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I. INTRODUCTION

It has been recognized, since the work of Eyring and Polanyi,1 that an
understanding of detailed reaction dynamics requires a knowledge of the
topographical features of the potential energy hypersurfaces pertinent to the
chemical reaction, The task of the theoretician is to refine electronic
structure calculations so that electronic energy differences on an energy
surface may be predicted with 'chemical accuracy," or about 2 kcal/mol.
Recent publications, by several different groups, establish the importance of
electron correlation effects in studying even qualitative aspects of potential
energy surfaces,” - and experience to date indicates that neglect of the
effects of electron correlation can lead to substantial errors in predicted
heats of reaction,

In previous publications we have described the application of the linked-
diagram-based methods, many-body perturbation theory and coupled-cluster
double-excitation theory, for the computation of potential epergy surfaces,
electronic excitation energies,”*" and molecular properties. Here we report
details of potential energy surface features for two species commonly found in
flames: formyl radical, HCO, and hydrogen nitroxide, HNO. 1In particular, we
consider the hydrogen dissociation reactions of these species:

Heo(x1a') » w(Zs) + coxlg}) (R1)
ano(xta') » H(Zs) + No(2p) (R2)
HNO(a3A™) » H(Zs) + No(2m) (R3)
uvo(Ala™ 5 u(Zs) + no(2m) (R4)

Detailed results will be presented for the potential surfaces pertinent to
these four reactions. 1In particular, we have computed the minimum-energy
pathways. A less complete description of the formyl radical potential energy
surface has appeared previously.

Each of the potential energy surfaces to be described in this report
pertains to a reaction important in flames. 1In particular, reactions (Rl)-
(R4) promise to be important 1in the oxidation of formaldehyde by nitrogen
dioxide.

In the following section we present an overview of the theoretical
calculations. The succeeding sections report reaction hypersurfaces for each
of the chemical species. 1In the case of hydrogen nitroxide, we also report
simplified rate coefficient estimates in a discussion of the recombination of
hydrogen and nitrogen oxide.

II. OUTLINE OF THEORY AND COMPUTATIONS

Manf—body perturbation theory (MBpT)810 anq coupled-cluster methods
(CCM)ll— 4 are relatively new techniques, compared to configuration
interaction (CI), for the determination of electron correlation effects on
potential energy surfaces.322:6,14-25 MBPT/CCM methods were orginally
developed for problems in nuclear and solid state physics,g" where emphasis



- -
-

ikl

on correct size dependence, which we refer to as "size extensivity,” is
mandatory. Size extensivity is guaranteed by the evaluation of terms that the
many-body formalism identifies as linked—diagrams,9 hence, the linked-diagram
theorem serves as the cornerstone of the theory. In a solid of an infinite
number of atoms, the correct size dependence is obviously crucial, yet even in
molecular problems this is a highly desirable trait for an approximate method
to possess.” Two primary reasons for this are: (a) only approximate
methods that scale properly with size are suitable for generalization to
larger molecules, such as those encountered in quantum biochemistry,26 and (b)
size extensivity assists in computing accurate dissociation energies (or, more
generally, correct relative energies on the surface) when it is necessary to
compare a molecule to its smaller fragments. The latter kind of comparison
is also crucially dependent upon basis set effects?’ and whether the
approximate method permits smooth dissociation into the different

components .~ Heats of formation obtained from calculations using size-
extensive methods can be used just like experimental values to obtain the
heat-of-formation of some complex molecule, while non-size-extensive methods
may require "supermolecule" calculations to provide accurate estimates of
these quantities.

MBPT/CCM can be developed from the coupled-cluster ansatz,11_13
v = exp(D) [p> (1
where
T=T) +Ty+ eeu T+ 0. (2)
- ) abc... t t 1t
Ta = Unb ke, Bike.. XaXpXe XiXjXi 3)
abc...
with
abc...
(k...

the amplitudes of the n-particle second-quantized operator of Eq. (3). The
form of the wavefunction in (1), combined with the condition that the T
operator in (2) contains no disconnected parts, is sufficient to guarantee
that the energy

E = <¢0!H exp (T)|¢O> (4)

contains only linked vacuum diagrams and is necessarily size extensive. The
common choice for ¢, is a SCF function of the restricted or unrestricted form,
although this is not necessary.

If we limit T tgo only double excitations, we obtain the coupled-cluster
doubles (CCD) model.?! Equations for the amplitudes can be obtained by back-
projecting, H exp (T2)|¢0>, onto the space of CI double excitations. This
leads to a set of nonlinear coupled equations for the amplitudes:

2
;
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ab cd ‘.
- Dijanti; * oSq <ab||cd>tij + .5, <kf]iipe

ab
kl

(e (<ol [gerely ¢ <ka||jertie + <kb||ie>edS
ac _bd

cd ab ¢
ij kl

<ka||jc>t?£) + 3 {<k1||cd>[tijtk1 - 2(e

c>d
bd ac ab cd cd ab

+t,.t, ) - 2(¢t t

¢ .t ac bd . bd _ac
ij ki ik j1 ik jl

) + 4(e’t

ikttt D

=0 (5)

where <pq||rs> and D;;.y are defined in terms of SCF orbital energies ¢; and
by two-electron integrals in the molecular basis set

<pq||rs> = (prrlqus) - (prslqur) (6a)

(XpXe[XgXg) = [fdr) dr) x*(x) X (7)) xx(¥)) X (F) (6b)

Dijab = &5 * €5 (6¢c)

From the number of operators involved, the highest terms in the exponential
expansion that contribute to these amplitudes are quadratic.

