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Abstract

Parametric spline curves and surfaces are Sypically
coastructed so that some number of derivatives match
where the curve segments or surface patches sbut. If
derivatives up to order n are continuous, tbe segments
or patches are said to meet with C®, or a'® arder pe-
rametric confinuily. Jt bas been shown previously that
parametric continuity is sufficient, bus not necessary, for
geometric smoothness.

The geometric measures of unst tengent and cur-
veture vectors for curves, and tangent plane and Dupin
sndicatnz for surfaces, have been used to define first and
second order geometiric continusty. In this paper, we
axtend the motion of geometric continuity to arbitrary
order n (G*) for curves and surfaces, and present an
Intuitive development of constraint equations that are
secessary and sufficient for it. The constraints (known
a0 the Bete constraints) result from » direct application
of the upivariate chain rule for curves and the bivariate
chain rule for surfaces. For fret and sscond order coa-
tinuity, the Beta constraints are equivalent o requiring
coatibuity of the geometric measures described above.

The Beta constraints provide for the iatroduction
of quantities known as shepe paremeters. If two curve
segments are to meet with G coatinuity, n akape ps
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rameters may be introduced. For surfaces, the wse of
the constraints for G* continuity provides for tbe intro-
duction of a(n + 8) shape functions, defined along the
boundary between two surface patches. For polynomial
splines, the use of the Beta constraints allows greater
fexibility through the shape parameters witbout rais-
ing the polynomial degree.

The approach we take is important for several
reasons: First, it geperalises geometric coatinuity to
arbitrary order for both curves and surfaces. Second,
it shows the fundamental connection betweep geometric

" continuity of curves and that of surfaces. Third, due to

the chain rule derivation, constraints of any order can
be determined more easily than using derivations based
axclusively op geometric measures.

Résumé

Les courbes et surfaces paramétriques & base de
splines sont généralement construites de fagon & ce qu'un
cartain mombre de dérivées coincident sux rsccorde
ments entre Jas arcs de courbe ou les carreaux de sur
face. Lorsqu'sdditionpellement les & premidres dérivies
sont continues, J arce ou jes carreaux se rencontrent
svec confinuité peraméirigue C*, ou d'ordre n. I s déji
été établi que la continuité paramétrique est suiisante &
l'obtention d'un lissage géoméirique, mais qu'elie a'est
pas nécassaire.

Les premier ot deuxidme ordres de continuité
géoméirique sont généralement définis & l'side de
mesures géoméiriquas tels Jo veclenr tangent snitasre
ot Je vectesr de courbure dans Je cas des courbes, ainsi
que Je plan tangent of INndicatris de Dupin dans le cae
des surfaces. Dans cet articl, sous génénlisons ja a0
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tios de coatinuité géométrique & »'importe quel ordre n
(G™) sussi bies pour les courbes que pour Jes surfaces.
Nous présentons également un développement hatuitif
des dquations de contrainte nécessaires of sufisanies.
Ces contraintes, que Bous appelons Jas coniraintes-bets,
découlent directement des rigies de chalne 3 upe varl
able pour les courbes et 3 deux variables pour les sur
faces. Pour Jes premier ot second ordres de costinuité,
Jas coatraintes-beta sont équivalentes 3 Ia continuité des
mesures glométriques décrites ci-dassus.

Les contraiutes-bets offrent 'occasion d'iatroduire
cerfaines quastités consues sous Je aom de peremiires
de formas. 8i deux arcs de courbe doiveat se raccorder
avec continuité G*, n paramitres de formes peuvest btre
{ntroduits. Pour les surfaces, I'ntilisatios des contraintes
de continuité G permet d'introduire n(n + 8) fonctions
ds formes, lesquelles sont définies o Jong des imites
commuaes entrs jes surfaces de deux carresux mitoyens.
Duas ls cas dee spline polysomisux, Iutilisation des
coatraintes-befa permet use Saxibilité accrue grice sux
paramitres de formes, sans pour antant augmenter be
degré du polynéme

Cetle approche est importaate pour maintes
faisoss. Premidrement, elie généralise Is notion de coati-
auité géométriques aux ordres guakoaques, sntant pour
dew coarbes que pour les surfaces. Deuxidmemens, olle
met ea dvidence Is similarité foadamentale eatre Ja con-
tsuité géométrique des courbas ot calle des surfaces. Ii-
salement, e rigles de chalne facilitest ls détermination
de contraintes d'ordre Queicoague, comparativemest §
ce Qu'suraient permis des dérivations baskes uniquement
sur des mesuyres géoméiriques.

