ARITHMETIC PROCEDURES ARE INDUCED FROM EXAMPLES(U)

XEROX PALO ALTO RESEARCH CENTER CA INTELLIGENT SYSTEMS

K A VANLEHN 13 AUG 85 ISL-12 N00014-82-C-0067

UNCLASSIFIED

F/G 5/10  ML
Arithmetic Procedures are Induced From Examples

Kurt VanLehn
Arithmetic Procedures are Induced from Examples

Abstract

According to a common "folk" model, students learn arithmetic by understanding the teacher's explanation of it. This folk model suggests that other more complicated procedural skills are also acquired by "being told." The evidence presented herein suggests that learning by being told is an inaccurate model of the actual arithmetic learning that actually occurs in classrooms. Rather, arithmetic is acquired by induction - the generalization and integration of examples.
Arithmetic Procedures are Induced from Examples

Kurt VanLehn

ISL-12 August 1985 [P85 00103]

© Copyright Xerox Corporation 1985. All rights reserved.
Arithmetic procedures are induced from examples

Kurt VanLehn

Abstract

According to a common "folk" model, students learn arithmetic by understanding the teacher’s explanation of it. This folk model suggests that other, more complicated procedural skills are also acquired by "being told." The evidence presented herein suggests that learning-by-being-told is an inaccurate model of the kind of arithmetic learning that actually occurs in classrooms. Rather, arithmetic is learned by induction: the generalization and integration of examples.
Table of Contents

1. Schematic vs. teleological knowledge 4
2. Three ways that arithmetic could be learned 7
3. The conservative evaluation of the induction hypothesis 8
4. A liberal evaluation of the induction hypothesis 14
5. Learning by analogy 17
6. Learning by being told 20
7. Summary 21
8. Concluding remarks 23
9. Appendix 26
Arithmetic procedures are induced from examples

Kurt VanLehn

Suppose one asked some concerned adults, e.g., parents, how multicolumn subtraction is learned in school. Their explanation would probably run something like this: The teacher tells the students how to perform the algorithm, then sets them to solving practice exercises. Perhaps the practice causes some students to realize that they hadn't quite understood what the teacher meant. Or perhaps the teacher notices that certain students are following the wrong procedure. In either case, the teacher helps the students by telling them in more detail about the algorithm, probably by adapting the explanation to the particular exercises that the students are working on. "Telling" dominates both the initial instruction and the subsequent teacher-student interactions, according to this folk model of arithmetic acquisition. Winston (1978) dubbed this model "learning by being told."

The evidence to be presented below suggests that learning-by-being-told is an inaccurate model of the kind of arithmetic learning that actually occurs in classrooms. Rather, arithmetic is learned by induction: the generalization and integration of examples. An "example" of a procedure is an execution of it. When teachers work a subtraction exercise on the blackboard, their writing actions constitute an example of the subtraction procedure. Although some inductive learning may occur while passively observing the teacher work problems, most inductive learning probably occurs in the midst of problem solving. For instance, a student may try to solve a practice exercise, get stuck, and seek help from the textbook, the teacher, or a classmate. With this help, the student determines what writing actions to perform next and thereby continues toward a solution of the exercise. Learning occurs when the student generalizes these actions and incorporates them into his or her procedure. The writing actions are an example of a subprocedure that the student needs to learn. The student's generalization of that example yields a subprocedure, although it may not be the correct subprocedure. This hypothetical incident illustrates how inductive learning can occur in the midst of problem solving. The defining characteristic of induction of arithmetic procedure is that learning is based on generalization of writing actions regardless of whether those actions are acquired by actively soliciting help or by passively observing an exercise being solved.

The folk model of arithmetic learning holds that verbal explanations provide information from which students learn procedures. Although verbal explanations certainly dominate the instruction, the evidence presented below suggests that the examples that inevitably accompany such explanations are doing the pedagogical work. However, the examples don't do all the work. The verbal explanations are crucial for indicating to the students the particular kind of induction to perform on the examples. The verbal explanations indicate what aspects of the examples to generalize and how to integrate them. That is, verbal explanations have an indirect effect. They function as if they tell the student how to induce the arithmetic procedure despite the fact that their literal content is about how to perform the procedure. This view of arithmetic learning will be called the induction hypothesis.

Clearly, the induction hypothesis would be false if it were tested in a fine-grained way. During the hundreds of classroom hours that a student spends learning the multicolumn arithmetic algorithms, there are no doubt, many episodes where the student suddenly grasps a new aspect of an algorithm, and yet there is no example in sight. Because examples are a prerequisite for induction, such episodes would be outright contradictions of the induction hypothesis if the hypothesis were to be taken as a statement about the second-by-second
learning process. Such a fine-grained interpretation is not the intended one. An explanation of the intended interpretation requires that a little background on the research project be presented first.

The research project began with the "buggy" studies of Brown and Burton. It is well known that arithmetic students make a large variety of systematic errors (Buswell, 1926, Bruckner, 1930, Brownell, 1941, Roberts, 1968, Lankford, 1972, Cox, 1975, Ashlock, 1976). Brown and Burton used the metaphor of bugs in computer programs in developing a precise, detailed formalism for describing systematic errors. The basic idea is that a student's errors can be accurately reproduced by taking a formal representation of the correct algorithm and making one or more small perturbations to it, e.g., deleting a rule. The perturbations are called bugs. A systematic error is represented by a correct procedure for the skill plus a list of one or more bugs. Bugs describe systematic errors with unprecedented precision. If a student makes no unintentional mistakes (e.g., $7-2=4$), then the student's answers will exactly match the buggy algorithm's answers, digit for digit.

Brown and Burton used the metaphor of bugs in computer programs in developing a precise, detailed formalism for describing systematic errors. The basic idea is that a student's errors can be accurately reproduced by taking a formal representation of the correct algorithm and making one or more small perturbations to it. The perturbations are called bugs. A systematic error is represented by a correct procedure for the skill plus a list of one or more bugs. Bugs describe systematic errors with unprecedented precision. If a student makes no unintentional mistakes (e.g., $7-2=4$), then the student's answers will exactly match the buggy algorithm's answers, digit for digit.

Burton developed an automated data analysis program called Debuggy. Using it data from thousands of students learning subtraction were analyzed, and 76 different kinds of bugs were observed (VanLehn, 1982). Similar studies discovered 68 bugs in addition of fractions (Shaw et al., 1982), several dozen bugs in simple linear equation solving (Sleeman, 1984), and 57 bugs in addition and subtraction of signed numbers (Tatsuoka & Baillie, 1982).

It is important to stress that bugs are only a notation for systematic errors and not an explanation. The connotations of "bugs" in the computer programming sense do not necessarily apply. In particular, bugs in human procedures are unstable. They appear and disappear over short periods of time, often with no intervening instruction, and sometimes even in the middle of a testing session (VanLehn, 1982). Often, one bug is replaced by another, a phenomenon called bug migration.

Collecting bugs leads inevitably to wondering why those bugs exist. There are an infinite number of possible bugs, why do students only acquire certain of these? One way to answer such questions is to develop a generative theory of bugs. Such a theory should generate (predict) exactly which bugs will occur and which bugs won't. The way that it generates a bug constitutes an explanation for the bugs' existence.

Repairs theory (Brown & VanLehn, 1980) was our first version of a generative theory of bugs. The basic idea of repair theory is that students don't simply halt when they reach an impasse while following a procedure, as a computer would. Rather, they apply certain meta-level problem solving operations called repairs that change their interpretation of the procedure in such a way that they can continue. As an illustration, suppose that a student who has not yet learned about borrowing from zero encounters the problem $305-109$. When the student tries to decrement the top digit in the tens column, as his incomplete procedure says he should, he finds that it is a zero and can't be decremented. He is at an impasse (see A below):

A. $\begin{array}{c} 3 \, 0 \, 1 \, 5 \\ - 1 \, 0 \, 9 \end{array}$
B. $\begin{array}{c} 3 \, 0 \, 1 \, 5 \\ - 1 \, 0 \, 9 \end{array}$
C. $\begin{array}{c} 2 \, 0 \, 1 \, 5 \\ - 1 \, 0 \, 9 \end{array}$

- 1 0 9
- 1 0 9
2 0 6
1 0 6
(The small numbers represent the student's scratch marks.) Several repairs could potentially be applied here. A simple one is just to skip an action when the preconditions are violated. In this case, the repair would result in omitting the decrement half of borrowing (see B above). If the student does this on every problem that requires borrowing from zero, then he will appear to have a systematic error, a bug called Stops-Borrow-At-Zero. (The appendix lists the observed subtraction bugs with a short description of each.) If the student chooses a different repair such as relocating the stuck action, then a different bug would be generated. Problem C above exhibits Borrow-Across-Zero, a bug where the decrement has been moved leftward. The impasse/repair mechanism can explain many bugs as coming from the same underlying incomplete procedure. Such underlying procedures are called core procedures.

Repair theory can also explain bug migrations. Suppose a student has the same core procedure throughout a testing session, but instead of repairing every occurrence of an impasse with the same repair, he makes different repairs. This would make it appear as if the student were exhibiting different bugs on different problems or maybe even on different columns within the same problem. For instance, if the hypothetical student mentioned above chooses the first repair for some impasses and the second repair for others, then it will appear that there is a bug migration between Stops-Borrow-At-Zero and Borrow-Across-Zero. Even though the core procedure is stable, there is instability in what appears on the surface to be the student's procedure. The "surface procedure," which exists only in the eye of the observer and not in the mind of the student, changes from one buggy procedure to another.

If one stipulates just the right set of core procedures, then repair theory can generate a large set of observed bugs. The set of bugs is larger than the set of core procedures, so repair theory is not a vacuous theory. Originally, the set of core procedures was discovered by trial and error. In a sense, we "observed" those core procedures in the subject population. Something is needed to explain why exactly that set of core procedure is "observed" in the subject population. A generative theory of core procedures is needed. Such a theory has been developed (VanLehn, 1983). It is the topic of this chapter.

As the example above makes clear, some core procedures are a direct result of the fact that diagnostic tests are administered to students who have not yet completed the subtraction curriculum and therefore have not yet been taught the entire algorithm. The incompleteness in their training causes their core procedure to lack some of the subprocedures that a correct, complete procedure would have. This incompleteness shows up as bugs on the diagnostic test. Testing beyond training explains why some core procedures have missing subprocedures.

Other core procedures, however, are not easily explained as missing subprocedures. Instead, some of the subprocedures have wrong information in them. The following is a simple example. In the correct subtraction procedure, the student should borrow when \( T < B \) in a column, where \( T \) and \( B \) are the top and bottom digits, respectively, in the column. The bug N-N-Causes-Borrow performs a borrow when \( T < B \) (see below).

\[
\begin{align*}
\text{6} & \quad \text{15} \\
\text{- 2} & \quad \text{5} \\
\text{4} & \quad \text{10}
\end{align*}
\]

Apparently, students with this bug have overgeneralized the condition for when to borrow. Their core procedure is complete but incorrect.
To sum up, there are a variety of core procedures. Some seem quite naturally to be the result of testing beyond training, while others seem to be the result of learning processes that have gone awry. The research project is to find a learning theory that generates (predicts) the core procedures that are found in the subject population.

Because the learning theory should actually construct the core procedures, a computational learning model is needed. It should take in something that represents the classroom experiences that the students have. Using that input, it should construct some knowledge structures that represent the core procedures that students acquire from those experiences. Researchers in Artificial Intelligence (AI) have built such computational models of learning (Cohen & Feigenbaum, 1983). There are models of skill acquisition based on induction (Biermann, 1972), analogy (Carbonell, 1983), learning-by-being-told (Badre, 1972), planning and debugging (Sussman, 1976), practice (Mitchell Utgoff & Banerji, 1983), and other techniques.

In general, these researchers make no attempt to empirically test their model's psychological validity. There are exceptions. Perhaps the most thorough validation is Anderson's study of the acquisition of skill in geometry theorem proving and Lisp programming (Anderson, 1983; Anderson, Greeno, Kline, Neves, 1981; Anderson, Farrell, & Sauers, 1984). In Anderson's studies, the main data are protocols of students solving problems, with a textbook and a tutor beside them. Their comments and actions are coded and presented to the learning model. When the model is successful, it simulates the students' learning behavior accurately at a second-by-second level of detail. Despite the fact that learning such complex skills requires hundreds of hours of learning and practice, the protocols cover only two or three hours of an individual student's education. That is, of course, inevitable. It is impossible to record, analyze, and simulate the whole of a student's education. Consequently, significant extrapolation beyond the data is needed in order to claim that the observed samples of the learning process characterize the whole of the students' education.

Rather than taking a small sample of the students' education and analyzing it in great detail, the present research takes the whole of the students' education and analyzes it at a higher level of detail. The essential information in the students' experiences is abstracted and presented in an ideal form to the learning model. The key question is, what should this essential information be? This question is intimately related to the question of what the learning process is. If the learning process is inductive, as claimed earlier, then examples are the essential information to abstract from the curriculum and present to the learning model. If the learning process is learning-by-being-told, then the teacher's verbal explanations are the essential information. Either way, the objective is to find some learning process and its associated abstraction of the curriculum such that (1) the whole curriculum can be presented to the learning model and (2) the learning model accurately predicts the core procedures that the students acquire. In short, the desired learning theory is a generative theory of core procedures (and hence bugs) which models learning over the whole curriculum.

This, then, is the interpretation under which the induction hypothesis seems true. Induction is more accurate than learning-by-being-told as a whole-curriculum, generative theory of bugs. This claim creates an interesting tension. How can induction be such a good model when the curriculum is viewed as a whole, and such a mediocre model when instruction is viewed on a second-by-second level? Frankly, I don't know yet, because the research required to resolve the tension is just beginning. However, some speculative explanations are offered in the last section of the chapter.
The body of the chapter is devoted to explicating and supporting the induction hypothesis. Three hypotheses will be defined and contrasted: the induction hypothesis, learning-by-being-told, and a third hypothesis, learning from analogies to familiar procedures. The familiar procedures used in arithmetic classrooms are usually ones for manipulating concrete numerals (e.g., coins, Dienes blocks, poker chips, Montessori rods, etc.). Analogy is included as a third hypothesis even though it is not particularly plausible as a stand-alone learning process. Much goes on in the classroom that does not involve drawing analogies to familiar procedures. However, it is plausible that analogy might go on in combination with induction or learning-by-being-told. That is, we might find that some bugs can be explained by analogy, and the rest can be explained by either induction or learning-by-being-told. Analogy may be of special interest in the context of this book, for it seems more so than either induction or learning-by-being-told, to engender conceptual knowledge of arithmetic, as opposed to procedural knowledge.

