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OUTLIER RESISTANT FILTERING AND SMOOTHING
by
Haralampos Tsaknakis and P. Papantoni-Kazakos
University of Connecticut

EECS Department, U-157
Storrs, Connecticut 06268

Abstract

We consider a stationary Gaussian information process transmitted through an
additive noise channel. We assume that the noise and information processes are
mutually independent, and we model the noise process as nominally Gaussian with
additive independent ouliers. For the above system model, we first develop a theory
for outlier resistant filtering and smoothing operations. We then design specific
such nonlinear operations, and we study their performance. The performance criteria
are the asymptotic mean squared error at the Gaussian nominal model, the breakdown

point, and the influence function. We find that our operations combine excellent

at the nominal model performance with strong resistance to outliers.
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1. Introduction

In filtering and smoothing, information carrying data are extracted from noisy
observations. The formalization and solution of the filtering and smoothing problems
are well established, when the joint process that characterizes the relationship be-
tween information and noise data sequences is statistically well known (see Kalman
(1960, 1963), Kolmogorov (1941), and Wiener (1949)), or parametrically known.
Linear filtering and smoothing operations are then by far the most
widely used, due to their simplicity in implementation. In practice, however,
the occurence of occasional extremely erroneous data values, called outliers, are fre-
quently observed. Furthermore, linear data operations are notoriously nonresistant
to such outliers, inducing dramatic performance instabilities. The purpose of this
paper is to establish a theory for outlier resistant filtering and smoothing procedures
and to provide specific such data operations for Gaussian information processes, and
additive, nominally Gaussian, noise processes. QOur presentation is based on the
theory of qualitative robustness (see Boente et al (1982), Cox (1978), Hampel (1971),
Papantoni-Kazakos and Gray (1979), and Papantoni-Kazakos (1981, 1983, 1984a, 1984b)).

2. Preliminaries

Let us consider discrete-time information and noise stochastic processes. Let

k - k - k -
XK {xi,..,xk} » WY {wi,..,wk} , and Y {Yi,...,Y

i i } , i>k,denote random data

k

sequences respectively generated by the information, noise, and observation (joint

k

information and noise) stochastic processes. Let xk {x .o k} » Wy < {wi""wk}’

and yi {yi,..,yk} » 1>k, denote realizations of respectively the random sequences,

XE. WE, and Y&, and let x?, wﬁ, and y? all take their values on the Euclidean space

Rk'1+l, Let y denote the measure of the observation process, and let u" denote the

n-dimensional restriction of u. Let the objective be to estimate the information

k

datum X from the observation sequence yi» where i<f<k, and let the mcan squared

criterion be used. If the measure, p, is well known, then the mean squared estimate,

. . .. . NN . .\- .
) < -.L.L.'l_‘ilh..
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Xp» of xp is given by the conditional expectation E {Xllyg,uk'i+l}. If the

measure Y is also Gaussian, then the latter conditional expectation is a linear

transformation of the observation sequence y}. Given the measure, U, and the

b
|
K
observation sequence, y%, the mean squared estimate, ﬁl = “L(y}), is a function
of the sequence yE, whose specific form is determined by the measure u. The induced
’
j mean squared error, eik(u’il)' is then equal to the expected value

E{[Xp~R, (YK) 12 [uk=141}, where %,(y%) = E{X,|y¥,uk-1*1}.

The occurence of occasional outliers induces uncertainties in the description
of the measure . The initial issue is then the qualitative characterization of
those uncertainties, with the final objective being the design of outlier resistant
filtering and smoothing operations. As it has been previously established (Boente
et al (1982) and Papantoni-Kazakos (1983, 1984b)), the outlier model is best. described
by a Prohorov class. In particular, if H, denotes the nominal measure of the observa-

tion sequences, the outlier model is described by the Prohorov ball Hn

<
pn(uo,u)_; of
processes, where € represents frequency of outlier occurence, and where pn(xn,yn) is
a distortion measure between data sequences x" and y® respectively generated by the

measures uo and y, defined as follows:
-1 A n n
n ?lxi‘yil = Yn(x sy ) ; for given finite n

p (x7,y1)= (1)

i

4m _j+m .

inf {a:n'll#i:ym(x

n>n, where m and n  are fixed positive integers

If N denotes the class of joint processes, v, whose marginals are uo and u, then
the Prohorov distance Hn on (uo,u) is defined as follows:

n (u_,u) = inf  inf {8:v(EyR:p (xTyn) >8)<8} (2)
n’pn 0 N n
Ve

The distortion measure pn(ny“) in (1) is clearly a metric, for all n, the
integer m is a design parameter corresponding to outlier patterns, and n, is an

integer determined by the nominal measure i, for the satisfaction of performance




' N i4n-1
stability. In particular, given n, an estimate, Xp (yi ), i<l, of the

information datum xp is called outlier resistant or qualitatively robust at

U iff:

o’
Given €>0, there exists 6>0, such that,

M, o (Mo W) <6 implies leg san-1MorRp) =85 g4n-1 (WoRp) [<€

Furthermore, for the estimate ﬁl (yi+“'1), i< to be outlier resistant at uo,for
given finite n, it is sufficient that §£ be bounded, and that the following continuity
condition holds (see Papantoni-Kazakos and Gray (1979),Boente et al (1982),and Papanto
Kazakos (1981, 1983, 1984a, 1984b)), if the class N in (2) includes stationary
processes only.

Condition A

For given finite n, pointwise continuity as a function of the data.

That is, given €>0, given xi*“'l, there exists 6>0, such that,

i4n-1
yi*“’lz n‘1§=i lxj-?j|<6 implies lﬁt(x%+“'l)-ﬁ£(yi+“'l)|<€

If N is a class of stationary and

ergodic processes, then the limit lim Hn b (uo,u) of the Prohorov distance in (2)
nse 70

equals the Prohorov distance Hm (uo,u), where Ym(xm,ym) is as in (1). In add.-
b ]

Ym

tion, if the measure ug is absolutely continuous, and if then fg(xm) denotes the

density function induced by the measure “2 at the vector point x™, the class @
of density functions defined below is contained in the class Hm,Ym(uo,u)fp of
measures H.
F = { f@m = (1-g) £+ eh™ , h™® any m-dimensional density function}  (3)
The class F® of densities in (3) represents the occurence of arbitrary outlier
m-dimensional data sequences, with probability €, where with probability l-€ each

m-dimensional data sequence is generated by the nominal measure M,

I PO PO AN |
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3. The Model and Outline of the Approach

We will adopt the nominal model of additive and mutually independent informa-

a0 A N R T T ST TR T

tion and noise processes, which possess density functions, for any given dimensionalit
n. Given n, these density functions are respectively denoted fgs and ng, and the
corresponding density function, fg, of the nominal observation process is then given
by the convolution fgs *f:N' We will consider m-dimensional outlier patterns, as
described by the class F™ in (3), with fg =f2s* ng. Given the above model,

we wish to estimate the data sequences,..,X_j,X »Xys-e) generated by the density
function fos' In particular, each information datum Xp is estimated via an observa-
tion sequence yi+k‘1,i§£§i+k-1, where if £=i+k-1 the estimation operation,
it(yi+k'l), corresponds to filtering, and where it corresponds to smoothing otherwise.
Initially adopting the mean squared criterion, we are seeking filtering and
smoothing operations that are outlier resistant, and simultaneously induce satisfactory
performance at the nominal model.For finite number of observations, condition A,section
in conjuction with boundness are sufficient for outlier resistance. They define,
however, a large class of possible operations, and they do not incorporate perform-
ance at the nominal model. We will address the overall issue (outlier resistance
and performance at the nominal model) via a combination of saddle point game theory
and the theory of qualitative robustness. We will do this in two steps: (a)

when each information datum is estimated via a length -k observation sequence, for

k<m, where m as in (3), and (b) when the latter length k ecxceeds m. At each step,
a saddle point game is first formalized and solved. Then, the induced by the
latter solution filtering or smoothing operation is checked against the continuity
condition A in section 2 and against boundness. If those conditions are not
satisfied, the operations are appropriately modified. To avoid vagueness in our

presentation, we assume from now on that the nominal information process (with density

function fos) is zero mean and Gaussian.




4. Construction of Filtering and Smoothing Operations-Step 1

Consider the model in section 3, with fos Gaussian, zero mean, and not necessaril
stationary. Let then Rs(i,j) denote .the autocovariance matrix of the random informa-

tion data sequence Xj where j>i, and consider the mean squared estimation of the

the information datum Xp» using an observation sequence y§+k-1, such that i§£§i+k-1

and k<m, where m is as in (3). For dimensionalities k<m, the observation sequence

\
N
\ y}+k‘1 is generated by the k-dimensional restriction of some density function fm
r
i in the class FB. Given some estimate, ﬁl(y§+k‘1), of the datum xz, the mean squared
m 2 : . m L i+k-—1 2 m
; error, ei,i+k—l(f ,xl),that it induces at the density f®,equals E{[XE xl(Yi )] If }.
v

Given k<m, we then consider a saddle point game, with payoff function the error

A . m ~%
ei i+k—1(fm'x£)' In particular, we search for a pair (f*,xz) such that f ef®, and,

m. .
R e e n(ER R ) Sep g (B <ep i (FoRg)s ¥Ry (4
From the results in Papantoni-Kazakos (1984a), we conclude that for the class F®
*
in (3), the game in (4) has a saddle point (f:,ﬁz). From the theory of saddle point

games we then conclude that the saddle point can be found as follows.

A . m A%k = m A
(f*,xt) ey sik-1 (£3,%p) = sup inf ®; itk-1 (£7,%,) (5)
£Me FI Xp
;where, if fk denotes the k-dimensional restriction of the density f@  then,
m $ =g 2 - k
inf e i4k- 1(f . l) Oz I (f%) (6)
xg
2 _ 2
ap E{XZ} (7
1ek) & e E2(x ol YiHd gk} k) (8)
;and thus,
(M 1 (£X) = 1 T(£Y) (9)
foefm
Ak | Ak k-1, _ j+k-1 _k 10
Xp : %p (yi ) E{ X | vy ) (10)

Let us now denote by VZ the (£~i+l)th row of the autocovariance matrix

: 1y . . k (o i+k-1
Rs(1,1+k 1); that is, Vp = = [E{X Xt},...,E{X Let now Vef (yi )

1+k—1x£} I

denote the directional derivative of f (y§+k'1) with respect to the column

T . . . . . . . .
vector VZ' Then, since the information process is zero mean CGaussian, we easily
find that the quantity l(fk) in (8) takes the following form, where R denotes
e el R ‘.‘..._' ‘.‘_‘-’_"-"'.l_’ _-.A .
. . . oL - N A OO G G WS T Ty v "
R T T I UL I T LN Lt UL ST SR ‘7‘\' _‘_; \A R L‘ W _\h KRGy &L S A e Syeciy




the real line. e1s 12
k(¢ itk-
I Rk fk(yi+k—1)

d y§+k—1 (11)

The functional in (1l1) is a generalized Fisher information measure, and it
is vaguely lower semicontinuous in the vague topology of all the k-dimensional density
functions (Huber(1981)). 1In addition, the closure, F:, of the class F® in (3)

is vaguely compact. Therefore, the infimum, i%fml(fk), exists and is attained
fF
in F?. If f is some density in F® that attains the latter infimum, then the

estimate xz in (10) takes the following form.

Vpfk(yitk-l)

k, 1+k-1

(12)

;
{
]
v
|
\
\
\
.
i
E
p

ak Ak i+k-1y = _
Xp + Xy (y] )
Regarding uniqueness, we proceed with the following theorem, whose proof
is in appendix A.

Theorem 1

Let f} and f% be two densities in F® that both attain the infimum

inf I1(fX). Then,
£ReF™
ke itk-1 k(yvitk-1

k, i+k-1, k, i+k-1
1(yi ) fz(yi

The saddle point estimate ﬁz in (12) is thus a.e. unique in F™,

p ) -e. y7

To find the explicit form of a saddle point pair (f*,ﬁ;), we will now assume

that the nominal noise process is zero mean Gaussian and we will denote the auto-

covariance matrix of the random sequence wj,jzi from this process, RN(i,j). Con-
sidering the (£-i+l) th row VZ of the autocovariance matrix Rs(i,i+k-l), defined

earlier, we then denote,

AP R S SRRSO N 0 (NN
AT P TR SR NS S U R R S S WA SR SO PRI
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Mik = Rs (1, i+k-1) + RN (1,i+k-1)

=Ml T
1w =M v (13)
ra 8 =V By, (B
Kk i+k-1
y = y]'.

