RECURRENT MOMENT FORMULA FOR SEMI-MARKOV PROCESSES

AUTHOR(s)
Chia-Hon Chien

PERFORMING ORGANIZATION NAME AND ADDRESS
Department of Operations Research
Stanford University
Stanford, CA 94305-4022

CONTROLLED OFFICE NAME AND ADDRESS
U.S. Army Research Office
Post Office Box 12211
Research Triangle Park, NC 27709

MONITORING AGENCY NAME AND ADDRESS (if different from Controlling Office)

REPORT DATE
April 1986

NUMBER OF PAGES
26pp.

DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.

DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
NA

SUPPLEMENTARY NOTES
The view, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

KEY WORDS
Semi-Markov processes, regenerative simulation, recursive moments

ABSTRACT

PLEASE SEE OTHER SIDE
Let $X = \{X(t) : t \geq 0\}$ be an irreducible semi-Markov process (SMP) on countable state space E. For fixed $z \in E$, let $T(z) = \inf\{t \geq 0 : X(t-) \neq z, X(t) = z\}$ and set $Y(f) = \int_0^{T(z)} f(X(t)) \, dt$, where $f : E \to \mathbb{R}$ is an arbitrary function. Our objective is to study the mixed moments of the form $E \prod_{i=1}^r Y(f_i)$, where $f_i : E \to \mathbb{R}$ is an arbitrary function, for $i = 1, 2, \ldots, r$, and r is a positive integer. This quantity is especially relevant to the regenerative simulation. Also, several useful variations and generalizations are introduced and studied.
RECURSIVE MOMENT FORMULAS FOR SEMI-MARKOV PROCESSES

by

Chia-Hon Chien

TECHNICAL REPORT NO. 13

April 1980

Prepared under the Auspices of

U.S. Army Research Contract*
DAAG29-84-K-0030

Approved for public release: distribution unlimited.
Reproduction in Whole or in Part is Permitted for any Purpose of the United States Government.

DEPARTMENT OF OPERATIONS RESEARCH
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

*This research was also partially supported under National Science Foundation Grant MCS-8203483.
RECURRENT MOMENT FORMULAS FOR SEMI-MARKOV PROCESSES

by

Chia-Hon Chien
Stanford University

ABSTRACT

Let $X = \{X(t) : t \geq 0\}$ be an irreducible semi-Markov process (SMP) on countable state space E. For fixed $z \in E$, let $T(z) = \inf\{t \geq 0 : X(t-) \neq z, X(t) = z\}$ and set $Y(f) = \int_0^{T(z)} f(X(t)) \, dt$, where $f : E \to R$ is an arbitrary function. Our objective is to study the mixed moments of the form $E \prod_{i=1}^r Y(f_i)$, when $f_i : E \to R$ is an arbitrary function, for $i = 1, 2, \ldots, r$, and r is a positive integer. This quantity is especially relevant to the regenerative simulation. Also, several useful variations and generalizations are introduced and studied.

Keywords: semi-Markov processes
regenerative simulation
recursive moments
Recursive Moment Formulas for Semi-Markov Processes

by

Chia-Hon Chien

Department of Operations Research
Stanford University

1. Introduction

Let $X = \{X(t) : t \geq 0\}$ be an irreducible semi-Markov process (SMP) on countable state space E. For fixed $z \in E$, let $T(z) = \inf \{t \geq 0 : X(t) \neq z, X(t) = z\}$ and set

$$Y(f) = \int_0^{T(z)} f(X(t)) \, dt,$$

where $f : E \to \mathbb{R}$ is an arbitrary function. (Hereafter, we will suppress the z in $T(z)$ when no confusion is likely.) Our objective is to study the mixed moments of the form

$$E \prod_{i=1}^{r} Y(f_i),$$

when $f_i : E \to \mathbb{R}$ is an arbitrary function, for $i = 1, 2, \ldots, r$, and r is a positive integer.

Hordijk, Iglehart, and Schassberger (1976) showed how to do this for $r \leq 2$, when X is a discrete time Markov chain (DTMC) or a continuous time Markov chain (CTMC) with countably many states. Glynn and Iglehart (1984) showed how to calculate such quantities when X is an SMP with countably many states, but with the restriction that $f_i = g, i = 1, \ldots, m$ and $f_i = h, i = m+1, \ldots, r$ for some g, h and $m \leq r$.

In this report, we will show how to obtain the same quantities for the more general cases, namely, without the restriction that only two different f_i's can appear in $E \prod_{i=1}^{r} Y(f_i)$. By exploiting some combinatorial relations, we will prove three recursive moment formulas, one for SMP, one for DTMC, and one for CTMC.

