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RECURSIVE MOMENT FORMULAS FOR SEMI.MARKOV PROCESSES

by

* Chia-Hon Chien

Stanford University

ABSTRACT

Le~t X = XCI) t > 0) be an irreducible semi-Markov process (SMP) on countable state space E. For

fixed --E E. let T(:) =inf ft > 0 : X(t-) $ -,.X(t) = z) and set Y(f) = fo'T(Z) f (X(t)) dt, where f:E - R

is an arbitrary function. Our objective is to study the mixed moments of the form Efl"= Y(fj. when

f,:E - R is an arbitrary furnction, for i = 1.2,.r, and r is a positive integer. This quantity is especially

* relevant to the regenerative simulation. Also, several useful variations and generalizations are introduced
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Recurslve Moment Formulas for Seml-Markov Processes

by

Chia-Hon Chien

Department of Operations Research

Stanford University

1. Introduction

Let X = {X(1) : > 0} be an irreducible semi-Markov process (SMP) on countable state space E. For fixed

z E E, let T(z) = inf(> 0 : X(t-) $ z,X(t) = z} and set

Y(f) = T (X())di,

0 where f: E - R is an arbitrary function. (Hereafter, we will suppress the z in T(z) when no confusion is

likely.) Our objective is to study the mixed moments of the form

EflY(f6 ),

when /, : E - R is 4i arbitrary function, for i = 1,2,... ,r, and r is a positive integer.

Hordijk, Iglehart, and Schassberger (1976) showed how to do this for r !5 2, when X is a discrete time

*O Markov chain (DTMC) or a continuous time Markov chain (CTMC) with countably many states. Glynn

and Iglehart (1984) showed how to calculate such quantities when X is an SMP with countably many states,

but with the restriction that fj - g,i -1....m and f, = h,i - m + 1... r for some g,h and m _< r.

In this report, we will show how to obtain the same quantities for the more general cases, namely, without

the restriction that only two different f,'s can appear in E Fl'=. Y(f,). By exploiting some combinatorial

relations, we will prove three recursive moment formulas, one for SMP, one for DTMC, and one for CTMC.

We now outline the material to be covered in the following sections. We begin in Section 2 by defining
0,

S." the notations. In Section 3 we will explore some combinatorial relations and obtain a recursive formula of

Efl =1 Y(f,) for the SMP case. In Section 4 and Section 5, we will prove two more recursive moment for-

mulas, one for DTMC, and one for CTMC. Finally, in Section 6, we will briefly discuss some generalizations.

| o .•1



2. Notations

To state our result, denote Q = Q(z, y, 1) z,y V6 E) to be the usual semi-Markov kernel, P =(P'V z, y E

E) to be the transition matrix of the underlying Markov chain R = (R. n 2t 0) of X; and let G. and ,

be a matrix and a function, respectively, defined by (We follow the notation given in Glynn and Igiehart

(1984).)

G.(*y {PSY14% (Z' ), if Y96Z;

and

KE

where

F 'U. p,(Z'y I*=,d)

and F(z,y, t) =Q(z, y, I)/P3 ,. For convenience, we assume that F(z, y, 0) =0, for all z, yE E.

Following Hordijk, Iglehart, and Schassberger (1976), we consider vectors such as (v(0), v(l),..., v(k))

to be column vectors. In addition, for vectors u and v, the symbol u o v denotes the Hadamard product of

vectors

(u(0)v(0), u(I)v(1),....u(k)v(k));

for amatrix A=(ao,a,, . ,am), set

u o A A o u (uoaao, uo a,,...,u oa,.);

and for amatrix B (b, bl . ,b,), set

A o BBEoA (ao o bo,a, o b,..., an 0b').

Finally, for vectors f. .Idefine

and set t 0(-)= (1, .. 1) and 0s+' u uo u = o u for n > 0.



We begin by noting

Y() = () (X(I))dt

= f(X(1)) l(>t) dt

S l (X(,)) (T>) di

m0

where C. is the nth jump time of the SMP, CO - 0; 6 is the length of the first z-cycle for the underlying

discrete time Markov chain R; 1A(w) = 1,w E A; IA() = 0,w J A. Since Y(f) can be written in the

form as E=( it follows that we can write R:=1 Y(f,) = - " -- " ' , ,(R., +1 -

To make inference of the above product form, we introduce the following notations. First of all, let

N =- {1,2,3.... }, N. - {0} uN, and N' {(nl,... n,) : n, E N., 1 < i _5 r) for each positive integer r.

