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ABSTRACT

This is the Final Report for O.N.R. Contract No. NOOO14-76-C-0288. It
summarizes research results and lists publications, presentations, and sup-

ported graduate students.
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INTRODUCTION -

This final Report summarizes progress under Office of Naval Research

Contract Number NOOO14-76-C-0288 between 1 September 1975 and 15 January 1986.

Section I abstracts our research in three general areas: (A)
Environmenta)l Agoustics, (B) Moving Sources and/or Receivers; and (C) Basic
Tﬁeory. Studies under (A) are divided into four categories: (1) Eddies and
Fronts, (2) Currents, (3) Bottom E%fects, and (4) Internal Waves and Tides.

Thirty-four publications are listed chronologically in Section II, and
thirty presentations are indicated in Section III. Section IV lists eighteen

graduate students whose research was supported in part by this Contract.
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I. RESEARCH SUMMARY

A. Environmental-Acoustics

(1) Eddies and Fronts

In Reference 8, an analytical approach is used to obtain an approximate
solution for deep-ocean mesoscale eddies, including depth-dependent effects.
The solution is used in the development of an environmental-acoustics model
which relates acoustically relevant quantities, such as sound-speed and
current distributions, to eddy parameters. Parameters of the model are depth
of influence, radius, rotational direction and maximum speed, and transla-
tional velocity. An application to a particular Gulf Stream ring is made, and
the resulting current and sound-speed structures are shown to be in qualita-
tive agreement with observations. Then, general results are presented for
rotational current structure, maximum horizontal sound-speed change, and
maximum SOFAR-axis elevation as functions of eddy radius and peak current
speed. It is shown explicitly how these quantities change significantly with
eddy size and strength. This model provides a basis for subsequent analytical
studies of sound transmission through an arbitrary eddy or eddy field.

The effects of sound-speed and current variations induced by a mesoscale
cyclonic eddy on short-range propagation are considered.!> A parametric eddy
model is used to determine acoustically relevant eddy environmental effects,
so that eddy-acoustical effects can be determined for eddies of arbitrary
size, strength, and position. Approximations to sound-speed and current
structures are used to investigate eddy effects on the three-dimensionality of
rays and on ray types. The influence of current and sound-speed variations on
travel time is examined, and accurate expressions for per-ray phase variation

are obtained. Examples are presented illustrating effects of source-receiver

position and orientation on perray phase shifts and relative phase spreading
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} of arrivals. Also, general results are presented which illustrate the varia- ;i-
tions of eddy-acoustical effects as functions of source-receiver range and of =

eddy size and strength. EE
Underwater sound transmissions are significantly affected by the presence g;

of mesoscale eddies, because large sound-speed variations and rotational cur- )
rents are associated with these phenomena. Using an earlier axisymmetric eddy E:

model, equations and graphs of the ocean surface are found above an eddy.!l! Ei

The surface is elevated above an anticyclonic eddy and depressed in the cy- ;
clonic case (northern hemisphere). This behavior may be used to detect and i}'

partially classify an ocean eddy. With an appropriate eddy model, satellite z

altimeter data may be used to approximate acoustically-relevant effects. .:

The use of analytical modeling in the study of oceanic eddies is con- E?

sidered.!2 Limited observational data, in combination with eddy models, are ﬁf

used to obtain analytical approximations to environmental effects (including ;

current and temperature perturbations) throughout the eddy. Techniques which ;i
efficiently use discrete measurements are presented for accurate specification iz

of any given analytical model, containing an arbitrary number of parameters, i

to an observed eddy. Questions of unique parameter specification and data ;
sufficiency are considered for various data types and amounts, using a pre- Ei

viosuly derived eddy model. Examples with bathythermograph data are presented »

in which eddy size, strength and center position are to be determined. AXBT

data are emphasized, and an investigation is made of the influence of the i?

number of such instruments on the accuracy of parameter estimates. It is then _

shown how data obtained from cceanographic moorings might be utilized to '

g specify eddy drift speed and direction. In both the bathythermograph and <

mooring examples, it is demonstrated that even when the type of data available

leads to non-unique parameter specification, significant information can be
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obtained about the observed eddy. Results in this paper suggest possible
efficiencies in data utilization and in the design of subsequent experiments.