At any rate, the first task is to clarify these three hypotheses. In the process, the role of the conceptual/procedural distinction as it applies in this context, will also become clear. To this end, it is helpful to begin by making an assumption about the kind of knowledge that students acquire from the arithmetic curriculum.

1. Schematic vs. teleological knowledge

The assumption is that student’s knowledge about procedures is schematic but not teleological. To define these terms “schematic” and “teleological,” it is helpful to relate them to more familiar terms (Figure 1-1 is a road map of the terms to be discussed.) Computer programmers generally describe a procedure in three ways (N.B., the term “procedure” is being used temporarily to mean some very abstract, neutral idea about systematic actions)

- **Program** A program is a schematic description of actions. It is schematic because one must say what its inputs are before one can tell exactly what actions it will perform. That is, a program must be instantiated by giving it inputs before it becomes a complete description of a chronological sequence of actions.

- **Action sequences** Executing a program produces an action sequence. In principle, one could describe a procedure as a set of action sequences. This is analogous to specifying a mathematical function as a set of tuples (e.g., \( n^2 \) as \([<0.1>, <1.1>, <2.2>, <3.6>, <4.24>, ...]\))

- **Specifications** Specifications say what a program ought to do. Often they are informally presented in documents that circulate among the programmers and market researchers on a product development team. Sometimes specifications are written in a formal language so that one can prove that a program meets them.

There are names for the processes of transforming information about the procedure from one level to another: Programming is the transformation of a specification into a program. Execution, interpretation, and running are names for the transformation of a program into an action sequence. There are also names for static, structural representations of these transformations. A trace is a structural representation of the relationship between a program...
Figure 1-1: Three levels of description for a "procedure." Names for the processes of converting from higher levels to lower levels are on the right. Names for conversion structures are on the left.

and a particular execution of it. A procedural net (Sacerdote 1977), a derivation (Carbonell 1983) and a planning net (VanLehn & Brown 1980) are all formal representations of the relationship between a specification and a program. Actually these three terms are just a few of the formalisms being used in an ongoing area of investigation. Rich (1981) has concentrated almost exclusively on developing a formalism describing the relationship between a specification and a program in his representation system. Both the specification and the program are plans -- the surface plan (program) is just a structural refinement of the other. Rather than seeming to commit to one or another of these various formalisms, the neutral term "teleology" will be used. Thus, the teleology of a certain program is information relating the program and its parts to their intended purposes (i.e., to the specification).

Since "teleology" may be an unfamiliar term, it is worth a moment to sketch its meaning. The teleology of a procedure relates the schematic structure (program) of the procedure to its goals and other design considerations. The teleology might include, for instance, a goal-subgoal hierarchy. It might indicate which goals serve multiple purposes, and what those purposes are. It might indicate which goals are crucially ordered, and which goals can be executed in parallel. If the program has iterations or recursions, it indicates the relationship between the goals of the iteration body (or recursion step) and the goal of the iteration (recursion) as a whole. In general, the procedure's teleology explicates the design behind the procedure.

A procedure for making gravy serves well as an illustration of the difference between teleological and schematic knowledge. A novice cook often has only schematic knowledge (a program) for the gravy recipe -- which ingredients to add in which order. The expert cook will realize that the order is crucial in some cases but arbitrary in others. The expert also knows the purposes of various parts of the recipe. For instance, the expert understands a certain sequence of steps as making a flour-based thickener. Knowing the goal, the expert
can substitute a cornstarch-based thickener for the flour-based one. More generally, knowing the teleology of a procedure allows its user to adapt the procedure to special circumstances (e.g., running out of flour). It also allows the user to debug the procedure. For instance, if the gravy comes out lumpy, the expert cook can infer that something went wrong with the thickener. Knowing which steps of the recipe make the thickener, the cook can discover that the bug is that the flour-fat mixture (the roux) wasn’t cooked long enough. The purpose of cooking the roux is to emulsify the flour. Since the sauce was lumpy, this purpose wasn’t achieved. By knowing the purposes of the parts of the procedure, people are able to debug, extend, optimize, and adapt their procedures. These added capabilities, beyond merely following (executing) a procedure, can be used to test for a teleological understanding.

It is an empirical question whether the students’ knowledge level corresponds to the schematic level (i.e., a program for the procedure) or the teleological level. The assumption made here is that their knowledge is schematic. This is a rather uncontroversial assumption. In fact, much research in arithmetic begins with the assumption that current instruction gives students only a schematic (or procedural) knowledge of arithmetic: then seeks some new instructional methods that will give them a teleological (conceptual) knowledge of the skill. Although the assumption of schematic knowledge is uncontroversial, it might be worth discussing it a little further in order to illustrate how one might detect teleological knowledge if one succeeded in teaching it.

One hallmark of expert cooks and others who have a teleological knowledge of procedures is their ability to debug and extend the procedures when necessary. Gelman and her colleagues (Gelman & Gallistel, 1978; Greeno, Riley, & Gelman, 1984) used tests based on debugging and extending procedures in order to determine whether children possess the teleology for counting. Adapting their techniques, I tested five adults for possession of teleology for addition and subtraction. All subjects were competent at arithmetic. None were computer programmers. The subjects were given nine tasks. Each task added some extra constraint to the ordinary procedure, thereby forcing the subject to redesign part of the procedure in order to bring it back into conformance with its goals. A simple task, for example, was adding left to right. A more complex task was inventing the equal additions method of borrowing (i.e., the borrow of 53-26 is performed by adding one to the 2 rather than decrementing the 5).

The results were equivocal. One subject was unable to do any of the tasks. The rest were able to do some but not all of the tasks. The experiment served only to eliminate the extremes. Adults don’t seem to possess a complete, easily used teleology, but neither are they totally incapable of constructing it (or perhaps recalling it). Further experiments of this kind may provide more definitive results. In particular, it would be interesting to find out if adults were constructing the teleology of the procedure or whether they already knew it. At any rate, it’s clear that not all adults possess operative teleology for their arithmetic procedures and moreover, some adults seem to possess only schematic knowledge of arithmetic.

Adults found the teleology test so difficult that I was unwilling to subject young children to it. However, there is some indirect evidence that students acquire very little teleology. It concerns the way students react to impasses. Consider the decrement-zero impasse discussed earlier. The hypothetical student hasn’t yet learned how to borrow from zero although borrowing from non-zero numbers is quite familiar. Given the problem:

\[ 53 - 26 \]

The student to the left of the equal sign will add one to the 2 rather than decrement the 5. A possible mechanism for this is to perceive the decrement as a decrement-zero impasse and treat it as a borrowing from non-zero. This would be a teleological reaction. Presumably, students who treat impasses in this way have a teleological understanding of subtraction. The hypothesis is that they are able to debug the procedure through the use of partial strategies, and that they can extend the procedure through the use of new partial strategies. This is an empirical question that may be testable in the future.

The results suggest that students acquire only schematic knowledge of arithmetic. This is consistent with the assumption that current instruction gives students only a schematic knowledge of arithmetic. Further experiments of this kind may provide more definitive results. In particular, it would be interesting to find out if adults were constructing the teleology of the procedure or whether they already knew it. At any rate, it’s clear that not all adults possess operative teleology for their arithmetic procedures and moreover, some adults seem to possess only schematic knowledge of arithmetic.

Adults found the teleology test so difficult that I was unwilling to subject young children to it. However, there is some indirect evidence that students acquire very little teleology. It concerns the way students react to impasses. Consider the decrement-zero impasse discussed earlier. The hypothetical student hasn’t yet learned how to borrow from zero although borrowing from non-zero numbers is quite familiar. Given the problem:

\[ 53 - 26 \]
the student starts to borrow, attempts to decrement the zero, and reaches an impasse. If the student understands the teleology of borrowing, then the student understands that borrowing from the hundreds would be an appropriate way to fix the impasse. That is, the teleology of non-zero borrowing allows it to be easily extended to cover borrowing from zero. Although some students may react to the decrement-zero impasse this way, many do not. They repair instead. Because students do not make teleologically appropriate responses to impasses, it appears that they did not acquire much teleology (or if they did, they are unwilling to use it -- in which case it's a moot point whether they have it or not).

2. Three ways that arithmetic could be learned

Given the assumption that students knowledge of arithmetic procedures is schematic, we can more accurately address the issue of how they acquire that knowledge. The tripartite distinction between specifications, programs and actions sequences will be used again. If the goal is to construct a description of the procedure at a schematic (program) level, there are four possible routes (see figure 2-1):

1. From specification to program. A kind of learning by discovery.
2. From examples (action sequences) to programs. Induction.
3. From some other schematic description, either
   a. another familiar program, learning by analogy, or
   b. a natural language presentation of the program, learning-by-being-told.

The first possibility is not particularly plausible in the domain of arithmetic. The teleology of arithmetic is very complex, and the curriculum would have to modified radically in order to teach it. VanLehn and Brown (1980) present a complete teleology for addition and discuss how it could be taught. This form of learning will not be consider further here. However, the remaining three forms of learning -- induction, analogy, and learning-by-being-told -- are exactly the three hypotheses to be discussed.

The best way to compare these three hypotheses would be to develop three complete generative theories one for each hypothesis, then see which theory is better according to the usual scientific criteria. In fact, only the induction hypothesis has such a theory behind it (VanLehn, 1983). The theory is quite rigorously formulated. There are 31 main hypotheses. The induction hypothesis is one of them. The other 30 hypotheses concern the form of the knowledge representation, the mechanisms for impasses and repairs, and the details of the inductive learning process. From the standpoint of supporting the induction hypothesis, this degree of rigor presents some problems. First the empirical adequacy of the theory depends on all the hypotheses and not just the induction hypothesis. Thus if the theory fails to generate a certain bug, this does not necessarily mean that the bug cannot be acquired by induction. It could be that some other hypotheses in the theory are wrong and
they should shoulder the blame for the theory's inability to predict the bug. This problem of assigning blame to hypotheses can be solved, but it takes a very careful analysis of the relationships among the hypotheses and the data. That analysis has been undertaken, but it is too lengthy to present here (see (VanLehn, 1983)). Instead, two informal analyses of the theory's empirical adequacy will be presented.

The first analysis will be a conservative evaluation of the induction hypothesis. It will present exactly the bugs the theory can generate in the task domain of subtraction. It will turn out that the theory can generate 33% of the observed bugs. This conservative evaluation confounds the effects of the induction hypothesis with the other 30 hypotheses. In order to pick their effects apart somewhat, the derivations of a few of the bugs will be presented. The relationship of the induction hypothesis to these bugs is typical of its relationship to other similar bugs.

The second analysis will be a liberal estimate of the generative power of the induction hypothesis. It is meant to indicate how many bugs the induction hypothesis could generate if the other hypotheses in the theory were relaxed or discarded. Essentially, it is an estimate of the generative power of the best possible inductive learning theory. It will be shown that 85% of the observed bugs can be generated.

Following these two analyses, there will be a discussion of the two competing hypotheses, learning by analogy and learning-by-being-told. Since no generative theories have been developed for these hypotheses, their empirical predictions will be derived informally. It will be shown that they are not as productive as the induction hypothesis.

3. The conservative evaluation of the induction hypothesis

First, some background. The bug data to be presented were collected from 1147
subtraction students in grades 2 through 5. The collection and analyses of these data are detailed in VanLehn (1982). The learning model used to generate the theory's predictions is the one documented in VanLehn (1983). The model has changed since then, and its predictions have improved. However, the figures from that publication are used because it presents a detailed account of how they were generated.

The overall adequacy of the theory is displayed in figure 3-1. There are 76 observed bugs. The theory generates 49 bugs, 25 of which are observed. This 25 bugs are confirmed predictions. Seventeen of the predicted bugs are plausible, but have not yet been observed. Perhaps if another thousand students were examined, some of these would be found. However, 7 of the predicted bugs are so strange that it is extremely doubtful that they would ever be observed. These bugs should not be generated by the theory. Of the observed bugs, 51 are not generated by the theory. This is not as damning an indictment of the theory as the 7 implausible bugs. It could be that other bug-generating processes are at work and they are responsible for some of the 51 bugs. When those processes are discovered, they can be added to the theory, converting some of the 51 bugs to confirmed predictions. However, the generation of the 7 implausible bugs can't be fixed by adding another bug-generating process to the theory. They indicate problems with the present theory that need rectification.

![Venn Diagram](image)

**Figure 3-1:** A Venn Diagram showing relationships and size of the sets of observed and predicted bugs.

In developing the theory, it was often the case that one could increase the number of confirmed predictions but only at the expense of increasing the number of implausible predictions. In the case of this theory, such choices were always made in favor of reducing the number of implausible predictions. If these choices had been made the other way, then many of the 51 unaccounted for bugs would be accounted for. The liberal evaluation, which will be presented in the next section, indicates roughly how many of the 51 bugs could be converted to confirmed predictions if the theory were liberalized.
The numbers presented above are difficult to understand without some point of reference. Two such points are provided by earlier generative theories of subtraction bugs. An early version of repair theory is documented in Brown and VanLehn (1980). Its empirical adequacy can be compared with the present theory's. Clearly, this theory will do better since it includes the ideas of its predecessor. Another generative theory of subtraction bugs was developed by Richard Young and Tim O'Shea (1981). They constructed a production system for subtraction such that deleting certain of its rules (or adding other rules, in some cases) would generate observed bugs. They showed that these mutations of the production system could generate many of the bugs described in the original Buggy report (Brown & Burton, 1978).

A chart comparing the results of the three theories is presented as table 3-1. Observed bugs that no theory generates are not listed, nor are bugs that have not been observed. Brown and VanLehn (1980) count bugs differently than they are counted here. (See VanLehn 1983, pf. 68, for details.) The chart shows that the present theory generates more bugs, which is not surprising since it embeds many of the earlier theories' ideas. What is perhaps a little surprising is that there are a few bugs that they generate and it does not. These bugs deserve a closer look.

Young and O'Shea's model generates a class of bugs that they call "pattern errors." Four bugs were included in this class:

- **Diff-0-N = N** If the top of a column is 0, write the bottom as the answer.
- **Diff-0-N = 0** If the top of a column is 0, write zero as the answer.
- **Diff-N-0 = 0** If the bottom of a column is 0, write the zero as the answer.
- **Diff-N-N = N** If the top and bottom are equal write one of them as the answer.