Then for SI, S2 ,..., St to be a partition of N, {n: n < r, n E N), define

[ ,..... n,)] N',

[(ni,.... .n,)] 1(n,..., n,) C N,:, = ,= .),

[(n,: i E SI) <... < (n,: i E Se ) < (n,: i E St)]

" {(n 1 .... n,) E N. : ni = ns.,i E So, 1 < k < t- 1;

* ns, < "" < ns,_, < n,,i E St; for some integers ns, 1 5 i < 1 - 1);

(n,: i Es,) !5 .. _ (n,, i Est-,) _ (n,: i E St)l

M {(nj,..., n,) EN:V. nj , E Sk, I < k <- I-

ns, ns " _n,, <n,,iESt; for some integers n$,,1 < i < t- 1);

and for arbitrary function f : N' - R, and arbitrary subset A C N.", define

f IA Z f( n. ,),

3
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for example,

l .... %( .....
('i . s. ')EI(ua .... ,l

% 1 (. ...... a.)EI(,., .. l

etc; and denote IIA E Et, ... ,)EA I/(n,-, n,)j-

3. A recursive formula for semi-Markov proceses

We proceed via a series of lemmas.

Lemmna 1.
P-1T: " t~~[(, .. j. = i - 'l.,,:,E)ss~c,,\~Sl + 1[(a, ..-.-

S, N

0 Proof: To exploit the idea of the lemma, we only prove a special case that r = 3, while the general case

follows easily by using the same argument.

For r - 3, the lemma reduces to

+ l1n <(mim,)l + llms<(,,,)]

:i + 1ttm,,.,)<..l + Ill., ,),<n 2 ] + lt .,...)Cfd

+ +[~ +m.Il.++

To prove this, we have to show that the seven sets on RHS are non-overlapping, and the union of them equals

the set on LHS. The first part is obvious, since the first (second, third, respectively) term on RHS means:

* among the parameters {nj, n2 ,ns}, n1 (n2 , n 3 , respectively) is the unique, least element. While the fourth

(fifth, sixth, respectively) term on RHS means: among the parameters {ns,ng,n3}, ni = n2 (n, = n3,

n= n3 , respectively), and ns (n2 , nj, respectively) is the unique, greatest number. And the last term on

RHS means: nj - = n3 . Because these event are mutually exclusively, this proves the first part.

S.To prove the second part, we have prove that for any (ni,,nh n3) such that 0 < nt, n2 ,n3 < oc, it must

" belong to at least one of the seven sets in RHS. This should be obvious, since among any three numbers,

either there exists a unique, least number, or two of the numbers are equal, and they are strictly smaller

than the third one; or otherwise, the three numbers must be equal. This completes the proof.

4
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Corolla.ry 1.

*~~~~~~~ :sEi*a:zES <.~i~

* Proof. Exactly as Lemma 1.

Corollary 2. If IfI[('ji .... eN,) If(ni, .. ., n,)I < oo then

.........................l jj~j ((-,:vES).c-u:sEN,\S)l + i(.....
1=1

S '.N,

Proof. From Lemma 1 and the absolute summability assumption.

Corollar" 3. If Jfjjc','ES,)< <(nj:sES*i)<(n,::ES,)) < oc, then

- ~n2:EZ0 f (R,.:1ES.)< <(,:ES,.)<( ,S<m..S\

71 S.:'SS0<

* Proof. Using Corollary 1.

For fixed f,, i P.,and fixed A CN.,we deflne Las

LA aE{ F -f f.(R.,)(f, 1 ] }

where 6 is the length of the first z-cycle for the embedded DTMC R.

Leffura 2. I ( .. )EN:E~fl"i~.Rj(m+ a){>~I < oo then

Erl Y(f,) L(, . a)

S~s



Proof: The first equality follows from the definition of L; the second equality follows from the absolute

summability assumption and Corollary 2 of Lemma 1.

Corollary 1. If

[- <

then

fl= E L[l',:tES,)<<,:S-,<,:S)I,',S)

+ L[(.,,:,ESa)< <(",:,ES,-6 1(u,:ES,)l"

Proof By using Corollary 3 of Lemma 1, it can be proved in the same way as Lemma 2.

Lemma S. If 0 Z {[l>= I,(R-I!(f+, -E(Jj'iJ>. 1 } < o,, and define EZ(f) 6-0Go I, then

0 A

Moreover, the vector Ll1 n ..... i,)) s the unique solution, y, of

Y ==, 0 B, + Goy

satisfying G'y - 0 w n - .