An analysis of a perturbed idealized cyclonic mesoscale eddy is per-
formed.2! 1Included are random perturbations from perfectly circular
streamlines and random perturbations in current magnitude. The random current
fluctuations are required to satisfy conservation of mass. Short-range
acoustic transmission through the perturbed eddy are considered, and an
approximate solution of the ray equations is found. An approximation for ray
travel times is developed in terms of the horizontally averaged, source-
receiver current component, and travel-time statistics are investigated.
Travel times over different ray paths are nearly perfectly correlated, imply-
ing that current perturbations can have significant effects on total-field
phase, but have little effect on total-field intensity. Statistics of the
horizontally averaged current components are analyzed and their effects on
travel times and acoustic phase are determined for various source and receiver
locations in the eddy. Source-receiver orientation is shown to be crucial in
determining current effect on both the mean and the standard deviation of
phase.

In Reference 23, consequences of eddy-induced sound-speed and current
variations on acoustic propagation between a submerged source and receiver are
considered using ray theory. For ranges of tens of km, those rays which exist
for particular source and receiver depth and range values are determined and
studied. Sound-speed and current effects on per-ray travel time and spreading
loss are investigated. Changes in the former of 15 ms or more are demonstrat-
ed, depending on source and receiver locations and ray type. Then, eddy
effects on total-field amplitude and phase are examined. For a cw sound

signal of 400 Hz, variations of about 25 dB in amplitude and several cycles of
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phase are observed as source and receiver positions vary within a typical
eddy. Eddy currents alone are shown to have a relatively significant effect
away from the eddy center, when certain rays are present or absent, and when
source and receiver change their orientations. Indeed, current effects by
themselves can lead to variations of up to about 12 dB in amplitude and 0.9
cycles in phase.

An approximate ray-acoustic model is used to obtain general information
and overall results for long-range sound propagation through mesoscale
cyclonic and anticyclonic eddies of arbitrary size and strength.2® Two-
dimensional ray approximations are employed, and currents and horizontal sound-
speed variations are averaged along approximate paths within an eddy. Eddy-
induced per-ray travel-time changes are shown to depend nearly linearly on cur-
rent strength and piecewise linearly on eddy size. For transmission ranges of
about 1000 km, the presence of the eddy may cause per-ray travel time to
increase (or decrease) by nearly 200 ms in the cyclonic (or anticyclonic) case.
Variations in eddy current strength alone are shown to cause changes of about
100 ms in per-ray travel time. Currents may cause travel-time changes which
are as much as those due to sound-speed variations close to eddy edge, and
which are as much as 15% of sound-speed effects elsewhere. This suggests that
in an acoustic tomography procedure, a corresponding percentage error in
predicted sound-speed variations may arise by neglecting currents. In some
total-field examples, it is shown that variations in eddy size and strength,
and in source and receiver location, can cause an increase of about 5 dB or
decrease of over 10 dB in transmission loss, relative to the case when the eddy
is absent. Further, it is shown that explicit inclusion of currents alone may
cause an icrease or decrease of over 10 d8 in transmission loss.

The effects of sound-speed variations produced by shaliow (1ess than 300 m)

...............
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deep-ocean fronts on short-range acoustic transmission between surfaced sound "
source and receiver are investigated?“ using ray theory. A parametric model
of such fronts, based on observational data, is constructed via sound-speed
profiles which are trilinear with depth. The model is sufficiently general to
permit determination of acoustical effects for fronts of varying strengths,
vertical extents, and positions within the propagation range. Frontal in- ;T
fluences on travel time and geometrical spreading loss are examined, and ex-
pressions for per-ray amplitude and phase are developed for cw transmissions
with source and receiver near the surface. Then, the dependence of total-field,
amplitude and phase on frontal strength, vertical extent, and relative location
are determined. All these frontal quantities are demonstrated to produce sig-
nificant acoustical variations, such as total-field transmission-loss changes of :i
more than 6 dB depending on frontal location. Simple and accurate approxima-
tions to both per-ray and total-field variations are presented which could pre-
dict changes in these quantities due to shallow fronts.