Denoting by ¢(x) and ¢(x) respectively the density function and the
cumulative distribution at the point x, of the zero mean, unit variance Gaussian

random variable, we then express the following lemma, whose proof is in appendix A.
Lemma 1
Let the nominal information and noise processes in class F" be both Gaussian

with zero mean and autocovariance matrices as above. Then, a saddle point solution

(fE,ﬁZ) of the game in (4) is given by the expressions below, where iZ(yk) is unique
a.e. in Rk, and where I |, T, (-1) respectively denote determinant, transpose, and
inverse.

( -k/2 -1/2 1 kT -1 k] kT K| .

(1-e) (2m) lMikI exp{--f y M,y }, .IPik(Z)y I <A
(14)
(o)
k .k 2 T POy
f (y ) = - —k/2 _1/2 A _ i k k_ 1 _
* { a-o oo LI *Pie 0 "3 Mk YT T @
ik ik
T k
. Dy }
ik k T k
Ay i [P Dy | >
\ rik(l) ik
k k T k
@y 5y |pg @y <A
~ k
xe o T k k T k (15
13 . > \
X sgn (Pik (¢) v ) vy lpik ¢y v
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; where,
1 ;x>0
sgnx =

-1 ; x<0
A=c /rik(t) (16)
. -1 . 2-€ (17)

c : % (c) + ¢ ¢ (c) = 2016

We note that given €, the constant ¢ in (17) is unique. Also, rik(£)=I(f§),

k . .
where fo is the nominal Gaussian observation density. Thus, given £ and i, r,

1k(£)

is monotonically nendecreasing with increasing k. Similarly, given £ and k,

rik(ﬂ) is monotonically nondecreasing with decreasing i. We observe that the
estimate in (15) is a truncated version of the linear, optimal at the nominal
Gaussian model, mean squared estimate. In addition, for £+0, the constant ¢ in (17),
tends to infinity, and so does then the truncation constant A. In the latter case,
the estimate in (15) becomes identical to the optimal at the nominal Gaussian

model mean squared estimate. Finally, for any €>0 in (17), the estimate in (15)

is clearly bounded, and satisfies condition A in section 2; it is thus outlier
resistent.

* K
The mean squared error, e (fT,ﬁf), induced by the estimate Xp in (15),

i,i+k-1
N X . k, k, . 2 k
at the least favorable in density function f*(y ) in (14),equals oe—I(f*),
where I(fk) is the information measure in (11). The above error is the largest mean
*
squared error induced by i( in Fm, and by substitution we obtain,
|

m A*) 2 2
ei,i+k*1(f*’ xe) = 0(! l-(l-c)(Z ¢ (c) —1) Oik(e)$ (18)

; where © is as in (17), and rik(F) is as in (13), and where,




A

m . *
Let ei,i+k—l &b,xt) denote the mean squared error induced by the estimate

X in (15), at the nominal Gaussian observation density f" °
¢ y £/, and let ei,i+k—1(£)

denote the mean squared error induced by the optimal at fg mean squared estimate of

m . i+k-1
Xp> at fo’ given the observation vector vy . Then, via straight forward computa-

tions, and for ¢ as in (17) and Dik(ﬂ) as in (19), we obtain,

s Sl S L S 0T LT T

0 2 2

ei,uk_l(t) = 0 |1-0;, (Z)] (20)
m ~% _ (o] z \ 2 )

1 itie1ForRp) = € L1 @)+ 2r (D0 et - ep(e)) @D

a.'

5. Construction of Filtering and Smoothing Operations - Step 2

For the same model as in section 4, we now consider the case where the
length of the observation sequence is larger than the integer m in (3). Consider-
ing observation sequences y, 5 we will distinguish here between causal filtering and

noncausal filtering or smoothing. In the former, the information datum X, is

. . . k .
estimated, given the observation sequence Yy - In the latter, the datum X, 1s

estimated, when the sequence Yy is observed.

5.1. Causal Filtering

Let us define,

<<
|

. [E{xlxk%,..., E{xkxk‘]

Rs(l,k) +RN (1,k)

=

(22)

-1t
P = M Y
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Then, for k < m , and directly from lemma 1, we conclude that the

estimate ;k (yt) is as follows.

x>
ne

X k) = Pl y¢) . k<
k- Mk \Y1/7 B T Y 5 ke (23)

; where,

BF K (z) = (24)

Ak =c ri/z (25)
c : ¢ (c) + c—1 p(c) = E%%§EY (26)

Let us now assume that k>m, and let us consider the estimation of the datum

£

X, given the estimates :22 (yl); 1< £< k—ll, and given the observation sequence y?.

~k-¢ ~k-£ T A A : .
For x; = : (x; ) = [xl""xk—ﬁl’ k-f > 1, let us define,
" = T -1 ~k-m ] < < -
*1e C£,£+m—kRs,k~mx1 3124 <kl
- ~k-= (27)
),i - GT R 1l Xk m
Tk km s,k-m "1
; where,
T TA T
O™ [E{Xlxk},...,E{Xk_ka}] » Gp = Gpy (28)
RS Kt = Rs(l.k-f_) (29)
Given £ : 1 < £ < k-1, the effective observation datum corresponding to the time index
£ is then, Y —QIZ . In addition, given the sequence of estimates,

}i( (Yf); 1< €& < k—m' an initial estimate of the datum X, is provided by x

‘ ’

For the final estimate of the datum X, 1k

Tk’
©m, we use the operation

(2) in (24), in conjunction with the above effective observations, to obtain,

,
I,m
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2 8RN =6l gL gkem (Iy. - x :
k- Mk km “s,k-m "1 Erum kT e Y emil” *I,k-m+1°92--+»0IP))

s k>m (30)

; where Gk’R k-1 and Pk are respectively as in (28), (29), and (22), and where,
§k=e T
1

As an alternative, we also consider the following causal filtering operation.

. A . A [ 2
= [xl,.-,xk_[— ] ’ xz = xz (Yl) (31)

T x
gp,k(l’k yl); k<m
KA (32)
T -1 k-1

Bmk RS (m,k~-1) z s k>m

M)
]

;whexe, (Ei-l)T = [ém""‘;k—l] R sz = [E{mek},..,E{Xk_lxk}], and,

A T 2 .
Ze = EF,m (Pm y[_—m+l) 34 2m (33)

5.2 Noncausal Filtering or Smoothing

Let us define,

[}

Vg [E{xk_z)&} E{XH_[ xk}]

]

"ee

R (k-£, k+2) + R (k~£,k+P)
S n

-1 . T (34)
= M Vi

Vie Pre

For 2f+1<m, and directly from lemma 1, we then conclude,

P NN k+£)_ ('r k+£’). .
ke T Xk (yk-B " Bse \Tke Yieg) ¢ 20 amed (35)

- B A R TN P A R AT TR
'.n'.n‘l' }\.\.\\. " w




; where c is as in (26), and,

H ,ZI Suke

4 (2) = (36)
S,k,
¢ e sen(2) ;5 |z| >,

! b = € Tip? (37)

For £ such that 2 >m - 1, and m = 2n + 1, we consider the following

smoothing operation.

T 2k-1) . .
gS,k,k—l (Pk,k_lyl 5 2(k-1)<m-1 =2n

kA T . (38)
T - ~ . _ ~ -
Hk sk-n-1 AS sk, k-n-1 wk-—m ’ .2 (k-1) > m-1 2n

; where,
~ T ~k-1.T ~2k-n-1.T
(wk—m) = [ ( wn+1) » ( Vit 1 )]
T
k-l ~ A
(§n+1) - [;n+l,n""’ wk-l,é] (39)
sz-n"l T R o G
k+1 T (Pk+1,0°7 7 Y2kno1 0
G, = pl  n
Z,n gS,K,n 2,0 Ye-n

6. Asymptotic Properties

In this section, we are focusing on the asymptotic properties of the

operations presented in section 5. We begin by proving that the latter

operations are outlier resistant, for asvmptoticallv long data sequences,

For finite length such sequences, the operations are outlier resistant, since

they satisfy condition A in section 2. Regarding
y

asvmptotic outlier resistance,

, . oy y et T P
e s L T T R A T e e e LT s
KL B L PRI ARSI S I N
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we will go directly to the definition of outlier resistance, stated in section 2.

We will consider sequences of i.i.d. m-size blocks of outlier values, that are

additive to and independent of the nominal Gaussian noise process. We then
express the following theorems, whose proofs are in appendix B.

Theorem 2

Let the Gaussian information process in sections 4 and 5 be such that:

Aty Vo E - WS W

There exists some finite positive constant c, such that,

P

E{Xi} <c | ; ¥k
LS A:k,k—l Ll 25 ¥ (40)

o R:k—l Tea| <5 vk
T A T .
;where In = [1,...,1], with n elements, and where Gk arnd Rs,k—l

are respectively given by (28) and (29).

Then, the operation in (30) is asymptotically (k + «) outlier resistant,
within the class of stationary and ergodic observation processes, and for mutually
independent m-size batches of ouliers.

Theorem 3

Let the Gaussian information process satisfy conditions (40) in theorem 2.
Then, for mutually independent m-size batches of outliers, the operations in (32)

and (39) are outlier resistant, for every k.

We will now turn to the evaluation of the asymptotic at the nominal Gaussian
model mean squared error, induced by the operations in (32),(38),.and (30),

in the case where the Gaussian nominal information and noise processes are both

stationary, with respective power spectral densities, fg(w) and fV(M)‘ Wwe[-m,n],




Cf ¢ TR » » o £ ¢ VRS2 57 0 T
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We will start with the operations in (32) and (38), whose asymptotic forms, when
the information datum X is estimated from infinite past and future observation

data, are then respectively as follows.

X .= ii d, g (PT yt )
OF Jrt £ °Fm “m T Ly (41)
. o T {£+n
Xos = 2 22 85,2,0%e 000’ (42)
,C:-oo
240

The sets {dZ} and {az} are respectively the prediction and interpolation coefficients
corresponding to the Gaussian nominal information process. The functions 8p m(.)

and 8s ¢ n(.) are respectively as in (24) and (36), and they both induce stationary
processes, when operating on sequences from the stationary nominal Gaussian model.
Let us then denote by fgﬂn) and fg@u) ,» we [-m,M], the power spectral densities

F,m S,n
induced respectively by g.. (.) and g (.) and the stationary Gaussian nominal
F,m s,{,n
model, where then 85 p n(.) is not a function of £. Let D(w) and A(w), we [-mw,7],

be the Fourier transforms of respectively the sequences {dt;—¢<£<-1} and

{a£;~w<£<w,£#0}, and let us define,

H (w) = [1,e'j?...,e‘j“(m‘1)]pm (43)

H (w) = [ejwn,..ejw,l,e_J?...e_an]P

(44)

; where Pm in (43) is as in (22), and where Pn in (44) is as P N in (34), for any k

k

in the case of the stationary Gaussian nominal model. Given all the above, and

denoting by e(fo, iOF) and e(fo, QOS) the mean squared errors induced respectively by
the estimates in (41) and (42), at the nominal stationary Gaussian observation density

fo’ we obtain,

RO
.




T T . e e | e T
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L n
e(fo, i‘cop) = (211)'1{/ fs(w)dw - 2[2¢(c)-1]/ Re(D(w)HF'm(w))fs(w)dw
-7 -
T
+ | £ w]|pw] |2m} (45)
- gF,m

m 1
e(fo, )‘(OS) = (2n)-l { /fs(w)dw - 2[2¢(c)-l]/Re(A(w)Hs’n(m))fs(w)dm

- -

b}
+ | £ (w)HA(w)szm}
/_" gs’n (46)

; where Re(.) denotes real part, where Hh(m))”2 = h(w)h*(w), where ®(x) is the
Gaussian distribution at the point x, and where the constant c¢ is as in (26).

The quantities that present problems in the evaluation of the asymptotic mean

squared errors, in (45) and (46), are the power spectral densities f (w) and
F,m
f (w) . These power spectral densities correspond respectively to the sequences,
S,n
{g (2,)} and {g (E.)} of random variables, where Z, = PT Yi and E, = PT Yi+n
F,m i S,n 1 ’ i m  i-wtl i n i-n’

and where for c as in (26), )\m as in (25), and Moo= s ¥k as in (37), the functions
B m(z) and gs,n(z) are as follows.