Proof: Observe that our absolute summability assumption will justify all the interchanges of E's, f's, and

* Els. Sinre
.......................... ,,)

%=0 8=1

- f(R.)],E[( >, ,

E E{ fl f, (R.) 13 •(R.)I
.=0 .. 1

6



and E4(I(it.=,) 1{6>.)]=G(j) thus

Z Ell[HI(R)] (R.) 1a( 3

-: El E {[fj Is(i)I$?(i)16d>fjI1R.=l }
xi ,- EE =

S=O ,EE 1=1

810

* - The first result follows immediately.

Ths pioof of the second part of this theorem is very similar to Theorem (3.1) in Hordijk, Iglehart, and

Schassberger (1976), and thus omitted here.

Remark: An immediate consequence this lemma: It (.'0 E((~( 8 + .)Ila>.) I < 00, then

EY(f) = L[1= F' G" [f o =1 EZ(f o $l) This is the first part of Theorem (5.14) in Iglehart [31.

* -Remark: If E is finite, then Go*- 0 as n -. oc, thus the uniqueness is automatically satisfied, and also

* EZ = G' _ (I - Go)-', thus L(8 1  8,l (I - Go)'I®(&r=1f ,1.

Lemmna 4. l'f F-(1 . n.)E[(ni:sEs)< <(81,:iEs8I E tfl...III(R.,,)I81 +, 3)(58i < 00 then,

Lrcft.AESI)< <(1%,:tES,)l

Go"' Gs(;-ESIs ,  ~G's( 8 s o Gs,, ... Z G05'(O.'Es8
1
8 0 31S.1

M0 =1S
0  

og SO81 =0 s=

Proof: This 1--mma ran be hown by using a similar path decorppocition argument as in Lemma 3. We omit

the details.



Remark: Lemma 3 is a special case of Lemma 4.

Remark: If E is finite, then L[(,,.ES,)< <(.,: Es,) = (1 - Go)-(tEstf, o Gis,l(l - Go)-'( ,Esf, 0

t-_-. GIs,2.. (I O -ao - ,s -l o is,])" )..

Theorem 1. For an irreducible SEP, and arbitrary integer r, if ( ..,)EN j{H'If1,(R.,)(-,+,

< 00 then,

(1) for each r' < r, and EZ (f) -n -= f, we have

E{J(f,)} = L(. .....M,,

oC, -]-

__EZ(OEs1oGjE fi Y(,, )))+EZ(® jfo8,,)
3=1 SO!SI- iEN,\S

SCN, ,

.. S,Is =j sEN,,\S

(2) for arbitrary partition S, ., St(t > 2) of N,,

* L[(n.:zEsI< <(n.:tEs,.,)<(n.:1ES,)
EZ(3,Es,f, o GIsIEZ(,,Es f, oGs$, ... EZ(oEs,_, f, o GIs, ,E{ IH lY(,})..-) );

.ES,

(3) for arbitrary nonempty proper subset S of V,,

L (n..:ES)<(.,:'.N,\S)I = EZ(3,s, oGisIE{ H" Y(f,)}).

Remark: If r' = 1, (1) becomes: EY(I) = EZ(f o ) = 73 1); when r' = 2, (1) becomes:

EYf)Y(f 2 ) EZ(f, o GEY (12) + 12 o G1EY(f)) + EY(f 1 o.,- o 2). These quantities agree with

Theorem (5.14) in lgl-hart 131.

Remark: I E is finite. in altfition to the existing assrtions, it would "-i'o be true if we substitute (1 -Go)

f,-,r EZ in all th, three -is,-rtirns.

L,'S



Proof- Let r, r' in (1), r 2 =IStI in (2), and r3 IN, \Sj in (3). We will prove this theorem by induction

on ri, r2 and F3; and the absolute summability assumption will justify all the following interchanges of E's,

f f's, and F's.

Induction baoio:

For r, =12, (1) is correct. (cf. Iglehart, theorem 5.14.)

Fo r2 1 2-scret.(hsi pcalcs fLma .

For r3 1, (2) is correct. (This is a special case of Lemm) 4.

Induction 8tep:

Assuming that (1) is correct up to r, k < r, (2) and (3) are correct up to r2 r3= k - 1 < r, then

for arbitrary set partition S,. .,St of N, with ISt = k < r, by using the induction hypothesis, Corollary 1

of Lemma 2, and Lemma 4 (notice that the absolute summability assumption justifies the usage of each of

* them), we have:

L[n:ES,)< <(ni:gEseti )<(n,:tESt)l

= ~ Lyt,:t~sdj< <(n.,sS,.)<(ni:Es)<(.i:.ESg\S)I

Sz

0 A(EZ(O.sf O G,E{ fl Y(f.J})) +A(EZ(,es~ifs , 0

=IS S_ =j ES.\S

where Afy) is defined as

A4(y) =EZ(c,EsJf, o GlslEZ(CtEs~fj oGIsl ... EZ(O.Es,_ j o G~s,, Iy) .

