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I. INTRODUCTION

In this report we consider annular liquid -ropellant guns (see Figure

1). The regenerative piston surrounds a central bolt. As the piston begins

to move, it opens up a small annular vent between the piston and the bolt.

The bolt is tapered, so the vent opening becomes gradually larger. There is

a long straight section where the vent area is constant, and finally a back

taper to slow down the piston. The top of Figure I shows the gun before

firing, and the bottom of the figure shows the gun after firing.

The liquid jet enters the combustion chamber at nigh speed. After some

delay, the jet breaks up into droplets. The droplets formed may break up

" further or coalese. The propellant will eventually ignite, and may burn as

individual droplets or as an envelope flame. Gas recirculation will further

affect the spray combustion.

The fluid flows from the combustion chamber into the gun tube. For

liquid guns, there is typically a large area change between the chamber and %

the tube. This cannot be ignorea, as is aften done in solid propellant gun

codes.

I-4inovanuero
Regenerative liquid propellant gun codes involve a number of

simplifying assumptions. As the codes consider only lumped parameter or at

most one-dimensional regions, higher dimensional effects are ignored.

Besides this, there are three major areas of uncertainty. First is the

IPagan, G., and Izod, D.C.A., "Regenerative Liquid Propellant Gun Modelling,"

Proceedings of the Seventh international Symposium on Ballistics, The

Hague, The :;etherlands, April 1983.

-Cushman, P.G., "Regenerative Liquid Propellant Gun Simulation User's

Manual," GE Report 84-POD-004, December 1983.

3Gough, P.S., "A Model of the Interior Ballistics of Hybrid Liquid-Propellant

Guns," Final Report, Contract DAAKI-82-C-1054, PGA-TR-83-4, SeptemDer
1983.

'Ccffee, T.P., "A Lumped Parameter Code for Regenerative Liquid Propellant

Guns," Technical Report BRL-TR-2703, December 1985.
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injection of the liquid propellant through the orifice in the face of the

piston into the combustion chamber. This is approximated as steady state

Bernoulli flow. The various possible loss terms (entrance losses,

frictional losses, inertial effects, etc.)are lumped into the discharge

coefficient. This is treated as an adjustable parameter, and varied so as

to obtain the desired chamber pressure.

Second is the liquid accumulation in the combustion chamber. For lack

of further information, we usually assume that the liquid combusts

instantaneously when it enters the combustion chamber, although simple

droplet burning models are also available.

Last, there is the fluid flow from the combustion chamber into the gun

tube. This flow is approximated by steady state Bernoulli or isentropic

flow, again with an adjustable discharge coefficient to take into account

unknown loss terms. This coefficient is normally set equal to one.

Recently, a set of experimental measurements has been made on a 30-mm

regenerative liquid propellant gun. 5 6  These include the liquid reservoir

pressure, the combustion chamber pressure, the piston travel, and the

projectile velocity. The pressure traces have been filtered (20 k1egahertz

band pass filter) to remove the acoustic oscillations. A number of cases

have been measured for the 2/3 charge and the 1/3 charge. The gun has not

yet been fired with a full charge.

From the engineering drawings, the initial reservoir volume for the 1/3

charge case is 83.3 cm3 , and the initial volume for the 2/3 charge case is

171.1 cm3 . These values are used in this report. An actual measurement of

the liquid injected into the reservoir indicates a volume of 79 cm for the

5Knapton, J.D., Watson, C., and DeSpirito, J., "Test Data from a Regenerative
Sheet Injector Type of Liquid Propellant Gun," :2nd JANNAF Combustion
Meeting, October 1985.

Watson, C., DeSpirito, J.. Knapton, J.D., and Boyer, N., "A Study on High
Frequency Pressure Oscillations Observed in a 30-mm Regenerative RLG," 2nd
JANNAF Combustion Meeting, October 1985.
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1/3 charge case.7 The difference may be partially due to ullage in the

liquid reservoir. 'lore likely, the transducer block is slightly forward of

its theoretical position, leading to a reduced volume.

In this article we consider the data from 2 cases for each charge

weight. The pressure was recorded at three locations in the combustion

chamber. The pressure transducer at location J is initially in the

comb~ustion chamber. The other transducers are initially in the g-rease

* column between the outside of the piston and the chamber wall. The

transducer at location C is uncovered after the piston ftas moved about 2.J

centimeters. Thne transducer at location A is only exposed after the piston

has moved 4.1 centimeters. Data from the latter two locations are only

shown after the transducers are in the combustion chamber. Not all the data

was recorded successfully for each case.