Notice that there are no more amplitudes to determine in y,cp than in the
standard doubles-configuration-interaction (D-CI) function, yet we now have a
size-extensive method that includes most of the effects of CI quadruple
excitations. The latter fact follows by comparison to a CI wavefunction
including quadruples since the CI quadruple-excitation operation C, is
equivalent to

= 2 2 1 4
Co = Ty + 1/2T5 + 1/2T] Ty + T\ T3 + 57 T} (7)

However, as Sinanoglu observed,z3 T which accounts for true four-particle
interactions, is very small, while TS which accounts for two simultaneous
two-particle interactions, is far more important. Also T, = O for Brueckner
orbitals, and it 1is usually small for SCF orbitals, so the last three terms
are normally unimportant. Hence, with only little more effort than required
for D-CI, we obtain a substantially better result.,

The iterative solution of Eq. (5) proceeds as follows. Initially the

nonlinear term is neglected, giving

ab ..
3 = >/D. .
t33(D <ab||ij /D45 ab
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X E, = <ab|]i5>622(1) (9)

2 7 2% ij

i>]

) This is the second-order perturbation energy. The next iteration, also only
) of the linear terms, yields
.“

ab cd ..., ab

= +
; b3 (D) = 3y <ab|lcd>tij(1) 3y <l lipelia)
>
- . ..ac . . be
! * o Ze (-(kb'l]C)tik(l) + <kal|3c>tik(1)
. ac . be
’ + <kb|'1c>tjk(1) - <ka|,1c>tjk(1) (10)
2 and
K Eq = <ab]|i>t20(2) (11)
: 37 2% 02 ij
i i>]
» The next, iteration of the %énear term would be the same as (1), except for
. using t..sg) in place of t.(1) to give t,.(3;L). However, we show
1& 5 . . lg .1

. elsewher that this 1is not necessary sinlCe

D ..., ab _ ab 2
x €, = .5y <ab”13>tij(3,L) 3t {tij(z)f /24 sab (12)
. 123 123
” The first nonlinear iteration yields

ab - cd ab ac bd
d FHEH I [<kl”cd>{tij(l)tkl(1) 2[5 (D (D)
» c>d
- bc ac ab cd cd ab
. + tij(l)tkl(l)] - 2[tik(l)tjl(1) + tik(l)tjl(l)]

ac bc bd ac

; + 4(tik(l)tjl(l) + tik(l)tjl(l)]}] (13)
.
N which provides the amplitudes for
. Q _ ...,ab
. E, = .3, <aleJ>tij(3,N) (14)
: i>j
: The superscripts D and Q refer to the two components of fourth-order
. perturbation theory corresponding to double- and quadruple-excitation
h! diagrams. This defines the perturbation-theory model DQ-MBPT(4). A similar

consideration of the CCSD wavefunction, exp(T; + T2)|¢ >, leads in addition to
the fourth-order contribution of single excitations which we define as SDQ-
MBPT(4). For the vast majority of cases the DQ-MBPT(4) energy differs from

T Gy
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CCD by less than 1 kcal/mol,5 so (S)DQ-MBPT(4) is often nearly equivalent to
CCD (CCSD); then it is not necessary to converge to the infinite-order
solution of (5a). Another model used in this paper is D-MBPT(4), which is not
as reliable as (S)DQ—HBPTM).14’16’28 Due to (12), though, it is very
inexpensive and it generally benefits from some cancellation of errors.
However, this model can be erroneous in difficult cases, so we always report a
CCD result at critical points to guarantee that no unusual complications
occur.,

The triple excitations also contribute in fourth-order perturbation
theory leading to a negative contribution that is at least as large as the
individual SDQ contributions, but since the triple excitations are_an order
of magnitude more time-consuming to compute than the SDQ components, > we
hope that their net effect on most energy surfaces is unimportant. This will
certainly not always be the case though. On the other hand, SDQ-MBPT(4) is
simply a low-order iteration of the CCSD model that is usually close to the
infinite-order value. Thus, this model would seems to be largely justified by
including the two lowest categories of excitation operators just as in SD-
CI. In both cases, selected terms are summed to all orders of perturbation
theory instead of computing all terms of fourth order. Experience should
eventually establish which procedure is better.

The main disadvantage of the MBPT/CCM approach, the restriction to a
single reference function, is not essential to the theory but only to the
current implementation (see References 30-32 for the multi-reference MBPT/CCM
theory). To solve open-shell problems we normally use an unrestricted-
Hartree-Fock (UHF) reference function. It is well-known that such functions
can suffer from large amounts of spin contamination and are not suited to
obtaining any surfaces except those that are the lowest of a given symmetry.
However, the UHF function, unlike an RHF function, will usually allow a
molecule to separate correctly into its fragments for all decomposition
channels. In contrast, multi-reference-function techniques that include all
configurations required to achieve correct separation would be intractable for
even most three~ and four-atom molecules. To limit the uncertainty introduced
in using a UHF function for open shells, we monitor the multiplicity in the
calculations. For some cases, such as the Kla" state of HNO in the present
paper, it offers a caution on the interpretation of the results, while for
other cases, such as the 25" Hco surface, no multiplicity problems are
encountered.