Since .4 is a. linear operator and (1) is correct up to r, k, the last equation becomes:

* L[(tt:tES,)< <(,i.:tESs )<(ni:tESe)I

1ES,

Est

9
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This shows that (2) is correct up to rg = k. Since (3) is a special case of (2), we also have: (3) is correct up

to rs = k.

Now, forrt =k+l <r,

k+I

E J Y(f,) =L(. ..... .+I)]

-- E L(fI :Es)<(II,:tE,'b+i\s)I + L( . .-+)

k

E E EZ(O-es!,oGIE{ f Y(J,)))+EZ(0k=If' °f o +
J
);

j=! $,ISl~i 'eNb+a\S

Notice that the first two equalities follows from Lemma 2, and the last equality follows from (3) and Lemma

, "3. We also notice that the usage of each of the above properties is justified by the absolute summability

assumption. Since the RHS of the last equality is exactly (1) with r, = k + 1, we have proved that (1) is

correct up to r, = k + 1. This completes the induction step, and the theorem now follows.

Formula (!) can be simplified when X has a special structure. Note that when X is a CTMC, then

- . F(z,y, dt) = A(z)ezp(-A(z)t)dt, for 9 > O, so that p,(z,y) = nl/(A(z))" .,(z). Hence G. = Go op.

fixi o Go, and , = (p,, o P)e = q3 . We find that (1) can be rewritten as

EjI l{ ')} EZ(, S.,oqoGoE{ II Y(f,)})+EZ(® 1=f-oQ,)
= s's j EN\S

S;N,

=EZ( ,sf'IuoqoGoE{ H1 Y(I,)}+'=,Ifor.
) S. ;= , ,EN,\S

S-'N,

On the other hand, for a DTMC, p.(z,y) = I for each z,y E E, thus I,. = 1 and G. = Go for each n,

so that (1) takes the form:

• E{fI Y(fj} = ] Z, EZ(3, s, O~oE{ HI YIf,)}) + Ez( :..,1 ,)
• ,I S. S ,- *eN\S

*- I ESfoGoE E [1 +rf,)}S -jS 1EN,\S

S----! $ ' Jt EV,'%S
S1N,

-IDI0



Notice that when r < 2, the above two special cases reduce to the formulas given in llordijk, Iglehart, and

Schassberger (1976).

The above formulas are based on the special structure of X. Jther reductions are possible, for example,

if f, f~fori=1 . '~hen

E(Y(I)Y= ~ GI~~' a ,E(y(f))r 2  Zf

=('f) EZ( G -GE( )+ f,0

=E XC= f

On the other hand, if I,=g,i =1,.m;f, =h,i= m+ 1,...,m+n, then

- ~ (m~i) (n )EZ(g' Wh oG 1 ,E(Y(g))--'(Y(h))%-') + EZ(g"' o h om)

* ~EZ( (m') (n)g oh ,,Ey '(Yh))*- + g' h* On+

Notice that this is exactly the equation (2.3) in Glynn and Iglehart (1984).



4. A recursive formula for discrete time Markov chains

Let {Xk : k > 0} be an irreducible DTMC with countable state space E, and one step transition matrix

P = {Pv : z, y E E}. For fixed z E E, let T(z) = inf(n X.- $ z,X. = z and set (notice that we will

always suppress the z in T(:) when there is no confusion)

T- I

Y(/) = ,(x),
k-o

where f: E - R is an arbitrary function. We wish to study mixed moments of the form

EflY(f,),

when f, E - R is an arbitrary function for i = 1,2 .... r, and r is a positive integer. We notice that

Y() = k:=o I(Xk,) = J'ko f(X)l(r>k), this is almost of the same form as the decomposition for Y(f)

given before, this gives us the motivation to follow the development in the SMP case quite closely. We also

* need the following modifications of notations:

Go (z, y) Pz1, if y z Z;

o0, ify=Z.

And revise L into LD (D for DTMC) such as:

4iA ==,

for each arbitrary set A C N,'. Notice that an immediate consequence of this definition is: Ell'=, Y(f,) =

Lv,
4

Lemma 5.

7-I +. . .- .. ..

* Proof: We first notice that

4 [(ni-, = U[, < (n, :.jE N,\ {;)1,

12I

11



since at least one of the element in parameters {,... n,) must be less than or equal to the rest; and each

set of RHS is a subset of the set in LHS. Define W, [ni :5 (nj j E N, \ i))], then

=11, 1w

1~= lr1SESi

SgN,

This completes the proof.