In Reference 34, the effects of a front on short-range acoustic transmis-
sion between source and receiver at arbitrary depths in shallow water are
investigated using ray theory. A simple parametric frontal model, based on
observed data, is employed for the sound-speed and current distributions
associated with the front. This model facilitates the analysis of the acousti-
cal consequences of frontal strengths and relative positions within the propa-
gation range. Frontal influence on per-ray quantities, including travel time
and spreading loss, are examined for cw transmission. Certain significant
variations are shown to occur, such as travel time changes of more than 30 ms iy
over a range of 20 km depending on front location. The dependence of the total N
acoustic field on frontal sound-speed and current strengths, orientation, and

relative location is also determined. Total-field transmission-loss changes of
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more than 9 dB are produced for different relative frontal locations. A pro-
cedure is indicated for using acoustic receptions from multiple sources and
receivers to estimate the physical and geometric properties of a front.
Frontal influence on the beam pattern of a uniformly-spaced, horizontal linear

array is found to alter main beam direction and relative received amplitude.

(2) Currents

The effect of currents on the acoustic pressure field in an underwater
sound channel is investigated.3! Based on fundamental fluid equations, model
equations are formulated for sound pressure while the including nonuniform
currents in the source-receiver plane. Application of parabolic-type approxi-
mations yields a collection of parabolic equations. Each of these is valid in
a different domain determined by the magnitudes of current speed, current
shear, and depth variation of sound speed. Under certain conditions, it is
possible to interpret current effects in terms of an effective sound speed.
Using this effective sound speed in an existing numerical code, we examine
sound speed in a shallow water isospeed channel with a simple shear flow and a
lossy bottom. It is found that even small currents can induce very substantial
variations in relative intensity. The degree of variation depends upon current
speed, source and receiver geometry, and acoustic frequency. Particular
emphasis is placed on intensity-difference predictions in reciprocal sound
transmissions in the presence of an ocean current.

The effects of a random current on the fluctuations of underwater cw sound
transmissions are considered? for a horizontal isospeed channel. A statistical
ensemble of currents is employed, whose members are depth dependent only, and
current influence on ray geometry is investigated. Approximations to the total
acoustic field at a receiving point are obtained, and it is shown tha a current

ensemble member has a significant effect on phase. A mean current is taken, on
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which are superimposed small depth-dependent current changes in speed and
direction. These changes are members of statistical ensembles, which lead to

an ensemble of phase functions. Expressions for the mean and standard

SRR

A

deviation of the phase, in terms of statistics of the depth-averaged current

fluctuations, are determined and analyzed. The inverse problem of determining

second-order moments of the random current, given the standard deviation of =
phase, is examined also. If the mean current is known, phase information at
three receivers is sufficient to specify the second moments of the current
fluctuations.

The effects of random fluctuations in an ocean current on underwater cw
sound transmission between a bottomed source and receiver are determined!® for il
an ocean channel with a linear, depth-dependent sound speed. A horizontal, ;i
depth-dependent current is considered whose components are random processes. ii
Effects of such a current on ray geometry are determined and six basic
current-induced ray states are found. Under certain conditions, including the Z;
assumption that the sound-speed gradient is larger than current-component
gradients, only one ray state may arise. The geometry of this state is ex-
pressed explicitly in terms of the current. Approximations for travel times,
total-field intensity, and their first and second moments are obtained. These
moments depend significantly on properties of the source-receiver current com-
ponent. Intensity moments are predicted using ocean-current data. For selected
parameter values, a difference between relative mean intensity and relative
intensity without current of as much as 9 dB and a standard deviation of
relative intensity as large as 3 dB are found. These moments are rapidly EE;
varying with transmission range; however, useful bounds are derived which are 5

slowly varying and which display an unusual behavior near certain critical

ranges.
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o In Reference 2, results of a previous hydrodynamical study of a uniform, I;

