833 Rugby Avenue
Bethesda, MD 20014

Dr. Benjamin A. Fairbank
Performance Metrics, Inc.
5825 Callaghan
Suite 225
San Antonio, TX 78228

Dr. Leonard Feldt
Lindquist Center
for Measurement
University of Iowa
Iowa City, IA 52242

Dr. Richard L. Ferguson
American College Testing Program
P.O. Box 168
Iowa City, IA 52240

Dr. Gerhard Fischer
Liebiggasse 5/3
A 1010 Vienna
AUSTRIA

Prof. Donald Fitzgerald
University of New England
Department of Psychology
Armidale, New South Wales 2351
AUSTRALIA

Mr. Paul Foley
Navy Personnel R&D Center
San Diego, CA 92152
Distribution List (Continued)

Dr. Carl H. Frederiksen
McGill University
3700 McTavish Street
Montreal, Quebec H3A 1Y2
CANADA

Dr. Robert D. Gibbons
University of Illinois-Chicago
P.O. Box 6998
Chicago, IL 60680

Dr. Janice Gifford
University of Massachusetts
School of Education
Amherst, MA 01003

Dr. Robert Glaser
Learning Research & Development Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15260

Dr. Bert Green
Johns Hopkins University
Department of Psychology
Charles & 34th Street
Baltimore, MD 21218

Dr. Ronald K. Hambleton
Prof. of Education & Psychology
University of Massachusetts
at Amherst
Hills House
Amherst, MA 01003

Ms. Rebecca Hetter
Navy Personnel R&D Center
Code 62
San Diego, CA 92152

Dr. Paul W. Holland
Educational Testing Service
Rosedale Road
Princeton, NJ 08541

Prof. Lutz F. Hornke
Universität Düsseldorf
Erziehungswissenschaftliches
Universitätsstr. 1
Düsseldorf 1
WEST GERMANY

Dr. Paul Horst
677 G Street, #184
Chula Vista, CA 90010

Mr. Dick Hoshaw
NAVOP-135
Arlington Annex
Room 2834
Washington, DC 20350

Dr. Lloyd Humphreys
University of Illinois
Department of Psychology
603 East Daniel Street
Champaign, IL 61820

Dr. Steven Hunka
Department of Education
University of Alberta
Edmonton, Alberta
CANADA

Dr. Huynh Huynh
College of Education
Univ. of South Carolina
Columbia, SC 29208

Dr. Robert Jannarone
Department of Psychology
University of South Carolina
Columbia, SC 29208

Dr. Douglas H. Jones
Advanced Statistical Technologies Corporation
10 Trafalgar Court
Lawrenceville, NJ 08148

Dr. G. Gage Kingsbury
Portland Public Schools
Research and Evaluation Department
501 North Dixon Street
P. O. Box 3107
Portland, OR 97209-3107

Dr. William Koch
University of Texas-Austin
Measurement and Evaluation Center
Austin, TX 78703
Dr. Leonard Kroeker
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Michael Levine
Educational Psychology
210 Education Bldg.
University of Illinois
Champaign, IL 61801

Dr. Charles Lewis
Faculteit Sociale Wetenschappen
Rijksuniversiteit Groningen
Oude Boteringestraat 23
9712GC Groningen
The NETHERLANDS

Dr. Robert Linn
College of Education
University of Illinois
Urbana, IL 61801

Dr. Robert Lockman
Center for Naval Analysis
4401 Ford Avenue
P.O. Box 16268
Alexandria, VA 22302-0268

Dr. Frederic M. Lord
Educational Testing Service
Princeton, NJ 08541

Dr. James McBride
Psychological Corporation
c/o Harcourt, Brace,
Javanovich Inc.
1250 West 6th Street
San Diego, CA 92101

Dr. Clarence McCormick
HQ, MEPCOM
MEPCT-P
2500 Green Bay Road
North Chicago, IL 60064

Dr. Michael Levine
Educational Psychology
210 Education Bldg.
University of Illinois
Champaign, IL 61801

Dr. Robert Linn
College of Education
University of Illinois
Urbana, IL 61801

Dr. Robert Lockman
Center for Naval Analysis
4401 Ford Avenue
P.O. Box 16268
Alexandria, VA 22302-0268

Mr. Robert McKinley
University of Toledo
Department of Educational Psychology
Toledo, OH 43606

Dr. Robert Lockman
Center for Naval Analysis
4401 Ford Avenue
P.O. Box 16268
Alexandria, VA 22302-0268

Dr. Robert Mislevy
Educational Testing Service
Princeton, NJ 08541

Dr. William E. Nordbrock
FMC-ADCO Box 25
APO, NY 09710

Dr. W. Alan Nicewander
356 Lindquist Center
for Measurement
University of Iowa
Iowa City, IA 52242

Dr. Gary Marco
Stop 31-E
Educational Testing Service
Princeton, NJ 08541

Dr. Frederic M. Lord
Educational Testing Service
Princeton, NJ 08541

Dr. Clessen Martin
Army Research Institute
5001 Eisenhower Blvd.
Alexandria, VA 22333

Dr. James McBride
Psychological Corporation
c/o Harcourt, Brace,
Javanovich Inc.
1250 West 6th Street
San Diego, CA 92101
Distribution List (Continued)

Library, NPRDC
Code P201L
San Diego, CA 92152

Commanding Officer,
Naval Research Laboratory
Code 2627
Washington, DC 20390

Dr. James Olson
WICAT, Inc.
1875 South State Street
Orem, UT 84057

Office of Naval Research,
Code 1142PT
800 N. Quincy Street
Arlington, VA 22217-5000
(6 Copies)