‘ HEI

gF,m(z) = (47)
l Xmsgn(z);lz|>km
‘ Z, 'Zlf_un
gs,n(Z) = (48)
upsen(z);lz|>u_

We will seek upper and lower bounds on the errors in (45) and (46), via the
derivation of such bounds on the spectral characteristics of the sequences

{p

m('/.i)b and {gg n(F,i)} . We note that the power spectral densities, fz(m)

Ty

F,
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T ,i
and fE(Q), of respectively the Gaussian sequences {Zi =P Yi—m+1} and
{Ei = P: Yit:} , when {Yi} is generated by the Gaussian stationary nominal

density fo' are easily found to be given by expressions (49) and (50) below, where

HF m(w) and HS n(w) are respectively as in (43) and (44).

-— 2 - -—
£, (w) -'IIHF’m(w)II (£ (W) + £ (w))swel~m,7) (49)
2
fp(w) = lle’n(w)H [f () + £ (w)];wel-m,7] (50)
Let us now define the following quantities.
A 4
ToF E{Ziziﬂp‘fo} * Tps E{EiEi+Plf0}
r
24 4 _pF 2 b2 .2 51
Ok = Tor * YpF 2 Ops ~ O [1-Yg! L
F
2 4 4 Tps 2 8,22
9% = Tos * Yps 2 " e T g [1-vq)
s
= C p— -
b ,(n) & r A[z b ([1— 5 ]1/2) 1] (29 (c)-1]
pA
n= -2 -k (2k-1) c
+ 20 (n-2)r Y -g ) ( -t )
A
kgl: pA [1—Y2A]1/2
p
| 2o(rm1 . & 20-1 keber K S2(k-bs) (-1t 1]
SR D D 2 e — ] —nd .
| ¢ 3 (2k+1) ! (£-1) ! kt2e-1y ] |
A = For S (52)
‘l o x >0
U(x) =
’0 X 0
RIS R ST LR GO e T Ty
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2 A 2 jo 2
’. By (n .4 = [20(e)-117¢ (W) + 2 e "{pr(np) - [2¢(c)-1] rpA}
r p lf_lp'f_N—l

? + oi {2¢(c)[3-c2—2¢>(c)]—2c¢(c) + 2c2-2} ; A=F or § (53)

L
, (n ), forR0) = ¢ am 1{ /fs@’)dw - 2[24’(‘3)"1]fRe(D(w)HF’m(w))fs(w)dw

-7

_ T

: +[ ||D(w)||28N (] F(w)dw} (54)
- —Tr » p k]

. 2 m T

-, eN,{n },S(fo,i‘(o) 4 (Zn)-l{ / fs(w)dm - 2[2¢(c)-1) / Re(A(w)HS’n(w))fs(m)dw
. p ~T ul -

: + / |]A(w)||28N’{np}’s(w)dw} (55)
o -

; where D(w) and A(w) are respectively as in (45) and (46), where H (m) and

HS n(m) are respectively as in (43) and (44), and where c is as in (26). Then,

N for e(fo,QOF) and e(fo,SEOS) respectively as in (45) and (46), we can express the

following theorem, whose proof is in appendix B.

Theorem 4

Let r _ and r . in (51) be such that, r > \0 and
pF ps 1 ¢ Ip{,F

Tlp[+1,F

-1

r >r 0. Let and in(59) be such that < e(l+e) and
- o[, o[ +1, N Yor Yyg in(59) o Yop < e
) YpS < e(1+e)-1, ¥ |p| > 1. Then, given & > 0, there exist positive finite integers,
]
- . . . < -
. N. and N, and sets of positive integers, {on 3 1< [p| < Ny 1} and

{nps ;1 < lp] < Ns-l}, such that, n

> d
lp[,F ~ "lp|+1,F 2" Vip|

; v
pl,s ~ "lpl+,s PP

A and,
: le(f ,% )—el (f, % )|<5
. o’ OF NF,{ } F ’
d
« . 2
: Ie(fo'xos) - eNS { } S ,x0)|<6
A
» where e NF’{n F},F(fo,xo) and eNc; (n } g(f %) are given respectively by (54) and
- . . R .. AN I\ R
. e Lt - PO .'.".- -‘._. ._._.._.-\_ ‘.’ -‘_‘-.‘ _." ‘ * \ O -‘- " .“A . RPN oo :
SR AN A A e R e S e X e e ﬂ‘g‘m“
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(55). The latter errors are then used as close approximations of respectively the

mean squgred errors e(fo,XOF) and e(fo,xOS), in (45) and (46).

Let us now turn to the estimate induced by the operation in (30).
For stationary information and noise processes, and for the datum X being estimated
from infinite past and future observation data, the asymptotic form of this
estimate is as follows.

-m 0 -m .
Ror = 2 denter * Br,m (Z bilyy = 2045 mei¥yr) ) (36)
i

== =-m+1 j=—

; where {dﬂp} are the prediction coefficients corresponding to the Gaussian
nominal information process, for predicting xo from (x£ ;~w<f<-p} ,and where {bi} are
the filtering coefficients at the nominal Gaussian model, for estimating X, from
{yp s-<£<0}. The function gF’m(.) is given by (24), with k=m.

We will study the asymptotic performance of the prediction estimate in
(56), for autoregressive Gaussian nominal information processes, and additive white
Gaussian nominal noise processes. Let the nominal model be described as follows.

u =Au  + By

n-1 -1

T " (57)
=Bu +w

n n

Ya

; where the sequences {Vi} and {Wi} are mutually independent, i.i.d. and zero mean

. , . . 2 2
Gaussian, with respective variances 0  and r , and where,

ul < [x , x ceey X ]

—n n’ "n-1" ' Tn-k+1
aps a2, . ak
1,0, ..., 0

A= (58)
0,1, 0, , 0
0, ....... , 0, 1
_—— -

81 = (1, 0,.., 0]

Then, the estimate in (H56) takes the following form.

AR e tie e LT p A M B Y e e T
PRI T S *: .« :‘n n‘ﬂ-n.' \."‘.{\-‘f\‘\_'.\‘:\ - .'_\{'z,i\..::‘"(" = » a3
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ADC)

0
m A T ,m+i .
F-A Sqr ¥ -&F,m(z by -8B A7 d, ] ) (59)
i=-m+l

; where [Qi} are the vector coefficients of the optimal at the nominal model
linear mean squared estimate of Yy given {yi ;1 f_O}, and where for ¢ as in (17),

and for r_j o being the variance gain induced by the optimal at the nominal model

linear mean squared estimate of x_j, given {yi ; —mtl < i< 0}, we have,

T
g'F,m(“z) = [gF,O,m(zl) et ’gF,—k+l,m(zk)J

Ay FEILEARE oo A4 Rl

T
= [zl,...,zk]
e .
ks X ’ lx' < A-j,m
b (60)
' S I ol o
H x| > .
-j,m 8" < -j,m
c /r .
=J,m
Let us now define,
0
_7_‘ é [Y 5 BT Am+1 U _m]
=—m+l
s &k @ g (2
g BF m— F }
A m m T} (61)
= - - u
Su E{[EOA g—m][L—JOA -—m]
A m T {
= - - 1
SUZ E{Z [ U 0 A l_’_ -m } Tl_]’ y ] k}
A T 2 }
= = =1l,..,k
S, E{ zz } { 510 )
. A , - T
Sop = F I L L L T }
T . —oeis T 1, f,.=0 ; i#i)
P=5," u?‘bu?P+Sp ’ l-{fii f11 0 ii[ -i+l b N B 1

. - B TN Lt et
‘.'\.'_..‘\.\- « Lo e

'.*"'. . . ST \.‘-... ‘- ~'-..-_-’A-'L-_J LN ;\:'..".""' RN
sﬁ\"’\.ﬂ» '\". i"’i".){‘ 11\}’!‘; SN NNy TR P SRR I I
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4 ¢ T
G,. = E{gF,l-i,m(zi)nF,l w12 20 s )|

—iv

»
>

T T -1 T
ij - E {gi Suz S, Z Tro1-1.mtZy) (22 -sZ]}

AL
N, 4 (2 ¢ (—:iilim) -1]3i eT [sT S 1 c-1] +

1 Puz 72
A
+ (29 (_:iilﬂﬂ) -11 e, e? [ST g1 C -1]
s =i =j “uz 2

Q.. =2 {CT 571 (G., O C,,) <o CTN_, —N?.c\
ij z ij ii ij z ij ij

. T
: where i,j = 1,...,k, where e 4 [9,..9,1,0,..9)", and where the expectations

are taken at the nominal model. We then express the following theorem, whose proof
is in arpendix B.

Theorem 5

2l

o

Let the process {gﬂ} be asymptotically stationary, and let SgF and 3 F be the

solutions of the following matrix equations.

u _ .m _u T\ m 5
SOF = A SOF (A7) + 1
(62)

£ _ m _¢ T.m

Sop = A Sogp (A1) 4T -Q
s where, Q ={ tr(a® gt (AI™ Q. ), 1,9 = 1,...k}

oF iy’ e

Then,
i h luti S£ and S°_ exist
(i) The solutions oF oF .
«ii) The residual process U. - U. is asymptotically stationary.

=0~ =0

If Ml < M2 means that each diagonal element of the matrix M1 is bounded

from above by the corresponding diagonal element of the matrix MZ' then,
L u
S < < S
oF - SoF - "aoF (63)
(iii) Tf tr denotes trace, and if 11 (A) is the larpoest magnitude eigenvaluc

max

of the matrix A, then,

. " C e e Ve et et et T T e T

e e . A L P A e R N T

, L T S S P N ST Ve TP TR SRS BRI LS RIS SR AR Sl T T S i I L PO e e YA )

\'a:*:'\‘.\‘."\‘"‘\‘.“L““"‘ Sy ':"\'.\_"' {":A..“.:‘L'.‘t\‘ PPN Y ",.“ P PSRN FT N PU S § ) o 3 “l‘.’l ‘- ‘ “ ‘
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¢ |

s P (trP) (64)

1- IU max(A)'

If the nominal model in (57) is first order autoregressive, with
autoregressive parameter a < 1, then the matrices in (61) and (62) reduce to

scalars, and the bounds in (63) are easily found to be as follows,where ¢ is as in (17).

2 -1
s[' =p [1-0a""q]
oF
(65)
suF =p [1 - aZm]—l
o]
;s where, for 02 = E{vg} and r2 é E{wg} in (57),
A
A = A =
m 0,m ¢ rO,m
a1 2, 2
T =
0 0 o2 0 0
; 2 2 i-j
sil 4 E {[ 2: b, (Yi SRS x_m)] 2} =r~ I bi +-——} z L b all il
=—m+l =-m+1 1-0. i=-m+1 j=—m+l
. o *JZm dZ}
s, 8 E{ [ % -a"x_1 2 b (v, -ao™ x )}= z bia—l—azmd
m '=-m+]_ 1 1 m i=_m+1
A
A o
f =2 ¢ (———-) ~1
511 (66)
0 .
d Q bi ul
i=-m+]
A Am
p = A +s" + (sll-l - 2s z) f -2X qll o) (;1‘1)
81 _a@-ayf - 2a2 612 1 -1 o
q 811 m'l 7Sy, sp) 6T
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The inequality in (64) takes then the following form:
oF “SoF | ST P (67)

The scalars p and tr P, respectively in (67) and (64), are both bounded for
every value of the truncation parameters {A, }. The bounds in (64) and (67) are
thus exponentially decreasing to zero, with increasing m. The lower and upper

bounds in (63) and (65) are therefore approaching each other with exponential

rate, as the design parameter m increases.

7. Performance Measures for Outlier Resistance

Let us consider the frequently observed in practice case of indeoendent and

}

additive outliers. In particular, let the noise sequence {..., w_l, WO, Wl,...
be such that each of its elements is generated by the nominal Gaussian noise process,
with probability 1-8, and it is instead equal to some deterministic value, v, with
probability 8§, 0 < 6 < 1. Let the value v occur with probability &§, independently
per noise datum. Given the above outlier model, given some asymptotic filtering or
smoothing operation, ﬁo, let e(fo,é,v,ﬁo) denote the induced mean squared error.

That is, if fo represents the overall nominal Gaussian model, then, e(fo,é,v,io) =

= E{[XO—QO ZIfo,d,v}. Let us denote, e(fo,G,i ) 4 lim e(fo.d,v,ﬁo), and let there

O v34o
exist some value 6%, 0 < 6% < 1, such that,

N o2
e(f _,6,%,)> EtXOIfO} ;M8 > &%

*

“ 2
e(f_,8,%;) <E{Xj[f } : w6 <&

*
Then, the value ¢ 1is called the breakdown point of the asymptotic operation Xy
The breakdown point clearly represents the maximum frequency of independent,

asymptotically large in amplitude outliers that the operation §0 can tolerate,

before it becomes worthless; that is, betare it stavts inducing mean squared

error, that is larger than that dedouced when ne observation Jdata are available.
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We note that the breakdown points of the optimal at the Gaussian models linear
filtering and smoothing operations, are easily found to equal zero.