We now state a sequence of corollarys, lemmas, and theorem, which can be regarded as the '< version

of their counterparts in Section 2. We will omit all the proofs because of the similarity between their proofs

and their counterparts'.

Corollary 1.

+s IsI-I

Corollary 2. If' . -.. f(, n) ote

S, S =
S.N.

13
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Corollary S. If I((,:,s,)< <(muEst_,)<l.,Esg)l < oo, then

,sI- _

+ (.s, -1 < [(_s, Es,)<,

S 5

j=1 SOI~
S; ,

Corollary 1. If

E~flIIX11 )I1{> 34 ]) 00

* LD

IS, l-

"-= (- c-)''€.,,ES,)l<_ :E.<., )<_ .,:,S)_<i.:lES,\S
~1__ =1$:=5j

s~sf

.'-'.-'- + (- 1)IshIl(= f[t, :,Es, )<*..(3,:tEs,_. )<(m,:IES,)i.

-- L D

Lernma 7. IftOEn= l>I1(X)I1{T>,j) < 00 then

L= I A E f, ) Y(0'I,.) "

Moreover, the vectorL .. is the unique solution, V, of

I A- + Gov

14
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sat isfying G~y 0 as n -. .

Remark: For r =1, this lemma says: EY(f) = O'= EZ(f). Thus for DTMC, if G"O(-) is absolute

* . summable. then EY(.) = EZ(.).

Remark: If E is finite, then Go 0 as n -. c, thus the uniqueness is automatically satisfied, and then

Lemmta S. I .fEEn~i~) .ss:E ne l(IsfIj'(XdI(6>.jI} <cco then

L D

=Z Go.I('&,Es.-F,o Go Go" (sEso) I)
ftSj=O as 2 S"= s,=0

=EZ (Oei~ 0 EZ(®iEs~fi o**oEZ(®issf)"-))

=EY 0 s~tEY(®,ssf, .. oE(ef)---

TheoremL2 For a irreducible DTMC, and arbitrary integer r, if(.)N Efl.. 1 f(X)IT>))

<00o then,

(1) for each r' <Tr and EZ(f) Gof ehv

E~fl Y(fj) L LD
o=1

= Z Z (-1EZ(Ojesfs aE{ Hl Y(fi))) +(-1Y'-'EZ(®SLjf,)
*,= SO'S - EN,"\S

=EZ( (...I)Ik o.sfIoE{ H f .} (1' -j'i)

=1OI-, iEN,i\S

(2) for arbitrary partition Sl,...,St(t > 2) of.,N,,

*=EZ(C,-'esji f.oEZ(CESiA o ... oEZ(,Es, , o E flwYj)));
lest



(3) for arbitrary nonempty proper subset S of N,,

.,:E<_s):5(,t ~iE = EZ(®,Es o+Es f l' Y(,t))).
;EN\S

Remark: Since EZ(-) EY(.) if any of them converges absolutely, under the condition of this theorem,

each assertion is correct if we substitute EY into EZ.

Formula (1) can be simplified when f,'s have some special structure, for example, if fi = f, for i =

1....r, then

E (Y(f))r = j (-1)i-'EZ(f1 o E(Y(f))'-,) + (-1)'-'EZ(")

-. =Ez( (-)-' , o E(Y(f))'- + (- )'-'r)

=EY ( )11f E( f)'+(iY r)

Notice that this is exactly the equation (2.6) in Glynn and Iglehart (1984). On the other hand, if I, = g,i =

1. ;f, =h,i=m+ ... m+n, then

:~( (g))"' (Y'(h )"

- 'EZ(g' oh' E(Y(g)) m '(Y(h))') + (-1<-1 EZ(gm o h*)

0=EZ( (m) (ni) .).+1I' hW E(Y(g))r-(Y(h))a + (-I)m+--1m h)

* EY ~ (mn) (n~)( 1)'+'g' o hi o E (Y(g)) 4 (Y(h))*m ' + ( 1)ma gm oh).