KEYWORDS: geometric modelling, costinuity, param-
etric curves, parametric surfaces, shape parameters.

1. Introduction

Curves are defined or pencrated by paremeivisstions
(surfaces will be addressed in Section 3). A wniven.
et (ons variable) parametrisation is » function such
q(v) = (X(v),Y(v)), where the domsin parametier u b
allowed to range over some interval jue, u,). For a givea
wvalue of u, the function g(u) caa be thought of as Jocat-
Ing » particle ln Euclidean two-space. As v Is Incressed
over the interval, the particle traverses & path defined
by @, tracing out a curve in the process (see Figure 1).
¥ [wo, u;] is thought of as an eriented ine sogment, then

q can be thought of as a deformation producing an ons-
ented curve. The first desivative vector ¢*) represents
the selacity of the particle (in general, we denote the i**
derivative of a univariate function by superscript (s)).
The welocity Is » vector quantity and, as such, contains
jnformation about orientation and rete, or speed. The
second derivative vector g2) represents the acceleration
of the particle, 80 it t00 contains Information about the
(change of) rate. Thus, a parametrisation contains in-
formation sbout the geometry (the shape or image of
the curve), the orientation, and the rate.

—>—e———o—4
q

Pigure 1. The snivensic psrameirisation q gencraies
en oriented curve by deformation of the oriented line

segment [uo, w3}

Figure 2 show the curves generated by three differ
ent parametrisations. The shape of the curves is identi-
cal; they differ only in orientation and rate. Curves (a)
asd (b) have the same orientation at sach point, but the
rates differ. The curve labelled (c) differs from (a) and
(b) in orientation and rate. If a curve is defined to be
simply the geometry property of a parametrisation, one
would conclude that figures (a), (b), and (c) represent
eguivalent curves. We will refer to this aa the G model
of a curve. Another possibility is to consider the geom-
otry and orientation, which we will call the GO model
Using tbe GO model, one would say that (a) and (b)
are equivalent, but (c) Is different. The last pomibil-
Ry we will consider Is the GOR maodel where geometry,
orientation, and rate are all relevant to the definition
of s curve. Using this model, no palr of the curves is
equivaleat.

In recent years, heavy use has been made of piece
wise parametric functions known aa persmetric splines.
Spline curves are typically constructed by stitching to-
getber univariate parametric functions, requiring that
some sumber of derivatives match st each joint (the
points where the curve sagments mest). If n derivatives

agree 8t a given joint, the parametrisations there are
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Pigure 3. Eech of the curves alove Aas the same
smege; they only differ in orientstion end rate. Orien-
tation is indiceted by arrovhesds end rate i indicaled
by vectors tangent fo the curves.

said to meet with n'® erder parametric continuity (C*
continuity for short).

We maintain that the choice of a particular model
for a curve, and hence the choice of bow the curve seg-
ments are stitched togetber, should be application de-
pendent. For instance, if a spline ls being used to define
the motion of an object in an animation system, the
GOR model is most appropriate since the orientation
and rate are of importance. In this type of applica-
tion, parametric continuity is required to maintain the
smoothness of the rate propertiss. In other words, pa-
rameiric continuity will ensure that the object will move
smoothly.

However, in CAGD the rate aspect of a parame-
trisation is often unimportant. Consider for example
the use of splines Lo describe numerically-controlled cut-
fers. It may be necessary to specify uniquely the direc-
tion of the cutter at each point on the path, but the
speed of the cutier may depend upon the hardness of
the material being cut. For this type of application, the
GO model is mest suitable, but parametric continuity Is
overly restrictive since it places emphasis on irrelevant
rate information. Many other applications in CAGD
require only the G model, but it seems dificult 4o de-
velop a useful formalism without the structure provided
by orientation. We will therefors adopt the GO modal,
and develop an appropriate measure of continuity, cne
besed based oaly on the geometry and orientatios prop-
erties; we refer to this as geometric continuity.