deep-ocean flow are used to develop simple approximations to the sound-speed and

P
"n,ll

current distributions in the flow. The behavior of sound speed with depth,

..
v,

surface current, and source and receiver locations is examined. The effects of

the flow on ray geometry, travel time, and spreading loss are investigated for a
surfaced cw sound source and bottomed receiver. Total-field amplitude and phase
are determined and are found to be highly sensitive to surface-current
variations and to source and receiver locations. A simple method is presented
for accurately estimating amplitude and phase. Then, an approximate phase
formula is developed that is proportional to surface current, linear in source
location, and sinusoidal in the orientation angle of the source-receiver range.

The effects of a combination of sound-speed and current fluctuations on

propagation of a cw signal in a deep-ocean model are analyzed.’ The mean sound-
speed and current fluctuations on propagation of a ¢w signal in a deep-ocean
model are analyzed. The mean sound-speed structure is assumed bilinear, and the
channel boundaries are horizontal. The horizontally independent sound speed EE
oscillates with a 12-h period, while the spatially uniform currents consist of
quasisteady and diurnally varying components. The total acoustic field for
surface-reflected-bottom-reflected rays is investigated for dependence on time,
source-receiver separation, and environmental parameters. Multipath propagation
is demonstrated for larger propagation ranges, for which case the number, depths,
and occurrence times of ampiitude fades are shown to be very sensitive to param-
eter changes. Where the total field is dominated by one ray, contributions from
combined sound-speed and current fluctuations to phase are investigated. 1In both

cases, phase generally can be influenced by both sound-speed and current fluctua-

tions, but the former more effectively influence amplitude. -
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(3) Bottom Effects

Effects of random bottom structure on acoustic intensity in isospeed shallow
water are studied.2® The randomness is due to stochastic variations in the
bottom density and sound speed in the horizontal direction beneath a plane
water-bottom interface. Ray geometry, spreading loss, and bottom loss and phase
shift are examined in order to derive formulas for mean intensity and the vari-
; ance of intensity. The expressions obtained are sufficiently general to permit
their use with different bottom-acoustic models of sound reflection. In this
paper, for illustrative and comparative purposes, two such models, one developed
by Mackenzie and the other by Raleigh, are considered. The distinctive acoustic
consequences of bottoms of different density mean, variance, and horizontal cor-
relation are discussed, as are comparisons of results for the two bottom-
reflection models. Intensity moments are obtained also for differing source-
receiver range and water depth.

The influence of sound-speed fluctuations on propagation of a cw signal in
an ocean with a uniformly sloping bottom and a horizontal surface is analyzed!3
using ray theory. The mean sound-speed structure is modeled as bilinear, with
bottomed source and receiver above and below the SOFAR axis, respectively. The
horizontally independent fluctuations oscillate with a 12-h period in the upper
ocean. An examination is made of possible types of rays for down-slope
propagation that might exist, depending on bottom-slope angle and
source-receiver separation. The total acoustic field is investigated for its
dependence on these parameters and time. For certain conditions when up to three
rays comprise the mean total field, three partterns of time evolution are
described, each of which may have significant amplitude variations. Numerically
computed examples of each type are presented. The linear relationships between

phase variations of individual rays and the sound-speed fluctuations are derived.

...................................
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Then, formulas are developed to explain the most frequent behavior of the
relative amplitude and phase of the multipath total field. Predictions from the
formulas show very good agreement with the numerical calculations.