"-+ ... 
0
<.*<_

0< .j<M+.
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5. A recursive formula for continuous time Markov chains

We will show how to get another recursive moment formula for CTMC in this section. First, let X

{X(t) : I > 0} be a CTMC with countable state space E, transition matrix P(8) = {Pzv(l) z,y E E}, and

*- Q-matrix Q = {q,, : z, y E E) as the infinitesimal transition parameters. Recall that in a continuous time

. .case Q = P'(O) is the given data of the model and that P(9) is generally hard to calculate and rarely given

explicitly. The exponential distribution holding time in any state z 6 E has mean 1-' = q-. For all z E E,

we assume that 0 < q, < oo, so that all states are stable and nonabsorbing. In addition, we assume that

E yEE qz, = 0, which guarantees that, starting from any state z E E, the CTMC makes a transition to a

next state y E E. The element of the jump matrix G = (G(z, Y) z, y E E) of X are defined by

Yif z y
10 if z y,

We will assume that G is irreducible. Notice that this is equivalent to X is irreducible, and therefore, positive

recurrent. For fixed z E E as the regenerative state, let T(z) inf{ > 0 X(t-) $ z, X(t) = z} and
b ", , . • T (s)

Y(f) = f J (X(t))da,

where f: E R-. R is an arbitrary function. (Hereafter, we will suppress the z in T(z) when no confusion is

likely.) Our objective is to study the mixed moments of the form

E fY(f.),
s=0

when f, £ -- R is an arbitrary function, for i = 1, 2,..., r, and r is a positive integer.

We need to define, as in Iglehart [31, oP,(f) = PZ{T > t,X(1) = y), and oP(t) = {oP 1,(t) z,y E E);

also lpt

.G (z, Y), if j Z;Go(z, y) 0, if Y =Z.

And let a = ,.) to be a permutation of (1,2,.. r); ' = (a) ,is.,,), where

* (0''" ..... #,,) is a permutation of (1.. - l ~j+ 1. r); and F' = ' ... to be a permutation

of(1..j- l,j+ .. r).

From the above definition, we immediately have

17
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which means: the set of all permutations of (1 ... , r) is the union (over all j's) of the sets of all permutations

beginning in j. As a consequence

R'= {( w,. ,,) 0 < w, < oo, i = 1 r..).r)

= U ((wl,... ,) E R': , < we,, < .< w

We also notice that the sets in the RHS are almost mutually exclusive, in the sence that each pair of sets

have an intersection which is Lebesgue measure 0.

We begin by citing a theorem from Hordijk, Iglehart, and Schassberger (1976).

Lemma 9. (Hordijk, Iglehart, and Schassberger (1976).)

L00
EY(f) = oP(Lt)fdi G"o q - ) -EZ(foq-).

0 t*=O

0 provided that the integral (or equivalently, the sum) converges absolutely.

Lemma 10. . < <,, dw5.< oo, then

.d.

°°"1
- L GX o ,(X(U' ,)) (>,.o. dwo , .. dw ,

f o= o o (0'Io, o-q o-... o 32I, o0-
, . . =0 *,=0 %,=O

=EZ(h,, oq' a EZ(,o, o a 0 Ez(15 , o9-1)...))

:-: --EYCo, a EYI, o ... o EY(f.)...



Proof:

w,l<5 <W., 6=1

El= JuT>,,., dw.I .. d,

Et (XJ =oj) Iw T>~ 1 ... dw,,

,.EE

,1EE ,,EE

Zf57,(j7)oPj,,,,,(v.)dw.I.. div.,

=1 f hi()oP1,(wei)dw.,, f. 0 .,(2ojj w,)d
)L1= iEE w.0 2EE

10 -C

[,;0 =0 r G O-0 0E G" O-]

0=

where our absolute integrability assumption justifies the various interchanges of E's, f's, and Es; and

Lemma 9 is used r times to obtain the last equality.

This completes the proof.



Theorem 3. ItfR' E(l=, If,, AX(uw, ))II>.}dw,. dw,, < o, then

E Y-(f,) = ( ._i (X (W.)) I,(>..,, I -°, --• -°.,

= ZI [ Z ~foq' oEflY(I)]
j.=l R=O 100i

= l[Z,.0,-'E YI,,]

m00 =ltm = O = l J~ s

= EZ[I , °-' E [I Y(f,)]

=EY[Z , oE HY(f,)],

for any r' < r.

Remark: When r = 2, the theorem reduces to

EY(1)Y (f 2) = Z G [ o q[ ' - o E Y(,1) + fao q- o EY (Ii)].
m0

This agrees with equation (3.13) in Hordijk, Iglehart, and Schassberger (1976).

Proof. We prove this theorem by induction.

Induction bais:

From Hordijk, lglehart, and Schassberger (1976), the assertion is correct for r' = 1.