For all the molecular states described in this study, the SCF reference
function is given by a UHF wavefunction. The integrals over atomic functions
were computed using Dunning's As3p33 contraction of Huzinaga's 9s5p primitive
basis set for first-row atoms and Dunning's scaled (g=1.2) 3s contraction of
Huzinaga's 4s primitive set for hydrogen. In the formyl radical study, a
single set of d-type (Gaussian) polarization functions augments the atomic
basis sets for carbon and oxygen, with exponents 0.75 and 0.85,
respectively, A set of p-type (Gaussian) polggization functions with
exponent a=1.0 augments the hydrogen hasis set. For the HNO calculations,
the exponents for the nitrogen and oxygen polarization functions are 0.92 and
1.02, respectively.

For all molecules, molecular integrals were computed using the MOLECULE
program. 4 Structure calculations for HCO and HNO were performed using the

11




GRNFNC and UMBPT programs.* The structural parameters and vibrational
frequencies for the equilibrium structure and the hydrogen-dissociation
transition state were predicted using GRADSCF codes. A 6-31G** basis set
was employed in these calculations.> The structural parameters for the
triatomics have been optimized relative to D-MBPT(4) calculations.

In the following,the inexpensive D-MBPT(4) model is used for most points
on the energy surface, while CCD and SDQ-MBPT(4) values are reported for
barrier heights and dissociation energies. In the course of the discussion of
the hydrogen dissociation reactions, we consider the barrier height and
dissociation energy for each reaction. The electronic structure calculations
predict values for the classical barrier height, Eyp, and the classical
dissociation energy, D,. If vibrational zero-point energy corrections are
included, we then refer to the critical energy, Ey, and the dissociation
energy, Dy. The critical energy corresponds to the transition-state-theory
activation energy at 0 K, while Dy corresponds to the limit at OK of the heat
of reaction. It is also known as the conventional transition-state
approximation to the vibrationally adiabatic ground-state barrier height or
threshold energy.

IIT. GROUND STATE POTENTIAL ENERGY SURFACE FOR THE FORMYL RADICAL

A. Background

We have published the results of MBPT calculations for the formyl
radical, HCO, including a description of the ground state potential energy
surtface. Here we describe a more complete calculation of that surface.

Chemical reactions of the formyl radical are important in all combustion
models that include formaldehyde; hence, all models for the oxidation of
alkanes contain the reaction of the formyl radical. In addition to many
bimolecular reactions of the radical, the unimolecular hydrogen decomposition
reaction is jmportant in_many combustion models. Seery and Bowman, McKellar
and Norrish, 1 and Fifer’ have all found the reaction HCO + M » H + CO + M to
be important in analytical models that describe the oxidation of formaldehyde.
The rate coefficient for the reaction has been estimazed in various ways, but
there is little agreement among the several papers.7’ 2 A reasonable estimate
of the rate coefficient for the reaction should be attainable if a reliable
description of the potential energy surface is accomplished. 1In particular,
an estimate of the critical energy and molecular information about the
transition-state region are required.

There are several published theoretical studies of the formyl radical.
Ab initio UHF calculations for the §round electronic state have been used to
predict vibrational force constants 3 and to predict hyperfine coupling
constants.%% Nonempirical restricted Hartree-Fock (RHF) and CI calculations

* The program GRNFNC, written by G.D. Purvis, does SCF iterations and
integral transformations. The program UMBPT, written by R.J. Bartlett
and G.D. Purvis, does MBPT, CCD, and VP-DCI.

12
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for the ground state and several low-lying excited states have been reported,
along with SCF calculations of potential 2nergy curves for hydrogen bending
and hydrogen dissociation of the radical. > The first detailed correlated
study of the ground-state potential energy surface was the study of the
poten.ial energy surfaces for several unimolecular reactions of HCO and

COH. The results of Dunning's calculations on the potential energy surface
for hydrogen dissociation agree well with the perturbation theory results.
Neither of the published correlated treatments, however, describe the angular
variation of the least-energy pathway. Since this information is important
for theoretical calculations of dynamical processes, we have extended our
previous studies to include the angular dependence. For completeness, we also
review the results of our dissociation-energy and molecular-structure
predictions,3 and we compare them with experimental and other theoretical
values,

B. Potential Energy Surface for HCO + M + H + CO + M

There are few ways to test the accuracy of a potential energy surface
calculation. Certainly an accurate calculation should yield accurate
molecular structures of the reactants and the products. In addition, the
predicted heat of reaction should agree well with the experimental value. If
these tests are satisfied, then the hope that similar accuracy applies for
predictions in the transition-state region may be justified.

In this study, equilibrium structural parameters were determined by
minimizing the total electrounic energy as a function of each of the degrees of
freedom in the molecule. The total energy was calculated by adding the D-
MBPT(4) estimate of the correlation energy to the energy calculated with the
UHF wavefunction. The theoretically determined sttuztural parameters for the
formyl radical are compared with experimental values 7 in Table 1. The
agreement between theory and experiment is excellent.

Table 1. Structural Parameters for Formyl Radical, HCO

UHF D-MBPT(4) RHFCI? Experiment®
Rey (ap) 2.078 2.10 2.116 2.126
Rgo (ag) 2.218 2.245 2.249 2.220
Oyco (deg) 126.8 124 125.9 124.95

a. Reference 46,
b. Reference 47.