Our goal is to obtain information about the three processes discussed

above. Since no measurements were taken of the gun tube pressures,

information about the fluid injection into the tube is not available. In

this paper we assume that the flow is isentropic with a discharge

coefficient of one.

11. EXPERIMIENTA.L DATA

Figures 2 and 3 shows the experimental chamber pressures for the 2/3

charge cases (round 8 and round 14). The pressures are given for all three

pressure transducers in the chamber. For comparison, the results of a

lumped parameter model are also given.4 The model assumes instantaneous

burning in the combustion chamber and the discharge coefficient has been set:

equal to 0.85 to match the experimental chamber pressure (at transducer

j). Ail the model results in this report assume isentropic flow into the

gun tube (discharge coefficient equal to one), a modified Lagrange pressure

distribution in the gun tube (which takes into account the large fluid

7Watson, C., Ballistic Research Laboratory, private communication.
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* velocity in the throat of the gun tube), and simple approximations for the

*heat loss to the gun tube and the air shock in front of the projectile. For

purposes of comparison, the experimental curves have been shifted in time so

that the model and curve J reach the shot start pressure (68 X4Pa) at the

same time.

There is good agreement between the two firings and among the three

pressure transducers. Late in the firing cycle, the data shows a pressure

gradient in the combustion chamber. The chamber is by now too large for a

rapid enough pressure equilibrium. The present generation of models, which

* all treat the combustion chamber as a homogeneous region, cannot model this

behavior.

The model curve shows fair agreement during the rapid pressure rise.

The agreement is very poor during the early part of the firing cycle, and is

not very good at later times in the cycle.

Figure 4 shows the piston travel for round 8. This data was not

successfully recorded for round 14. The experiment shows earlier piston

travel compared to the pressure rise, indicating that liquid is being

injected into the combustion chamber before combustion has really started.

- The model shows a slightly longer piston travel than the experiment. This

is because the piston is assumed in the code to be infinitely thin. The

effect of a more detailed piston model was judged to be minor. In order to

preserve the proper initial liquid reservoir volume, the piston travel does

* have to be slightly longer than in the actual gun.

Figures 5, 6, and 7 show the analogous data for the 1/3 charge cases

- (round 2 and round 9). The model used the same value for the discharge

* coefficient (0.85) in order to see if the same parameters could represent

* both the 2/3 charge and the 1/3 charge cases. In this case, the model

pressure shows an unusual two humped pattern. The first pressure maximum

- occurs when the vent opening is still small. Since the liquid reservoir

*volume is small, the liquid pressurizes rapidly, and reaches a pressure well

* above that predicted by the hydraulic difference between the two chambers.

'When the vent area increases, this overpressure is relieved. The resulting

13
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lower liquid pressure leads to a lower injection rate, and the chamber

pressure falls. Finally, a more normal pressure peak is obtained. For this

particular case, the double hump is an artifact, due to the assumption of

instantaneous burning. In other experiments, this type of pattern has been

observed, indicating that in some cases the effect does occur.

Round 9 shows a much larger peak pressure than round 2, and a lower

gressure - rune early part of the firing cycle. Apparently, during round 2,

-ne lizuid began combusting earlier, leading to a higher early pressure and

iA .;er ,eam pressure.

Experiments for low pressure ignition of liquid propellants show a

large variation in ignition times for the same heating rate. 8  Also, erratic

inition behavior has occurred in other fixtures. Since the pressure curves

show differences for early times, the difference in peak pressures is

probably due to differences in the ignition. Different crash rings were

used in the two tests, which could effect the ignition.

Both the experimental piston travels (Figure 7) indicate liquid

accumulation during the early part of the firing cycle.

III. DATA ANALYSIS

The mass flux through the piston is assumed to obey the steady state

Bernoulli law

mass flux = CD Av 2g° P (p,- P 3 ) (1)

" 8Miller, M., Ballistic Research Laboratory, private cot.unication.

9 Reever, K.P., "Operating Manual and Final Test Report for 30-rm BRL
Reenerative Liquid Propellant Test Fixture," General Electric )rcnance
Sistems Division Report, Contract No. DAAK1I-83-C-0007.
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where CD is the discharge coefficient, AV is the vent area, go is a
4D

conversion constant, p1I is the liquid density, p1 is the liquid pressure,

and P3 is the combustion chamber pressure. The pressures and vent area are

known. The liquid density can be computed from the equation of state.4 Now

* integrate both sides over a time interval. The left side is just the

* difference of the liquid masses in the reservoir at the two times. The

right side can be approximated using numerical integration. An average

*value oi C D over the time interval is obtained.