Let us now consider a generalization of the outlier model presented
above. In particular, let us consider the case where independent, size m
blocks of outliers may occur. Then, each block occurs with probability 6, and it
consists of a value v per datum in the block. Given some filtering or smoothing

operation X we then denote the induced mean squared error, em(fo,é,v,ﬁo). Denoting

O)

by e(fo,ﬁo) the mean squared error in the absence of the above outlier model, we

A ~ ~ ..
dencte, Jm,é(v) = em(fo,é,v,xo) - e(fo,xo). We call Jm 6(v) the variation

k4

function at 8. Given 8, the variation function exhibits the difference between

the mean squared error, when the outlier value is v and the frequency of the

outlier blocks is 6, and the mean squared error in the absence of outliers,

A -
We call Im G(V) =6 lJm é(v), the normalized variation function at &, and we call

Im (v) 4 éig Im’é(v) the influence function. The influence function is the slop

of the variation function at & = 0, and it exhibits the effect of the outlier value

v, at asymptotically small outlier frequencies §. 1Tt is easily found that the optimal
at the Gaussian model linear filtering and smoothing operations induce, for m=1l,
influence function, Ii(v), that is given by the following expression, where C(y) is the

Fourier transform of the linear filter or smoother, and where fN(w) denotes the power

spectral density of the Gaussian noise.

m n
- - 2
17(v) = 2n 1'3 v+ (2m)7! f o (@)du | e 1] da
-7 ~T
b
-2 HC(w)Hz £, (w)dw |
N (68) (
! !
As a function of the outlier value v, the !

intluence function I](v) is quadratic,

and it increases to intinityv as v

.+
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E In this section, we study the breakdown points and the influence functions
of the operations in (32) and (38), and the operation in (30). We adopt respectively
the same nominal Gaussian models as in section 6, and we start with the operations
in (32) and (38). Let us then define the spectral densities fs(w), f ] (w), and
N

f (w), and the Fourier transforms A(w) and D(w) as in section 6. Let HF m(w)
F,m ’

and HS n(w) be as in (43) and (44), and let us define,

’

(69)

o
~
-~
~r
il
~
N
=
~
[
é'\l
ey
wn
~
£
~’
o
g‘:&"

(@]

; x <0

Then, after some straightforward transformations, we find the following

mean squared expressions, for ¢ as in (17).
i
e(f ,6,%x,.) = (2ﬂ)-l/ £ (wdw + A%p%(0) -
0 OF . S m
T
- (l—é)m{ 2{29(c)-1] (ZW)_I/ Re(D(m)HF m(u)))fs(w)dw
-7 ’

.
+ %050 - DA ()] (h)'l/ D) | 2w}
m m p’l‘ m -7

m
m-1 j i
+ U(m-2) z (1-5)"‘”‘[1— (k) + XZI(ZH)—I/ D) | !zle_wk +9ka]d“‘
k=l ngm m d
+(l—r‘>) (27m) ]’>\ I) (0) ‘)‘:’ / l'n((")H [Z ]“)k

=-m+1

) ) V .l n‘ ] i k
s D) “1)'” CoYdL - ey e lz (k)e Fd } (70
. Fom

k--u 1*1
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b
e(f_,6,80) = (zn)'lf £ @do + u2a%(0) -
-7
s
- (1-<5)2“+l {2[2¢(c)—1](2n)_14/. Re(A(w)HS n(w))fs(w)dw
-
kil
+ 2220 - 2+ 0] en ! A | [Pdw }
n n gS,n -
20 2n+1+k 2 1 " 2. -3 i
+U(-1) 30 -0 o+ wdyenT /HA(w)H [eTIWk, QIWK)g,
k=1 gS,n n —
2(2n+1) -1 2.2 2 " 2,20 Lk
+ (1-8) @M {u a0 - u [ [|aw]] (Y e law +
-1 =~2n
" 2 " 2. 20 juwk
+ HAWI1E (wydw - Haw 151y e, (0 &Fan} (4
- gS,n - k=—2§s’n

; where Am and un are respectively as in (47) and (48). Let us now consider

the quantities {pr(n)}, in (52), and BN,{np},A(“)’ in (53), and let us denote,

ot m(w) s for A=F

F,
HA(w) =
H, (w) ; for A=S
S,n
jA(w) ; for A=S
C (w) =
A( ) )
D(w) ; for A=F
9 {Az i for A=F
m
AV] =
A 2
Un ; for A=S
‘ m ; for A=F
nA=

I 2n+l ; for A=S

-').

1 R £ 1 e $he DAy JCIR T -0 JUE TR A
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Let us then define,

m
F ) 202 c20) - 1-6) A 2120(0-112m 7 | Re(C, (@)H, (@))f_(w)dw +
A T YA A A A s

-

it
+ 2v§c§(0) - [vi + bOA(no)](ZW)-I/ lch(w)llzdw |

-
nA_l n, +k m . .
A 2 -1 2, jwk, -jwk
+ U(n,-2) :L‘::l(l-d) vy + b, 4 () 1(2m) / ||CA(u))H [el + e }dw
-n
’n 7 nA—l
+ (1-9) A(Zw)-1 {\)iCi(O) —vi / IICA(w) I |2[ Z erk]dw +
- k=—nA+l
il m nA-l
+ I |C ( 2 2 jwk
L@ By g@adw = [, @ 171X b (e’ Jdw |
-7 S - k=—nA+1
; A=For S (73)

We now express the following theorem, whose proof is in appendix C.

Theorem 6

* *
Let the conditions in Theorem 4 be satisfied. Let GF o and GS n denote

) ’

then the breakdown points of respectively the filtering and smoothing operations
in (32) and (38). Then, given { > 0, there exist positive finite integers

N L . L1 < <N -
F and NS, and sets of positive integers, {on ;1< |p| < Ne 1} and

{n .31 <jpl <N

pS d

-l}, such that, n‘ |

s ol F Mip| +1,F 3 Mp) 87 Mpl 41,50 Y P

and such that when substituted in respectively FF(é) and Fs(é), they give,

(i) Unique roots of the functions FF(G) and FS(G), respectively denoted

(o] (o]
GF,m and ds,
* o
{ - <
(i) ,(SF,m 5F,m | < ¢

i advin il of ol oG gl o b X ot _SSNE RN A A
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* *
The breakdown points GF m and GS are unique, and they are both strictly

larger than zero.

We point out that the filtering and smoothing operations in (32) and (38)
induce bounded, for every value v, variation and influence functions. We do not
include the computation of bounds on the latter functions, due to the tediousness

in their derivation. Wec now proceed with the study of the breakdown point and the

i
]
'
i
d
)
N
N
b
by
E
'
'

influence function of the filtering operation in (30), for the nominal model in (57).
For the latter model, we first compute the influence function, I;(v), induced by the
optimal at the nominal model filtering operation. Then, we study the breakdown point
and the influence function, Im(v), induced by the outlier resistant filtering opera-~

tion in (30). Let C be the kxk matrix defined in (61), and let us define,

y 0
u=z b, = { p.}
i=-mtl T 1
(74)
0
NE T bby
=-mt]

Then, we can express the following lemma, where for the nominal model in (57),
E{wg}. The proof of the lemma is in appendix C.

Lemma 2
Let the nominal model in (57) be asymptotically statiomary. Then, the influence

function Iz(v) is given asymptotically by the following expression, where I denotes

the kxk identity matrix.

Pw a0 ey - @ht a0 (75)
i=0

We note that for the scalar form of the model in (57), with autoregressive

parameter a < 1, the influence function in (75) reduces to the following expression.

v2 u2 - r2 V]
Ig(V) Q 2m 2 (76)
1 - a™" (1 - £)

" - LR 4 - - _.1 ..- --l '.. '.n ..~ .-.' .'. - \A\ . '. ~-.
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; where,

l
}
1
)
i
}
[

e
N

o
({4
™
o
R
.

amn

Let us consider the quantities defined in (61) and the vector u defined in (74),
and let us in addition define,

0 o+ T

T
Y b BUU - ATTU = (25,0002,
P i - 11 1k

>

T RN . N S T Y R R TR s T
=
e
o
Y

Ty (.2 . ..
E{z, 2,} —{pij ; 1,3=1,..,k}

A T
S = E{gF,m(gl +v) g (2, + vi) }

is O X-i+1,m) P B T .

v Pii o Py

e

ne>

{¢,. €, =f¢. _,f =0 ; itj} (78)

ne>
=]

S -F. s =S F +S§
v "uz “uz v g,v

T
15,0 - Eleg g n(Zygtvmy) ep gy (25t (2 24-5, 1)

1

ne>

el st s;l
1

E{

. (z
1_] )v —1 uz

T
.+vuj)[§1.£ -s, 1}

Z) Bp,1-5,m' %15 172,

ne>

1
1

-1, T -1 -1 T T

ijv - 2 1C Sz1 His v ¥ Hipy Cig.o) o0 €0 Nyy o7Niy v ©
T

]

.. [f. e, el +f. e e?] [sT 5 C-1]
1],V J,v 71 1 i,v =i —j uz 2z

ne>

A
= (AO.m""’ A-k+1,m

We can then express the following theorem, whose proof is in appendix C.
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Theorem 7.
Let the nominal model in (57) be asymptotically stationary, and such that the

elements of the matrix A are all nonnegative. Then,

(i) Let Izm(v) and I:(v) be the respective solutions of the following matrix

equations.

m m
) = ¢ + 4" Iﬁ(v) (T - q, + A" stoah) sty
u _ m _u T m ,u T
Im(v) = Pv + A Im(v) (A7) —SoF + A SOF(A )
m m
; where, Q, 4 {tr(a® Iﬁ(v) [AT] Qij) + tr(a” SEF [AT] Qij,v) ;i,3=1,..,k},

and where Sf and S:F are as in theorem 5.

F
Then, the influence matrix function, Im(v), induced by the filtering operation

in (30) and the nominal model in (57), is bounded from above and below as follows.
£ u
tr T(v) <tr I (v) <tr 1 (v) (80)
m — m - m

(ii) Let S:(é) and Sﬁ(d) be the respective solutions of the following matrix
equations, given §: 0 < § < 1.

m

u _ ,m _u T m m T
sm(é) = A Sm(d)(A ) + (1-8) P + [1-(1-9) ][su + Am Am]
(81)
,.. m L T.™ m m T
$,(8) = A" S (&) (A) - (1-6)" [R-P] + [1-(1-6)"][S + A ALl
m
; where R & {er(a™ sﬁ [AT] Qij) ; i,3=1,..,k}. Define, S, 4 E{UOUTOIfO}.

*
one. Furthermore, the breakdown point, Gm’ of the operation in (30) is unique, and

such that,

c
VA
O

3 »

<6 (82)

3

---------------
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Then, the functions fl(é) 4 tr(S:(é) —So) and f2(6) 4 tr(Sﬁ(G) —So) have unique roots,

respectively denoted 6; and éﬁ. Those roots are both strictly positive and less than




In the scalar case, where the nominal model in (57) is first order autoregressive,

with autoregressive parameter a: 0 < a < 1, the results in theorem 7 simplify as follows.