Young and O'Shea derive all four bugs the same way. Each bug is represented by a production rule, and the rule is simply added to the production system that models the student's behavior. Put differently, they derive the bugs formally by stipulating them, then explain the stipulation informally. Their explanations are:

From his earlier work on addition, the child may well have learned two rules sensitive to zero, NZN and ZNN [two rules that mean N + 0 = N and 0 + N = N] included in a production system for subtraction, the first, NZN, will do no harm but rule ZNN will give rise to errors of the "0-N = N" type. Similar rules would account for the other zero-pattern errors. If the child remembers from addition just that zero is a special case, and that if a zero is present then one copies down as the answer one of the numbers given, then he may well have rules such as NZZ or ZNZ [the rules for the bugs Diff-N-0 = 0 and Diff-0-N = 0]. Rule NNN [the rule for the bug Diff-N-N = N] covers the cases where a child asked for the difference between a digit and itself writes down that same digit. It is clearly another instance of a "pattern" rule (Young & O'Shea, 1981, pg. 163)

The informal explanations, especially the one for Diff-0-N = N, are plausible (Note by the way, that some of these explanations crucially involve induction.) To treat them fully, one would have to explain why only the zero rules are transferred from additions, and not the other addition rules.
Table 3-1: Comparison of observed bugs generated by three theories

<table>
<thead>
<tr>
<th>Y&amp;O</th>
<th>B&amp;V</th>
<th>Cur.</th>
<th>Occurs</th>
<th>Bug</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Always-Borrow-Left</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Blank-Instead-of-Borrow</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Borrow-Across-Second-Zero</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Borrow-Across-Zero</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Borrow-Don't-Decrement-Unless-Bottom-Smaller</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Borrow-From-One-Is-Nine</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Borrow-From-One-Is-Ten</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Borrow-From-Zero</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Borrow-From-All-Zero</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Borrow-From-Zero-Is-Ten</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Borrow-No-Decrement</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Borrow-No-Decrement-Except-Last</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Borrow-Treat-One-As-Zero</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Can't-Subtract</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Doesn't-Borrow-Except-Last</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Diff-0-N = 0</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Diff-0-N = N</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Diff-N-N = N</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Diff-N-0 = 0</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Don't-Decrement-Zero</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Forget-Borrow-Over-Blanks</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>N-N-Causes-Borrow</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Only-Do-Units</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Quit-When-Bottom-Blank</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Stutter-Subtract</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Smaller-From-Larger</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Smaller-From-Larger-Except-Last</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Smaller-From-Larger-Instead-of-Borrow-From-Zero</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Smaller-From-Larger-Insteadof-Borrow-Unless-Bottom-Smaller</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Stops-Borrow-At-Multiple-Zero</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Stops-Borrow-At-Zero</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Top-Instead-of-Borrow-From-Zero</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Zero-Insteadof-Borrow</td>
</tr>
</tbody>
</table>

10 12 25 totals

Y&O = Young and O'Shea, B&V = Brown & VanLehn, Cur = current theory
The point is that one can have as much empirical adequacy as one wishes if the
theory is not required to explain its stipulations in a rigorous, formal manner. The present
theory could generate the same pattern bugs as Young and O'Shea's model simply by
adding making the appropriate modifications to the core procedures and reiterating their
informal derivation (or tell any other story that seems right intuitively). This would not be an
explanation of the bugs, but only a restatement of the data embroidered by interesting
speculation. This approach does not yield a theory with explanatory value. In short, there is
a tradeoff between empirical adequacy and explanatory adequacy. If the model does not itself
construct the appropriate knowledge representations, then it is the theorist and not the theory
that is doing the explaining. The theory per se has little explanatory value, even though it
might cover the data quite well. The present theory aims first for explanatory adequacy,
even if it means sacrificing empirical adequacy.

With the foregoing background information in hand, we can return to discussing the
induction hypothesis. Induction is generalization from examples. Almost always, there are
many possible concepts consistent with a given set of examples. Some will be more general
than the target concept, and some will be more specific. If the learner is not somehow
given extra information about which of the consistent concepts is the target concept, then
there is a strong chance that the learner will guess wrong, and pick either an
overgeneralized or overspecialized concept instead. If human students are learning
inductively then there should be many bugs that are the result of overgeneralization or
overspecialization.

In order to demonstrate the influence of the induction hypothesis, the bugs generated by
the theory will be divided into several groups, and characteristic bugs from each group will
be discussed.

The first group consists of bugs generated by overgeneralization of the conditions that
determine whether or not to perform a subprocedure. A prototypical case is the bug N-N-
Causes-Borrow, which was mentioned earlier. The proper test for when to borrow is T<B,
where T is the top digit of a column and B is the bottom digit. The bug borrows when
T<B. This makes sense given the induction hypothesis. The student sees many columns
some with T>B and some with T<B. The student induces that the T<B columns trigger
borrowing and the T>B columns don’t. However, the student must see a T=B column in
order to induce that T=B columns don’t trigger borrowing. Such problem types are rare in
the textbooks used by the students in our subtraction study, and they never occupy a lesson
of their own. Nowhere in the teacher’s guides are T=B columns pointed out as deserving
special mention. So it is plausible to assume that students are never notice that T=B
columns do not require borrowing. Unless a T=B column is examined, the student doesn’t
know whether the borrowing predicate is T≤B or T<B. The students who guess T<B show
up in the data as having the bug N-N-Causes-Borrow and the students who guess T≤B will
show up as having the correct test for borrowing. Both kinds of performance have been
observed.

A similar explanation works for the bug Borrow-Treat-One-As-Zero. The proper test for
when to borrow across zero is T=0 (see problem A. below). However, students with this bug
will perform the subprocedure when T=1 or T=0 (see problem B).
Perhaps the student thinks that 1 and 0 are special numbers (which they are, for they are the identity elements of the field), and that "T is a Special Number" is the appropriate test condition for when to perform the borrow-from-zero subprocedure. The bug can be explained by the induction hypotheses and the fact that problems like B are rare among the textbooks examples. Two other bugs in this class of overgeneralized test condition bugs are Borrow-From-One-Is-Nine and Borrow-From-One-Is-Ten.

The preceding group of bugs illustrated that the test conditions can be overgeneralized. One would also expect overspecialization, if the induction hypothesis is correct. The next group of bugs result from overspecialization of test conditions. (These bugs were not generated by the version of the theory discussed earlier, and do not appear in table 1. They are generated by the learning model in its present form.) The following is a classic case of a bug generated by overspecialization of a test condition. In the textbooks in our study, borrowing is introduced in two column problems. This means that the borrow originates in the units column. Some students who are tested at this point in the curriculum believe that borrowing can only be triggered in the units column (see problem A, below). This is inductively correct, because they have not yet seen examples that contradict their overspecialized idea about when to borrow.

\[
\begin{array}{c}
\text{A. } \begin{array}{c}
29 \\
109 \\
\hline
196
\end{array} \\
\text{B. } \begin{array}{c}
29 \\
109 \\
\hline
196
\end{array}
\end{array}
\]

A similar story explains the bug shown in problem B. This bug, Smaller-From-Larger-When-Borrowed-From, borrows in any T<B column, except those where the top digit in the column has been scratched out already, as in the tens column of problem B. The textbooks delay teaching about adjacent borrowing (e.g., problem C) until well after isolated borrowing has been taught (e.g., problem D). Consequently, a student who is tested between these two lessons cannot yet have seen a T<B column with the top digit scratched out, and therefore cannot know whether to borrow or not. In short, for both these bugs, the students have an overspecialized concept of when to borrow because certain examples haven't yet been presented to them. Two other bugs, X-N=0-After-Borrow and X-N=N-After-Borrow, have nearly identical derivations.

Another four bugs are generated by overspecialized tests of when to perform borrowing across zero. They are Borrow-Across-Zero-Over-Zero, Borrow-Across-Zero-Over-Blank, Don't-Decrement-Zero-Over-Zero, and Don't-Decrement-Zero-Over-Blank.

So far, the bugs discussed have concerned when to borrow. The next group of bugs concerns a different kind of procedural knowledge: how to borrow. Students with the bug Always-Borrow-Left borrow from the leftmost column in the problem no matter which column triggers the borrowing. Problem A below shows the correct placement of borrow's decrement. Problem B shows the bug's placement.

\[
\begin{array}{c}
\text{A. } \begin{array}{c}
5 \\
1919 \\
\hline
5446
\end{array} \\
\text{B. } \begin{array}{c}
52 \\
1989 \\
\hline
4666
\end{array} \\
\text{C. } \begin{array}{c}
615 \\
198 \\
\hline
567
\end{array} \\
\text{D. } \begin{array}{c}
52 \\
119 \\
\hline
416
\end{array}
\end{array}
\]
The explanation begins with the fact that borrowing is introduced using only two-column problems such as problem C above. Multi-column problems, such as A, are not used. Consequently the student has insufficient information to unambiguously induce where to place borrow's decrement. The correct placement is in the left-adjacent column as in A. However, two-column examples are also consistent with decrementing the leftmost column as in B. Once again, the induction hypothesis provides the key for explaining how a bug is acquired. Other bugs in this group are Forget-Borrow-Over-Blanks, Only-Do-Units, Borrow-Don't-Decrement-Unless-Bottom-Smaller, Smaller-From-Larger-Unless-Bottom-Smaller, Doesn't-Borrow-Except-Last, and Smaller-From-Larger-Except-Last.

The other bugs generated by the theory stem from core procedures that are incomplete, rather than mis-induced. Examples of bugs in this group are Stops-Borrow-At-Zero and Borrow-Across-Zero, which were described in the introduction. The bugs in this group are consistent with the induction hypothesis. Indeed, the inductive learning model constructs their core procedures from the initial few lessons of the lesson sequence. However, these bugs also would be consistent with any form of learning that had could derive a correct (albeit incomplete) procedure from an initial segment of the lesson sequence. So the bugs in this group confirm the induction hypothesis, but don't differentiate it from other hypotheses.

This completes the conservative analysis of the empirical adequacy of the induction hypothesis. It was shown the overgeneralization and overspecialization could account for many bugs. On a deeper level, there are three ultimate causes for the bugs. (1) Many bugs were generated by testing subskills that haven't been taught yet. Stops-Borrow-At-Zero is a good illustration of this. (2) Certain critical examples are missing from the curriculum or under-emphasized. The bug N-N-Causes-Borrow is a clear case of this. If the critical examples were added to the curriculum and emphasized, such bugs might not occur. (3) Certain examples that should be grouped into the same lesson are separated into two lesson, and a diagnostic test is administered in between them. The bug Always-Borrow-Left is a good illustration of this. If the two lessons were merged or placed close together, this bug may not occur. In short, all three causes for bugs can be cured by modifying the curriculum and the testing policies.

Or so it seems. These are suspiciously crisp predictions. I suspect that there will be some surprises if one tries to eliminate bugs by changing instruction in the indicated ways. It would be an interesting experiment to make.

4. A liberal evaluation of the induction hypothesis

As mentioned earlier, the theory generates only 33% of the observed subtraction bugs. It does not, for instance, generate the bug Diff-O-N = N. This bug could be explained as an overgeneralization of the correct subtraction rule that N-O = N. The current theory could in fact generate the bug by overgeneralization, but only if the rule N-O = N is taught in a separate lesson which it is not in the textbook series used by the subjects. Similarly, other
bugs could be induced if the theory were tested less rigorously than it was, or if the various ancillary hypotheses of the theory were relaxed. This section estimates the best possible empirical adequacy that a theory based on induction could have. It will be, of course, be a rough estimate.

The estimate is based on the following, admittedly weak line of reasoning. (The weakness of this kind of reasoning by the way, is exactly why one must build theories.) If a bug is induced from examples, then there ought to be some way to describe it in terms of the visual and numerical features that examples have. For instance, the bug Diff-O-N=N can be described by a rule "If T=0, then write B in the answer," where T and B are the top and bottom digits in a column. The feature T=0 is a visual-numerical feature. On the other hand, if a bug is not acquired by induction, then it might be difficult to describe it with simple rules composed of visual-numerical features. For instance, the bug Borrow-Unit-Difference seems to be acquired non-inductively. In a correct borrow, the student adds ten to T and decrements the next digit over by one. Borrow-Unit-Difference calculates how much needs to be added to T in order to make T equal B, then it decrements the next digit over by that amount.

4 9
- 1 9
= 2 1

Teachers who use coins, Diennes blocks or other concrete numerals to teach subtraction will recognize this bug almost immediately. In a monetary representation, the problem above is "You have 8 dimes and 5 pennies. What do you have left if you give me one dime and 9 pennies?". There is a bank consisting of piles of dimes and pennies, that the student may use to make change. Many students, seeing that they need to hand out 9 pennies, will take exactly four pennies from the bank. That's all they need to make 9. However, they know that they must make change fairly, so they hand in four dimes. They have got almost everything right and they are doing a fine job of means-ends analysis problem solving, except that they have one constraint wrong: they think that dimes and pennies are worth the same amount in this context. So their concrete procedure has a small bug in it. To put it a little differently, when Borrow-Unit-Difference is represented as problem-solving with concrete numerals, it has a succinct, accurate representation as the substitution of an incorrect constraint for the correct one. However, there is no such succinct representation when the bug is represented as a procedure for manipulating written numerals. In particular, it can not easily be represented as a condition-action rule using simple visual-numerical features.

When a bug is learned by processes other than induction, such as the analogy process that evidently underlies this bug's acquisition, it will be difficult to represent as condition-action rules over a vocabulary of simple visual-numerical features. Consequently, the ease of description of a bug in these terms can be used as a weak test for whether it can be generated by an inductive theory.

The appendix lists all 78 currently observed subtraction bugs. (Two bugs have been discovered since the empirical results of figure 3-1 were calculated.) The appendix demonstrates that 66 of these (i.e. 85%) can be easily represented as condition-action perturbations to a correct procedure. The set of visual-numerical features used in these perturbations are listed in table 4-1.
Of the observed subtraction bugs, 12 could not be represented in a simple way with visual-numerical features. These bugs are potentially disconfirming to the induction hypothesis. Let's examine them. Of the 12 bugs, 5 have relatively simple explanations. One of them, Borrow-Unit-Difference, has been discussed already. It seems to have been acquired by analogy from concrete manipulative procedures. One bug, Add-Instead-Of-Sub, seems to result from confusing addition with subtraction. Simple-Problem-Stutter-Subtract seems to be a confusion between multiplication and subtraction. When the bottom row of the subtraction problem has a single digit in it, the student uses a pattern of calculation similar to multiplication: the single digit is subtracted from each digit in the top row. Stutter-Subtract is generated by the theory from an incomplete procedure, one that doesn't know how to handle columns with a blank in the bottom. Don't-Write-Zero seems to be due to overgeneralization of a special kind. Somewhere in the curriculum (there is no lesson for it), teachers instruct students to omit writing a zero if the zero will be the leftmost digit in the answer. That is, younger students answer as in A, below, and older students answer as in B.
Applying the bug Don't-Write-Zero, whose work is shown in C, is an overgeneralization of the prohibition against writing leading zeros. So this bug actually supports the induction hypothesis, even though it can't be simply expressed in the given feature vocabulary.

Of the 12 bugs, the remaining 7 baffle me. If the reader has explanations for any of these bugs I would appreciate hearing about them.