The mini-transducers used in the liquid propellant chamber are known to

suffer from inaccuracies. Also, small errors in each pressure can lead to

large errors in the pressure difference. So the liquid pressure is

approximated by the chamber pressure times the hydraulic difference (for

*this piston, 1.4746). This is a good approximation, and would be exact for

* an incompressible liquid. The integrations are performed over time

intervals corresponding to equal piston displacements (0.2 cm).

Results are given in Figure 8 for the 2/3 charge. At early times, the

vent opening is very small,, and the discharge coefficients are large. As

the piston moves and the vent area increases, C D drops rapidly, and then

* slowly increases to large values again. Figures 9 and 13 show the results

*for the 1/3 charge. For purposes of comparison, Figure 11 shows the three

* experimental curves for position J. The curves are qualitatively similar.

It is not yet known if the delay in reaching a high discharge coefficient is

* due to inertial effects (delay in accelerating the liquid to the steady

* state values) or to a change in steady state conditions (such as Reynold's

* number effects).

It is also possible to compute the liquid accumulation, using conser-

* vation of mass and energy. At any given time, we know how much liquid is

* still in the reservoir. The energy of the liquid is assumed to be the

chemical energy times the mass. The balance of the original charge is in

S. the combustion chamber/gun tube. The total energy and mass in this region

is hence known. We assume that when the liquid combusts, it immediately

* releases all of its chemical energy.

19
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The total energy in the combustion chamber/gun tube must equal tne

chemical energy of the liquid, the internal energy of the gas, and the

kinetic energy of the piston, the projectile, and the gas. Energy loss

terms (heat loss to the tube, air shock, frictional resistance, etc.) are

ignored.

The experimental projectile velocity is noisy near the beginning of the

firing cycle. So we assume that the velocity is zero if the chamber

* pressu:e is less than the shot start pressure (68 AIPa). Also, the velocity

measurement usually breaks down before the projectile exits the tube. In

this case, the projectile velocity is extrapolated.

The tube pressure is assumed to be equal to the chamber pressure. This

is accurate for early times, before the projectile is moving rapidly. The

piston velocity is obtained by numerical differentiation. The projectile

travel is obtained by numerical integration.

From the piston travel and projectile travel, the volumes of the

combustion chamber and the gun tube are computed. Also, the kinetic energy

of the piston, the kinetic energy of the projectile, and the kinetic energy

of the fluid in the tube (assuming a Lagrange distribution) can be

calculated. The liquid density can also be calculated from the equation of

state.

We can now set up six equations involving the combustion chamber/gun

tube; total energy

Se T '4 + eG  2)

total mass

MT - M - 4G  3)
i L G3

r.
-- 4



total volume

V, = VL + V0  (4)

internal energy of the gas (Noble-Abel equation)

eG 3 (1 - bo G) / o G (y- 1)

liquid density

L ML/VL (6)

and gas density

G G /V G (7)

There are six unknowns; liquid mass, gas mass, liquid volume, gas volume,

gas density, and gas internal energy. After some algebra,

L  ( - 1) + o T .3 3 T L
L L eL (y - 1) + L P b - P3 (8)

Results are given in Figures 12-14. For early times, the three cases

are almost identical. They all show a significant liquid accumulation. The

round 9 case (Figure i) i-. different from the other two. Here the liquid

25
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burns more rapidly, leading to a drop in the liquid accumulation. At later

times the injection rate becomes large enough to again build up the

accumulation. For the other two cases, the liquid accumulation builds

steadily throughout the piston travel.

Ignoring the lower pressure in the gun tube leads to an underestimate

of the liquid accumulation. Ignoring the loss terms leads to an

overestimate. If the liquid is heated substantially before combustion

occurs, the accumulation will be overestimated. Also, the liquid

accumulation is sensitive to errors in the pressure measurements. But the

data does show a large accumulation of liquid in the chamber/tube for all

three cases.

Additional information can be obtained concerning the ourning rate.

Assume that the liquid accumulation is in the form of uniform size

droplets. The diameter ds of the droplets is chosen to be the Sauter mean

diameter. This is the diameter that preserves the surface area of the

original accumulation.