A more revealing test of the theory is the calculated values of the heat
of reaction for the hydrogen dissociation. Recent experimental research on
the dissociation process implies a dissociation energy equal to 15.5 kcal/
mol. The experimental value is compared with several different theoretical
estimates in Table 2. It is apparent that each of the linked-diagram-related

13
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theoretical methods and the CI calculation®® give the dissociation energy with
good accuracy. On the other hand, the UHF dissociation energy is more than 10
kcal/mol too low. In a series of calculations to determine the dissociation
energies for the reactions

CHiO > CHi_lo + H i=1, 2, 3, or 4

we have found that MBPT calculations of the quality described here give values
that are 1 to 3 kcal/mol below published experimental values. Dissociation
energy calculations at the SCF level, however, neither agree with experimental
values nor reflect experimental trends. Thus it is necessary to includc
correlation energy effects if chemically accurate energy differences are
desired.

Table 2. Empirical and Theoretical Values of Dissociation Energy for HCO

AHg 300 (kcal/mol)

Experiment? 15.5 £ 1.5

Theoretical Values

UHF 4.6
D-MBPT(4) 12.9
SDQ-MBPT(4) 12.9
CCD 13.0
SCF-CIP 12.2

a. Reference 48.
b. Reference 46,

The potential energy surface for the hydrogen-dissociation reaction of
the formyl radical is computed at the D-MBPT(4) level. For 12 choices of the
carbon-hydrogen bond length, the energy is minimized with respect to
variations in the carbon-oxygen bond length and the bond angle. Only
nonlinear geometries are considered. The nonlinear nuclear arrangements
belong to the point group C,, and the ground electronic state for HCO is X“A'.
This state correlates with the ground states of the products. The electronic
energy at e¢xtrema on the surface are computed using higher energy levels of
theory, SDQ-MBPT(4), and CCD. Some of the results are reported in Table 3 and
the D-MBPT(4) results are displayed in Figure 1. The most striking result of
the hypersurface calculation is the magnitude of the potential energy barrier
at the transition state. A classical recombination barrier range of 6.7 kcal/
mol (CCD) to 7.4 kcal/mol [D-MBPT(4)] is obtained from the various correlated
calculations,

14
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Figure 1. The Calculated [D-MBPT(4)] Potential Energy Curve for the
Hydrogen Dissociation Reaction of the Formyl Radical
For each choice of Rey shown, the bond angle and carbon-oxygen bond
length were optimized.

These values should not be compared directly with the experimentally
derived activation energy, 2 kcal/mol, in particular since the latter is a
temperature-dependent quality. The experimental activation energy was
determined for the temperature range, 298 K < T < 373 K, with H, as the third
body.49 The electronic energy difference between the barrier maximum and
reactants, when corrected for the difference in zero-point vibrational
energies, will be called the critical energy, Ep, for reaction. (See end of
Section II.) Theoretical models that describe unimolecular reactions include
an exp(-EO/kT) factor, so that the critical energy accounts for a part of the
observed chemical kinetic temperature dependence. To predict the critical
energy, we must know the vibrational frequencies of the tranmsition state
species. Although theoreticians have demonfgrated the capability to predict
vibrational frequencies with good accuracy, 190 the effort expended to obtain
very high accuracy encourages the use of simpler approaches. 1In this study,
we predict vibrational frequencies using high-quality self-consistent-field
calculations to predict the Cartesian force constants. The calculations are
performed using the GRADSCF system of electronic structure codes. Although
the basis sets used in computing the vibrational frequencies differed from
those used in the MBPT calculations, the basis sets were of similar quality.
Predicted frequencies for the equilibrium formyl radical and the saddle point
are presented in Table 4. A comparison of the predicted and observed
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frequencie351_53 for the radical shows that this level of theory gives
vibrational frequencies that exceed experiment by about 15%. On the other
hand, our experience indicates that the zero-point vibrational energy
differences are predicted with reasonable accuracy by the SCF calculations.
Consequently, a good estimate of the critical energy for the hydrogen
dissociation can be made. The results of the correlated calculations give an
electronic energy barrier of approximately 23.1 kcal/mol, while the predicted
zero-point energy change is -5.0 kcal/mol. Thus, the predicted critical energy
for the dissociation reaction is about 18.1 kcal/mol.

The good accuracy obtained with the MBPT calculations in predicting the
structural parameters of the formyl radical and the dissociation energy for
the hydrogen dissociation reaction suggests that, in this instance, the use of
a UHF wavefunction as the zero-order function does not introduce severe errors
into the study of the potential energy surface. Furthermore, although the
wavefunction was not a spin eigenfunction, the wavefunction did approximate
the correct spin-multiplicity (2.0) at every point on the surface.” This
result is not general, however, since only a single bond is being broken and
the zero-order function is well-approximated by a single-determinant reference
function.

Table 4. Vibrational Frequencies (cm'l) for HCO and the Transition
State for the Dissociation Reaction

Predicted Observed

Molecule

vy (CH stretch) 3050.7 24838

v, (CO stretch) 1932.2 1868.4°

vy (HCO bend) 1247.7 1080.76°
Transition State

v, (reaction coordinate) 12161

v, (CO stretch) 2187.0

vy (HCO bend) 557 .4
a. Reference 50.
b. Reference 51.
c. Reference 52.
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IV. POTENTIAL ENERGY SURFACES FOR DISSOCIATION OF HYDROGEN NITROXIDE, HNO

A. Background

The chemistry and spectroscopy of hydrogen nitroxide, HNO, have been
objects of experimental and theoretical study for many decades. The gas-phase
recombination of hydrogen and nitrogen oxide represents a typical three-body
reaction,