We now outline the material to be covered in the following sections. We begin in Section 2 by defining the notations. In Section 3 we will explore some combinatorial relations and obtain a recursive formula of $E \prod_{i=1}^{r} Y(f_i)$ for the SMP case. In Section 4 and Section 5, we will prove two more recursive moment formulas, one for DTMC, and one for CTMC. Finally, in Section 6, we will briefly discuss some generalizations.
2. Notations

To state our result, denote \(Q = \{Q(x,y,t) : x, y \in E\} \) to be the usual semi-Markov kernel, \(P = (P_{xy})_{x,y \in E} \) to be the transition matrix of the underlying Markov chain \(R = \{R_n : n \geq 0\} \) of \(X \); and let \(G_n \) and \(\beta_n \) be a matrix and a function, respectively, defined by (We follow the notation given in Glynn and Iglehart (1984).)

\[
G_n(x,y) = \begin{cases}
P_{xy} \mu_n(x,y), & \text{if } y \neq x; \\
0, & \text{if } y = x;
\end{cases}
\]

and

\[
\beta_n(x) = \sum_{y \in E} \mu_n(x,y) P_{xy},
\]

where

\[
\mu_n(x,y) = \int_0^\infty t^n F(x,y,dt),
\]

and \(F(x,y,t) = Q(x,y,t)/P_{xy} \). For convenience, we assume that \(F(x,y,0) = 0 \), for all \(x, y \in E \).

Following Hordijk, Iglehart, and Schassberger (1976), we consider vectors such as \((v(0), v(1), \ldots, v(k)) \) to be column vectors. In addition, for vectors \(u \) and \(v \), the symbol \(u \circ v \) denotes the Hadamard product of vectors

\[
(u(0)v(0), u(1)v(1), \ldots, u(k)v(k));
\]

for a matrix \(A = (a_0, a_1, \ldots, a_m) \), set

\[
u \circ A = A \circ u = (u \circ a_0, u \circ a_1, \ldots, u \circ a_m);
\]

and for a matrix \(B = (b_0, b_1, \ldots, b_m) \), set

\[
A \circ B = B \circ A = (a_0 \circ b_0, a_1 \circ b_1, \ldots, a_m \circ b_m).
\]

Finally, for vectors \(f_1, f_2, \ldots, f_r \), define

\[
\circ_{i=1} f_i = f_1 \circ f_2 \circ \cdots \circ f_r.
\]

and set \(u^0(\cdot) = (1, 1, \ldots, 1) \) and \(u^{n+1} = u \circ u^n = u^n \circ u \) for \(n \geq 0 \).
We begin by noting

\[Y(f) = \int_0^{T(x)} f(X(t)) \, dt \]

\[= \int_0^\infty f(X(t)) \, 1_{\{T > t\}} \, dt \]

\[= \sum_{n=0}^{\infty} \int_{\xi_n}^{\xi_{n+1}} f(X(t)) \, 1_{\{T > t\}} \, dt \]

\[= \sum_{n=0}^{\infty} f(R_n) \, 1_{\{\delta > n\}} \, (\xi_{n+1} - \xi_n), \]

where \(\xi_n \) is the nth jump time of the SMP, \(\xi_0 \equiv 0; \delta \) is the length of the first \(z \)-cycle for the underlying discrete time Markov chain \(R; 1_A(\omega) = 1, \omega \in A; 1_A(\omega) = 0, \omega \notin A. \) Since \(Y(f) \) can be written in the form as \(\sum_{n=0}^{\infty} f(R_n) \, 1_{\{\delta > n\}} \, (\xi_{n+1} - \xi_n), \)

To make inference of the above product form, we introduce the following notations. First of all, let \(N \equiv \{1, 2, 3, \ldots\}, N_0 \equiv \{0\} \cup N, \) and \(N_r^* \equiv \{(n_1, \ldots, n_r) : n_i \in N, 1 \leq i \leq r\} \) for each positive integer \(r. \) Then for \(S_1, S_2, \ldots, S_t \) to be a partition of \(N_r \equiv \{n : n \leq r, n \in N\}, \) define

\[[(n_1, \ldots, n_r)] \equiv N_r^*, \]

\[[(n_1, \ldots, n_r)] \equiv \{(n_1, \ldots, n_r) \in N_r^* : n_1 = \cdots = n_r\}. \]

\[(n_i : i \in S_1) < \cdots < (n_i : i \in S_{t-1}) < (n_i : i \in S_t) \]

\[\equiv \{(n_1, \ldots, n_r) \in N_r^* : n_i = n_s, i \in S_k, 1 \leq k \leq t-1; \]

\[n_{S_1} < \cdots < n_{S_{t-1}} < n_i, i \in S_t; \text{ for some integers } n_{S_i}, 1 \leq i \leq t-1; \}