At any rate it appears that, whatever the non-inductive learning processes are, they generate only a few bugs each. Induction, on the other hand, seems able to handle, in principle, 85% of the bugs. This 85% includes all the most commonly occurring bugs, as the appendix documents.

This completes the informal liberal analysis of the empirical adequacy of the induction hypothesis. Perhaps the evidential relationships are a little weak, but the data side strongly with the induction hypothesis. The remaining two sections discuss the competing hypotheses, learning by analogy and learning by being told.

5. Learning by analogy

Learning by analogy is the mapping of knowledge from one domain over to the target domain, where it is applied to solve problems. Analogies are used in the early grades to teach base-10 numeration. Students are drilled on the mapping between written numerals and and various concrete representations of numbers, such as collections of coins, Dienes blocks, Montessori rods and so forth. This is a mapping between two kinds of numerals and not two procedures. Later, this inter-numeral mapping is drawn on in teaching carrying and borrowing. For example, a known procedure for making change -- trading a dime for ten pennies -- is mapped into the borrowing procedure of written subtraction. Many textbooks and teachers' manuals advocate this method of teaching by analogy. Although it is not clear how much this technique is actually used in the classroom, it warrants our attention as one possible hypothesis about how students learn procedures. Quite common in the primary grades, it seems quite plausible that learning by analogy should be a prominent framework for learning procedures. Indeed, one piece of evidence for the analogy hypothesis, the bug Borrow-Unit-Difference, has been discussed already. However, it is only one bug and only one subject in our 1147-student sample had it.

Presumably, once an analogy has transferred some knowledge, it is still available for use later to transfer more knowledge about the procedure. In some cases this predicts significant student competence. For instance, if the students learned simple borrowing via the analogy, then it's quite plausible that when confronted with more complex borrowing problems, such as

\[
\begin{array}{c}
607 \\
-238
\end{array}
\]
(assuming the student hasn’t yet been taught how to solve such borrow across zero problems), the student could solve the problem in the concrete domain by trading a dollar for nine dimes and ten pennies, then map back into the written domain thus producing the correct solution. Indeed, the analogies used in instruction may have been designed so that these productive extensions of the base analogy are encouraged.

But this is a much more productive understanding of borrowing than most students achieve. As discussed earlier, when most students discover that it is impossible to decrement the zero, they repair. These students do not use analogies to familiar procedures (e.g., making change). If the students had learned their procedures via analogy, one would have to make ad hoc stipulations to explain why they no longer use that analogy after they have learned the procedure. It’s more plausible that they simply didn’t utilize the analogy in the first place. Loosely speaking, learning by analogy is too good; it predicts that students would fix impasses by constructing a correct extension to their current procedure. That is, they would debug instead of repair. Since many students have repair-generated bugs, another explanation would be needed for how these students acquired their procedures. At the very least, analogy cannot be the only kind of learning going on; if it happens much at all.

Carbonell (1983) makes a telling argument about analogies between procedures. His ARIES program was unable to form analogies between certain procedures when all it had was the program (schematic) representations. However, Carbonell found that analogies could be forged when the procedures were described teleologically (i.e., in Carbonell’s terminology, the analogy is between derivations of procedures). Suppose one stretches Carbonell’s results a little and claims that knowing the teleology (derivations) of procedures is necessary for procedural analogy (Carbonell claims only sufficiency if that). Since most math students are ignorant of the teleology of their procedures, as discussed earlier, one can conclude that students did not acquire their procedures via analogy.

How is it that teachers can present material that is specifically designed to encourage learning procedures by analogy, and yet their students show few signs of doing so? Winston’s research (Winston, 1979) yields a speculative answer. It indicates that the most computationally expensive part of analogy can be discovering how best to match the parts of the two sides of the analogy. To solve electrical problems given hydraulic knowledge, one must match voltage, electrical current and resistance to one each of water pressure, current and pipe size. There are 6 possible matchings, and only one matching is correct. The number of possible matchings rises exponentially with the number of parts. For a similar analogy, a best match must be selected from $11!$ or 40 million possible matches. The matching problem of analogy is a version of a NP-complete problem: finding the maximal common subgraph of two digraphs (Hays-Roth & McDermott, 1978). Hence, it is doubtful that a faster solution than an exponential one exists. Even if the matching algorithm were implemented on a connection machine (i.e., a computer that is like a neural net in that it uses millions of small processors arranged in a network instead of a single powerful processor as conventional computers use), it seems that the combinatorics would not decrease radically (D. Christman, personal communication).

If computational complexity can be equated with cognitive difficulty, Winston’s work predicts that students may find it difficult to draw an analogy unless either it is a very simple one (i.e., few parts) or they are given some help in finding the matching. Resnick (1982) has produced some experimental evidence supporting this prediction. Resnick interviewed students who were taught addition and subtraction in school, using the usual analogies
between concrete and written numerals. She discovered that some students had mastered both the numeral analogy and the arithmetic procedures in the concrete domain, and yet they could not make a connection between the concrete procedures and the written ones. Resnick went on to demonstrate that students could easily make the mapping between the two procedures provided that the steps of the two procedures were explicitly paired. The students were walked through the concrete procedure in parallel with the written one. A step in one was immediately followed by the corresponding step in the other. If we assume the conjecture from above that combinatorial explosions in mapping equates with difficulty for humans making analogies and we assume that "parts" of procedures roughly correspond to steps, then Resnick's finding makes perfect sense. The procedures are currently presented in school in a non-parallel mode. This forces students to solve the matching problem and most seem unable to do so. Consequently, the analogy does little good. Only when the instruction helps the students make the matching, as it did in Resnick experiment, does the analogy actually succeed in transferring knowledge about one procedure to the other. In short, analogy could become a major learning technique, but current instructional practices must be changed to do so.

There is anecdotal evidence that analogy is common, but it is analogy of a very different kind. In tutoring, I have watched students flip through the textbook to locate a worked problem that is similar to the one they are currently trying to solve. They then draw a mapping of some kind between the worked problem and their problem that enables them to solve their problem. Anderson et al. report the same behavior for students solving geometry problems (Anderson, Greeno, Kline, Neves, 1981) and Lisp problems (Anderson, Farrell, & Sayers, 1984). Although the usage could be disputed, Anderson et al. use "analogy" to refer to this kind of example-exercise mapping. It differs significantly from the kind of analogy discussed earlier. The abstraction that is common to the two problem solutions is exactly the schematic knowledge (program) of the procedure. In the analogy between making change and borrowing, the common abstraction lay much deeper, somewhere in the teleology (conceptual basis) of the procedure. To put it differently, the example-exercise analogy maps two action sequences of a procedure together, thus illustrating the procedure's schematic structure (program). The other analogy maps two distinct procedures together in order to illustrate a common teleology.

The former mapping, between two instances of a schematic object, is nearly identical to induction. In both cases, the most specific common generalization of the two instances is calculated. Winston also points out the equivalence of generalization and analogy in such circumstances (Winston, 1979). Although I have not investigated example-exercise analogy in detail, I expect it to behave indistinguishably from learning by generalizing examples.

To summarize, one form of analogy (if it could be called that) is indistinguishable from induction. The other form of analogy seems necessarily to involve the teleology of procedures. Since students show little evidence of teleology, it is safe to assume that analogic learning is not common in classrooms perhaps because current instructional practices aren't encouraging it in quite the right way.

Although Resnick's technique makes learning by analogy easier it does not guarantee that such learning will occur in recent work Resnick found that the instruction was effective only at the time Resnick & Okanson
6. Learning by being told

One framework for acquiring a procedure involves following a set of natural language instructions until the procedure is committed to memory. This framework for explaining learning is called learning by being told (Winston, 1978). It views the central problem of learning as one of natural language understanding. There are possible several sources for the natural language "recipes." One is the teacher, who explains the algorithm while presenting it. Another source is the textbook. Since students spend most of their time doing seatwork, when their major source of recipes is the textbook, let's begin by examining what the textbooks say. The key issue is whether the textbooks describe the procedure in enough detail. If they do, then all the students need to do is understand the language, and they will be able to perform the procedure.

Manuals of procedures are ubiquitous in adult life. Examples are cookbooks, user guides, repair shop manuals and office procedure manuals. In using procedure manuals, adults sometimes learn the procedures described therein, and cease to use the manuals. So learning by being told is probably quite common among adults. The content of procedure manuals can be taken as a model for how good a natural language description has to be if it is to be effective in teaching the procedure.

Open any arithmetic text, and one immediately sees that it is not much like a cookbook or an auto repair manual. There is very little text. The books are mostly practice exercises and worked examples. The reason is obvious: since students in the primary grades are just beginning to read, they could make little use of an elaborate written procedure.

Badre (1972) built an AI program that reads the prose and examples of a fourth grade arithmetic textbook in order to learn procedures for multicolumn addition and subtraction. Badre sought in vain for simple, concise statements of arithmetic procedures that he could use as input to his natural language understanding program. He comments:

During the preliminary work of problem definition, we looked for a textbook that would explain arithmetic operations as a clearly stated set of rules. The extensive efforts in this search led to the following, somewhat surprising result nowadays. young American grade-school children are never told how to perform addition or subtraction in a general way. They are supposed to infer the general algorithms from examples. Thus actual texts are usually composed of a series of short illustrated stories. Each story describes an example of the execution of the addition or the subtraction algorithms. (Badre, 1972, pg. 1-2)

Despite the fact that Badre's program "reads" the textbook's "stories" in order to obtain a description of the examples, the role of reading in its learning is minimal. The heart of the program is generalization of examples. In particular, the program employs only a few heuristics that use the book's prose to disambiguate choices left open by generalization.

Although textbooks don't seem to have the right sort of language to make learning-by-being-told work, perhaps the teachers supply it. It is infeasible to find out everything that teachers say in classrooms over the years that arithmetic is taught. However, one way to test this hypothesis is to make a plausible assumption about what teachers might give as an explanation and see whether that makes any useful predictions. Suppose that the teacher is
describing borrowing for the first time. As mentioned earlier, borrowing is invariably introduced with two-column problems, such as problem A.

\[
\begin{array}{c}
A. \quad & \frac{5}{15} \\
- & 1 \frac{9}{6} \\
\hline
\end{array}
\quad \begin{array}{c}
B. \quad & \frac{2}{6} \frac{15}{1} \\
- & 1 \frac{9}{6} \\
\hline
\end{array}
\]

Under the induction hypothesis, this causes Always-Borrow-Left, as in B. Let's see what kind of prediction is produced by assuming that learning is dominated by natural language understanding.

In problems like A, "tens column" is probably the most common noun-phase used to describe the place to decrement from. Under the natural language hypothesis, "tens column" would be how students would describe to themselves where to do the decrement. This predicts that if they are given borrowing problems with more than two-columns, then they would always decrement the ten column, as in C and D below:

\[
\begin{array}{c}
C. \quad 1 \frac{5}{15} \quad 5 \\
- & 9 \frac{1}{0} \\
\hline
1 \frac{6}{5} \quad 5 \\
\end{array}
\quad \begin{array}{c}
D. \quad 3 \frac{5}{15} \\
- & 1 \frac{9}{0} \\
\hline
2 \frac{6}{5} \\
\end{array}
\]

This kind of problem solving has never been observed, and in the opinion of the project's diagnosticians and teachers, it never will. The natural language hypothesis is making an implausible prediction. Perhaps the hypothesis can be salvaged. In problem C, the student decrements a column that has already been answered. Perhaps the student would somehow appreciate that this won't have any effect on the answer, and thus not do it. However, this salvage attempt won't work for problem D. The decremented column is not yet answered at the time it is decremented.

These brief examples illustrate the kinds of trouble that a naive approach to natural language understanding as the source of procedure knowledge falls into. The basic problem is that natural language is terribly imprecise. The examples add the precision that the language lacks. But attending to the examples brings us back to the induction hypothesis.

7. Summary

This chapter presented two hypotheses. The first hypothesis, a rather uncontroversial one, is that the knowledge that students acquire is schematic/procedural (at the level of a program) rather than teleologic/conceptual (at the level of the design for a program). Both descriptive levels are logically sufficient to describe a procedure. However, if students possessed the teleology of their procedures, most impasses could be fixed by deriving a correct procedure (i.e., students would debug instead of repair). At least some students, the ones with bugs, must be lacking such teleological knowledge. Also, there is experimental evidence that some adults have no teleology for their arithmetic procedures. They either never learned it or they forgot it while somehow retaining the schematic level (program) for the procedure. All in all, it is more parsimonious to assume that students learn just the schematic level descriptions for their procedures. This implies that student's knowledge can
be formalized by something like Liso procedure or production systems. It is not necessary to
use more powerful formalisms such as planning nets (VanLehn & Brown, 1980), planning

The second hypothesis is that students learn inductively. They generalize examples. There are several less plausible ways that procedures could be learned: (1) Learning-by-being-
told explains procedure acquisition as the conversion of an external natural language
information source, e.g., from a procedural manual into a cognitive representation of the
procedure. Learning from written procedures is implausible in this domain because young
students don't read well. If spoken natural language were the source of procedure
descriptions, some bugs would be predicted that should not be, for they have never
occurred. (2) Learning-by-analogy is used in current mathematical curricula, but in ways that
would produce an overly teleological understanding of the procedural skills. If students really
understood the analogies, they wouldn't develop the bugs that they do.

Of the various ways to learn procedures, only induction seems both to fit the facts of
classroom life and to account for the schematic (program) level of knowledge that students
appear to employ. Most importantly, the induction hypothesis can account for many bugs,
ranging from 33% to 85% of the observed bugs, depending on how rigorously one tests the
hypothesis.

Most of the evidence supporting the induction hypothesis came from bug data. This
invites a counter-hypothesis that runs as follows: Students who learn by induction acquire
bugs, while students who learn by being told acquire a correct procedure. However,
induction is perfectly adequate for acquiring a correct procedure. In all cases where
induction leads to bugs, there is an alternative path that leads to a correct procedure.
Because the examples aren't rich enough to tell the student which path is correct, some will
guess wrong, and end up with bugs. The others will guess correctly, and end up with a
correct procedure. The induction hypothesis can't help predicting that some students acquire
correct procedures. It would require extremely ad hoc stipulations to block that prediction.

An advocate of the counter-hypothesis might suggest a modified version of it: Students
who learn by induction acquire either bugs or a correct procedure, while students who learn
by being told acquire a correct procedure. The implausibility of this hypothesis should be
obvious. Why is learning-by-being-told so perfect that no bugs are ever acquired? It was
shown in the preceding section that when one assumes that learning-by-being-told is less
than perfect, then the kinds of bugs that are produced are quite implausible. To block
these bugs would require, I suppose, some rather ad hoc stipulations.