In Reference 27, surface-reflected/bottom-reflected transmissions over a
slowly sloping bottom in a deep ocean are investigated using ray theory. For
convenience, sound speed is taken to be bilinear with depth in the water, while
the bottom structure is assumed to be uniform. The sound source and receiver are
located on or near the ocean boundaries, and the effects of bottom slope on ray
geometry, per-ray travel time, and incoherent total-field amplitude are examined.
For transmission ranges of tens of km, and for typical deep-ocean slope
inclinations, travel time may change by about 1.0s, relative to its value for a
horizontal bottom. The time difference between ray arrivals decreases

(increases) in the divergent (convergent) channel. Principal effects of bottom

slope on total-field amplitude arise primarily through bottom-loss modifications,
rather than through spreading loss. An inclination-angle magnitude of only 0.25°
is shown to cause a decrease of about 8 dB (increase of about 4 dB) in the
incoherent amplitude in the convergent (divergent) channel, for ranges of about
100 km. Changing bottomed receiver location in a convergent channel, in order to
improve source detectability, is shown in an example to be much more effective
than in the case of a horizontal bottom. In a corresponding divergent channel,
however, the strength of the acoustic reception is much less sensitive to
variations in receiver location.

The effects of a sloping bottom on acoustic transmissions, between a source
and receiver at arbitrary but fixed locations are investigated33 using ray
theory. An isospeed channel is assumed, and bottom angles up to about 3° are
considered. Sloping bottom influence on per-ray quantities, including travel time

and transmission loss, are examined for cw transmissions., Significant variations




RENLSE AN NS

13

are shown to occur, such as travel time changes of more than 200 ms over ranges
of about 6 km. Per-ray transmissiog loss is found to be influenced strongly by
bottom slope, the amount of inf]uenée depending upon source-receiver bearing and
the bottom loss model used. Variations of more than 20 dB are demonstrated.
Effects of a sloping bottom on the total acoustic field are examined also, and
the results compared with those for a horizontal bottom. Finally, a simple model
of a shallow water front is superposed over the sloping botiom, and travel time
is investigated. The sloping bottom effect can induce travel-time changes more
than 300% larger than the frontal effect for different source-receiver geometries

and bottom inclinations.

(4) Internal Waves and Tides

A consistent hydrodynamic model is developed® for the effects of a stochas-
tic field of internal waves in the deep ocean on sound-speed and current fluctua-
tions. A scaling is used which reflects the preponderance of energy contained in
internal waves of long horizontal wavelengths and near-inertial periods. An
approximate solution to the consistent boundary-value problem for vertical
eigenfunctions is obtained by a WKB(J) expansion. Expressions are found for
internal-wave fluctuations as superpositions of deterministic functions multi-
plied by random variables, for which particular probability distributions are not
assumed. Using specific forms of Brunt-Vaisals frequency and internal-wave
energy-density spectrum for illustration, formulas for covariances, variances,
confidence intervals, correlation coefficients, and correlation scales are
obtained for acoustically pertinent fluctuations. As a result of the consistent
treatment of vertical variations throughout the model, many properties of the
statistical quantities, such as vertical nonstationarity of the variances, upper
and lower correlation depths, and horizontal correlation length, are demonstrated

and physically interpreted.
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A consistent environmental-acoustic model for a deep moving ocean is formu-
lated.!® The acoustic model for regularly perturbed SOFAR rays is approximately
soived using a type of WKB(J) expansion. Interfacing conditions between the
hydrodynamics and acoustics are developed which lTead to constraints on acoustic
frequency and transmission range. As an application, transmissions are
considered through stochastic internal-wave fields, which have been modeled in a
previously published paper by the authors. Formulas for ray phase variances are
derived. These formulas are asymptotically evaluated for rays with relatively
significant depth variation, using the stationary phase method. New results are
obtained for the dependence of the variances on internal-wave primitives, such as
energy spectra. Expected multipath intensity is calculated for transmission
through an ocean with static state modeled by a bilinear sound-speed profile.
The effects of the internal-wave field and of varying internal-wave parameters on

the expected intensity are shown to be significant.

A major purpose of this paper! is to investigate the influence of mean

sound-speed structures on sound transmission in the presence of a single-
frequency internal wave. A cw signal is transmitted through a shallow ocean
over a range that is small compared to the wavelength of the internal wave. A
constant value of the Brunt-Vaisala frequency is assumed, and this value is
taken as a parameter of the model. The total field associated with refracted/
bottom-reflected rays is studied, and the effect of the internal wave on total-
field phase and transmission loss is examined. Then, the maximum variation of
of the phase is investigated for different mean sound-speed structures and
internal-wave amplitudes. This variation shows a general downward trend, as
bottom sound speed increases, and an oscillatory behavior possibly due to rapid
changes in the rate of change of phase with respect to mid-depth sound speed. A

simple mathematical model is constructed to explain the dominant decreasing
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trend. Phase variation is shown to vary linearly with bottom sound speed and to
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be proportional to wave amplitude, range, and acoustic frequency. It is

[}
> W

inversely proportional to ocean depth.