H+ NO + M » HNO + M(R5)

However, three distinct bound electronic states of the product are accessible
after recombination:

H(Zs) + NO(2gp) + M » HNO(X!A') + M(Re6)
+ HNO(a3A™) + M(R7)

» HNO(AIA™) + M(R8)

and formation of each of the product states has been proposed.sz*"57 The
reaction of hydrogen with nitric acid oxide produces a red emission
corresponding to,”°”

HNO(KIA") > HNO(XlA') + hy (R9)

The branching ratios for the three recombination reactions are unknown, and
the mechanism for production of the AlA" state of HNO is not established.
Clyne and Thrush’® have proposed that Ala" state is not produced directly, but
that recombination occurs to the aSA" state followed by a radiationless
transition

HNO(a3A") 5 HNO(X'A™) (R10)

This mechanism has been disputed,61 primarily because Clyne and Thompson
assumed that no recombination barrier occurred on the aJA" surface. A more
recent theoretical study of the potential energy curves for the molecule
demonstrates the existence of potential barriers for both the a3A" and Xla"
surfaces, but the predicted barriers are low enough, 3.7 kcal/mol and
7.8 kcal/mol, for hydrogen recombination to occur t'nermally.6 These CI
calculations of the potential energy surfaces, however, used SCF energy-
optimized structures of the ground electronic state for all three of the low-
lglno curves. In this study, we compute potential energy curves for the XIA'
A", and AlA" states, optimizing Ry, and ¢ for each value of Ryy computed on
each of the curves.

The energy separation of the x1a' and X'A" states has been determined by
a number of experiments to lie in the neighborhood of 1.63 ev.29,60,63,64
Recent experiments on the OZ(IA )-sensitized chemiluminescence of HNO suggest
the existence of a triplet state about 0.8 eV above the ground state. A
more recent experiment established the excitation energy to be 0.85 eV

(19.6 kcal/mol).%® Several theoretical studies predict excitation energies
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for these two gransitions that agree moderately well with the experimental
values.® Since we wish to estimate relative rates of recombination
into the three states, it is important that our predicted potential energy
curves accurately predict the structure of HNO in each state and the energy
separating the states. Therefore, we report D-MBPT(4) energy-optimized
structures for the Xla', 3A“ and X1A" states of HNO, as well as MBPT/CCM
values for the excitation energies corresponding to the x!a' 4 a3a" and
xlar 5 Xlav processes. Subsequent sections describe the theoretically
determined dissociation energies for each of the bound states and enumerate
the details of the potential energy surfaces. Finally, we estimate the low-
pressure recombination rate ratios.

B. Predicted Structures

The structures of HNO in the ground and K1A" excited states were
established by Dalby in his classic_study. A comparison between the
experimental structural parameters®3:69 and those obtained from D-MBPT(4)
calculations is offered in Table 5. FExcellent agreement between theory and
experiment is found for each state, although the predicted parameters for the
ground state agree more closely with Dalby's values than do those for the
excited state. No empirically derived structural parameters are available for
the aJA" state. The predicted parameters obtained in our study differ
signficantly from those predicted in various SCF studies. An SCF calculation
using a 4-31G basis set predicts an NO bond lenggh of 2.382 a,, an NH bond
length of 1.911 a,, and a bond angle of 114.8°. This structure agrees
better with the structural parameters for the AA" state than with those of
the triplet state. An SCF calculation using the extended 6-31G** basis set
predicts an NO bond length of 2.322 a,, and an NH bond length of 1.915 aq,
both in reasonable agreement with the D-MBPT(4) results. However, in this
case the SCF predicted bond angle, 112.1°, differs by more than l1° from the
MBPT predicted value. Interestingly, SCF calculations for the xla" state
predict the bond angles well, 108.9°, but do poorly at predicting the bond
lengths (R No» 2-22 ag, Ryy, 1.95 ao) .70 Since the MBPT calculations predict
structural parameters that agree well with experiment for the two singlet
states, we contend that the structural parameters predicted by the MBPT
calculations for the a’A" are preferable to those predicted by the SCF-level
calculation. It should be noted that each of the triplet state wavefunctions
had a multiplicity close to 3.0. In particular, the multiplicity for the 4-
31G calculation is 3.02, that for the 6-31G* calculation is 3.02, and the
result for the D-MBPT(4) calculation is 3.0l.

C. Excitation Energies

In addition to establishing the structures for HNO in the x'a' and Elam
electronic states, Dalb¥ determined that the excitation energy corresponding
to the process xtat 5 Kla" is 1.63 ev.®3 Recently, Ishiwata, et al., reported
that the excitation energy for the process X*A' » a’A" equals 0.85 ev, 06 we
summar1ze in Table 6 the computed electronic energies for the XIA‘ a3A",
and A'A" states of HNO. Note that the UHF calculations predict that the
ground state is a triplet state. Each of the correlated calculations, on the
other hand, orders the electronic states correctly.