2 2 2
p. (1-qa®™ + pa®™  p(q_ + o™ p (1-a“™ + pa ™ p
v v v
2 - 2m 2m < Im(v) < 2 - 2n (83)
(1-a")(l-qu™)

2m

2m
(1-qa™) 2m (1-a") (1-qa™")

(1-a™)

N " y 5o A2 418 fp-s2a?] o
. Gm solution of : fY(§) = — L e u m _ 5 = 0
y s < 6 < b . Lo 1o (84)
: mT m-om . ¢ b2+ 4@-0)"p-s2A]] o
8~ solution of : f (§) = — 5 L 3 u w o 7" 0
o 1™ + (1-6)"a“™(1-q) 1<

2 A 2
; where 0° = E{Vo} for V, as in (57), where p,q,su,suz,lm, and c are as in (66),

where u is as in (77), and where, for s;; as in (66) and r2 4 E{wg} in (57),
0 2 0
2 i 2 2 2
p- = E{[z: b, (X, -a X )] lf } =s. . -r 2: b
fmgt1 T 1 - ° S N R
VH+A vi-A (85)
£ o= ¢ Oy - ¢ L
v ( 5 ) ( 5 )
A vu-A
2 2. 22 2 VU, n
P, = s, £ [pT +viuT - - 25 ] +2puvie( 5 ) (5 )]
vu-Am vu+xm 2
+ p(vu-d ) o( 5—) -p(vi+d ) o( 5 ) A
Y v+ vi-A
a, = c2-0) £, + 22 (1= 2 [o—B) + (—D)
v v p P p o
s VA vu=-A
-2 e D) - g—D)]}
P p p

We conclude this section by presenting the form of the influence functions induced
by the filtering and smoothing operations in (32) and (38), when the latter are modified
to operate on disjoint rather than sliding block data. Let then HF’m(w) and Hs’n(w) be
as in (43) and (44), let c be as in (17), let Am and un be as in (47) and (48), let A(w)
and D(w) be as in section 6, let fs(w) be the power spectral density of the stationary

information process, and let us define,

.......... -~ ;. '- '.'-'.. “‘ o .l‘ " ‘I f- I -. ‘. ‘ﬁ .' -
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A T ,1i T 1 2
pF.m(v) = E {[gF,m(Pm xi-m+1+ VHF,m(O)) - gF.m(Pm Yi-m+1) ] |f0}
ps o) HE Ulgg T X4 v (o) -5 T YI? [e)
U,V £ {gF,m(P: Yi::I()p—l)+l) gF,m(P: xii.~m+1 He n(9)) £} o
9, (") 8¢ {gs,n(Pﬁ i:ggg*i;g) (p: Xiph 4 v Hg (0D [£,)

; where fo represents the nominal model. Let the nominal noise process be

stationary, let then hg (w,v) and hg (w,v) be the Fourier transforms of the
F)m S,n

sequences {qF p(v)} and {qS p(v)}, and for Zi and E, as in (51) let fg (w)
» s F,m

and f (w) be respectively the Fourier transforms of the sequences
S,n

. ’ f
{E{gF,m(Zi) BF.m (Zimp)lfon and {E{gs,n(Ei)gS.n(E )}}. Then, the influence

i+(2n+l)p

functions of the corresponding filtering and smoothing operations are respectively

given by the following expressions.

i

-1 2 -1
I, (v) = o) || n (w,v) - f (W) +2°° p. (V)] dw
Fom - . 8F,m BF.m Fom
A -vH (0) A +v H (0)
S R L. B . N 1. A IO B (87)

F tr

T
. / Re(D(w) HF m(m)) fs(w)dw

n

™
“'1/_ ||A(w)|12[hg (w,v) ~f, (W) +271 Pg (V) )dw

1 (v) =
S.o m S,n S.n ,
u - ng n(0) un+ qu n(O)
[ P22y o (e y 2 0 (o))
tS Cq

n

-/ Re(A(w) H, (W) f (w)dw (88)
S.,n S
-1
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In contrast to the influence functions induced by the optimal at the nominal
model linear filtering and smoothing operations (see (68)), the functions in (87)
and (88) remain bounded for every v value. In fact, from the latter expressions we
easily conclude,

m

lli N °°IF’m(v) = U-l(z ¢(c)-1]‘/' Re(D(m)HF’m(w)) fs(w)dw +
v >+ - .
+ xi 2740 (-0) - c o) v 1o ! Paw
k[ -
-1 2
-7 / [lp)|]1“ ¢ (w) dw (89)
gF,tn
-7
lim IS,n(V) = Tr~1[2 $ (c)-l]/—" Re (A(w) Hs’n(w))fs(w)dm
v i o -
™
+ ”i 127 46 (c0) =<t o )] n‘{/P [ACw) | | 2w
- -7
-1 2
- {la)|]|© £ (w) dw (90)
T gS,n

8. Numerical Results

In this section, we present some numerical results, regarding the performance
of the filtering and smoothing operations in section 5. We consider the nominal
model in (57), and we first evaluate the performance of the causal filtering opera-

tion in (59). Defining,

Y : The solution of the matrix equation,
T T 2.4 1 2 7
£ = A[Z-ZBB Z(B' ZB+r") ]A 40~ BB
-1
8 2 1a(aTie )
R0 : The solution of the matrix equation,

T 2 T
R = AR A + 0 BB
o o}
we compute the asymptotic vector coefficients {bi}, and the quantitics in (61), as

tollows.,

P R .
. . e e . Ct e .
PR RaiC iatv S .o
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'
b, = [(1-8 B )A] B ; i=-mtl,...,0

m-1

c= Y ra-8shalg s’ a™
{=0
_ m T m
5, = R -A" R (&)
m-1 i i m
- _a o7 T T,” _,m-1i T
S, ) [(1-8 B)A] B B[R (o)) -A"R_(A) ]
m-1 i i
s, =t Y [(1-88D)al 8 B'(aT(1-8 B)] +
i=0
n-l wl T, b T (G-t T u(i-g)
+ Y X (-8 BHA]l BB A" TVR (AT -
i=0 j=0 ;
: T
- AR (aH™ 3y 5 8T (aT(1-8 8
i-j 5 12j

; where u(i-j) =
0 ; otherwise.

We studied quantitative performance, for the following two special cases of

the model in (57).

Model 1 First order autoregressive, with autoregressive parameter,

@ =0.5, and 02 = 2 = 1.

Model 2 Third order autoregressive, with a1 = 0.6, a

(58), and 02 = r2 = 1.

= 0.07, a, = -0.06 in

2 3

Tables 1, 2, and 3, and figures 1 and 2, exhibit the performance of the causal
filtering operation in (59), for various values of the design parameters € and m,
when the nominal model is model 1. When the nominal model is instead model 2, the
corresponding performance is exhibited by tables 4,5, and 6, and figure 3. Tables
2 and 5 correspond to independent per datum outliers, while tables 3 and 6 correspond
to size-m independent batches of outliers. The above tables and figures speak for
themselves. The causal filtering operation in (59) can combine close to optimal

at the nominal model performance, together with excellent protection apainst outliers.
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In additioﬁ, this operation is more appropriate for protection against independent
) batches of outliers. Similar results are drawn, when the order of the nominal model
. in (57) is some arbitrary number k.
We studied the performance of the nonrecursive causal operation in (41), when
! the nominal model is model 1. Our results are exhibited in tables 7, 8, and 9,
and in figure 4, where various values of the design parameters € and m are considered.
Comparing the latter tables and figures, with tables 1, 2, and 3, and figures 1 and 2,

we conclude that the nonrecursive causal operation in (41) induces higher asymptotic

O AR =R R N

mean squared error at the nominal model, than the recursive operation in (59) does,

?
3

while the former induces lower saturation point of the influence function. Considering
this tradeoff, we claim that the recursive operation in (59) is more appropriate,
for the autoregressive nominal model in (57).

We evaluated the performance of the smoothing operation in (42), for various
orders of the autoregressive model in (57). Our results were similar to those
exhibited in tables 1 to 6, and figures 1 to 4. The smoothing operation in (42)
is thus as powerful as the filtering operation in (59).

9. Conclusions

We proposed and analyzed nonlinear filtering and smoothing operations, for
effective resistance to outliers, and simultaneously good performance at the Gaussian
nominal model. We note that a filtering operation, similar to our recursive such
operation (in (59)), was earlier considered by Masreliez and Martin (1977). The
latter authors assumed, however, that the process formed by the residuals is

Gaussian, and used a covariance recursion to define their recursive filter. The

above assumption effectively reduces the problem to the class of filters, that do not

involve nested nonlinearities.
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1 2 3 4 5 6
£
0.002 0.53167 | 0.53284 0.53333 | 0.53346 | 0.53350| 0.53351
i 0.66941 | 0.56629 0.54159 | 0.53552 | 0.53401| 0.53364
0.01 0.53488 | 0.53963 0.54136 | 0.54183 | 0.54195| 0.54198
) 0.67108 | 0.57247 0.54945 | 0.54385 | 0.54246| 0.54211
0.1 0.58157 | 0.608293 | 0.61640 | 0.01851 | 0.61904 | 0.61917
: 0.70620 | 0.63797 0.62328 | 0.62032 | 0.61949 ]| 0.61929
0.15 0.60983 | 0.64401 0.65401 | 0.65659 | 0.65723| 0.65740
: 0.72961 | 0.67249 0.66099 | 0.65832 0.65767 0.65750
0.25 0.66941 | 0.71376 0.72608 | 0.72921 0.72999 | 0.73019
’ 0.78026 | 0.73998 0.73249 | 0.73080 | 0.73039 ] 0.73028
0.3 0.70079 { 0.74848 0.76146 | 0.76474 0.76556 | 0.76576
: 0.80718 | 0.77357 0.76758 | 0.76626 | 0.76594 0.76586
0.4 0.76727 | 0.81887 0.83243 | 0.83582 | 0.83667 0.83688
: 0.86426 | 0.84156 0.83795 | 0.83719 | 0.83701 0.83697
Table 1
Bounds on the asymptotic mean squared error, at the
nominal model.
Model 1. Causal filtering operation in (59).
Asymptotic mean squared error induced by the optimal at the
nominal model causal filter = 0.53112
Upper lines: 1lower bounds.
m
A 1 2 3 4 5 6
0.002 0.09928 | 0.06814 0.04932 | 0.03788 | 0.03056 j 0.02556
0.14352 | 0.07476 | 0.05048 | 0.03811 | 0.03060 ] 0.02557
0.01 0.14699 | 0.10040 | 0.07274 0.05597 0.04522 0.03786
0.20676 | 0.10942 { 0.07433 | 0.05628 | 0.04528 | 0.03788
0.1 0.32204 0.21602 | 0.15715 0.12180 | 0.09898 | 0.08326
i 0.40878 | 0.22978 | 0.15974 0.12228 | 0.09908 | 0.08328
0.15 0.38225 0.25595 0.18674 0.14516 | 0.11824 0.09962
: 0.47011 |} ©.27034 0.18937 0.14568 | 0.11835 0.09964
0.25 0.48129 | 0.32349 | 0.23761 0.18576 } 0.15194 0.12840
i 0.56488 0.33815 0.24036 0.18631 | 0.15205 0.12842
0.3 0.52466 | 0.35423 0.26119 0.20477 0.16783 | 0.14203
: 0.60450 | 0.36875 | 0.26395 0.20533 | 0.16795 0.14206
0.4 0.60417 0.41329 | 0.30739 0.24246 | 0.19955 0.16937
: 0.67478 | 0.42723 | 0.31012 0.24301 0.19967 0.16940
Table 2

Bounds on the breakdowm point.

Model 1. Causal filtering operation in (59).
per datum outliers.

Upper lines:

lower bounds.

Independent




.........

m !
e 1 2 3 J, 4 5 6
0.002 0.09928 0.13164 0.14080} 0.14315 0.14315| 0.14389
ST 1.0.14352 | 0.14394 0.14394 0.14394 0.14394 0.14394
0.0l 0.14699 0.19073 | 0.20274 | 0.20580 | 0.20656| 0.20676
) 0.20676 | 0.20686 | 0.20682 | 0.20682 0.20682 | 0.20682
. 0.1 0.32204 0.38537 | 0.40125| 0.40520 § 0.40618| 0.40643
- : 0.40878 | 0.40676 | 0.40653 0.40651 | 0.40651{ 0.40651
X 0.15 0.38225 0.44639 | 0.46212 | 0.46601 0.46698 | 0.46723
I 0.47011 0.46759 | 0.46733 | 0.46731 0.46731 | 0.46731
X 0.25 0.48129 0.54234 0.55688 | 0.56045 : 0.56134 | 0.56156
: o 0.56488 | 0.56195 | 0.56166 | 0.56164 | 0.56164 0.56164
0.3 0.52466 0.58298 | 0.56672 | 0.60010 | 0.60093 | 0.60114
0.60450 | 0.60152 | 0.60124 0.60121 | 0.60121 | 0.60121
- 0.4 0.60417 0.65577 0.66775 0.67067 [ 0.67140 | 0.67158
I : 0.67478 0.67193 | 0.67166 | 0.67164 { 0.67164 0.67164
- Table 3
N Bounds on the breakdown point.
- Model 1. Causal filtering operation in (59). Independent
size-m batches of outliers.
Upper lines: lower bounds.
o
£ 1 2 3 4 5 6
0.002 0.55402 | 0.57594 | 0.59937 0.61040 | 0.61445 0.61566
0.83214 | 0.68407 | 0.63361 0.62154 | 0.61764 0.61658
0.01 0.57548 | 0.62504 | 0.66518 | 0.68180 | 0.68763 | 0.68936
0.86214 0.73994 | 0.70200 | 0.69383 | 0.69109 | 0.69035
0.1 0.62110 | 0.69155 | 0.72865 | 0.74097 | 0.74499 0.74615
0.89436 | 0.79589 | 0.76040 | 0.75110 | 0.74788 | 0.74698
0.15 0.65204 0.72942 | 0.74120 | 0.77011 0.77401 0.77432
0.94013 | 0.83110 | 0.79568 | 0.78320 | 0.77516 | 0.77501
0.25 0.69875 0.73479 | 0.76678 | 0.78133 | 0.79002 | 0.79012
0.95182 0.86264 | 0.80203 | 0.79312 | 0.79202 | 0.79136
0.3 0.73478 | 0.73930 | 0.78033 | 0.79300 | 0.80400 | 0.80511
: 0.96067 0.91011 | 0.86481 0.82414 0.80923 0.80547
0.4 0.73510 | 0.74902 | 0.79087 0.81142 | 0.82267 0.82320
: 0.97033 0.91437 | 0.86690 | 0.83571 0.82610 | 0.82359
Table 4
Bounds on the asymptotic mean squared error at the nominal
model.