Induction otep:

20
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Suppose the assertion is correct up to r' = k - 1 < r, consider

ii=.

k

E fl Y(f,)

[.[ =E!f f,(X(W',))l(T>.,})d,, f2(X(wv-))l(r>.)}dw,

-" -' ... f',(X (u'k))llT> ,,,}dt'k

k k

=EEE~,(~' ) fTf,}}XdtU' I r>,"du'.. d,,

*k
= ZEJ<,, < < , {i A(X(W,))I{r>,u}dw, ... drk

'_- -2- -- - =1

k 000-q1 F,,° ' oq-1 o ...o F, 0'o,
1= j n=O O 2=0 ,=

k oo 00 o

F, F G"',, o,-' 2 fXZ ,,.",-l.---. (3'b,. o0,-1]

1=l n,=O R3= *--

kcco

G[ , oq-' oEHY(I,)]
n=O 1=1 412

where the absolute integrability assumption justifies the various interchanges of F's, f's, and E's; Lemma

10 justifies the fifth equality; and the last equation is obtained by the induction hypothesis.

This completes the induction step, and the theorem follows.
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6. Generallsatlon and discussion

We will discuss some generalizations in this section. As before, let X = {X() t > 0) be an irreducible semi-

.Markov process (SMP) on countable state space E, and R = {, n > 0) be the underlying Markov chain of

X. For each t, denote X'(t) X(t + 1), where t = inf{t > 0 X(f + I') $ X(t)}; namely, X*(t) is defined

as the "next state" process of X at time t. For fixed z E E, let T(z) = inif{ > 0 X(f-) # z, X(t) = },

S(z) inf{n >0:Rt $ z,R0 = } and set

Y'(V') = f'(X(t), X (t)) dt,

where ' E x E - R is an arbitrary function. (Hereafter, we will suppress the z in T(z) and b(z) when

no confusion is likely.) Our first objective is to study the mixed moments of the form E P=t y,(ff), when

E x E -- R are arbitrary functions, for i = 1, 2,..., r, and r is a positive integer.

We begin by noting

Y'(f') = j '(X(t),X'(t))dt

"= j '(X(t),X'()) lr(T)>f dt

• E f(X(I),X°(t)) l d~r t

f'(Rt ,+j) 116>.) (G+1 -
n=Q

* .- it follows that IL, Y'(fv,) = = -- 1'=, fl (P,,,-,+)(E.+ - E,,1,>. Next, we

define L' as follows: for fixed f,, i = I. r. and fixed A C V, let L' be

L' E{ [Hf(R.,, R.+(f.,+1 -I. },

' where t is the length of the first :-cycle for the °mbpd,ed DTMC R.

NVW pro-,,d via a series of lemmas. Note that the proofs for them are very similar to the proofs for their

counterparts in Section 3 and thus omitted hr,.

* . .



Lemma 11. l,. E{fII (R,,,R, )I(f.,+1 -... ).{ 6 >.,)I} < 0 then

•~~ ~ f-. .........E

CoroElar 1.f If E."j.( jR.+~~.+ -.. a

i1 t

lS'7-1

);; S, ~ '-

"-'" Corollary 1. If

_ i ... .) .(n++E$ < (: tE j )< ( n,:ES e-0 ,=I ~l

Lemma12. f~n~ E~jj,'=jJf,(.,Rn1)Ejf1 f)1:(,.)< 0, an(~d dein EZ,)1 6> E'I} g,

then

Is, 0-+
= ~ ~ L(,3 :ES,)'< <(,si:,Es,_ .,)<(,u.:,ES)<(,:sES,\S)I

[ £(f+:,ESI)< - (. ,S- < :E +]

* .Remak A2 cosqec o{ftslemma: I1(Rft)I(+ E0 Zj 'l{ 6 >3  <00,j~.+ -n dein EZc, then G EVf

then

*] LI(, .... .,)l = 6, [(P:=,j °o. ° P)oI = Ez[(o,=,1 : [(f. o P)e].

imedatel havat consequence of this lemma: If F%',,EI1(R.R.+)i(1 -C)(.a-f.6.)} ) the E(fthen

= ~~6(1 aa PeJ= ZI(1' p ' oP e+Go.

imedatl haeatr consequence of this lemma: If --- E{ 11'P.. '..,)(R, -+)l+ ala>.} } < oc, the a'

EY(f) = Go r (f o ,) = EZ(f o $1). This is the first part of Theorem (5.14) in Iglehart [3].
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Remark: If E is finite, then G - 0 as n - o, thus the uniqueness is automatically satisfied, and also

EZ = E'= Go = (I - Go)-', thus L 1[( = (1- Go) ' 0 P, a P)e].

Lemma 13. f ....... m)EI(n.:.ESi)< <(.:,ES,)'' ""6= -R")f"I < 00 then,

[(,,.:,ES, < <(,,.:,ES,0]

G,. = Ei GfS ' oGs,i) , Go' [(-Es ,A' oGIsI) '  E Go S( , Es' OS, 1 0 P)e .]
R~s, = 0 ns$ -'-0=$o--'

=EZ [( , , o I, ,) z ( ES, ' 0 GI,, I .. Z saOE, t, ), 1, P) C1 .I. .