In short, we are left in a classic Occam's razor situation. One mechanism, induction,
suffices to account for most of the data. Another mechanism, although intuitively plausible,
accounts for only one datum: the acquisition of the correct procedure, and it must be
constrained in ad hoc ways in order to do so. We can choose to believe that one
empirically adequate mechanism, induction, is present. Or we can choose to believe that
induction is accompanied by a second mechanism that adds nothing to the empirical
coverage and may even hurt it. Occam's razor counsels us to choose the former, simpler
theory.
8. Concluding remarks

Induction works well as the foundation of a whole-curriculum generative theory of bugs. However, it seems inconsistent with a fine-grained, second-by-second account of classroom learning. There is just too much natural language being used in the classroom for induction per se to accurately characterize the student’s learning processes. This section contains a few speculations about what all that natural language is doing, and what the relationship of the induction hypothesis is to fine-grained daily classroom life.

As a form of inference, induction is incomplete. In order to be useful, induction must be constrained by predilections or biases. For instance, a common bias is to prefer the simplest concept that is consistent with the examples. Several of the 31 hypotheses of the present theory concern the inductive biases that arithmetic students seem to have. Another prerequisite for induction is a vocabulary of primitive features with which to describe the examples. In arithmetic, the primitives used by students seem to be mostly visual and numerical (see Table 4-1). The present theory has no account for why students use exactly those primitives. It also has no account for why they hold the inductive biases that they do. There are certainly other primitives and biases that they could use, and don’t. For instance, $T < B$, $T = B$, and $T > B$ are all salient features to arithmetic students. Yet they don’t appear to use $T - B - 1$ or $T = 2xB$ relationships that are crucial in counting (Greene & Parkman, 1972). The use of the notions of leftmost column and rightmost column, but not the notion of second-column-from-the-right (i.e., the tens column). They segment problems into columns and rows but not into diagonals or $2x2$ blocks. They use primitive operations for decrementing by one and incrementing by ten, but they don’t use tens complement ($7 - 3$) or doubling. There are infinitely many primitives and biases that students could use, yet they seem to employ only a remarkably small set. Why?

One possibility is that the teacher’s explanations somehow indicate which primitives and biases are appropriate for arithmetic. Suppose the teacher says, “You can’t take 6 from 3 because it’s too large.” The phrase “too large” tips the student off that some relationship of relative magnitudes, e.g., $T < B$, is involved, and not, say, $T = 2xB$. It doesn’t say specifically what relationship to use, but it does narrow the set of relevant primitives down. On this view, the role of verbal explanations is to give the students a rough idea of what the procedure is induction fills in the details. On this view, the language is absolutely crucial. There are infinitely many numerical relationships that can hold between 3 and 6. The words “too large” narrows it down to a small set. Without the language to indicate the kinds of primitives that induction should use, induction would be impossible.

Some students, when interviewed, seem to have an excellent grasp of subtraction in that they can explain, in words quite similar to those that a teacher might use, how borrowing is done and why. Yet, when they start solving problems, they have borrowing bugs (Resnick, 1982). There is a dramatic decoupling of their verbal competence and their written competence. Children aren’t the only ones that show this decoupling. When adults play the Buggy game (Brown & Burton, 1978), they are required to infer a buggy procedure from examples. When they feel that they have discovered the bug, they first type in a verbal description of it, and then take a diagnostic test where they solve the problems using the procedure that they have induced. Quite frequently the players would pass the test with flying colors, indicating that they really had induced the target procedure. However, their verbal explanations would have little recognizable relationship to the procedure. Brown and Burton (1978, pg. 169) comment on this phenomena, concentrating on the use of language during remediation.
Another important issue concerns the relationship between the language used to describe a student's errors and its effect on what a teacher should do to remediate it. Is the language able to convey to the student what he is doing wrong? Should we expect teachers to be able to use language as the tool for correcting the buggy algorithms of students? Or should we expect teachers only to be able to understand what the bug is and attempt remediation with the student with things like manipulative math tools? The following descriptions of hypotheses given by student teachers, taken from protocols of the Buggy game, give a good idea of how difficult it is to express procedural ideas in English. The descriptions in parentheses are the Buggy game's prestored explanations of the bugs.

"Random errors in carryover." (Carries only when the next column in the top number is blank.)

"If there are less digits on the top than on the bottom she adds columns diagonally." (When the top number has fewer digits than the bottom number, the numbers are left-justified and then added.)

"Does not like zero in the bottom." (Zero subtracted from any number is zero.)

"Child adds first two numbers correctly, then when you need to carry in the second set of digits, child adds numbers carried to bottom row then adds third set of digits diagonally finally carrying over extra digits." (The carry is written in the top number to the left of the column being carried from and is mistaken for another digit in the top number.)

"Sum and carry all columns correctly until get to last column. Then takes furthest left digit in both columns and adds with digit of last carried amount. This is in the sum." (When there are an unequal number of digits in the two numbers, the columns that have a blank are filled with the left-most digit of that number.)

Even when one knows what the bug is in terms of being able to mimic it, how is one going to explain it to the student having problems? Considering the above examples, it is clear that anyone asked to solve a set of problems using these explanations would, no doubt, have real trouble. One can imagine a student's frustration when the teacher offers an explanation of why he is getting problems marked wrong, and the explanation is as confused and unclear as these are.

For that matter, when the correct procedure is described for the first time, could it too be coming across so unclearly?

For both children and players of the Buggy game, there is often a huge difference between the procedure that is performed and its verbal description. This is not, I believe, the fault of the individuals, but rather a property of natural language. Natural language is just not well suited for describing a procedure. It takes considerable work to generate a good description of a procedure and even then ambiguities remain. This is evident not only in the student teachers' descriptions quoted above, but also in the Buggy game's descriptions of bugs, which, although painsakingly fine-tuned, are still easily misunderstood.

On the other hand, the verbal descriptions produced by the players of the Buggy game...
(and its authors') probably seem quite clear to the people writing them. Most teachers probably believe that their descriptions of the arithmetic algorithms are quite lucid. Moreover, anyone else who already knows the algorithm would probably agree that the teacher's verbal descriptions are clear. Yet, for those who don't know the algorithm yet, viz. the students, the verbal descriptions are vague, muddied and useless. If this is the true situation, one can easily see how the folk model of arithmetic learning stays alive. It accurately characterizes what the teacher, the parent, and anyone else who already knows arithmetic would "hear" if they visited a classroom. But from the students' point of view, the verbal descriptions are, at worst, just noise, and at best a hint about what kind of inductive primitives and biases to employ.
9. Appendix

Can bugs be expressed using only visual-numerical features?

The demonstration consists of presenting, for each bug, a formal representation of the bug that employs only visual-numerical features. This appendix is intended to show that 85% of the observed subtraction bugs can be represented using a only visual and numerical features. This result supports the hypothesis that the bugs are learned from generalizing examples, as described in the text.

The most precise demonstration of the point would employ the bug representation used by Debuggy (Burton 1982), because Debuggy is the final arbiter of bug existence, as the data are normally analyzed (VanLehn (1982) describes the analysis technique and the particular 1147-student sample used herein). Debuggy is used as the judge of existence because it is more uniform and reliable than human judges (VanLehn, 1982). However, Debuggy uses a rather complicated representation for bugs. The point could be made with Debuggy's representation but it would be difficult to follow unless one were a proficient Lisp programmer. The representation presented here is much simpler and much easier to understand. However, it cannot be substituted for Debuggy's representation. It's main deficit is that it cannot accurately model multiple co-occurring bugs. Much of the complications in Debuggy's representation are for handling the interactions of bugs when they are installed together in a procedure. This representation has no such provisions. It could probably be extended to deal with bug combining, but then it would lose some of the simplicity that makes it useful in this context.

The representation consists of two formalisms, one for correct procedures and one for bugs. First, the correct procedures formalism will be described. A correct procedure is represented by an applicative And-Or graph which, by the way, is the representation used by the generative theory of bugs discussed in the text. Table 9-1 shows an And-Or graph for the standard subtraction procedure. It furnishes a concrete illustration for explaining the formalism.

The subprocedures of subtraction, e.g., SUB/COLUMN, BORROW, etc., are represented as nodes. Each node has a definition. The definition indicates the node's arguments. In table 9-1, all nodes except the first one have a single argument, C, which holds the column that is the current focus of attention. The definition also indicates the node's type, which is either AND or OR (The first node, SUBTRACTION, is special. It is neither an AND nor an OR. It is not perturbed by the bugs, so its internal structure doesn't matter.)

An AND node's definition has an ordered list of subgoals. They are just like subprocedure calls. They are executed in order. When the last one is finished, the AND itself is finished.

An OR node's definition has an ordered list of if-then rules. If the antecedent (the if-part) of a rule is true, then its consequent (then-part) is executed. The rules are tested in order. The first rule whose antecedent is true runs, and only one rule runs.

The primitive operations are listed in table 9-2. It lists both the primitive operators employed by bugs as well as correct procedures. Table 9-3 (and also in the text as table...
(DEFINE SUBTRACTION (P)
  (for C from (FIRST/COLUMN P) to (LAST/COLUMN P)
    do (SUB/COLUMN C)))

(DEFINE SUB/COLUMN (C) OR
  (IF (T=! C) then (QUIT))
  (IF (B=! C) then (SHOW/TOP C)
  (IF (T<B C) then (BORROW C)
  (IF (TRUE) then (DIFF C))

(DEFINE BORROW (C) AND
  (REGROUP C)
  (DIFF C))

(DEFINE REGROUP (C) AND
  (B/FROM (NEXT/COLUMN C))
  (B/INTO C))

(DEFINE B/INTO (C) OR
  (IF (TRUE) then (ADD10 C))

(DEFINE B/FROM (C) OR
  (IF (T=! C) then (QUIT))
  (IF (T=O C) then (BFZ C)
  (IF (TRUE) then (DECR C))

(DEFINE BFZ (C) AND
  (REGROUP C)
  (DECR C))

Table 9-1: And-Or graph for the standard subtraction procedure.

lists the primitive predicates that are used in the antecedents of rules in correct procedures and bugs.

A bug is represented by list of deletions, insertions and substitutions. These are to be performed on the standard correct procedure, whose definition was presented earlier. The substitutions convert the standard correct procedure to an alternative, but still correct, procedure for subtraction. The deletions and insertions install the bug. The substitutions are performed first and the deletions and insertions are performed second. They are performed in parallel. Thus if a bug’s description says “Delete rule 1 of node B/FROM. Insert rule XXX in B/FROM after rule 1.” then XXX will wind up exactly where rule 1 was because in both the insertion statement and the deletion statement, the mention of rule 1 of B/FROM refers to the same rule in the correct subprocedure.

The substitutions used in the bugs are all variant of the standard subprocedure BFZ BFZ and its variants are listed in table 9-4. These variants correspond to different ways of ordering the three subgoals that BFZ performs. The last variant BFZ/2B/FROM is a little unusual, in that it calls 2B/FROM is a duplicate copy of B/FROM. Because 2B/FROM is
ADD&TRUNCATE Adds the column and writes the units digit of the sum in answer.
ADD10 Adds ten to the top digit in the column.
DECR Decrements the top digit in the column by 1.
DECR/BOT Decrements the bottom digit in the column by 1.
DIFF Takes the absolute difference of the digits in the column and writes it in the answer.
INCR Increments the top digit in the column by 1.
QUIT Cause the procedure to give up on this problem.
REMEMBER/BORROW Sets a bit to true, which is read by the predicate BORROWED.
SHOW/BOT Writes the bottom digit of the column in the answer.
SHOW/ONE Write a one in the answer.
SHOW/TOP Writes the top digit of the column in the answer.
SHOW/ZERO Writes a zero in the answer.
WRITE10 Changes the top digit of the column to ten.
WRITE8 Changes the top digit of the column to eight.
WRITE9 Changes the top digit of the column to nine.
WRITE9/BOT Changes the bottom digit of the column to nine.

Table 9-2: Primitive operators (nodes). All take a column as an argument.

called from a different place than B/FROM, perturbing the rules of 2B/FROM can give different bugs than perturbing the rules of B/FROM.

With these definitions of the representation language behind us, the bugs themselves can be presented. They are listed in two groups. The first group consists of 66 bugs that can be easily represented in this formalism. A short description and an example is provided with each bug in order to explain what it does informally. The formal description, in terms of substitutions, deletions and insertions, follows the informal one. Also, the number of occurrences of the bug is given. There are two numbers. The first is the number of students who had that bug alone, and the second is the number of students who had that bug in combination with some other bug.

The second group of bugs listed below consists of 12 bugs that can not be easily represented in this formalism. Only their informal descriptions and occurrence frequencies are listed of course.

The end result is that of the 78 bugs that have occurred, 66 (85%) can be represented in this formalism. Moreover, almost all the frequently appearing bugs are included among these 66. Since the formalism uses only the numerical and visual features listed in tables 4-2 and 4-3, these 66 bugs could be induced from examples.
B=# The bottom digit in the column is blank.
B=0 The bottom digit in the column is zero.
BORROWED A borrow has taken place already.
DECR'ED The top digit in the column has been decremented.
DECR'ED/BOT The bottom digit in the column has been decremented.
IN/LAST/COLUMN The current column is the leftmost one.
IN/NEXT/TO/LAST/COLUMN The current column is the penultimate one.
NEXT/B=# The bottom digit in the next column to the left is blank.
NEXT/T=0 The top digit in the next column left is zero.
NEXT/T=00 The top two digits in the next two columns to the left are zero.
NEXT/T=1 The top digit in the next column left is one.
T<B The top digit is less than or equal to the bottom digit.
T>B The top digit is strictly greater than the bottom digit.
T=B The top digit is equal to the bottom digit.
T=B/ORIGINALLY T=B in the original column, before decrementing occurred.
T=# The top digit in the column is blank.
T=0 The top digit in the column is zero.
T=00 The top digit in the column and the next one to its left are zero.
T=1 The top digit in the column is one.
T=1v0 The top digit is a one or a zero.
T=9 The top digit is nine.

Table 9-3: Primitive predicates. All take a column as argument.
(DEFINE BFZ (C) AND
  (REGROUP C)
  (DECR C))

(DEFINE BFZ/WRIT9 (C) AND
  (WRIT9 C)
  (B/FROM (NEXT/COLUMN C))

(DEFINE BFZ/3ACTS (C) AND
  (ADD10 C)
  (B/FROM (NEXT/COLUMN C))
  (DECR C))

(DEFINE BFZ/BF/A10/DECR (C) AND
  (B/FROM (NEXT/COLUMN C))
  (ADD10 C)
  (DECR C))

(DEFINE BFZ/2B/FROM (C) AND
  (ADD10 C)
  (DECR C)
  (2B/FROM (NEXT/COLUMN C)))

Table 9-4: BFZ and the variants that may be substituted for it.
Bugs that are easily represented

0-N=O/AFTER/BORROW occurrences: (2 3)
When a column had a 1 which was changed to a 0 by a decrement, the kid uses O-n=0 in that column. Example: 113-28=105
Insert the rule
  If (AND (T=0 C) (DECR'ED C))
  then (SHOW/ZERO C)
in the Or node SUB/COLUMN before rule 3.