B. Moving Sources and/or Receivers .

A treatment of the effects of arbitrary motion of a cw source and depth-

.'- Jefa
PR

? dependent sound speed on the total acoustic field at a fixed receiving point is
considered for an ocean with horizontal boundaries.“ Application of our general ;
method is made to a constant sound-speed channel in which the range-to-depth
ratio is large, when the source follows a short straight-line path with constant
velocity. Total-field phase is investigated as a function of receiver time for
various source trajectories ana phase rate is examined in terms of an arbitrary,

. but fixed, acoustic frequency. It is shown that source motion may be accounted

TV T
SR e g Yy Y

for by assuming the sound source to be stationary, and by replacing its frequen-
cy by approximate Doppler frequency. For long source trajectories, cumulative =
phase can be approximated as a hyperbolic function of time. The outputs of two

uniform colinear arrays, together with power spectra there, are employed to .
illustrate one method for determining source speed, location, bearing, and
frequency.

In Reference 6, analytical methods are employed to obtain general results
for the effect of cw source motion on the total acoustic field at a fixed re-
ceiver in the deep ocean. A bilinear sound-speed profile is used, a long range
is assumed, and SOFAR rays are considered. Equations are developed which give
amplitude and phase as functions of receiver time. Then, an investigation is
made of stability regions, defined as range intervals for which all rays for ﬂ%
given numbers of SOFAR-axis crossings arrive at the receiver. Three types of .

such regions are identified and examined. Amplitude and phase are linearized

for a short source run, and novel numerical results for these quantities are
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presented. Approximate formulas for cumulative phase and Doppler-shift frequen-
cy are derived and discussed. Finally, an analytical description is presented
. for two mechanisms responsible for amplitude fades.

Deep-water sound transmission from a moving source to a fixed receiver is S
studied, where the source emits a random broadband signal whose expected
distribution is normal.l!® A bilinear sound-speed profile is employed, the
source is located above the SOFAR axis, and the receiver below. Long ranges are
assumed, so that only SOFAR rays need be considered. Basic propagation equations
are given, and travel time and spreading loss expressions are approximated in
stability regions within which all four SOFAR rays exist for each number of

& SOFAR-axis crossings. General equations are derived for the received average X
Py power spectrum and power in terms of the spectrum at the source. Then, the
broadband signal is taken to be bandlimited white noise. The received spectrum
is simplified and examined for nonmultipath, multipath, and Doppler contributions.
The influences of range, source speed, frequency, and observation time are con-
sidered. Average power at the receiver is studied similarly. Received spectra
for a stationary source are investigated, and exhibit greater variations than
those arising from a moving source. However, received average power for
stationary and moving broadband sources are about equal. Average received power A
from cw and broadband sources, both moving and stationary, are compared. Power ’
variations in the cw case are found to be much larger than in the broadband case.

An analytical approach is used to determine general results on a cw signal

transmitted through a deep ocean channel at short ranges.!“ A bilinear sound-

{

’,

speed profile is used. The receiver and source are restricted to the surface,

£

and only SRBR rays are relevant. Time-dependent expressions for the total-field

amplitude and phase are developed for appropriately limited time intervals, and

numeric21 results are presented. General analytical expressions for the total
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field are derived and demonstrated to approximate closely numerical results.
These expressions provide the basis for a study of the acoustical effects of
varying motion parameters and initial range. It is demonstrated that effects of
differences in range on total-field phase rate and the time interval between
amplitude maxima are significant at short ranges and diminish as range increases. _
Effects on total field due to receiver motion are shown to be both significant and
widely varying, depending on receiver and source directions and speeds. R