The burning rate is given by

burning rate = ML (6/ds) Ap3  (9)

where ML is the liquid in the chamber/tube, and AP3 is the linear burning

10 1.1rate. This rate has been measured by McBratney. Over a given time

interval, the burning rate is approximately equal to the change in the mass

of the gas. So the Sauter mean diameter can be estimated over a given

interval.

10McBratney, W.F., "Windowed Chamber Investigation of the Burning Rate of
Liquid Monopropellants for Guns," ARBRL-MR-03018, April 1980.

''McBratney, W.F., "Burning Rate Date, LGP 1843," ARBRL-MR-03128, August
1981.
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Figures 15-17 show the Sauter mean diameters. For early times, the

diameter is large, indicating rapid liquid accumulation and slow burning.

The diameter then drops rapidly, indicating that the liquid is burning much

more efficiently. The liquid accumulation still remains high, but this is

due to the rapid influx of propellant from the liquid reservoir.

[V. COM4PARISONS

Now we will see what effect the above results have on our use of the

gun c ode. We have already examined the results when the code 4 is run with

the usual assumptions.

We would like to use the values generated by the inverse code to

improve the agreement. The code can be run assuming that the liquid

injected into the chamber immediately forms droplets. All the droplets are

* assumed to have the same diameter. The code allows both the discharge

* coefficient and the droplet diameter to vary as a function of piston travel.

These values are simply read off from the inverse code until the region

is reached where there appears to be random oscillations. The values are

then kept constant. The value of CD that is greater than one is ignored.

* The final value for the mean diameter is adjusted sligh~tly to match the

experimental peak chamber pressure. Table 1 shows the results.

.30
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Table 1. Experimental discharge coefficients and Sauter

mean diameters from a 2/3 charge experiment.

Piston travel CD  ds

0.0 .759 .235

0.2 .759 .235

0.4 .759 .874%

0.6 .463 .325

0.8 .277 .174

1.0 .318 .085

1.2 .432 .055

1.4 .562 .040

1.6 .615 .031

1.8 .702 .02b -

2.0 .787 .023

2.2 .767 .019

2.4 .814 .017

2.6 .945 .015

2.8 .926 .0.13-

3.0 .879 .015

3.2 .0121

6.848 .879 .U12

These values are used in the gun code. The results for the 2/3 charge

cases are given in Figures 18, 19, and 20. The agreement is now quite gooa

for both the pressure curves and the piston travel.

The muzzle velocity for the first model is 1088 mis and for the second

is 1080 m/s. So the usual simplifications do not have much effect on the

muzzle velocity. The experimental muzzle velocity is between 1000 and 1020

m/s. The lower experimental velocities probably reflect additional loss

terms not included in the model.

The liquid accumulation computed by the second model was compared 4.1tn

the values from the inverse code. The agreement is quite good.
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The values in Table 1, were also used to model the 1/3 charge case. The

results are given in figures 21, 22, and 23. The gun code is still in

reasonable agreement with the experiments.

V. CONCLUSIONS

We have demonstrated the change in the discharge coerficient auring ne

firing cycle and the accumulation of liquid in the combustion chamber. 3otn

of these effects are important in resolving tne derails of tne tiring

cycle. But if the proper maximum chamber pressure is achieved, the effect

on muzzle velocity is minor.

Knowing the general behavior, we can try to obtain some more funda-

mental procedure for determining the discharge coefficient and liquid

accumulation. Then the performance of the gun could be predicted, instead

of having to use the discharge coefficient as an adjustable parameter.
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I

LIST OF SYMBOLS 0.

AV vent area in the piston face, cm2

b covolume of the gas, cm3 /g

CD discharge coefficient for the piston

ds  Sauter mean diameter for the droplet distribution, cm

eL chemical energy of the liquid, joules/g

eG internal energy of the gas, joules/g

ET total energy in the combustion chamber/gun tube, Joules
T2

go conversion constant, 107 g/s2 -cm-MPa

ML mass of the liquid in the combustion chamber/gun tube, g

MG mass of the gas in the combustion chamber/gun tube, g

MT  total mass in the combustion chamber/gun tube, g

p1  pressure in the liquid reservoir, MPa

p3  pressure in the combustion chamber, MPa
VL volume of the liquid in the combustion chamber/gun tube, cm3

VG volume of the gas in the combustion chamber/gun tube, cm3

VT total volume of the combustion chamber/gun tube, cm3

y ratio of specific heats

P1  density of the liquid in the reservoir, g/cm 3

p density of the gas in the combustion chamber, g/cm 3

3
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