0-N=O/EXCEPT/AFTER/BORROW occurrences: (0 2)
When the top digit in a column is 0, the student writes 0 in the answer, i.e. 0-n=0, unless the 0 is the result of decrementing a 1 during a borrow operation. Example: 80-25=60
Insert the rule
  If (AND (T=0 C) (NOT (DECR'ED C)))
  then (SHOW/ZERO C)
in the Or node SUB/COLUMN before rule 3.

0-N=N/AFTER/BORROW occurrences: (1 6)
When a column had a 1 which was changed by a borrow to a 0, the student used 0-n=n in that column. Example: 113-28=125
Insert the rule
  If (AND (T=0 C) (DECR'ED C))
  then (SHOW/BOT C)
in the Or node SUB/COLUMN before rule 3.

0-N=N/EXCEPT/AFTER/BORROW occurrences: (4 7)
When the top digit in a column is 0, the student writes the bottom digit in the answer, i.e. 0-n=n, unless the 0 is the result of decrementing a 1 during a borrow operation. Example: 80-25=65
Insert the rule
  If (AND (T=0 C) (NOT (DECR'ED C)))
  then (SHOW/BOT C)
in the Or node SUB/COLUMN before rule 3.

1-1=0/AFTER/BORROW occurrences: (1 7)
When a column starts with a 1 on top and a 1 on the bottom and is then borrowed from, the kid writes 0 in the answer for this column. Example: 113-18=105
Insert the rule
  If (AND (T=0 C) (DECR'ED C) (T=B/ORIGINALLY C))
  then (SHOW/ZERO C)
in the Or node SUB/COLUMN before rule 3.

1-1=1/AFTER/BORROW occurrences: (0 2)
If a column starts with a 1 in both the top and the bottom, and is borrowed from, the kid writes 1 as the answer in the 1 over 1 column. Example: 113-18=115
Insert the rule
  If (AND (T=0 C) (DECR'ED C) (T=B/ORIGINALLY C))
  then (SHOW/BOT C)
in the Or node SUB/COLUMN before rule 3.
ALWAYS/BORROW/LEFT occurrences: (6 0)
The student always subtracts all borrows from the left-most digit in the top number. Example: 602-137=375
Delete subgoal 1 from the And node REGROUP.
Delete rule 2 from the Or node B/FROM.
Insert subgoal (B/FROM (LAST/COLUMN)) in And node REGROUP before subgoal 1.
Insert the rule
   If (T=O C)
   then (QUIT)
in the Or node B/FROM before rule 2.

BLANK/INSTEADOF/BORROW occurrences: (0 1)
The student leaves a blank in the answer for any column which requires borrowing. Example: 208-113=15
Delete rule 3 from the Or node SUB/COLUMN.
Insert the rule
   If (T<B C)
   then (NO/OP)
in the Or node SUB/COLUMN before rule 3.

BORROW/ACROSS/SECOND/ZERO occurrences: (2 5)
Borrows from the rightmost zero by changing it to nine, but the second and following zeros are skipped over. Example: 1003-358=45
Substitute BFZ/2B/FROM for the node BFZ.
Delete rule 2 from the Or node 2B/FROM.
Insert the rule
   If (T=O C)
   then (2B/FROM (NEXT/COLUMN C))
in the Or node 2B/FROM before rule 2.

BORROW/ACROSS/ZERO occurrences: (13 29)
When the student needs to borrow from a column whose top digit is 0, he skips that column and borrows from the next one. Example: 303-78=135
Delete rule 2 from the Or node B/FROM.
Insert the rule
   If (T=O C)
   then (B/FROM (NEXT/COLUMN C))
in the Or node B/FROM before rule 2.

BORROW/ACROSS/ZERO/OVER/BLANK occurrences: (0 10)
When borrowing from a column which has 0 on top and a blank in the bottom, the kid skips to the next column. Example: 103-8=5
Insert the rule
   If (AND (T=O C) (B=\# C))
   then (B/FROM (NEXT/COLUMN C))
in the Or node B/FROM before rule 2.

BORROW/ACROSS/ZERO/OVER/ZERO occurrences: (1 14)
When borrowing, the student skips columns which have zero on both the top and the bottom. Example: 303-208=5
Insert the rule
   If (AND (T=O C) (B=O C))
   then (B/FROM (NEXT/COLUMN C))
in the Or node B/FROM before rule 2.

BORROW/DIFF/O-N=N&SMALL-LARGE=0 occurrences: (4 0)
The student doesn't know how to borrow. If the top digit in a column is 0, the student writes the bottom digit in the answer (i.e. O-N=N). If the top digit is smaller than the bottom digit, then 0 is written in the answer. Example: 204-119=110

Delete rule 3 from the Or node SUB/COLUMN.
Insert the rule
   If (T=O C)
   then (SHOW/BOT C)
in the Or node SUB/COLUMN before rule 3.
Insert the rule
   If (T>B C)
   then (SHOW/ZERO C)
in the Or node SUB/COLUMN after rule 3.

BORROW/DON'T/DECREMENT/TOP/SMALLER occurrences: (2 1)
When borrowing, the student will only decrement the top number in the next column if it is greater than or equal to the bottom number in that column. Example: 563-388=185

Insert the rule
   If (T>B C)
   then (NO/OP)
in the Or node B/FROM before rule 2.

BORROW/DON'T/DECREMENT/UNLESS/BOTTOM/SMALLER occurrences: (2 2)
When borrowing, the student will not decrement the top digit in the next column to the left unless the bottom digit in that column is smaller than the top. Example: 563-388=185

Insert the rule
   If (T>B C)
   then (NO/OP)
in the Or node B/FROM before rule 2.

BORROW/FROM/ALL/ZERO occurrences: (1 0)
When borrowing from 0, the student writes 9, but does not continue borrowing from the column to the left of the 0. If there are two 0's in a row in the top number, both are changed to 9's. Example: 203-98=205

Insert the rule
   If (AND (T=O C) (NOT (NEXT/T=O C)) )
   then (WRITE9 C)
in the Or node B/FROM before rule 2.

BORROW/FROM/BOTTOM/INSTEADOF/ZERO occurrences: (0 1)
When borrowing from a column with 0 on top, the student borrows from the bottom digit instead of the 0 on top. In all other cases the student borrows correctly. Example: 203-158=65

Insert the rule
   If (AND (T=O C) (NOT (B=# C)) (NOT (B=O C)) )
   then (DECR/BOT C)
in the Or node B/FROM after rule 1.
Insert the rule
   If (AND (T=O C) (NOT (B=# C)) (B=O C))
then (WRITE9/BOT C)(B/FROM (NEXT/COLUMN C))
in the Or node B/FROM before rule 2.

BORROW/FROM/ONE/IS/NINE occurrences: (0 2)
When borrowing from a column which has a 1 on top, the student treats the
1 as if it were a 10. Example: 113-58=145
Insert the rule
  If (T=1 C)
  then (WRITE9 C)
in the Or node B/FROM before rule 2.

BORROW/FROM/ONE/IS/TEN occurrences: (0 1)
The student writes 10 when s/he borrows from a column with a 1 in the
top digit. Example: 913-78=935
Insert the rule
  If (T=1 C)
  then (WRITE10 C)
in the Or node B/FROM before rule 2.

BORROW/FROM/ZERO occurrences: (10 4)
When borrowing from a column whose top digit is 0, the student writes
9, but does not continue borrowing from the column to the left of
the 0. Example: 103-45=158
Insert the rule
  If (T=0 C)
  then (WRITE9 C)
in the Or node B/FROM before rule 2.

BORROW/FROM/ZERO&LEFT/TEN/OK occurrences: (1 1)
The student changes 0 to 9 without further borrowing unless the 0 is
part of a 10 in the left part of the top number. Example: 803-508=395
Insert the rule
  If (AND (T=0 C) (NOT (NEXT/T=1 C)))
  then (WRITE9 C)
in the Or node B/FROM before rule 2.

BORROW/FROM/ZERO/IS/TEN occurrences: (1 1)
When borrowing from a column with a zero on top, the student changes the
zero to a ten. Example: 800-168=742
Insert the rule
  If (T=0 C)
  then (WRITE10 C)
in the Or node B/FROM before rule 2.

BORROW/INTO/ONE=TEN occurrences: (0 5)
When borrowing into a column whose top digit is 1, the student gets 10
instead of 11. Example: 321-89=221
Insert the rule
  If (T=1 C)
  then (WRITE10 C)
in the Or node B/INTO before rule 1.

BORROW/NO/DECREMENT occurrences: (10 8)
When the student needs to borrow, he adds 10 to the top digit of the
current column without subtracting 1 from the top digit of the next column. Example: 143-28=125
Delete subgoal 1 from the And node REGROUP.

BORROW/NO/DECREMENT/EXCEPT/LAST occurrences: (4 2)
When borrowing, the student does not decrement the top digit unless he is working in the leftmost column. Example: 313-228=95
Insert the rule
If (NOT (IN/LAST/COLUMN C))
then (NO/OP)
in the Or node B/FROM before rule 2.

BORROW/ONCE/THEN/SMALLER/FROM/LARGER occurrences: (0 12)
The student subtracts the smaller digit from the larger in all columns after the first borrow. Example: 133-38=115
Delete rule 3 from the Or node SUB/COLUMN.
Insert the rule
If (AND (T<B C) (NOT (BORROWED)))
then (BORROW C)(REMEMBER/BORROW)
in the Or node SUB/COLUMN before rule 3.

BORROW/ONLY/ONCE occurrences: (0 1)
The student will only borrow once per problem. After that s/he will add ten to the top number if it is smaller but will not borrow one from the next column to the left. Example: 1250-1088=262
Insert the rule
If (BORROWED)
then (NO/OP)
in the Or node B/FROM before rule 2.
Insert subgoal (REMEMBER/BORROW)
in the And node BORROW after subgoal 2.

BORROW/SKIP/EQUAL occurrences: (0 4)
When borrowing, the student skips over columns in which the top digit and the bottom digit are the same and borrows from the next column. Example: 293-198=95
Insert the rule
If (T=B C)
then (B/FROM (NEXT/COLUMN C))
in the Or node B/FROM before rule 2.

BORROW/TREAT/ONE/AS/ZERO occurrences: (0 1)
When borrowing from a column that has 1 on top, the kid writes 9 and continues to borrow. That is s/he treats 1 as if it were 0 because s/he doesn't like to make more 0's in the top number. Example: 313-158=145
Substitute BFZ/WRITE9 for the node BFZ.
Delete rule 2 from the Or node B/FROM.
Insert the rule
If (T=1v0 C)
then (BFZ C)
in the Or node B/FROM before rule 2.

CAN'T/SUBTRACT occurrences: (1 0)
The kid doesn't know how to subtract at all. Example: 1003-87=#
Insert the rule
   If (TRUE)
   then (QUIT)
in the Or node SUB/COLUMN before rule 1.

DECREMENT/ALL/ON/MULTIPLE/ZERO occurrences: (3 3)
When borrowing into a column which has a 0 on top from a column which
has a 0, the student gets uses 9 instead of 10 for the top number.
Example: 400-199=200
Substitute BFZ/WRTE9 for the node BFZ.
Insert the rule
   If (AND (T=O C) (T=O/ORIGINALLY (NEXT/COLUMN C)))
   then (WRTE9 C)
in the Or node B/INTO before rule 1.

DECREMENT/LEFTMOST/ZERO/ONLY occurrences: (1 0)
When borrowing from two or more zeros in the top number, the student
decrements the leftmost zero but leaves all the rest as 10 and does not
decrement the column to the left of the zeros. Example: 1003-958=1055
Substitute BFZ/3ACTS for the node BFZ.
Delete subgoal 3 from the And node BFZ.
Insert the rule
   If (AND (T=O C) (NOT (NEXT/T=O C)))
   then (WRTE9 C)
in the Or node B/FROM before rule 1.

DECREMENT/ONE/TO/ELEVEN occurrences: (0 1)
When borrowing from a column which has a one on top, the student writes
11. He will also continue borrowing from the next column if there is
one. Example: 613-238=385
Substitute BFZ/3ACTS for the node BFZ.
Delete subgoal 3 from the And node BFZ.
Delete rule 2 from the Or node B/FROM.
Delete rule 1 from the Or node B/FROM.
Insert the rule
   If (T=O/O C)
   then (BFZ C)
in the Or node B/FROM before rule 2.

DECREMENT/TOP/LEQ/IS/EIGHT occurrences: (1 1)
When borrowing from a column in which the top is less than or equal to
the bottom, the top digit is changed to an 8.0. Example: 283-198=95
Insert the rule
   If (AND (NOT (B=# C)) (T<=B C))
   then (WRTE8 C)
in the Or node B/FROM before rule 2.
DIFF/O-N=0 occurrences: (0 10)
Whenever the top digit in a column is 0, the student writes 0 in the answer, i.e. O-N=0. Example: 140-21=120
Insert the rule
If (T=0 C)
then (SHOW/ZERO C)
in the Or node SUB/COLUMN before rule 3.

DIFF/O-N=O&N-0=0 occurrences: (0 3)
The student writes 0 in the answer when either the top or the bottom digit is 0. Example: 308-293=105
Insert the rule
If (OR (T=0 C) (B=0 C))
then (SHOW/ZERO C)
in the Or node SUB/COLUMN before rule 3.

DIFF/O-N=N occurrences: (1 37)
Whenever the top digit in a column is 0, the student writes the bottom digit in the answer, i.e. O-N=N. Example: 140-21=121
Insert the rule
If (T=0 C)
then (SHOW/BOT C)
in the Or node SUB/COLUMN after rule 2.

DIFF/O-N=N&N-0=0 occurrences: (1 0)
The student gets 0 when subtracting 0 from anything and also gets N taken from 0 is N. Example: 302-192=290
Insert the rule
If (OR (T=0 C) (B=0 C))
then (SHOW/BOT C)
in the Or node SUB/COLUMN before rule 3.

DIFF/O-N=N/WHEN/BORROW/FROM/ZERO occurrences: (0 2)
The student writes n in the answer when subtracting n from 0 if s/he would have to borrow from a column which contains a 0 in top. Example: 1003-892=291
Insert the rule
If (T=00 C)
then (SHOW/BOT C)
in the Or node SUB/COLUMN before rule 3.