In Reference 19, the effects of receiver and source motion are examined for a
cw signal transmitted through a deep ocean at ranges of tens to hundreds of km.
Ray theory is used to develop results for multipath signals consisting of a wide
variety of combinations of SRBR and RSR ray arrivals. A bilinear sound-speed
profile is assumed for which bottom and surface sound speeds need not be equal,
and receiver and source are chosen to move on the surface. Numerical results are
presented using time-dependent total-field expressions, valid for suitably 1imited
time intervals. Analytical expressions are developed which closely approximate ;l
numerical results and which provide general conclusions regarding acoustical
effects of receiver-source motion at different ranges. When only SRBR rays can
occur, total fields are shown to have significantly different characteristics :i
depending on range, in contrast to the virtually range-independent total fields 2
which contain RSR rays. When totai-field phase is interpreted in terms of an
approximate Doppler shift, the frequency change shows relatively wide variations
with poth range and total-field composition. Thus, a given frequency shift at the
receiver may be the result of considerably different receiver-source directions
and sepeeds. KX

Using ray theory the combined effects of time-dependent changes in source

depth and receiver-source range are examined for a cw signal transmitted over

relatively short ranges.?% Approximating deep-ocean sound speed with a bilinear
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profile, general results are obtained when the receiver is taken fixed on the sur-
face, while the source moves on an arbitrary constant-velocity path above the
SOFAR axis. Time-dependent expressions for the amplitude and phase of the re-
ceived multipath signal are used to present numerical data for suitably restrict-
ed time intervals. Then, the effects of source path and speed are analyzed using
convenient formulas which closely approximate numerical results. For strictly
horizontal motion, total-field phase rate remains approximately proportional to
time, source frequency, speed, and horizontal receiver-source range, but virtually
independent of source depth. However, when source depth varies with time, overall
linear phase patterns are interrupted by regularly spaced, brief changes in phase
rate. The periodicity of these changes, and accompanying amplitude fades of up to
dB, are virtually proportional to vertical speed, source frequency, and range, but
invariant with changes in horizontal speed, direction, and initial source depth.

The sensitivity of a passive horizontal-tracking algorithm to variations in
input measurements is investigated.32 The algorithm determines estimates for
depth, range, bearing, horizontal speed, course, and fregquency for a cw acoustic
source moving with constant velocity at fixed depth. The receiver is a horiztontal
linear array towed at a constant depth. Both source and receiver move in the
upper portion of a deep ocean and are separated by a relatively short range.
Dominant acoustic signals are presumed to arrive along two upper-ocean ray paths.
The algorithm uses a new combination of input quantities, including multipath
information, Doppler frequency shifts, and array directional measurements. Pro-
cedures are developed for analyzing effects of input-measurement errors on source
localization. The robustness of the algorithm to small variations in acoustic
measurements and environmental parameters is demonstrated for a variety of
source-receiver configurations. Variance estimates of position and motion are

obtained in terms of input-measurement variances. Bounds on tracker performance
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are developed for measurements that are affected by noise. Results from the ;

several types of analyses corroborate the sensitivity characteristics of the

algorithm. e
C. Basic Theory ¥
A hydrodynamic model for flows in the deep ocean is developed in3 order to o

determine the velocity field and sound-speed distribution for use in acoustic
transmission problems. A scaling of the governing equations is constructed that ;{
explicitly includes sound speed. A subsequent perturbation expansion yields a

set of approximate equations for motions nearly in geostrophic and hydrostatic

balance, such as large-scale, quasisteady currents and Rossby waves. The -
quasigeostrophic potential vorticity equation or a simpler limiting case of this
equation arises from the perturbation scheme to govern higher-order dynamics of
the stream function for these flows. The results of the analysis are used to ;{
obtain a significant simplification of the ray equations of geometrical acoustics

for moving media. For the particular class of flows considered here, the model

) Ay

L4

equations are applicable if the ocean depth is about 1 km or greater and if the

K1

spatial and temporal scales of variation ¢f the motions are of the order of 100 km
and 10 days, respectively. A solution for a flow such as the Antilles current is
derived. Isospeed curves for this solution are shown in a plane perpendicular to -
the current, and specific features of the curves are discussed and interpreted.