14 has recently come to our attention that many
autbors have independently defined this kind of cos-
tisuity of first and second order (which we denote by
G! aad G?, respectively) for curves and/or surfaces v

.

ing geometric means. For curves, Fowler & Wikson'®,
Sabin'!”, Manning'®, Faux & Pratt®, and Barsky® each
fndependently defined first order continuity by requir-
Ing that the unit tangent vectors agree at the joints. To
achieve second order continuity, both the unit tangent
and curvefure vectors were required to match. Niel-
son’s »-spline'® possesses » similar kind of continuity.
These geometric measures essentially ignore the rate in-
formation by “normalising® the parametrisation before
determining smoothness.

For surfaces, it ls common to require matching of
tangent planes for first order geometric continuity (cf.
Sabin!® and Veroa et a)*°). For surfaces of second or-
der geometric continuity, Veron et al and Kahmann'?
require continuity of normel curvelere in every direc-
tion, at every point on the boundary shared by the con-
stituent surface patches. As Veron et al and Kabmann
each show, this ls equivalent to requiring that the Dupin
éndicstriz (ef. DoCarmo') of each patch agree at the
boundary curve. The Dupin Indicatrix is a measure of
curvature, but the curvature properties of surfaces are
sufficiently complex that they canpot be characterised
by something as simple as » scalar or & vector.

Altbough the geometric spproaches described
above are convenient and intuitive for first and second
order coptinuity, a more algebraic development is bet-
ter suited for the extension to continuity of higher order.
The approach we take is based on repsrametnsshion —
the process of obtaining a new parametrisation given an
old one. Under the GO model, reparametrisation may
change rate, but not geometry or orientation. By allow-
ing reparametrisation before making a determination of
continuity, the rate aspects of p' rametrisations may be
Ignored. Alternately stated, .r approach is based on
the following simple idea:

Pl: Don't base contipuity on the parametrisations at
Band; reparametrise, if necassary, to obtals param-
slrisations that meet with parametric codtinuity.
¥ this can be dome, the original parametrisations
must also mest smoothly, st least in a geometric

The above concept Is 20t & Bew on¢; similar prin-
ciples Bave been discuseed by Faria® and Veros ot aI®.
What s aew is the use of the priaciple to construct con-
straint equations (known as the Bsts constraints) that
are necemary and sufficleat for geometric contiauity of
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arbitrary order for both curves aad surfaces. ¢

The Beta constraints generalise the parametric con-
tinuity constraints through the introduction of freely
variable quantities called shape paremeters. Once the
Beta constraints are determined for & given order of con-
tinuity, they may be used in place of the parametric con-
tizuity constraints when building splines, thereby ob-
talning increased fiexibility. For Instance, i the C? con-
straints are replaced with the G? comstraints in the uni-
form cubic B-spline!®, the cubic Beta-spline results' 2,
The cubic Beta-spline Jo an spprosmimating spline tech-
pigue that possesses two shape parameters; an infer-
polating technique Is described in DeRose & Barsky®.
Faux & Pratt® and Farin® use the extra freedom allowed
by geometric continuity to place Bésisr control sertices.

Az important aspect of these techniques Is that the
sdditiona) Sexibility of geometric costinuity Is added
without increasing the degres of the polynomials. This
Is particularly important for algorithms that manipulate
the spline. For instance, the complexity of Sederberg's
algorithm'® to intersect two polynomial curves of degree
d grows at least as fast as €°. Substantial savings
can therefore be had by minimising the degres of the
polynomials iavolved.

In the remainder of this paper, we extend the
notion of geometric continuity to arbitrary order » (G*)
and show (in a ponrigorous way) that the derivation
of the Beta constraints results from a straightforward
use of the univariate chain rule for curves and the
bivariate (two variable) chain rule for surfaces. Por
s more complete treatment, the reader is referred to
Barsky & DeRose® and DeRose®.

3. Geometric Continuity for Curves

We begin the study of geometric continuity for
curves by examining the reparametirisation process.
Two parameirisations are sald $o be GO-eguivalent ¥
they bave the same geometry and orientation In the
seighborhood of each polat. Given & parametrisation
q, all GO-equivalent parametrisations may be obtained
by fenctional composition. More specifically, if q(w)
and §(V) are GO-equivalent, then they are related by
(V) = q((¥)), for some appropriately chosen change

® Goodmas'' aad Ramsbse'® howe Bdcpendestly derived
the saivariste Bets constrainte from the snivariate chaln rule.

of parameter u(¥) (see Figure 3). Since q and § must
have the same orientation, u must be as increasing func-
tion of &, implying that w must satisfy the omentation
prescrwing condition u(!) > 0. Intuitively, u(%) deforms
the interval [i, 6] into the interval [ug, ;] without re-
wversing the orientation of the segment (6o, ¥;). This in
turu implies that q and § will have the same geometry
and orientation, but they may differ in rate.