Model 2. Causal filtering operation in (59). Asymptotic mean
squared error induced by the optimal at the nominal model
causal filter = 0.54731.

lower bounds.

Upper lines:
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size~-m batches of outliers.
lower bounds.

...........

.......
........

m
e 1 2 3 4 5 6
N 0.002 0.07594 0.05802 | 0.04513 | 0.035395] 0.028765 | 0.02411
t i 0.13890 | 0.07501 | 0.04960 { 0.035980} 0.029010 | 0.02486
\ 0.01 0.11029 | 0.08225 | 0.06334 0.04958 | 0.04030 0.03380
N 0.20020 j 0.11510 | 0.08010 | 0.05156 | 0.0450 0.03388
I 0.1 0.25689 0.18640 | 0.14353 } 0.11313 | 0.09248 0.07790
N ) 0.39537 0.22540 |} 0.15003 | 0.11804 0.09424 0.07823
| 0.15 0.32899 0.23552 | 0.18083 | 0.14286 | 0.11705 0.09878
0.47563 | 0.27100 | 0.20242 | 0.14811 0.11829 0.09890
0.25 0.47094 | 0.33123 | 0.25350 | 0.20121 0.16563 0.12747
0.60225 0.39693 { 0.26089 | 0.20541 0.16735 0.12784
0.3 0.53838 | 0.37811 | 0.28952 | 0.23047 0.19020 0.16150
0.65802 | 0.42004 0.29457 | 0.23215 0.19082 0.16195
0.4 0.66166 | 0.47002 | 0.36191 { 0.29019 0.24090 0.20548
0.75106 | 0.52401 0.39102 | 0.30016 | 0.24210 0.20602
Table 5
Bounds on the breakdown point.
Model 2. Causal filtering operation in (59). Independent
per datum outliers.
Upper 1lines: lower bounds.
=~ 1 2 3 4 5 6
0.002 0.0759% 0.11269 | 0.12939 0.13424 | 0.13578 | 0.13622
0.13890 | 0.13995 0.14500 | 0.13952 { 0.13595 | 0.13682
0.01 0.11029 | 0.15774 0.17826 | 0.18406 | 0.18592 | 0.18643
i 0.20020 | 0.19500 | 0.19851 0.i8820 | 0.18683 | 0.18682
0.1 0.25689 | 0.33813 [ 0.37173 | 0.38136 | 0.38444 0.38530
: 0.39537 | 0.39220 | 0.39104 0.38804 0.38740 | 0.38607
0.15 0.32899 | 0.41556 | 0.45031 0.46022 | 0.46336 | 0.46424
’ 0.47563 | 0.47215 0.46903 | 0.46630 ]| 0.46502 | 0.46482
0.25 0.47094 | 0.55275 0.58401 0.59287 | 0.59561 0.59820
’ 0.60225 | 0.60112 0.60039 | 0.60004 0.59970 ] 0.59918
0.3 0.53838 | 0.61325 0.64137 0.64932 | 0.65175 | 0.65244
: 0.65802 | 0.65720 | 0.65695 0.65530 | 0.65398 | 0.65307
0.4 0.66166 | 0.71912 0.74020 | 0.74616 | 0.74795 0.74845
: 0.75106 | 0.75083 0.75010 | 0.74970 | 0.74912 0.74887
Table 6
Bounds on the breakdown point.
Model 2. Causal filtering operation in (59). Independent
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AN 1 2 3 4 5 6
0.002 1.1434 | 1.1339 | 1.1334 .1334 L1334 | 1.134
0.01 1.1454 | 1.1360 | 1.1355 .1355 .1355 | 1.1355
0.1 1.1638 | 1.1553 | 1.1548 .1548 .1548 | 1.1548
0.15 1.1729 | 1.1648 | 1.1644 L1644 L1644 | 1.1644
0.25 1.1901 (1.1830 | 1.1826 .1826 .1826 | 1.1826
0.3 1.1986 | 1.1918 | 1.1915 .1915 .1915 | 1.1915
0.4 1.2155 | 1.2096 | 1.2093 .2092 .2092 | 1.2092
Table 7
Asymptotoc mean squared error at the nominal model
Model 1. Causal filtering operation in (41).
m
€ 1 2 3 4 5 6
0.002 0.14395 | 0.07477 | 0,05048 | 0.03811 | 0.03060 | 0.02557
0.01 0.20683 | 0.10940 0.07433 0.05698 | 0.04528 | 0.03788
0.1 0.40652 | 0.22962 | 0.15963 | 0.12229 | 0.09909 | 0.08328
0.15 0.46731 | 0.27014 } 0,18937 | 0.14568 | 0.11835 | 0.09964
0.25 0.56164 | 0.33791 | 0.24036 | 0.18631 | 0.15206 | 0.12842
0.3 0.60122 | 0.36851 | 0.26394 { 0.20534 | 0.16795 | 0.14206
0.4 0.67165 | 0.42698 | 0.31011 | 0.24302 | 0.19967 | 0.16940
Table 8

Breakdown point.
Model 1. Causal filtering operation in (41).
datum outliers.

Independent per
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1 2 3 4 5 6

'

)

i 0.002 0.14395 | 0.14395 | 0.14395 | 0.14395 | 0.14395 | 0.14395
. 0. 01 0.20683 | 0.20683 | 0.20683 | 0.20683 | 0.20683 | 0.20683
0.1 0.40652 | 0.40652 | 0.40652 | 0.40652 | 0.40652 | 0.40652
0. 15 0.46731 | 0.46731 | 0.46731 | 0.46731 | 0.46731 | 0.46731
0. 25 0.56164 | 0.56164 | 0.56164 | 0.56164 | 0.56164 | 0.56164
0.3 0.60122 | 0.60122 | 0.60122 | 0.60122 | 0.60122 | 0.60122

0. 4 0.67165 | 0.67165 | 0.67165 | 0.67165 | 0.67165 | 0.67165

Table 9

Breakdown point.
Model 1. Causal filtering operation in (41).
Independent size-m batches of outliers,
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Bounds on the Influence Function

Model I, Cansal filtering operation in (59).

£ =0.,002

]:T)I(v): Influence function induced by the optimal
at the nominal mode) filter,
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Bounds on the Influence Function
Model 1. Causal filtering operation in (59).
ESO.OI
Im(v): Influence tunction induced by the optimal

at
the nominal model filter.
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Bounds on the Influence Function

Model 2. Causal filtering operation in (59).

c=0.01

IO(V): Influcnce function induced by the optimal at
the nominal model filter.
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Influence Functions

Model 1. Causal filtering operation in (41).

19(v): Influence function induced by the optimal at
the nominal model filcer.
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Appendix A

Proof of Theorem 1

The class F" and the functional I(fk) are both convex. Thus, for

every § : 0<6<l, we have,
k k k
((1—(5)f1 + & £, C)F

I((1-8)£5 + 6 £5 ) < (1-8) T(f)) + 6 1(£5) = inf I(f“) = constant w.r.t.§

o
Thus,
2
2
22 L((1-6)£F + 6 £5) f 6N v o] G52
0= = d d -
26° N A TR A O] B (SR Y R T IS

R

from which we conclude the statement in the theorem, due to the continuity

of the integrand.

Proof of Lemma 1

We wish to find some density function fi in F* that attains the infimum
of the information measure I(fk) in (11), where the nominal density f: in class
F™ is the convolution of the Gaussian densities f and foN' Applying standard
variational techniques, we conclude that if f: satisfies the above infimum, then
there exists some supset Ak of Rk, such that,

k, k

k
f.(y

) = (1-¢) f: (yk) ; for yk £ A (A. 1)

For yk € [Rk - Ak], the density ft (yk) satisfies the following

differential equation,

V65 [ = Ak 0 s v 0 (A.2)

The general solution of the differential equation in (A.J)) has the torem,

N I .'-'-.‘.‘\.‘-.‘.““'.".‘.‘ ."_"
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(A.3)
T,T
B VE

o T W HENEENY W Ty vV W W_R_ PR T

T k
fﬁ(yk) = exp {-AJE—X—l - c(yk) ;yke [Rk—Ak]

; where B is any column vector in Rk that is not orthogonal to the vector Vi,
and where the scalar function C(yk) is such that, VQC(yk) = 0. Imposing now
continuity of the density function f:(yk) and of its directional derivative

szt(yk), everywhere in Rk, we conclude,

k, k
k IVQ fo(y )l

T k
A % = | P (R)y | <X (A.4)
fo(y )

Vv
'
A
W
W
s
-
[
i_.
P

For convenience, we now select B = Pik(l), in (A.3), where since M;i is

positive definite, Pik(l) is not orthogonal to Vi. From (A.3), (A.4), and (A.1),
and requiring that ft(yk) is continuous on the boundary IP:k(Q)ykl = ), we fin-
ally obrain the density in (14). The expressions (16) and (17) evolve from the

requirement that ‘/. dykfk*(yk) = 1. The estimate in (15) is easily found to be
k
R

. k . . .
the optimal at f  mean squared estimate of the information datum Xg-

- «
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Appendix B

Proof of Theorem 2

The operation in (30) has the general form,
s x]<x

A

ﬁn = E a; x, +g(ym, E a, x ,{x }), where for some bounded A, g(x) —‘
. ‘Asgnx,|x|>k

and where l?ail <c. Therefore, Iﬁnl < Al1l+ | Zail] < A(ct+l); vn. (B.1)
i i

Let Eu {[Xn-ﬁnlz} denote the mean squared error induced by the estimate

o
A A 12‘
xn, when the Gaussian nominal observation process is acting. Let E“f[Xn—x i}

be the same error, when some process in class F* in (3) is acting instead. Let

n n .
y and z denote sequences that are respectively generated by the processes Uo

and W. Given some set A" in Rn, and in conjuction with (B.1l) and the Schwartz

inequality, we have,
E {[X -& 1°|2 A" =E  {X°]|z"eA™}-2E {X & |z"eA"} +
M 'n 'n o n U n'n

A 727 n_,n
+E (%) f2"eA"} <

A

c + ZEl/z{XilzneAn}Ellz{[;nlzlzneAn}+Eu{[ﬁnlz|zneAn}

12y (es) 2= 1 2 e+1) 12 (8.2)

YA

c + 2Ac

Due to (B.2), and considering ergodic and stationary observation processes in

. . . m ., . .
conjuction with F, we obtain: Given n>0, there exists no’ such that,

yn>n E {[x -x ] }< (1- C+n)E([X —x ] l[#1 Y (z )>C]<n6,y er"} + eC

(B.3)

1’y1+1

; where, for independent m-size outliers, there exists some t0>0, such that,

i+m

P{[X —x | l[#1 Yo (7 1'y1+l

)>t]<nt.yncRn}f

LI i .

Ly 1" A ‘\'-\-

e EAs e
AT NI, A N RPN O A P .‘\. .,\-_ Tl -A'r_.



< {[x -% ]2} +£C;¥e<e _,¥n>n
o n'n o )

(B.4)
From (B.3) and (B.4), we conclude: Given n= %, there exist n and
€>0, such that,
|E {[X -% ]2}—E {[x -& ]2}| <€ (2-
7] n n Ho n ‘n —

€ € A 12
2C+ 5 Euof[xn-xn] <

A

5 . A

> C=§68; ¥no>n , ¥ e<eo

i (u

Thus, given 6>0, there exist, n and €:0 <e<min(e , %- g), such that,
n,p, ©

. . A~ 2 A 2
,i) <€ implies ,Eu{[xn xn] }-Euo{[xn—xn] <6 vo>n

The proof of theorem is now complete.