A simplified approach is described!’ for determination of phase perturbations
produced by variations in sound speed and current in the ocean. [t is shown that
corresponding perturbations of the ray geometry may be ignored in determining the
phase perturbations, when the former are regular in a specific sense. Principal

advantages in the procedure include its efficiency in calculation of phase varia-

tions and its indication of situations when ray-geometric perturbations may

significantly influence phase. The method is demonstrated for both shallow- and
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deep-ocean examples, when the phase perturbation arises from weak horizontal

T T s Ja

deviations from a horizontally uniform sound-speed structure. It is also illu-

.
.

. strated for current in the deep ocean, considering cases with and without hori-

- zontal variations in current speed. Examples for both types of horizontal varia-

PR R

tions are shown in which they make significant contributions to ray phase.

L
L)

Finally, the procedure is applied to some single-path acoustic observations in

which the time series of travel time is dominated by tidal variations. Ranges of

AR

possible environmental changes in sound speed and current, leading to the observed
travel-time variations, are indicated.

Geometrical spreading of sound is investigated22 for propagation along purely
refracted rays in motionless media with smooth, depth-dependent, sound-speed
profiles. Fundamental characteristics of rays and spreading are derived which are
valid for very general types of sound-speed distributions of importance in ocean
acoustics. Ray turning and caustic-contact points are shown to either interlace
or coincide. For periodic rays, the separations between adjacent turning or
caustic-contact points are shown to either remain constant or approach zero with
range, depending on a basic property of the ray period. Bounds are obtained for
the separation distance, along with an asymptotic formula for the distance be-
tween nearest-neighbor turning and contact points. These results are extensions
and a correction to those in a recent paper [W.A. Kinney and A.D. Pierce, J.
Acoust. Soc. Am. 67, 1145-1148 (1980)]. Quantitative predictions from our formulas
are compared with other calculations and serve to illustrate their usefulness.
Several advantages of applying our formulation and results in the numerical compu- -
tation of geometrical spreading are discussed. ‘

In References 25 and 28, the sensitivity of oceanic sound transmissions to .

the choice of a sound-speed profile is analyzed using ray theory. The profile may

be any one from a collection of depth-dependent, single-minimum profiles which can
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be used to model a deep-ocean sound channel. Several configurations are
considered with fixed source and receiver, separated by less than about 50 km, so
that different types of ray propagation can occur. Given a specified profile,
procedures are prescribed for constructing a simpler profile, for which all .
important acoustic quantities are either identical or negligibly different. The
construction methods have physical interpretations and identify the critical
aspects of profiles are shown to be very close. Useful formulas are presented
which demonstrate that per-ray phases and amplitudes corresponding to the simpler
profile approximate accurately those of the specified profile. The total-field
phase and amplitude differences associated with the two profiles are discussed i:
briefly. Thus, when our procedure is applied, propagation results are not sensi-
tive to the type of profile selected.

The sensitivity of total-field receptions to sound-speed profile choice is
analyzed using a ray theory. The profiles are depth dependent, and may be used to
describe a deep-ocean sound channel. A variety of locations of a fixed source and
receiver, separated by less than about 50 km, is considered. Given a specified
profile and a second, simpler profile constructed by procedures previously
described [J. Acoust. Soc. Am. 75, 112-124 (1984)], it is demonstrated that the
acoustic fields associated with the profiles are negligibly different. Approxi-
mations for total-field phase and amplitude differences are presented, which
facilitate the determination of those ranges where the total fields match closely.
In addition, the sensitivity of performance measures for horizontal linear receiv-
ing arrays to profile selection is studied. Expressions for normalized power
pattern are developed which incorporate certain nonplane-wave effects associated f~
with an assumed dominant ray arrival. Conditions are presented for which a
simpler profile may replace a specified profile and still maintain nearly equiva-

lent array performance.
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