[ ————— |

————
vy

-~

Ug

Pigure 8. The squivalent parametrisations g snd §
ore related by the change of paremeter u(¥).

A upivariate parametrisation ls reguler if the first
derivative vector does not vanish. It is well known from
differential geometry” that regularity is, in general, o
sential for the smoothness of the resulting curve. We
will therefore restrict the discussion to regular parame
trisations. We now give a more precise definition of G
continuity:

Defiaition 1: Let (1), ¢ € [to,1)] and g(s), s € [wo, v, ]
be two parametrisstions such that »{t,) = q(w) (see
Figure ¢). These parametrisations meet with G™ coati-
auity at J if and oaly if there exist GO-equivalent p»-
rametrisations ¥(f) and §(¥) that meet with C costi-
auity.

Definition 1 is simply a restatement of principle P1,
but in practice one cannot examine all GO-equivalent
parametrisations Ia aa effort to fiad two that mest with
parametric coptinuity. However, It Is pomsible to fnd
conditions on » and @ that are necemsary and sufficient
for the esistence of GO-equivalent parametrisations that
meet with parametric continuity.

Although Definition 1 suggests that both r and q
seed to be reparametrised, it Is possible to show that
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r(t))=q(ug)=J

Pigure 4. Tie parametnisstions r(t) end q(u) meet af
the common point J.

Definition 1 holds if and only if there exists a § that
meets r with parametric continuity. In other words, only

obe of the parametrisations nesds to be reparametrised
to determine smoothness.

We will ultimately be interested in the derivative
properties of §. The univariate chain rule allows us to
express derivatives of § in terme of the derivatives of g
and u. For example, the first derivative is given by

a(l)_ﬁ.m
1 &

< d (21)
dv dv

=l qlt),

In general, the i** derivative of § cas be written as some
function, call it CR;, of the first ¢ derivatives of w and
q. That is,

"i“’ = c.i(‘")v' . 0‘“,0

o)., ), (3.3)

We are actually interested in G} evaluated at its keft
paremetric endpoint §. Thus, derivatives of q and »
must also be evaluated at their left eadpoints:

(%) = CR(q" (%), -+, 4N (w),
(), -+, 8% ().
Since « is a scalar function, evaluating ome of its
derivatives results iz & real aumber. In particular, Jot
o) (%) = B, § = 1,...,i. Equatios (3.3) then becomes
T(5) = CR(q"(vs),- -+, €' (we),
’l [ O’i)'

The orientation preserviag quality of » implies that
£ >0.

(33)

(3.9)

We are now in a position to state the primary result
of geometric continuity for curves. Recall that r and ¢
meet with G* continuity if q can be reparametrised to §
80 that derivatives of » and § agres. That is, we require
that

()= §M), i=l.n  (25)

Positional continuity Is implicitly assumed (see Fig-
ure 4). Substituting equation (2.4) into (2.5) ylelds

'“,(‘I) = c‘i(‘")(ﬂ)n cer 0‘“’(“)- : -
-8y TN
(39)

The constraints resulting from equation (2.6) are the
sniverisle Bets constraints and the nsumben §,,.... 4,
are the shape psrameters. The above discussion is not
s proof that the Beta constraints are secessary and
sufficient conditions for geometric continuity, but such
» proof can be constructed®®. Thus, if equations (2.6)
are satisfied for any choice of the fs, subject t0 §, > O,
then the coincident curve segments will meet with G*
continuity. For instance, the Beta construints for G*
continuity between 2 and g are

20)(8,) = 8, ") (o)
22)(t;) = £7 9 (wo) + £ 4" ()
20 (1,) = £} q*)(%0) + 38185 ¢'*)(w0)
+ 59" (w)
219(t,) = 57 Q') (uo) + 68255 '*)(w0)
+ (48,8 + 38]) ¥ (w) + A4 ") (wo).