Remark: Lemma 12 is a special case of Lemma 13.

Remark: If E is finite, then L(,,Es)< <(,:ES)l = (1 Go)- [(®,Es,'o GIs,)(I Go) 1 [(0,Es, "o

Gs.( 1Go) (ES,)-'[ 's 0 ils, IP)el"l].

Theorem 4. For an irreducible S"MP, and arbitrary integer r, if

F _ E H /(f,,R . , + ,1)I( + , , * , ,,l < o
(n, ft,)EN: 1=1

then,

(1) for each r' < r, and EZ(g) - 0 Gog, we have

E{fl Y'(f:)) I . . ..... ",

EZ[((-:EsI: oG,)E{ fl Y'un}J )+ EZ[(W® 0f 0aP)cel

= s =, 1CN,,\S

=EZ(. Z (§XsI.', ,)E( H y'(f.,)) + (,r' . P)e);
- .= S -j EN.,\S

(2) for arbitrary partition S1,.. S,(t > 2) of N,,

[j(,,.:,Es, )< < (n,,:,ESi-,i <(,s.:,sES,0)I

= EZ :,Es,'oGIs, I)EZ[(-,Es,f:oGIs,I)..EZI(,Es,,IaGs,,I)E(H Y'(I:))w ...

24

, . - . , . . .: ,- . . : . _ .. .. . . . , . .. , . , _ , ' - . - '. 2 4



(3) for arbitrary nonempty proper subset S of N,

L~,I ... .,E<(.... S) = EZ[G°,)E f Y'(f:))].
iEN,\S

Remark: If r' = 1, (1) becomes: EY'(f') EZ[(f' o p, o P)eI = E.°o GOf(J a p° o P)eJ. This agrees with

Lemma 12.

Remark: If E is finite, in addition to the existing assertions, it would also be true if we substitute (1 -GO)-'

. for EZ in all the three assertions.

Corollary 1. For an irreducble SWP, and arbitrary integer r, if

Z EIjtIj,(PR,)I(f.,+, - < oo

then for each r' < r, we have

E~fl Y(fJ}) E F EZ[(o.uEsf. oG,)E{ fi Y(I 1)} + EZ[ca" fo]
)=I s, s EN,\

=EZ( (0,Esf,,c,)E( 11 Y(f,)} + ,=¢0, j

)=I S.SI.j 'EN,,\S

Remark: This is exatly Theorem 1.

Corollary 2. For an irreducible SMP, and arbitrary integer r, if

n{1. ,)EN': 4=1

.'* . where Y"(c) =' oc(R,,R.+, ), and c,ec, : E x E R, are arbitrary funtions for i = 1. , then for

each r' < r, we have

S . VEtfl Y"e)=t , EZ(' 1.c 1 oo){ Y(i)]N,,\SLc 1 oP

£ =tz(V V (.,Esc-,oGo)E{ He"(,)}+ ,=1 ,oP)e);
.)=1 ' - EN,,\S

S. ."
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A further generalization of Theorem 4 is possible. Let F: E x E -, R be a random matrix for each

i = . r, and let E[II F,, E[F, o F,1 o F,, E[®.F,] - -,, etc. By following the same proedure

as in Theorem 4, we will have:

Corollary 3. For an irreducible SMP, and arbitrary integer r, if F, 's are independent of the holding time

- .+, -C for each n, and

F EII[IF(R.,,R.,+,)I(f.,+, - .j){a>.,)]) < o0
(in,.m,)EN: ,=

then,

Efl[ Y'(F,)})=L j ...... a)]
s=1

r-|

E~ E E Z[(®7 sTso G,)E{ J Y'(Fs))+ E Z('5"=-....i oA, P) e]
1=1 s,1s1 =, ,EN,\S

S N,

-1

=EZ(Z E FOsF oG,)E{ 1i Y'(F))+('f,F'o° oP)e);
)=1 SISI=j ,EN,\S$ N,

Finally, denote T, A T2 
= min(TI,T 2 ), then for arbitrary zi,z, e E, ET(z) ^T(z2) f'(X(t),X (t))dt

can be computed in exatly the same way as in Theorem 4 by redefining G., for each n, as:

G. Z'IV = P.V#A (, ),ifyz YA IOr Z2;
G.(zy)1= {Pzvi ' (Z' 1 )s if y = z, or z,.

Further generalization along this idea is obvious.
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