Proof of Theorem 3

~

Both the operations in (32) and (39) have the form,

i+m-1
XA = § a, g (y,

)
i

; where lg(-)|<l, and (Z ai) < c¢. Then, subject to any process, h, of mutually
2 5 =

independent m-size batches of outliers, each occurring with probability €, we have,
N 2 2

E - =

u{[xk N b =g |

i+m-1
-2 I +
g xk} 2 § a, EU{ng (¥, )}
i+m-1 j+m-1 |
+ § § a; a Eu{g(Yi ) g (Yi )
2 itm-1 i+m-1
suo{xk} ~2(1-€) § a, EUO{Xk ey, ) 1-2¢ § a, Eh{xkg(vi )}
+5 5 a a, E (g™ hpdtmly
i 13 T i i
+ 1

o o
Sl a |E Leey T e M
i j 1 3 ] 1 ]

: {R<v?+”‘1>n<v?*m“>}]
ey 1 1

.o e i et
ER PO AN

-
o "

A A R




Or,
[Eu{[xk-i‘ckAlz}—Euo{[Xk-SEkAlz
< 2 L a5, (X I18T™ D+ g (% e} ™H )
ticfTa as {lg(Y1+m Lye (YJ+m L (B.5)
; where,
£, {e]™Heard™h ) o’ (B.6)

; and where applying the Schwartz inequality we have,

E, {IXkllg(Y1+m Ly < El/z{xk}sl/z yitm-lyy < RSP
(B.7)
Applying inequalities (B.6) and (B.7) to (B.5), we obtain,
n 42 A 1/2 2,2
lsu{[xk—xkA] }—Euo{[xk-xkA]}li 4e (§ a) ¢+ ac (g a) "\
—4e (T a)r 1245 A = ec (B.8)
i 1 i 1

; where C = 4A(Z a ) [c + 1 ai] <o,
i

Now, given §>0, we select € =8 C-l, to obtain,
(b <e =6 ¢ 1 olE {(x -% 1%} —E (Ix & 12| <6: vk
o’ u xk kA o xk kA ¥

i
n,p
*Mn

and the proof of the theorem is complete.
-
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b.4

Proof of Theorem 4

We will prove the theorem in steps. Let rp denote the pth autocorelation

coefficient of either the sequence {2, = pr oyl }, or the sequence {E, = pl yitn
i m  i-mt+l i n i-n’’
at the nominal Gaussian model. That is, either r = E{Z, 2 lf }, or r = E{E E, lf }
P i i+p’ o P ii+p' o

Let then c be the constant in (26), and let us then denote,

2 P 2 2 2
g = . = , 0 =g 1- B.9
T Yp 52 b { Yp] (B.9)

Let Lp denote the pth autocorelation coefficient of either the sequence

g

Bp o (Zi)}, or the sequence {gs n(Ei)}’ for 8 m(.) and 85 n(.) respectively as in
? ’ ?

(47) and (48, and at the nominal Gaussian model. That is, either

Lp = E{gF’m(zi)gF’m(ziﬂ)) Ifo}, or Lp = E{gs’n(Ei)gs’n(Eiﬂ)) IfO}.

Let g(.) denote either gF,m(.) or gS,n(°)’ and let f(x) denote the zerc mean,
variance 02 Gaussian density function at the point x. Let A denote the truncation
threshold of the function g(.). Then, for ¢(x) and &(x) being respectively the density
and the distribution functions ét the point x, of the zero mean unit variance Gaussian

random variable, and for c¢ as in (26), we directly obtain,

L= 0% {2[1-c?] & (¢) - 2eé(c)+ 2¢2-1) (8.10)

" Aty x A+y X +y x
L =20 [g(x) ‘q;( ,‘sz) + —ERp ¢(~-O~R )'f(x)dx

p P

—rp [2 d(c)-1]) ; |pl > ] (B.11)

Denoting now by ¢(k)(x), the kth derivative of ¢(x), at the point x, and

applying the Taylor theorem, we have that,

Given n, there exists tn 0 - Ln < 1, such that,




Ay x )\+Y_px A4y x
o p p P
Y X
o[ A P A
_¢(5—) +— 0 (E—>+~6~¢(o) +
. p p p P P
k+2 k+2 2n+1 _Z2n+l
N 2(n-1
G Yo X (2n-1)( A Yoy Y X
: DI o ) T kel o s Yt Tes)
. k=0 p/ © (k+2)! P o (20+1)!
5. (B.12)
S
.. Substituting (B.12) in (B.11l), and via some straightforward transformations,
. we obtain,
. = v n-1 (2R 2kl
- A (2k-1) { A P +
g lpl 2151 =20 [ g0 | &= q»(—) £+ Ale
Z +
: AL S A Y % | o (ka1
- 2n+1 2n+1
o _ Y X Y
+ol20D (% e, e ) P‘z'Tl'—" o, fOddx -
; p p/ o™ (20+1)!
. p
4
. -r [20(c) -1] =
P
o
<
A 2n+1 @
Yp - X
; S by 42, F / Mleoex ¢ (3 o 2 )
S p (2n+l) p n Op
(B.13)
;where, for ¢ as in (26),
o A c
\ b (n) = r [2¢ 72 -1} [26(c) -1)
P P (1-v) 2)1
S n-1 ) ‘
: ‘2 z[f _1]°k p (26D ( e ) won
N PeTLP (1-v) | 2%
S
3 . I
. 20-1 _k-£+] k! ~2(k=0+1)  (£-1)!
- * ? [(2k+1)! (e-11 72 KU (20-1) | (B.10)
g =1
k tn‘u‘;h\.n..g\‘ ;3.-.";’;‘ ......
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b.6

[e o]

Y x
/x2n+lg(x)f(X) ¢(2ﬂ-1)(g_ +t —g ) dx | <

n
_ P p

A

Y X ®
max ¢)(2n-—1) ( -é—- +t _P__> /xz(n+1)f(x)dx =

(2n+1) ! o2(n+1)

2" a!

=C

(B.15)
n

; where,

n '
oDy |« 20 (B.16)

C = max
n 2n-1
e

X 2m

From (B.13), (B.14), (B.15), (B.16), and (B.9), we conclude,

n
W\ 121 Y,
L=b | < {5 -——Jijf— =B (n) ; |p] > | (B.17)
P ' e(l-v)) P
P
; where bp(n) is as in (B.1l4). We note that, if Yi < f%é’ then given p, given

2 e
> i - ¥ > i < =1 .
¢ > 0, there exists LI such that, Bp(n) Lrpbs Y. Thus, if Yp © 1¥e ¢

¥ [pl > 1, and if {rp} is such that, rlpl >r f\\-O, then given p, given § > 0,

lel+

there exists n , such that B (n) < Zr ; ¥n>n , and {n } is a decreasing
op P - p - op op
sequence with increasing ‘pl We thus conclude that, if r,p, > r]p]+1\0 and
2
Y, <

e . : . . : .
p {de * ¥ Ip, > 1, then, given { > 0, there exist a decreasing with increasing

ip[ sequence {nop}’ and a positive integer N, such that,

b(n) -Zr <L <b (n) +¢r i ¥n > n_, for given
H(M) = Lr <L o<bo(n) +Lr Ve o given p

p

(B.18)

b(m) =b = r [20(c)-1]° . vp >N




>oitl 2w iR S-aN kool ank ot o SAL opih AR ur S S ARSI el I R A
o AP R et AN S

Let us now denote by C(w), either D(w) in (45) or A(w) in (46), Let us
denote by H(w), either HF m(w) in (45) or HS n(w) in (46). Let also B(w) be
the Fourier transform of the sequence {bp(nop);(p| i,N‘l,bp§!P‘ Z.N’Lo} in

(B.18) and (B.10). Let e(fo,ie) denote either the error e(fo,ﬁoF) in (45), or the

error e(fO,QOS) in (46). Then, due to (B.18) and (B.10), we directly obtain,

T TV R Y YT R T T .

m

(2n)/ ||C(w)|[2f5(w)dm
i

TT ™
- / [Tcw) | ]2dw / f_(w)dw (B.19)
=T -~

e( L&) - e (£, %)

< g(am”

; where,
s i
e£<fo,§<0) = (Zn)‘l{/ f (w)dw - 2[2¢>(c)—l]f Re (C(w))H(w)) f_(w)dw
- —
s
+/ HC(w)HzB(w)dw:, (B.20) (B.20)
-

B(w) = o? {2[1-c2] ¢t (c) - 2<.~¢(c)+2c2-1} + pr(nop)ejwp +

L Ip|en-1

2 iG
bo20(0)-1)" P et

ip[>N
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b.8

2 2 2
= (20(c)-1] £ _(w) + o0 120(c) [3-¢“-20(c) ] -2cd(c)

+actat + TeMPlo () - (0(e-11° r (8.21)

1<|p|<N-1

The statement of the theorem follows directly from (B.19), (B.20), and
(B.21).

Proof of Theorem 5

(i) The eigenvalues of the matrix A in (58) are the roots of the

polynomial equation,
k k-1
X X

a = .. .- X a -a =0

Due to the assumed stationarity, their magnitudes are all less than one. Thus,

. . 2m .
the eigenvalues of the matrix A have also magnitudes less than one.

Let us now consider the matrix C in (61) as a function of the design

parameter m, and denote it then Cm. For m varying, we easily find that,

_ m T ,-m
Cy=C+ta@-cH)ahn B A (B.22)

; where,

(B.23)

''''' . - W . o
: R R )
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b.9

and where the expectations in (B.23) are taken at the nominal model. Also,

C, = (B.24)
1 2
011 (0 +r
It is easily seen that the matrix C1 in (B.24) has one eigenvalue between
zero and one, and that the remaining eigenvalues equal zero. Due to (B.22), and by
induction, the same assertion holds for Cm, m > 1. The magnitudes of the eigenvalues
of the matrix Q are then also less than one, and the same assertion holds for the

matrix P. Hence, the equations in (62) have solutions.

(ii) Let us consider the vector Z in (61), and let us define,

4

E 20'9_0
é ~

@ =u _ -4 __ (B.25)
A m

Y Su -a"u

From (59) we then easily obtain,
X =Y +A"Q-g (z +CA" Q) (B.26)
—_— — —_ F’m_. —

Under the nominal model, the vectors Y and Z are jointly Gaussian, and
independent of the vector {i. Let ﬁx(f) and 59(9) denote the density functions of

the vectors X and {i at the nominal model, and at respectively the vector points x

and w. Considering expectations at the nominal model, let us define,




i

\

i [ ]

: b.10

F

' dz exp(- 3 ' S;l z) 1 m m T
A (x, w) = ” 73 75" exp (-5 [x+¢g F,m(i + A" -A"w -Rz]

: k B Sy 1 15

> R

:

i‘ —1 ) m

) [ ) ]

i Sgrz X ¥ B (2 + CAW) -Aw - Rz]) (B.27)

~

o

"

; where Suz and Sz are given by (61). 1In the sequel, we will use the

y
b

following theorem, where for X = [xl,xz,...,xk]T, we define,

lell = max lx | (B.28)
Theorem B

Let f(x,v) : Rk x R~ Rk be a measurable function, satisfying the following

condition, for some positive real scalar function h(v).

1£Gow) £ 0[] < || xx7[| b ; ¥ x, x"er" wyert (8.29)

Let {En’ n > 0} be a stochdstic process in Rk, defined by the recursive

equation,

Xp=f&E,v) ,n2>0 (B.30)

; where {Yn’ n > 0} is an i.i.d. process in Rz, and where !n is independent
of Xn, for all n > 0. Let !n be absolutely continuous, and let then p(x) be its

density function at v. Let p(v) be such that,

/ h(v)p(v)dv
L

Then, the process {En’ n > 0} is asymptotically stationary. Furthermore,

g <1 (B.31)

the asymptotic distribution of En’ for n ~ ® is the same for any initial distribu-

tion of XO’ and depends only on the function £(+,*) and the density p(v).

Y
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E Proof

; From (B.30) we conclude that {l(ﬂ} is a Markov process. Thus, to prove

E asymptotic stationarity, it suffices to show that, given any distribution for
E —)SO' the distribution of _)_(_n converges weakly to a unique distribution in Rk,

\ as n + o,

E Let uo(i) be an arbitrary density function, V_)ﬁERk. Let then the sequence

{un(i), n > 0} be defined as follows.

o () = [ A (0 b (W de (B.32)
k

R
; where /\(3{_,_(9_) denotes the conditional density function of x, given w,
when x = f(w,v), and where Q is independent of V, and p(v) is the density
function of V at y_eRz. Let us now define the sequence {A(n) (x,w) , n > 1},

as follows.

A ) = AW
(B.33)
A ) = f A (x,2) A0 (z,w)dz
Rk
Then, we can write,
b GO = ] A (x,0) uy () dw (B.34)
Rk

To show weak convergence of the sequence {un(E)}’ we need to show that
. k .
there exists a density function u(x) ; X€R, such that, for any continuous and

bounded function, g(x) in Rk, we have,

/ 8(x) u_(x)dx f g(x) u(x)dx (B.35) ]
n - 00 '
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b.12

Let us define the sequence {gn(i), n > 0}, as follows.