To compare predicted excitation energies with experimental values for
adiabatic excitations, the zero-point energy for each of the states must be
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E
E Table 5. Comparison of Predicted and Experimental Structural Parameters
g for HNO and NO

D~MBPT(4) Experiment Reference
L4
' HNO
)
xlar
Ryo (ag) 2,307 2.290 63
: Ryu (ao) 2.007 2.009
g (deg) 107.8 108.6
83A"
; RNO (80) 20302 IR
RNH (ao) 1-938 EEER
e (deg) 12308 ee e
xl A"
8 Ryo (2g) 2.31 2.345 63
Ryn (ao) 1.94 1.985
p (deg) 114.4 116.3
NO
X2n
Ryo (ag) 2.149 2.1747 69
included. FExperimental frequencies are available for thg x1a' and Xla"
states, but no experimental data are available for the a”A" _state. Therefore
we have computed vibrational frequencies for the X'A' and a3A" states in order
to compute the zero-point energy difference for the X+a transition. As may be
seen in the comparison shown in Table 7, there is poor agreement between the
experimentally determined frequencies and those predicted by the SCF
calculations. If, however, the frequencies for each state are reduced by 15%,
the ground state frequencies agree reasonably well with the experimental
values. As noted during our discussion of the formyl radical, however, the
SCF calculations generally yield zero-order energy differences that agree well
with experiment, so we use the SCF prediction for the zero-point energy
change, 1.3 kcal/mol.
. The theoretically calculated and experimental excitation energies are
' compared in Table 8. We report MBPT and CCD calculations for excitations to
X 20
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the aJA" and AlA" states. These predictions may be compared to experimental
excitation energies and those obtained via configurations interaction
calculations.’®:02 The MBPT and CCD results include zero-point energy
corrections. The linked-diagram related calculations yield excitation
energies that are lower than the experimental values. These results are
similar to the CI results of Wu, et al.56 That our calculations predict the
excitation energy to the AlA" state to be too low is not surprising, since the
UHF wavefunction for that state has a computed spin multiplicity of about
2.24. Obviously the wavefunction contains a substantial amount of triplet
state character, 1eadin§ to a low value for the excitation energy. The
excitation energy for a”A" state agrees well with experiment. The detailed
analysis of the contributions to the correlation energy, Table 6, shows that
the second-order, double-excitation contribution recovers almost all the error
contained in the UHF calculation. Furthermore, even though the fourth-order
MBPT calculation is not completely converged (the calculation is said to be
converged if the contribution to the correlation energy, at order n say, is
less that 1077%), the relative energies determined at that level of calculation
agree well with the D-MBPT(6) and converged CCD results. Finally, the
agreement between each of the fourth-order MBPT calculations that include both
double- and quadruple-excitation diagrams, DQ-MBPT(4) and SDQ-MBPT(4), and the
CCD calculations suggest that the difference between CCD and D-MBPT(4) is due
to the inclusion of quadruple-excitation effects in the CCD calculations.

Table 7. Vibrational Frequencies of HNO

State, Mode Predicted? Experiment
xlar
NH Stretch 3297 2684.,7°
NO Stretch 1971 1500.8°€
HNO Bend 1718 1565.3€
ada"
NH Stretch 3590 cesensens
NO Stretch 1511 chseseans
HNO (Bend) 966

a. SCF calculation using GRADSCF (Reference 38). Basis set: 6-31G**
(Reference 39),

b. Reference 71.
c. Reference 72.
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Table 8. Adiabatic Excitation Energies (kcal/mol) for HNO

D~MBPT(4) D-MBPT(6) DQ-MBPT(4) SDQ-MBPT(4) CCD Exp. CI? c1P

x1atsa3an 18.4 19.2 17.0 16.9 16.6 19.7S 16.3 21.4

x1a',Axlan 35.1 36.1 33.5 32.7 32.9 37.69 36.9 43.8

a. Reference 56.
b. Reference 62.
c. Reference 66.
d. Reference 63.

Since the MBPT calculations predict the energy separations of the three-
lowest electronic states of HNO with good accuracy, we now turn to the
representation of the potential energy surfaces for each of these states.

D. Potential Energy Curves for Hydrogen Dissociation Reactions of HNO

The results presented in the previous sections demonstrate that the MBPT
calculations predict equilibrium structures for HNO with excellent accuracy
and the relative energies of the three states with good accuracy. To
represent a potential energy surface accurately, however, requires that the
theoretical method predict the dissociation energy with good accuracy also.
The dissogiation energy, Dg, of HNO in the ground electronic state, 48.6
kcal/mol, 4 is well known and the dissociation energies from the two lowest
excited states can be deduced since the excitation energies are known and
since all three states dissociate_to the same products, H(2s) + NO(2m). Thus,
the dissociation energy for the ala" state is 29.1 kcal/mol, while that for
the K1A" state is 11.0 kcal/mol.

To compare the theoretical and experimental dissociation energies, the
theoretically determined electronic energies must be corrected for vibrational
zero-~point energy changes. Using experimental frequencies for the x}A' state
of HNO and the ground “N state of NO, the zero-point energy change for the
dissociation of ground state nitrosyl hydride is -5.56 kcal/mol. Combining
this result with the estimated frequencies for the a3A" and the experimental
data for the AlA" state, the zero-point energy changes for dissociation from
those states are 4.4 and 4.8 kcal/mol, respectively. Listed in Table 9 are
predicted values for the hydrogen dissociation energies of the three lowest
electronic states of nitrosyl hydride. The most obvious result of the
calculations is the inadequacy of the self-consistent-field method for
predicting relative energies, The encouraging result of the study is that
each of the MBPT and CCD calculations gives good results for each of the
dissociation energies. It is particularly encouraging that the D-MBPT(4)
calculations predict the dissociation energies well since this is the level of
theory that is least expensive for calculating the hypersurfaces for each
reaction.
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Table 9. Dissociation Energies for HNO

Dy (kcal/mol)

State o m e e e e e e m e
Fup UHF D-MBPT(4)  DQ-MBPT(4)  SDQ-MBPT(4) ccD Exp.2
xla -5.6 19.3 46.2 45.2 44.6 46.1  4B.6
a3a" -4.2 23.8 27.9 28.2 27.6 29.1  29.1
alan -4.8 14.2 11.1 11.4 11.7 13.1  11.0

a. Reference 63.