Special Assistant for Marine
Corps Matters,
ONR Code OOMC
800 N. Quincy St.
Arlington, VA 22217-5000

Dr. Judith Orasanu
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Wayne M. Patience
American Council on Education
GED Testing Service, Suite 20
One Dupont Circle, NW
Washington, DC 20036

Dr. James Paulson
Department of Psychology
Portland State University
P.O. Box 751
Portland, OR 97207

Dr. Roger Pennell
Air Force Human Resources
Laboratory
Lowry AFB, CO 80230

Dr. Mark D. Reckase
ACT
P. O. Box 168
Iowa City, IA 52243

Dr. Malcolm Ree
AFHRL/HP
Brooks AFB, TX 78235

Dr. Carl Ross
CNET-PDCD
Building 90
Great Lakes NTC, IL 60088

Dr. J. Ryan
Department of Education
University of South Carolina
Columbia, SC 29208

Dr. Fumiko Samejima
Department of Psychology
University of Tennessee
Knoxville, TN 37916

Mr. Drew Sands
NPRDC Code 62
San Diego, CA 92152

Dr. Robert Sasmor
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Mary Schratz
Navy Personnel R&D Center
San Diego, CA 92152

Dr. W. Steve Sellman
OASD(MRA&L)
2B269 The Pentagon
Washington, DC 20301

Dr. Kazuo Shigemasu
7-9-24 Kugenuma-Kaigan
Fujusawa 251
JAPAN

Dr. William Sims
Center for Naval Analysis
4401 Ford Avenue
P.O. Box 16268
Alexandria, VA 22302-0268
Distribution List (Continued)

Dr. H. Wallace Sinaiko
Manpower Research and Advisory Services
Smithsonian Institution
801 North Pitt Street
Alexandria, VA 22314

Dr. Maurice Tatsuoka
220 Education Bldg
1310 S. Sixth St.
Champaign, IL 61820

Dr. Richard Sorensen
Navy Personnel R&D Center
San Diego, CA 92152

Dr. David Thissen
Department of Psychology
University of Kansas
Lawrence, KS 66044

Dr. Paul Speckman
University of Missouri
Department of Statistics
Columbia, MO 65201

Mr. Gary Thomasson
University of Illinois
Educational Psychology
Champaign, IL 61820

Dr. Robert Tsutakawa
The Fred Hutchinson Cancer Research Center
Division of Public Health Sci.
1124 Columbia Street
Seattle, WA 98104

Dr. David Thissen
Department of Psychology
University of Kansas
Lawrence, KS 66044

Dr. Peter Stoloff
Center for Naval Analysis
200 North Beauregard Street
Alexandria, VA 22311

Mr. Gary Thomasson
University of Illinois
Educational Psychology
Champaign, IL 61820

Dr. Martha Stocking
Educational Testing Service
Princeton, NJ 08541

Dr. Vern W. Urry
Personnel R&D Center
Office of Personnel Management
1900 E. Street, NW
Washington, DC 20415

Dr. William Stout
University of Illinois
Department of Mathematics
Urbana, IL 61801

Dr. Robert Tsutakawa
The Fred Hutchinson Cancer Research Center
Division of Public Health Sci.
1124 Columbia Street
Seattle, WA 98104

Maj. Bill Strickland
AF/MPXOA
4E168 Pentagon
Washington, DC 20330

Dr. Kikumi Tatsuoka
CERL
252 Engineering Research Laboratory
Urbana, IL 61801

Dr. Vern W. Urry
Personnel R&D Center
Office of Personnel Management
1900 E. Street, NW
Washington, DC 20415

Dr. Frank Vicino
Division of Psychological Studies
Educational Testing Service
Princeton, NJ 08541
Dr. Ming-Mei Wang
Lindquist Center for Measurement
University of Iowa
Iowa City, IA 52242

Mr. Thomas A. Warm
Coast Guard Institute
P. O. Substation 18
Oklahoma City, OK 73169

Dr. Brian Waters
Program Manager
Manpower Analysis Program
HumRRO
1100 S. Washington St.
Alexandria, VA 22314

Dr. David J. Weiss
N660 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455

Dr. Ronald A. Weitzman
NPS, Code 54Wz
Monterey, CA 92152

Major John Welsh
AFHRL/MAOAN
Brooks AFB, TX 78223

Dr. Rand R. Wilcox
University of Southern California
Department of Psychology
Los Angeles, CA 90007

German Military Representative
ATTN: Wolfgang Wildegrube
Streitkraefteamt
D-5300 Bonn 2
4000 Brandywine Street, NW
Washington, DC 20016

Dr. Bruce Williams
Department of Educational Psychology
University of Illinois
Urbana, IL 61801

Dr. Hilda Wing
Army Research Institute
5001 Eisenhower Ave.
Alexandria, VA 22333

Dr. Martin F. Wiskoff
Navy Personnel R & D Center
San Diego, CA 92152

Mr. John H. Wolfe
Navy Personnel R&D Center
San Diego, CA 92152

Dr. George Wong
Biostatistics Laboratory
Memorial Sloan-Kettering Cancer Center
1275 York Avenue
New York, NY 10021

Dr. Wendy Yen
CTB/McGraw Hill
Del Monte Research Park
Monterey, CA 93940
END
DTIC
8-86