Although equations (3.7) were derived using the
chaln rule, the first two are identical to the constraints
resulting from a geometric derivation of unit tangent
and curvature vector coatinuity?-!*, Thus, our spproach
reduces to previous definitions of G! and G? continuity
for curves. It can also be shown that Beta coastraints
for »** order continuity are equivalent to requiring
continuity of the first a derivatives with respect to arc
length 39,

When constructing a epline technique, if the Beta
constraints are used in place of the parametric conti-
suity constraints, new fresdom Is introduced through
the shape parameters. These parameters may be made
svailable t0 a designer in 8 CAGD environment to
change the shape of the target curve, as the following
example shows.

Graphics Interface '85




Y

..af e ;'*.-}'If;n\L(.'..v -\

Example 3.1: To demonsirate the wse of the Beta
constraints, we will sketch the construction of the go-
ometric continuous analogue of the ualform quartic B-
spline called (naturally enough) the quartic Beta-spline.

The ** segment of the quartic B-spline Is generated

o(v)= Y Vi Bu(s),
[t

where the basis functions By () are quartic polynomials
that satisty

s€f0,1] (29)

B{),01) = B{"(0),
$§=0,1,2,3, (29)
k=-3,.,1

The sequence of control sertices Vs comprise a control
polygon.

Since the derivative properties of the basis functions
are inherited by q,, equation (2.9) implies that the curve
segments meet with C? continuity. The quartic Beta-
spline is constructed by building quartic polynomials
bu(u) that satisfy the G* constraints instead of the C?
constraints of equation (2.9). That is,

801 = R (0), - W (0), i=0,1,33.
’lo""") o
(2.10)

Equation (2.10) implies that the basis functions are
dependent upon the shape parameter values. Changing
3 sbape parameter therefore changes the shape of the
resulting curve (see Figure §). °

3. Geometric Continuity for SBurfaces

In this section, we extend the notions of geometric
continuity to surfaces. Since care was taken in Section 2
8ot o base the development of geometric continuity on
concepts (such as arc Jength) that don's apply to sur
faces, the machinery developed for univariate parame-
trisations can be readily extended to bivariate parame-
trisations.

A surfacs patch is defined by a bivariate fuaction
ok 20 G(v,9) = (X(u,v),Y(w,v),8(u,v)), where »
and v are allowed to range over some regiocn D of the
wv plane (see Figure 8). Loossly speaking, a surface s
8 collection of surface patches. We use the sotation
G!J)(u,v) to dencte the ¢** partial derivative with

. "

Pigure 5. The curves slove share the same control
polygon, end all Asve 5, = 1 end fy = O; they differ
only in the velue of B3. The top curve has 3 = 0, the
middle curve Aas 3 = 30, end the bottom curve Ao
£3 = 100.

respect to «, and the §** partial with respect to v. In
general, & superscript (5, 5) denotes the i** partial with
respect 10 the first variable, and the 5** partial with
respect to the second. A bivariate parametrisation such
20 G is regular if the Srot order partials (G(1°) and
G(°1)) are linearly independent; we will deal exclusively
with regular parametrisations.

In Section 1, we saw that univariate parametrisa-
tions contain information about geometry, orientation,
and rate. The same is true of bivariate parametrisations.
Orientation can be defined by treating D a0 an omented
plone baving a *top side® and a “bottom side® G can
then be thought of as deforming the oriented plane to
produce an oriented, or two-sided, surface patch. The
rate information enters through the partial derivatives
of the parametrisation. We can therefore speak of the
G, GO, and GOR models of surfaces. Just as for curves,
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Pigure 6. Th¢ kiveniaie perametrisation G deforms
the oriented domain D to genersie an oriented surface
. pateh.

the use of » particular model should be application de-
pendent. We will adopt the GO model for two reasons:
first, orientation Is necemary in applications, such as
rendering, where the two-sidedness of surfaces Is Impor-
tant, and second, it seems difficult to develop a weeful
formalism without the structure provided by orients-
tion, especially when surfaces are allowed to intersect