The results of D-MBPT(4) calculations for the potential energy surfaces
corresponding to each of the dissociation reactions are summarized in Table
10. For each value of the NH bond length, the electronic energy predicted by
D-MBPT(4) calculations is minimized as a function of the NO bond length and
the HNO angle. These parameters are presented in Table 10 for each of the
three electronic states. In addition, we provide the results of both the UHF
and D-MBPT(4) electronic structure calculations. The most obvious difference
between the correlated and uncorrelated results are the classical dissociation
energy and classical barrier estimates for the ground electronic state. In
that case, UHF calculations predict a dissociation barrier about 4 kcal/mol
greater than D, for this electronic state, whereas the D-MBPT(4) calculations
predict a negligible difference. The interesting and important results of
this work are the estimates of classical recombination barriers for each of
the electronic states. The D-MBPT(4) calculations predict almost no barrier
for recombination into the ground electronic state, a barrier equal to 7.1
kcal/mol for formation of HNO in the aSA" state and a barrier equal to 14.0
kcal/mol for formation of HNO in the X!A" state. The recombination barriers
significantly exceed those determined using configuration interaction
calculations. The CI calculations, however, were constrained by a small
basis set and the use of structures optimized for the ground electronic state
at each value of Ryy, so the differences between those results and the results
presented here are not shocking. The UHF calculations predict recombination
barriers for the two excited states that differ only by 1.8 kcal/mol.
Mowever, it should be noted that our UHF barrier calculations do not
correspond to transition state structures optimized at the SCF level,

Another interesting aspect of the calculated potential surfaces is the
variation in the angular dependence for each of the states. Both of the
singlet states demonstrate a marked increase in the HNO bond angle as the
hydrogen moves away from the NO fragment, while the triplet state shows very
little ansular variation of the optimal structure for any choice of Ryy. In
fact, the variation of the electronic energy as a function of the bond angle
in the triplet state is so slight that the variation in bond angle shown in
Table 10 is probably due to the coarseness of the grid used to optimize the
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angle. The difference in the bond angle variation in the three states,
however, serves to emphasize the differences in relative energies that would
be obtained were one to use SCF-optimized structures of the ground state for
correlation calculations in all three states.

The potential energy as a function of dissociation coordinate is shown
for the three electronic states in Figure 2. An interesting feature of the
curves is the broadness of the barrier in the transition state region of the
two excited states. This feature suggests that quantum mechanical tunneling
through these barriers should be slow. Hence, it seems unlikely that
tunneling is a reasonable explanation for the observed diffuseness in the
excitation spectra. In fact, our results support Freedman's suggestion that
the break off in the rotational structure corresponds to an intersystem
crossing to an electronic state with an accessible continuum, In the next
section we consider possible mechanisms for the formation of HNO in the Zlav
state, the origin of the observed chemiluminescence.
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Figure 2. The Calculated [D-MBPT(4)] Potential Energy Curves for the
Three Lowest Electronic States of Nitrosyl Hydride
For each choice >f Ry shown, the bond angle and nitrogen-oxygen bond
length were optimized for each of the states,
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; E. PRelative Rates for Recombination Into Three Electronic States of HNO

In order to obtain estimates of the relative rates for the recombination
of hydrogen and nitrogen oxide to form HNO in each of the three electronic
states, we use_a simplified theory of unimolecular reactions developed by Troe
and coworkers.’'”” In his review paper on the predictive possibilities of
unimolecular rate theory, Troe cites the lack of detailed knowledge of the
potential energy hypersurfaces and of the intermolecular energy transfer
processes. We have described the details of the potential energy surfaces for
three states of nitrosyl hydride, so we have supplied one of Troe's
unknowns., The details of the energy transfer processes stand outside the
range of this study, but by invoking the strong collision postulate, relative
reccmbination rates for the formation of nitrosyl hydride may be obtained.

Troe75 expresses the limiting low pressure, pseudo-first-order rate
coefficients, kO’ for thermal dissociations as

- SC
kg = B kg (15)

where g . represents the temperature dependent collision efficiency and k:C
represents the strong-collision form of the limiting rate coefficient, he
corresponding rate coefficient for recombination k is obtained from kg,
with the equilibrium constant K.y via

-1
ko . (16)

B il T N e gL G e il ot ook o i g

rec,0?

krec,O =

Troe gives an expression for k2¢ in terms of factors such as the harmonic
density of states, the Lennard-Jones collision frequency, the vibrational
partition function, and the critical energy, Fp, as well as terms to account
for anharmonicity corrections, the energy dependence of the density of states,
and rotational effects. We use Eq. (1) of Reference 75 to estimate k. .
Expressions to evaluate each of the factors in that equation are summarized in
Reference 74. For the purpose of this discussion, B.=1 for the unimolecular
dissociation reaction of each state of HNO.