T - & 4 W wmm——Tss s v

go(?ﬁ) = g(_’_{)
(B.36)
g, (x) = / Mz,x) g _,(2)dz
Rk
A Then,
: / g(x) p (¥)dx = f 8,(X) uy(x)dx (B.37)
R R
Let us define,
u fsup 677 swp g (@ -g @D (B.38)
§>0 Huw-z]]<8

Without lack in generality, we will assume that the quantities {un}
are all finite (this is true if, for example, the functions 8“(5) satisfy a

Lipshitz condition). From (B.30) and (B.36), we obtain,

g, (%) =/ gn_l(f(z.x))p(x)dx (B.39)
< |

From (B.38) and (B.39), we conclude,

u < {SUP (6—1 sup |gn_1(f(§,z)) -gn_l(f(_‘*_”l))l)}P(Y_)dX
80 |x-wl]<6
R
-1

5/ h(v)p(v) {sup ([Sh(v)] sup lgn-l(f)"gn-l(-‘ﬁ)')}d-‘f
gK §>0 [ x-w]|<8h(v)

= U1 / h(Wp(v)dv = Cu , <u (B.40)

k

R

as n + =, Thus,

/ g (x) un(x)dx = / gn(x)uo(x)dx ——~ constant (B.41)
l’ Yy
Rk Rk

SO LR NP
S JACENCIS SO I

NN Al P
T S S AP

From (B.40), we conclude that u + 0, as n +» o, and that gn(i) + g(x) = constant on R,
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b.13

Due to (B.29), the sequence {Un(l)} is tight. Thus, there exists a

subsequence {un (5)}, and a density function u(x) in Rk, such that, for every
i

continuous and bounded function g(x), we have,

/un.(z)g(g)dg — Ju(®)g(x)dx (B.42)
k

1
n, o

" NIV LSS T FFS TR,

From (B.41) and (B.42), it immediately follows that,

[ o dx — [ goudx
Rk

n-—+o k

R

and the proof of the theorem is now complete.

Let us apply now theorem B, for expression (B.26). In this case,
T
V= (Y2l o, &=2
£Q,V) =Y +A"Q-g (Z+CA" Q)
; where, for lumax(B)l denoting the absolutely largest eigenvalue of B, we have,

| £, -£@,v) || < || A" -0 - o} <

<l @-eh] || x -2 | (B.43)

Since |umax(Am[I—C])| < 1, the conditions in theorem B are clearly satisfied,

with h(v) é lumax(Am[I—C])l. Thus, the densities ﬂx(i) and 69(9) are asymptotically

identical, where due to (B.26) and (B.27), we have,

Ax (x)= f Ax,w) {\Q(gg) dw (B.44)
Rk

From (B.44) we then obtain,

T
SoF = E{)E X'} = /M(m) AQ (w) Ao (B.45)
Rk
; where,
. A T . ‘
M) = /x X AXx.0) dx 1.\1i i(«. )i (RB.46)
Rk

......




The function M(w) in (B.46) is analytic, and possesses Taylor expantion.

In particular, applying the Taylor theorem we write,

T -1
Mij(g) = Mij(g) + [V Mij(g)lg = 0Jw + 2

9?[V2Mij(9)lgé ulw ; for some u:

0 <u<w (B.47)

; where we can easily find that,

M(0) = P

W AH™A w - o' AHPq,, A w < w [V Mol w=wlw<e’ WHA"w; Ve

The expressions in (B.48), in conjuction with the equality j[wﬂg(g)dg = 0, and

expressions (B.45) and (B.47), give the inequality in (63).

(iii) Via substitution, we find,

|tr (ng - 5§F)| < ler (P + Y, aA™ p (aT)y™ _py -
i=1
,U (A)|2m
= ler (A AD™ (1-[aaT)™ 7! p| < -Rax tr P (B.49)

- 2m
1_'umax(A)|

; where the inequality in (B.49) evolves from the fact that the magnitudes of the

eigenvalues of the matrix P are all less than one.
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Appendix C

Proof of Theorem 6

(f ,68,%

n 1.5 0) denote respectively the
ps » ’

(f ,8,%.) and et
o 0

Let ez { N
S’

N

F) }’F

on
mean squared errors e(fo,G,QOF) and e(fo,G,QOS), when the correlation coefficients

r (k) and r (k) are substituted by the bounds bkF(n) and bks(n), in (52). Then,
F,m gS,n
we easily find,

L A _ 2
N {n }’F(fo,d,xo) = E{xolfo} +F(6)

F pF

(c.1)

£ (f ,8,%,) = E{lef } +F_(8)

N.,{n__},s'70>’70 0'"o S

S S

e . 2 i o
eN 9{n }iA(fo’O,xo) + E{Xolfo} +FA(0) - eN ,{l’l },A(fo’xo)’ A=F,S

A’ "pa A’ "pa

; where ez (f ,%.); A=F,S are the error bounds in theorem 4.

NA,{npA},A 0’70

It can be easily seen from (70), (71), and (73), that e(fo,d,QOF),
e(fo,d,ﬁos), FF(G), and Fs(é) are all monotonically increasing with increasing §,

and are all continuous and differentiable as functions of 6. Also,

N 2 N 2
e(f ,0,%)p) < E{Xolfo}, e(f_,0,%)c) < E{Xolfo}, and,
e(f ,1,§OF) = E{Xglf } o+ AZDZ(O)
© ° m (c.2)
A _ 2 2.2
e(f »1,%)0) = E{Xglf } + u A"(0)

* *
Thus, the breakdown points GF n and GS a exist, are unique, and are strictly
Y ’

between zero and one. In addition, if can be easily found that the functions

A - 2 . A - gl -
Gp(8) = e(f ,6,%,0) -E{xolfo} ~F(8), and Gg(8) = e(f ,8.%0) - h{xolfoi rs(ﬁ)

are such that,

-----
--------

S T N LN L,
PO OGRS




GF(l) = cs(l) =0

(]

. £ o
[6p(&) | < Jep(0)] = [e(f %)) - eNF’{on},Fuo,xo)l (c.3)

lcs(é)l < ]GS(O)I

~ £ ~
le (£, %q) 'eNs,{n },s(fo'xo)l
pS

Due to (C.3), and via theorem 4, given Cl > 0, we can find integers N_ and

F
. < < - ; < < - N Il N

IGF(G)I < Cl;Vd, [GS(G)( 54cl;v6. Then, for Cl small enough, we can
also have, FF(O) < 0 and FS(O) < 0, while at the same time we have, FF(1)=X£D2(0)> 0

and Fs(l)=uiA2(0) > 0. Thus, the functions FF(G) and FS(G) will then have unique

zeros, GOF n and Gg
9

Due to the continuity of all the functions, e(fo,é,iOF)
e(fo,G,ﬁos), FF(G), and FS(G), with respect to 8, given [ > 0, we can find
Cl > 0, such that IGF(6)| < cl;vd and IGS(G)I < cl;vd, gives:

*

o * o
I‘SF,m'GF,mI < ¢ and las,n'és,nl <L

Proof of Lemma 2

Let us define,Y , X, and { as in (B.25), and let us also define,

0
2,82 b Tty Ay )
4 4 by L4 Z-m
i=-m+l
0 (C.4)
z, ¢ by ¥
i=-m+l]

Then, for C as in (61), the optimal at the nominal model filtering cperation

cdn be written as tollows.
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c.3

_}g=¥_+Am9_-[_Z_l+£2+CAmQ] (C.5)

AR A B W AR & T T Ty

; where ) is independent of 1,.51, and 22’ where Y and El are independent of EZ’

F and where the vectors X.and_gl are zero mean and jointly Gaussian. In addition,

¥

o denoting by G(M,I) the mean M and covariance matrix I Gaussian distribution, the
vector_g2 has the following distribution, in the persence of the m-size block

by
b, outlier model.
(1-6) G (0,r’N) + 6 G (vi,0) ; 0 <& <1 (C.6)
Due to (C.6) and the fact that the distributions of X and  are asymptotically

identical, we easily find from (C.5),

-1
E{X} = -6v [T - (I-C) A" (c.7)

From (C.5) and (C.7), we also find,

m
E{X gT} = (I-C) A" E{x g_T} @ah a0t +

+(1-8) (E{(x-z) -z} + 2 W+

+ 6(E{(Y-2)) (x-z)p) + o uuh +

-1
+ §2v3((1-C) A" [I-(I-C) A™] Uy +

-1
rput - @H" @0 @h® a-ob c.8)

Solving (C.8), we finally find, for EO{§ XT} = E{X §T} at 6=0,

1° (v) = lim —— ° =
o 540 8

oo i .
- (-0 A" w2y’ - A b a0« |
i=0

m
: where the infinite sum in (C.9) converges, since the eigenvalues of (I-C)A

have magnitudes that are strictly less than one.

..............
™ . .
_n.i
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Proof of Theorem 7

(i) Let X, Y, and @ be defined as in (B.25), appendix B, and considering expectations

at the nominal model, let us define,

A _ _ T
Syra) = EUE - BQIZ)] (¥ - E(X]z, 110
R, 8T 7t
1 uz "z,
(C.9)
A -k -1/2 -1/2 -1 T -1
A = -
y(Kow) = (2m) ]Sy/zl] ]Szll ./;k dz exp(-2 E_Szlg).

-1 m m T -1 m m
.exp (=2 [ + -A"w- -A"w-
exp(=2 "[x + gp (ztvutCATw)-ATw-Rz]" S /zl[i 8y p(ZHVBHCA W) -Aw-R, 2])
Given 6, and the m-size block outlier model at level v, the vectors Y, 2, and
Z, are still independent of the vector 2. Then, for 6x(5) and 69(9) respectively

denoting the density functions of X and @, for A(x,w) defined as in (B.27), appendix B,

and for,

Ry o Gew) & (1-8)AGx.w) +8A (x,0) (c.10)
we can write,

6x(5) = / AG V(i,g) 6Q(_ug) dw (C.11)
A Rk 3¢

It can be easily found that theorem B, in the proof of theorem 5, appendix B,

applies on (C.11) with h(v) 4 lumax(Am[I—C])l < 1. Thus, the densities ﬁx(g) and

§~(w) in (C.11) are asymptotically identical. From (C.1l1l), we then obtain,
9_

E{(x X7} =/ [(1-6) M(w) + &M (W] f(w) dw (C.12)
. L

R

; where M(w) is as in (B.46), appendix B, and is bounded as in (B.48), and where,

M () 2 / x XL A (x,w) dx (C.13)
v - - - v — - -
Rk

Applying the Taylor theorem on the analytic matrix function Mv(g), and similarly
to (B.47), for the matrix M(g), we find the following expression, where A < B means

that each diagonal element of the matrix A is bounded from above by the corresponding

diagonal element of the matrix B.
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g
<4
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13

A
€
v

> M@ > P +a"ww D"+

+

[Vt‘iv(_ug)l9 _ g]g - R, (W) (C.14)

. _ T T.m m
; where Rv(gD = {w (A" Qij,vA w

i,j = 1,...,k}. Let us now define 6;(5)

and 68(9) as follows.

@ = / A(x,w) fo(w) du (C.15)
k
R

; where from the proof of theorem 5, we have that 6;(5) and 63(9) are asympto-

tically identical. Then, considering also the densities in (C.ll), we easily find,

() = [ Mw) [ Lim 5’1(52(9) - 65(9_))] dw + / M (w) - M(Q)]ég(g) dw
k

o §+0 Rk
(C.16)
;s where from theorem 5 we have,
o _ L o u
f w 62@ dw = 0 , SoF S f M(w) 69@) dw <S¢
Rk Rk

and where,

w o s o) - f0W)] dw = I_(v)
. §+0 2 L

R

From the above, and using (C.14) on (C.16), we finally find the result in (80).

(ii) The results follow easily from the bounds in (B.47), appendix B, and the bounds

in (C.14), by setting v - «, and by substituting 1-6 by (1-8)™, and & by 1- (1-6)™.
In particular, we then find,

A 4 T T u A
£,(6) = tr(s_(8) - S ) < tr(E{X X } - E{Uy Ugh) < tr(s (8) - s)) = £,(8) (C.17)
positive, and strictly less than one roots, 6: and Sﬁ. The inequalities in (82)

follow then trivially from (C.17).

]

-

; where the functions fl(d) and f2(6) are trivially found to have unique, strictly
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