. themselves. equivalent parametrisations F and G that meet with C*
N We now examine the reparametrisation process for continuity.
b surface patches. Two bivariate parametrisations are
. GO-equivalent if they bave the same geometry and el
H otientation in the neighborhood of each point on the \
surface patch. If G(v, v) and G(&, ¥) are GO-equivalent, D ]
8 then they are related by
- G(5,%) = G(u(5,7),»(%,) (31) u(u,v)
: where the functions w and v satisfy the orientation v(u,v)
) preserving condition **
. 101 00) _ ylat)yf10) 5 o (22) @ G
J
- We 30w examine how surface patches are stitched - D
‘ fogether with parametric continuity. Referring to Fig- - .
ure 7, ¥(s,¢) and G(u,v) meet with a*® order param- Pigure 8. G end G are GO-oquivalent parametrise.
. etric continuity if and only if all like partial derivatives ons related by the change of paremetrisation deter-
" of order up t:'u agree for each point of the boundary mined by u(¥,¥) and o(5, 7).
< curve. That
j P)(7) = GUN ibiml s In complete analogy with curves, only one of tho\\
r )= (7, s+j=lun, (33) parametrisations actually nesds to be reparametrised,
Implying that P and G meet with G® continuity if and
where evaluation at 7 s to be interpreted as evaluation . .
st all points P of 7. odyd(thmm;aénehthn
)(q) = BN i+fml,. 0 (34
§ oguation (3.3) as the Jacobian of the change of parametrisation Once agaln, in complete analogy with curves, the bivari-
' (et. DeCarme"). ate chain rule can be used 10 express derivatives of G

..........

L I R UL Iy e PR P P SR PR S I . o, . - PO g B N S A S SR SAPCHNPL SR R R S
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Pigure 7. The surface paiches gencrated by the
porametrisaiions ¥ and G mee! of the boundary curve
7.

Just as for curves, parametric continuity is appro-
priate for the GOR mode! of s surface, but it is not
suitable for use with the GO model since it places em-
phasis on irrelevant rate information. The determina-
tion of continuity can be made insensitive to rate by
allowing reparametrisation. Thus, we say that P and G
meet with G™ continuity if and only if there exist GO-
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b terms of G. In general, the i, 5** partial of G can be
axpressed as some function, call it CR, 4, of the partiale
ol G, v, and v, up to order i 4 4. Stated mathematically,

Gl m CR (G, o0 (M), (35)

where the indices (&, /) are to take oa all positive valuss
such that k+I=s <.

We may now obtain the lveriats Bsfe constraints
by evaluating (3.5) along the boundary curve, followed
by eubstitution into equation (3.4) to get

FE(q) = CR (G N(9),

ETENTY TEI

fork+imitjandit =], .. n

The equations resulting from (3.6) are the bivariate
Beta constraints, and the scalar functions u!*4)() and
»{*/)(4) are the shape functions. A simple counting
argument shows that it is possible to introduce n{n + 3)
shape functions when two patches are stitched together
with G™ continuity.

Just as the univariate Beta constraints can sup-
plant the parametric continuity constraints when build-
ing splipe curves, the bivariate Beta constraints can re-
place the parametiric constraints when building spline
surfaces. It can be shown that the Beta constraints for
first and second order are equivalent to requiring con-
tiouity of tangent planes and Dupin incatrices of the
patchea match along the boundary curve’. Thus, the
chain rule approach agrees with geometric intuition for
both G* and G? continuity. Moreover, the chain rule
spproach yields the second order constraints with less
effort thap the geometric approach. For higher order
continujty, geometric intuition becomes more fesble, but
the chain rule sppmad ﬂill lppli.

Conclmion

We bave defined n'® order geometric continulty for
parametric curves and surfaces, and derived the Bets
constrainte that are necessary and sufficient for it. The
derivation of the Beta constraints is based on a simple
principle of reparametrisation in conjunction with the
unlvariate chain rule for curves, and the bivariate chain
rule for surfaces. This approach’ therefore ancovers the
connection between geometric continuity for curves and

geometric continuity for surfaces, provides new insight
iato the nature of geometric continuity in general, and

...................

~allows the determination of the Beta constraints witk
Jom dol; than previoualy required. .

The use of the Beta constraints for G® continuity
allows the introduction of n sbape parameters for curves,
and n(n + 3) shape functions for surfaces. The shape
parameters and shape functions way be used to modify
the shape of a geometrically continuous curve or surface,
respectively. However, geometric continuity is only
appropriate for applications where rate aspects of the
parametrisations are unimportant since discontinuities
In rate are allowed. IR

As a final comment, the spprou:h we bave taken
Is not based on measures that are inherent to curves
and surfaces, 30 the generalisation to &-variate objects
(volumes, byper-volumes, etc.) can be made very sim-
ply: two k-variate parametrisations are GO-equivalent
M they are related by a change of parametrisation with
positive Jacobian; the corresponding Beta constraints
may be derived in complete analogy to the development
of Section 3, using the A-variate chain rule® in place of
the bivariate chain rule.
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