One can predict the rate coefficients for unimolecular dissociation of
YNO in each of the three states, provided that molecular data describing the
reacting system are available, The data required are the molecular structure
and vibrational frequencies for the reactant and the activated complex, as
well as the energy barrier to be overcome during the reaction, the critical
energy. All of these data are available, in principle, from the results of
the potential energy surface calculations. However, as was discussed in the
preceding section, the theoretically estimated values for the vibrational
frequencies agree poorly with experimentally determined values. Consequently,
the rate coefficient calculations described here use erpirical frequencies for
the X'A' and ala" states, and estimated frequencies for the a’A" state and the
activated complexes, The estimated frequencies are chosen to agree with the
zero-point vibrational energy differences predicted by GRADSCF’’ calculations.

In order to estimate relative recombination rates, we must also determine
the ratins of the equilibrium constants for the different electronic states.
These ratios can be obtained using the molecular data predicted by the MBPT
calculations, along with the predicted excitation energies. Because the
masses of all the chemical species are the same in the three dissociation
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reactions, no effect of translational degrees of freedom will appear when the
equilibrium coefficient ratio is taken.

For the X!A' and ada" states, we have

3 3
K (a”A") (q ,q...9__,)a A"
c - el “vib'rot (17)

l,,
(qelqvibqrot)X A

K (XlA')
C

Since the products of dissociation of HNO from each of these states are
identical, it is easy to show that
3"
(qel)a A

1.,
(qel)X A

= 3 exp [AE(XIA' & a3a")/kT] (18)

where AE(XIA' > a3A") is the excitation energy, and the factor 3 accounts for
the degeneracy of the triplet state. The vibrational and rotational partition
function ratios are obtained by standard statistical mechanical methods. A
completely similar treatment allows the determination of the equilibrium
constant ratio for the X!A' and X!A" states.

We list in Table 11 the molecular parameters needed to estimate kg for
dissociation from each of the three electronic states, and to estimate the
equilibrium constant ratios. 1In Table 12, we summarize the predicted ko's and
K. ratios for a T = 300 XK. The recombination ratios for the two excited
states relative to the ground state are given by

krec(XlA') kO(XlA') Kc(a3A")
= . (19)

k (a3A") k (a3A") K (XlA')
rec 0 c

and

ko xlan wxtan ok &AM
rec 0 c

k (A°A") k_(AA") K (X"A")
rec 0 c
For T = 300 K, we obtain
l,,
k ec(x Ah) 5
—1;———j;~—— ~ 1.8 x 10
k (a”a")
rec
and
1,,
Krec (X' 87 10
——~T~ ~ l . 77 x 10
k (A" A")
rec
28
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Table 12. Low Pressure Rate Coefficients and Equilibrium Constant
Ratios for HNO, T = 300 K

State kg (cc mol™! s71) K. ratio
xla® 1.43 x 1017 ee
a3a" 8.09 x 1072 6.65 x 1013
Ala 3.04 x 1073 3.5 x 1025

These predictions suggest that direct recombination into the excited singlet
state, XIA", is an unlikely source for the chemiluminescence observed in the
recombination of hydrogen and NO. The results do not exclude the excited
triplet state, a A", as an intermediate state in the chemiluminescene, via the
mechanism

H(2s) + No(2) » HNO(adA™)

HNO(a3a™) » HNO(ElA™)

However, the estimate of the number of molecules formed in the triplet state
is low enough that these results cannot be interpreted as substantiating this
two-step mechanism. Perhaps the best mechanism to propose for populating the
Zla" state is the reverse of the process responsible for the break-off in
rotational structure observed for the same state. Thus, intersystem crossing
between the continuum states associated with the X“A' state may be cited.

V. DISCUSSION

The results presented here provide a substantial test of the ability of
MBPT to provide chemically useful information about potential energy
surfaces. Although the limitations imposed by the restriction to a single
determinant reference function limit the applicability of the method and give
caution to some of the numerical results, use of UHF reference functions does
not appear to prevent the theorist frgm obtaining chemically useful results.
As noted in our previous work on HCO,- although the UHF reference function for
the ground electronic state was not a pure doublet state, the spin
multiplicity changed very little as a function of the position on the
h¥persurface. In the examples discussed here, the reference function for the
A*A" state of HNO suffered from large amounts of spin contamination. The
spin~multiplicity of the wavefunction of equilibrium configuration is 2.26,
rather than 1.0, and it is this spin contamination that causes the relatively
large error in the computed [SDQ-MBPT(4)] excitation energy, 4.7 kcal/mol. On
the other hand, the spin multiplicity of the wavefunction at the saddle point
on the AlA" surface is 2.36. Clearly, the spin does not vary strongly as a
function of position on the surface, leaving the hope that relative energies
on the surface are determined with good accuracy. In support of this point,
one notes that dissociation energy predictions for the A'A" state agree more
closely with the value derived from experimental data than the excitation
energy predictions agree with that experimental datum. It is the case,
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however, that the calculations for the x2A' state of HCO and the X!A' and a3aA"
states of HNO avoid thT spin multiplicity problems encountered in the
calculations for the A'A" state of HNO. Consequently, we are less cautious in
our conclusions concerning those electronic states.

The results reported here also demonstrate the necessity of including
correlation energy effects when studying potential energy surfaces. In the
case of HNO, SCF calculations misorder the electronic states and yield poor
results for the dissociation energy of each state. _In addition, the SCF
results predict a barrier to recombination on the X'A' surface. Self-
consistent-field calculations for HCO yield a poor prediction for the
dissociation energy of that radical, whereas each of the correlation
calculations that include correlation gives a value that agrees well with the
experimental result.
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