DIFF/N-0=0 occurrences: (0 2)
Whenever the bottom digit in a column is 0, the student writes 0 in the answer, i.e. N-0=0. Example: 403-208=105
Insert the rule
If (B=0 C)
then (SHOW/BOT C)
in the Or node SUB/COLUMN before rule 3.

DIFF/N-N=N occurrences: (0 1)
Whenever the top digit in a column is the same as the bottom digit, the student writes that digit as the answer for that column, i.e. N-N=N. Example: 235-134=131
Insert the rule
If \((T=B \ C)\)  
then (SHOW/TOP \ C)  
in the Or node SUB/COLUMN before rule 3.

DOESN'T/BORROW/EXCEPT/LAST occurrences: (0 1)  
Quits instead of borrowing, unless the borrow is from the last column.  
Example: 345-120=225  
Insert the rule  
If (NOT (IN/LAST/COLUMN \ C))  
then (QUIT)  
in the Or node B/FROM before rule 2.

DON'T/DECREMENT/ZERO occurrences: (3 4)  
When borrowing from a column in which the top digit is 0, the student  
rewrites the 0 as 10 by borrowing from the next column to the left but  
forgets to change 10 to 9 when s/he adds 10 to the column which  
originally needed the borrow.  
Example: 603-138=475  
Substitute BFZ/3ACTS for the node BFZ.  
Delete subgoal 3 from the And node BFZ.

DON'T/DECREMENT/ZERO/OVER/BLANK occurrences: (4 2)  
When borrowing, the student will not decrement a zero when it is above  
a blank.  
Example: 103-8=105  
Insert the rule  
If (AND (T=0 \ C) (B=\# \ C))  
then (NO/OP)  
in the Or node B/FROM before rule 2.

DON'T/DECREMENT/ZERO/UNTIL/BOTTOM/BLANK occurrences: (0 1)  
The student forgets to change 10 to 9 after borrowing from a column  
which had a 0 on top. The exception is when 0 is part of the leftmost  
part of the top number then 1 is decremented correctly.  
Example: 304-259=55  
Substitute BFZ/3ACTS for the node BFZ.  
Delete subgoal 3 from the And node BFZ.  
Insert subgoal (If (B=\# \ C) then (DECR \ C))  
in And node BFZ before subgoal 3.

DOUBLE/DECREMENT/ONE occurrences: (1 2)  
When borrowing from a column with a 1 in the top, the student changes  
the 1 to a 9 and continues borrowing to the left.  
Example: 3i3-!28=175  
Substitute BFZ/WRITE9 for the node BFZ.  
Insert the rule  
If (AND (T=1 \ C) (NOT (NEXT/B=\# \ C)))  
then (BFZ \ C)  
in the Or node B/FROM before rule 2.

FORGET/BORROW/OVER/BLANKS occurrences: (1 3)  
The student borrows correctly except he doesn't take 1 from the top  
digits that are over blanks.  
Example: 143-88=155  
Insert the rule  
If (B=\# \ C)  
then (NO/OP)  
in the Or node B/FROM before rule 2.
The student ignores the leftmost digit in the top number if it is a one and has a blank under it. Example: 188-33=55
Insert the rule
   If (AND (B=# C) (T=1 C) (IN/LAST/COLUMN C))
   then (QUIT)
in the Or node SUB/COLUMN before rule 2.

When a column has the same number in both the top and the bottom and the digit has been decremented by a borrow to be the same as the bottom digit, the student borrows from the next column even though they don't really need to. Example: 1073-168=8105
Insert the rule
   If (AND (T:B C) (DECR'ED C) (NOT (IN/LAST/COLUMN C)))
   then (BORROW C)
in the Or node SUB/COLUMN before rule 3.

When a column has the same number on the top and bottom, the next column is decremented and 0 is written in the answer. Example: 288-83=1105
Insert the rule
   If (AND (T=B C) (NOT (IN/LAST/COLUMN C)))
   then (BORROW C)
in the Or node SUB/COLUMN before rule 3.

The student gets 1 when subtracting n from n in a column which has been borrowed from. That is, the student knows that he doesn't need to borrow to subtract n from n, but he feels he must do something with the borrow, so he writes it in the answer. Example: 354-159=215
Insert the rule
   If (AND (T=B/ORIGINALLY C) (DECR'ED C))
   then (SHOW/ONE C)
in the Or node SUB/COLUMN before rule 3.

Student only does the units column. Example: 78-52=6
Insert the rule
   If (NOT (IN/FIRST/COLUMN C))
   then (QUIT)
in the Or node SUB/COLUMN before rule 2.

The student stops working the problem as soon as the bottom number runs out. Example: 178-59=19
Delete rule 2 from the Or node SUB/COLUMN.
Insert the rule
   If (B=# C)
   then (QUIT)
in the Or node SUB/COLUMN before rule 2.

The student subtracts the smaller digit in a column from the larger
digit regardless of which is on top. Example: 253-118=145
Delete rule 3 from the Or node SUB/COLUMN.

SMALLER/FROM/LARGER/EXCEPT/LAST occurrences: (0 3)
Kid only borrows when decreas is in the last column. Takes absolute
difference until then. Example: 313-228=95
Delete rule 3 from the Or node SUB/COLUMN.
Insert the rule
   If (AND (T<B C) (IN/NEXT/TO/LAST/COLUMN C))
      then (BORROW C)
in the Or node SUB/COLUMN before rule 3.

SMALLER/FROM/LARGER/INSTEAD/OF/BORROW/FROM/ZERO occurrences: (0 5)
Instead of borrowing from a column which has a 0 in the top, the student
subtracts the smaller digit from the larger. Example: 101-56=55
Delete rule 3 from the Or node SUB/COLUMN.
Insert the rule
   If (AND (T<B C) (NOT (NEXT/T=0 C)))
      then (BORROW C)
in the Or node SUB/COLUMN before rule 3.

SMALLER/FROM/LARGER/INSTEAD/OF/BORROW/UNLESS/BOTTOM/SMALLER occ.: (2 5)
The student takes the absolute different instead of borrowing unless
the borrow would decreament a digit that is strictly greater than
the digit beneath it. Example: 300-39=339
Insert the rule
   If (AND (T<B C) (OR (NEXT/B=# C) (T<B (NEXT/COLUMN C))))
      then (DIFF C)
in the Or node SUB/COLUMN before rule 3.

SMALLER/FROM/LARGER/WHEN/BORROWED/FROM occurrences: (0 7)
The student subtracts the smaller digit from the larger in any column
that has been borrowed from. Example: 133-38=115
Delete rule 3 from the Or node SUB/COLUMN.
Insert the rule
   If (AND (T<B C) (NOT (DECR'ED C)))
      then (BORROW C)
in the Or node SUB/COLUMN before rule 3.

STOPS/BORROW/AT/MULTIPLE/ZERO occurrences: (2 1)
The student doesn't borrow from two zeros in a row. S/he will just add
ten to the column that needs it without decrementing anything.
Example: 1003-358=655
Insert the rule
   If (T=00 C)
      then (NO/OP)
in the Or node B/FROM before rule 2.

STOPS/BORROW/AT/ZERO occurrences: (34 30)
The student borrows from zero incorrectly. He doesn't subtract 1 from
the 0 (though he adds 10 correctly to the top digit of the current
column). Example: 203-178=35
Delete rule 2 from the Or node B/FROM.
SUB/ONE/OVER/BLANK occurrences: (0 2)
The student subtracts one from the top number in any column with a blank in the bottom. Example: 343-28=215
Delete rule 2 from the Or node SUB/COLUMN.
Insert the rule
   If (B=$ C)
       then (DECR C)(SHOW/TOP C)
in the Or node SUB/COLUMN before rule 2.

TOP/INSTEAD/OF/BORROW/FROM/ZERO occurrences: (0 1)
The kid doesn't know how to borrow from zero. When such a borrow is required, the kid just writes the top number of the column instead.
Example: 300-39=270
Insert the rule
   If (AND (T<B C) (NEXT/=O C))
       then (SHOW/TOP C)
in the Or node SUB/COLUMN before rule 3.

TREAT/TOP/ZERO/AS/TEN occurrences: (0 1)
The kid treats zeros in the top number as if they were ten.
Example: 109-81=128
Insert the rule
   If (AND (T<B C) (T=O C))
       then (ADD10 C)(DIFF C)
in the Or node SUB/COLUMN before rule 3.

X-N=O/AFTER/BORROW occurrences: (0 1)
In any column except the leftmost one that has been borrowed from, the student writes 0 in the answer. The leftmost column is done correctly.
Example: 313-98=305
Insert the rule
   If (AND (DECR'ED C) (NOT (IN/LAST/COLUMN C)))
       then (SHOW/ZERO C)
in the Or node SUB/COLUMN before rule 3.

X-N=N/AFTER/BORROW occurrences: (0 1)
In any column that has been borrowed from, the student writes the bottom number in the answer. Example: 313-98=395
Insert the rule
   If (DECR'ED C)
       then (SHOW/BOT C)
in the Or node SUB/COLUMN before rule 3.

ZERO/INSTEADOF/BORROW occurrences: (1 0)
The student writes a 0 in any column in which borrowing is needed.
Example: 140-28=120
Delete rule 3 from the Or node SUB/COLUMN.
Insert the rule
   If (T=B C)
       then (SHOW/ZERO C)
in the Or node SUB/COLUMN before rule 3.

Bugs that are not easily represented
ADD/INSTEADOF/SUB occurrences: (1 0)
The student adds instead of subtracts. Example: 118-5=123

ADD/LR/DECREMENT/ANSWER/CARRY/TO/RIGHT occurrences: (1 0)
The student is adding from left to right, decrementing every column except the rightmost and carrying into every column except the leftmost. Example: 411-215=527

BORROW/ACROSS/TOP/SMALLER/DECREMENTING/TO occurrences: (2 0)
When decrementing a column in which the top is smaller than the bottom, 0 the student adds ten to the top digit, decrements the column being borrowed into and borrows from the next column to the left. Also the student skips any column which has a zero over a zero or a blank in the borrowing process. Example: 183-95=97

BORROW/ONLY/FROM/TOP/SMALLER occurrences: (1 3)
The student will try to borrow only from those columns in which the top digit is smaller than the bottom digit. If he can't find one, then borrowing is done properly. Example: 9283-3566=5627

BORROW/UNIT/DIFF occurrences: (0 1)
When the student needs to borrow, he borrows the difference between the bottom digit and the top digit of the current column. Example: 86-29=57

DECREMENT/MULTIPLE/ZEROS/BY/NUMBER/TO/LEFT occurrences: (1 1)
When borrowing from more than one zero in a row, the student decrements each zero by the number of columns to the left that had to be scanned to find a nonzero digit to decrement. Example: 8002-1714=6278

DECREMENT/MULTIPLE/ZEROS/BY/NUMBER/TO/RIGHT occurrences: (3 1)
When borrowing from more than one zero in a row, the student decrements each zero by the number of columns to its right that are borrowed from. Example: 8002-1714=6188

DON'T/WRITE/ZERO occurrences: (1 3)
The student does not write zero in the answer; he just leaves a blank. Example: 24-14=1

SIMPLE/PROBLEM/STUTTER/SUBTRACT occurrences: (1 0)
When the bottom number is only one digit and the top number is at least three digits, the bottom number is subtracted from every column. Example: 348-2=346

STUTTER/SUBTRACT occurrences: (2 0)
When there are blanks in the bottom number, the student subtracts the leftmost digit of the bottom number from every column that has a blank. Example: 4369-22=4147

SUB/BOTTOM/FROM/TOP occurrences: (1 0)
The student always subtracts the top digit from the bottom number. If the bottom number is smaller, he decrements the top digit and adds ten to the bottom first. If the bottom digit is zero, however, he writes the top digit in the answer. If the top digit is one greater than the
bottom, he writes 9 Example: 4723-3065=9742

SUB/COPY/LEAST/BOTTOM/MOST/TOP occurrences: (1 0)
The kid makes the answer by taking the most significant digits of the top and the least significant digits from the bottom number.
Example: 648-231=631
References


Personnel Analysis Division,
AF/MPXA
5C360, The Pentagon
Washington, DC 20330

Air Force Human Resources Lab
AFHRL/MPD
Brooks AFB, TX 78235

AFOSR,
Life Sciences Directorate
Bolling Air Force Base
Washington, DC 20332

Dr. Robert Ahlers
Code N711
Human Factors Laboratory
NAVTRAEEQPCEN
Orlando, FL 32813

Dr. Ed Aiken
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Earl A. Alluisi
HQ, AFHRL (AFSC)
Brooks AFB, TX 78235

Dr. John R. Anderson
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

Dr. Steve Andriole
Perceptronics, Inc.
21111 Erwin Street
Woodland Hills, CA 91367-3713

Technical Director, ARI
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Patricia Baggett
University of Colorado
Department of Psychology
Box 345
Boulder, CO 80309

Dr. Meryl S. Baker
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Gautam Biswas
Department of Computer Science
University of South Carolina
Columbia, SC 29208

Dr. John Black
Yale University
Box 11A, Yale Station
New Haven, CT 06520

Arthur S. Blaiwes
Code N711
Naval Training Equipment Center
Orlando, FL 32813

Dr. Jeff Bonar
Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260

Dr. Richard Braby
NTEC Code 10
Orlando, FL 32751

Dr. Robert Breaux
Code N-095R
NAVTRAEEQPCEN
Orlando, FL 32813

Dr. Ann Brown
Center for the Study of Reading
University of Illinois
51 Gerty Drive
Champaign, IL 61820

Dr. John S. Brown
XEROX Palo Alto Research Center
3333 Coyote Road
Palo Alto, CA 94304

Dr. Patricia A. Butler
NIE Mail Stop 1806
1200 19th St., NW
Washington, DC 20208
Dr. Robert Calfee  
School of Education  
Stanford University  
Stanford, CA 94305

Dr. Jaime Carbonell  
Carnegie-Mellon University  
Department of Psychology  
Pittsburgh, PA 15213

Dr. Susan Carey  
Harvard Graduate School of  
Education  
337 Gutman Library  
Appian Way  
Cambridge, MA 0138

Dr. Pat Carpenter  
Carnegie-Mellon University  
Department of Psychology  
Pittsburgh, PA 15213

Dr. Robert Carroll  
NAVOP 0187  
Washington, DC 20370

Dr. Fred Chang  
Navy Personnel R&D Center  
Code 51  
San Diego, CA 92152

Dr. Davida Charney  
Department of Psychology  
Carnegie-Mellon University  
Schenley Park  
Pittsburgh, PA 15213

Dr. Eugene Charniak  
Brown University  
Computer Science Department  
Providence, RI 02912

Dr. Micheline Chi  
Learning R & D Center  
University of Pittsburgh  
3339 O'Hara Street  
Pittsburgh, PA 15213

Dr. Susan Chipman  
Code 442PT  
Office of Naval Research  
800 N. Quincy St.  
Arlington, VA 22217-5000

Mr. Raymond E. Christal  
AFHRL/ME  
Brooks AFB, TX 78235

Dr. Yee-Yeen Chu  
Perceptronics, Inc.  
21111 Erwin Street  
Woodland Hills, CA 91367-3713

Dr. William Clancey  
Computer Science Department  
Stanford University  
Stanford, CA 94306

Scientific Advisor  
to the DCNO (MPT)  
Center for Naval Analysis  
2000 North Beauregard Street  
Alexandria, VA 22311

Chief of Naval Education  
and Training  
Liaison Office  
Air Force Human Resource Laboratory  
Operations Training Division  
Williams AFB, AZ 85224

Assistant Chief of Staff  
for Research, Development,  
Test, and Evaluation  
Naval Education and  
Training Command (N-5)  
NAS Pensacola, FL 32508

Dr. Allan M. Collins  
Bolt Beranek & Newman, Inc.  
50 Moulton Street  
Cambridge, MA 02138

Dr. Stanley Collyer  
Office of Naval Technology  
800 N. Quincy Street  
Arlington, VA 22217

CTB/McGraw-Hill Library  
2500 Garden Road  
Monterey, CA 93940

CDR Mike Curran  
Office of Naval Research  
800 N. Quincy St.  
Code 270  
Arlington, VA 22217-5000
Bryan Dallman  
AFHRL/LRT  
Lowry AFB, CO 80230

Dr. Charles E. Davis  
Personnel and Training Research  
Office of Naval Research  
Code 442PT  
800 North Quincy Street  
Arlington, VA 22217-5000

Defense Technical  
Information Center  
Cameron Station, Bldg 5  
Alexandria, VA 22314  
Attn: TC  
(12 Copies)

Dr. Thomas M. Duffy  
Communications Design Center  
Carnegie-Mellon University  
Schenley Park  
Pittsburgh, PA 15213

Edward E. Eddowes  
CNATRA N301  
Naval Air Station  
Corpus Christi, TX 78419

Dr. John Ellis  
Navy Personnel R&D Center  
San Diego, CA 92252

Dr. Richard Elster  
Deputy Assistant Secretary  
of the Navy (Manpower)  
Washington, DC 20350

Dr. Susan Embretson  
University of Kansas  
Psychology Department  
Lawrence, KS 66045

Dr. Randy Engle  
Department of Psychology  
University of South Carolina  
Columbia, SC 29208

Dr. William Epstein  
University of Wisconsin  
W. J. Brogden Psychology Bldg.  
1202 W. Johnson Street  
Madison, WI 53706

ERIC Facility-Acquisitions  
4833 Rugby Avenue  
Bethesda, MD 20014

Dr. K. Anders Ericsson  
University of Colorado  
Department of Psychology  
Boulder, CO 80309

Edward Esty  
Department of Education, CERI  
MS 40  
1200 19th St., NW  
Washington, DC 20208

Dr. Beatrice J. Farr  
Army Research Institute  
5001 Eisenhower Avenue  
Alexandria, VA 22333

Dr. Marshall J. Farr  
2520 North Vernon Street  
Arlington, VA 22207

Dr. Pat Federico  
Code 511  
NPRDC  
San Diego, CA 92152

Dr. Jerome A. Feldman  
University of Rochester  
Computer Science Department  
Rochester, NY 14627

Dr. Paul Feltoich  
Southern Illinois University  
School of Medicine  
Medical Education Department  
P.O. Box 3925  
Springfield, IL 62708

Mr. Wallace Feurzeig  
Educational Technology  
Bolt Beranek & Newman  
10 Moulton St.  
Cambridge, MA 02238

Dr. Craig I. Fields  
ARPA  
1400 Wilson Blvd.  
Arlington, VA 22209
Dr. Claude Janvier  
Directeur, CIRADE  
Universite' du Quebec a Montreal  
Montreal, Quebec H3C 3P8  
CANADA

Margaret Jerome  
c/o Dr. Peter Chandler  
83, The Drive  
Hove  
Sussex  
UNIVERSITY OF QUEBEC  
Montreal, Quebec H3C 3P8  
CANADA

Dr. Joseph E. Johnson  
Assistant Dean for  
Graduate Studies  
College of Science and Mathematics  
University of South Carolina  
Columbia, SC 29208

Dr. Douglas H. Jones  
Advanced Statistical  
Technologies Corporation  
10 Trafalgar Court  
Lawrenceville, NJ 08148

Dr. Marcel Just  
Carnegie-Mellon University  
Department of Psychology  
Schenley Park  
Pittsburgh, PA 15213

Dr. Milton S. Katz  
Army Research Institute  
5001 Eisenhower Avenue  
Alexandria, VA 22333

Dr. Scott Kelso  
Haskins Laboratories,  
270 Crown Street  
New Haven, CT 06510

Dr. Norman J. Kerr  
Chief of Naval Education  
and Training  
Code 002A  
Naval Air Station  
Pensacola, FL 32508

Dr. Dennis Kibler  
University of California  
Department of Information  
and Computer Science  
Irvine, CA 92717

Dr. David Kieras  
University of Michigan  
Technical Communication  
College of Engineering  
1223 E. Engineering Building  
Ann Arbor, MI 48109

Dr. Peter Kincaid  
Training Analysis  
& Evaluation Group  
Department of the Navy  
Orlando, FL 32813

Dr. David Klahr  
Carnegie-Mellon University  
Department of Psychology  
Schenley Park  
Pittsburgh, PA 15213

Dr. Mazie Knerr  
Program Manager  
Training Research Division  
HumRRO  
1100 S. Washington  
Alexandria, VA 22314

Dr. Janet L. Kolodner  
Georgia Institute of Technology  
School of Information  
& Computer Science  
Atlanta, GA 30332

Dr. Kenneth Kotovsky  
Department of Psychology  
Community College of  
Allegheny County  
800 Allegheny Avenue  
Pittsburgh, PA 15233

Dr. Benjamin Kuipers  
MIT Laboratory for Computer Science  
545 Technology Square  
Cambridge, MA 02139

Dr. Patrick Kyllonen  
AFHRL/MCE  
Brooks AFB, TX 78235
Dr. David R. Lambert  
Naval Ocean Systems Center  
Code 441T  
271 Catalina Boulevard  
San Diego, CA 92152

Dr. Clayton Lewis  
University of Colorado  
Department of Computer Science  
Campus Box 430  
Boulder, CO 80309

Dr. Pat Langley  
University of California  
Department of Information and Computer Science  
Irvine, CA 92717

M. Diane Langston  
Communications Design Center  
Carnegie-Mellon University  
Schenley Park  
Pittsburgh, PA 15213

Dr. Kathleen LaPiana  
Naval Health Sciences Education and Training Command  
Naval Medical Command, National Capital Region  
Bethesda, MD 20814-5022

Dr. Jill Larkin  
Carnegie-Mellon University  
Department of Psychology  
Pittsburgh, PA 15213

Dr. Robert Lawler  
Information Sciences, FRL  
GTE Laboratories, Inc.  
40 Sylvan Road  
Waltham, MA 02254

Dr. Paul E. Lehner  
PAR Technology Corp.  
7926 Jones Branch Drive  
Suite 170  
McLean, VA 22102

Dr. Alan M. Lesgold  
Learning R&D Center  
University of Pittsburgh  
Pittsburgh, PA 15260

Dr. Jim Levin  
University of California  
Laboratory for Comparative Human Cognition  
D003A  
La Jolla, CA 92037

Dr. Charlotte Linde  
SRI International  
333 Ravenswood Avenue  
Menlo Park, CA 94025

Dr. Marcia C. Linn  
Lawrence Hall of Science  
University of California  
Berkeley, CA 94720

Dr. Don Lyon  
P. O. Box 44  
Higley, AZ 85236

Dr. Jane Malin  
Mail Code SR 111  
NASA Johnson Space Center  
Houston, TX 77058

Dr. William L. Maloy (02)  
Chief of Naval Education and Training  
Naval Air Station  
Pensacola, FL 32508

Dr. Sandra P. Marshall  
Department of Psychology  
University of California  
Santa Barbara, CA 93106

Dr. Manton M. Matthews  
Department of Computer Science  
University of South Carolina  
Columbia, SC 29208

Dr. Richard E. Mayer  
Department of Psychology  
University of California  
Santa Barbara, CA 93106
Dr. James McBride  
Psychological Corporation  
c/o Harcourt, Brace,  
Javanovich Inc.  
1250 West 6th Street  
San Diego, CA 92101

Dr. James McMichael  
Navy Personnel R&D Center  
San Diego, CA 92152

Dr. Barbara Means  
Human Resources  
Research Organization  
1100 South Washington  
Alexandria, VA 22314

Dr. Arthur Melmed  
U. S. Department of Education  
724 Brown  
Washington, DC 20208

Dr. Al Meyrowitz  
Office of Naval Research  
Code 433  
800 N. Quincy  
Arlington, VA 22217-5000

Dr. George A. Miller  
Department of Psychology  
Green Hall  
Princeton University  
Princeton, NJ 08540

Dr. Lance A. Miller  
IBM Thomas J. Watson  
Research Center  
P.O. Box 218  
Yorktown Heights, NY 10598

Dr. Andrew R. Molnar  
Scientific and Engineering  
Personnel and Education  
National Science Foundation  
Washington, DC 20550

Dr. William Montague  
NPRDC Code 13  
San Diego, CA 92152

Dr. Allen Munro  
Behavioral Technology  
Laboratories – USC  
1845 S. Elena Ave., 4th Floor  
Redondo Beach, CA 90277

Spec. Asst. for Research, Experimental & Academic Programs,  
NTTC (Code 016)  
NAS Memphis (75)  
Millington, TN 38054

Dr. Richard E. Nisbett  
University of Michigan  
Institute for Social Research  
Room 5261  
Ann Arbor, MI 48109

Dr. Donald A. Norman  
Institute for Cognitive Science  
University of California  
La Jolla, CA 92093

Director, Training Laboratory,  
NPRDC (Code 05)  
San Diego, CA 92152

Director, Manpower and Personnel  
Laboratory,  
NPRDC (Code 06)  
San Diego, CA 92152

Director, Human Factors  
& Organizational Systems Lab,  
NPRDC (Code 07)  
San Diego, CA 92152

Fleet Support Office,  
NPRDC (Code 301)  
San Diego, CA 92152

Library, NPRDC  
Code P201L  
San Diego, CA 92152

Commanding Officer,  
Naval Research Laboratory  
Code 2627  
Washington, DC 20390
Dr. Harry F. O'Neil, Jr.
Training Research Lab
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Stellan Ohlsson
Learning R & D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

Director, Technology Programs,
Office of Naval Research
Code 200
800 North Quincy Street
Arlington, VA 22217-5000

Director, Research Programs,
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000

Mathematics Group,
Office of Naval Research
Code 411MA
800 North Quincy Street
Arlington, VA 22217-5000

Office of Naval Research,
Code 433
800 N. Quincy Street
Arlington, VA 22217-5000

Office of Naval Research,
Code 442
800 N. Quincy St.
Arlington, VA 22217-5000

Office of Naval Research,
Code 442EP
800 N. Quincy Street
Arlington, VA 22217-5000

Office of Naval Research,
Code 442PT
800 N. Quincy Street
Arlington, VA 22217-5000
(6 Copies)

Special Assistant for Marine
Corps Matters,
ONR Code 100M
800 N. Quincy St.
Arlington, VA 22217-5000

Psychologist
ONR Branch Office
1030 East Green Street
Pasadena, CA 91101

Dr. Judith Orasanu
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Jesse Orlansky
Institute for Defense Analyses
1801 N. Beauregard St.
Alexandria, VA 22311

Prof. Seymour Papert
20C-109
Massachusetts Institute
of Technology
Cambridge, MA 02139

Lt. Col. (Dr.) David Payne
AFHRL
Brooks AFB, TX 78235

Dr. Douglas Pearse
DCIEM
Box 2000
Downsview, Ontario
CANADA

Dr. Nancy Pennington
University of Chicago
Graduate School of Business
1101 E. 58th St.
Chicago, IL 60637

Military Assistant for Training and
Personnel Technology,
OUSD (R & E)
Room 3D129, The Pentagon
Washington, DC 20301
Dr. Michael J. Samet  
Perceptronics, Inc  
6271 Variel Avenue  
Woodland Hills, CA 91364

Dr. Robert Sasmor  
Army Research Institute  
5001 Eisenhower Avenue  
Alexandria, VA 22333

Dr. Roger Schank  
Yale University  
Computer Science Department  
P.O. Box 2158  
New Haven, CT 06520

Dr. Alan H. Schoenfeld  
University of California  
Department of Education  
Berkeley, CA 94720

Dr. Janet Schofield  
Learning R&D Center  
University of Pittsburgh  
Pittsburgh, PA 15260

Dr. Judith Segal  
Room 819F  
NIE  
1200 19th Street N.W.  
Washington, DC 20208

Dr. Ramsay W. Selden  
NIE  
Mail Stop 1241  
1200 19th St., NW  
Washington, DC 20208

Dr. Michael G. Shafto  
ONR Code 442PT  
800 N. Quincy Street  
Arlington, VA 22217-5000

Dr. Sylvia A. S. Shafto  
National Institute of Education  
1200 19th Street  
Mail Stop 1806  
Washington, DC 20208

Dr. T. B. Sheridan  
Dept. of Mechanical Engineering  
MIT  
Cambridge, MA 02139

Dr. Ted Shortliffe  
Computer Science Department  
Stanford University  
Stanford, CA 94305

Dr. Lee Shulman  
Stanford University  
1040 Cathcart Way  
Stanford, CA 94305

Dr. Miriam Shustack  
Code 51  
Navy Personnel R & D Center  
San Diego, CA 92152

Dr. Robert S. Siegler  
Carnegie-Mellon University  
Department of Psychology  
Schenley Park  
Pittsburgh, PA 15213

Dr. Herbert A. Simon  
Department of Psychology  
Carnegie-Mellon University  
Schenley Park  
Pittsburgh, PA 15213

Dr. Zita M Simutis  
Instructional Technology  
Systems Area  
ARI  
5001 Eisenhower Avenue  
Alexandria, VA 22333

Dr. H. Wallace Sinaiko  
Manpower Research  
and Advisory Services  
Smithsonian Institution  
801 North Pitt Street  
Alexandria, VA 22314

Dr. Derek Sleeman  
Stanford University  
School of Education  
Stanford, CA 94305

Dr. Edward E. Smith  
Bolt Beranek & Newman, Inc.  
50 Moulton Street  
Cambridge, MA 02138
END

D71C

1-86