\[(n_i : i \in S_1) \leq \cdots \leq (n_i : i \in S_{t-1}) \leq (n_i : i \in S_t) \]

\[\equiv \{(n_1, \ldots, n_r) \in N_r^* : n_i = n_s, i \in S_k, 1 \leq k \leq t-1; \]

\[n_{S_1} \leq \cdots \leq n_{S_{t-1}} \leq n_i, i \in S_t; \text{ for some integers } n_{S_i}, 1 \leq i \leq t-1; \}

and for arbitrary function \(f : N_r^* \to R, \) and arbitrary subset \(A \subseteq N_r^*, \) define

\[f_A \equiv \sum_{(n_1, \ldots, n_r) \in A} f(n_1, \ldots, n_r). \]
for example,

\[\tilde{f}_{[(a_1, \ldots, a_r)]} \equiv \sum_{(a_1, \ldots, a_r) \in \{(a_1, \ldots, a_r)\}} f(a_1, \ldots, a_r), \]

\[\tilde{f}_{[(a_1, \ldots, a_r)]} \equiv \sum_{(a_1, \ldots, a_r) \in \{(a_1, \ldots, a_r)\}} f(a_1, \ldots, a_r), \]

etc; and denote \(|\tilde{f}_{A} | \equiv \sum_{(a_1, \ldots, a_r) \in A} |f(a_1, \ldots, a_r)| \).

3. A recursive formula for semi-Markov processes

We proceed via a series of lemmas.

Lemma 1.

\[1_{[(a_1, \ldots, a_r)]} = \sum_{j=1}^{r-1} \sum_{i \in N_r} 1_{[(a_1, \ldots, a_j) \subset (a_1, \ldots, a_{jl} \setminus S)]} + 1_{[(a_1, \ldots, a_r)]}. \]

Proof: To exploit the idea of the lemma, we only prove a special case that \(r = 3 \), while the general case follows easily by using the same argument.

For \(r = 3 \), the lemma reduces to

\[1_{[(a_1, a_2, a_3)]} = 1_{[a_1 < (a_2, a_3), a_2 < (a_1, a_3), a_3 < (a_1, a_2)]} + 1_{[(a_1, a_2, a_3)]} \]

\[+ 1_{[(a_1, a_2) < a_3]} + 1_{[(a_1, a_3) < a_2]} + 1_{[(a_2, a_3) < a_1]} \]

\[+ 1_{[(a_1, a_2, a_3)]}. \]

To prove this, we have to show that the seven sets on RHS are non-overlapping, and the union of them equals the set on LHS. The first part is obvious, since the first (second, third, respectively) term on RHS means: among the parameters \(\{n_1, n_2, n_3\} \), \(n_1 \) (\(n_2 \), \(n_3 \), respectively) is the unique, least element. While the fourth (fifth, sixth, respectively) term on RHS means: among the parameters \(\{n_1, n_2, n_3\} \), \(n_1 = n_2 \) (\(n_1 = n_3 \), \(n_2 = n_3 \), respectively), and \(n_3 \) (\(n_2 \), \(n_1 \), respectively) is the unique, greatest number. And the last term on RHS means: \(n_1 = n_2 = n_3 \). Because these events are mutually exclusively, this proves the first part.

To prove the second part, we have proved that for any \((n_1, n_2, n_3) \) such that \(0 \leq n_1, n_2, n_3 < \infty \), it must belong to at least one of the seven sets in RHS. This should be obvious, since among any three numbers, either there exists a unique, least number; or two of the numbers are equal, and they are strictly smaller than the third one; or otherwise, the three numbers must be equal. This completes the proof.
Corollary 1.

\[1([a, \infty) \cap \{(\xi_{i+1} - \xi_i)_{i=1}^*\} < \{a, \infty) \cap \{(\xi_{i+1} - \xi_i)_{i=1}^*\} \} \]

\[= \sum_{j=1}^{|S_i|-1} \sum_{\{\xi_{i+1}, \xi_i\} \in S \subseteq S_i} 1([a, \infty) \cap \{(\xi_{i+1} - \xi_i)_{i=1}^*\} < \{a, \infty) \cap \{(\xi_{i+1} - \xi_i)_{i=1}^*\} \} \]

\[+ 1([a, \infty) \cap \{(\xi_{i+1} - \xi_i)_{i=1}^*\} < \{a, \infty) \cap \{(\xi_{i+1} - \xi_i)_{i=1}^*\} \} \]

Proof: Exactly as Lemma 1.

Corollary 2. If \[\sum_{(a, \infty) \cap \{(\xi_{i+1} - \xi_i)_{i=1}^*\} < \{a, \infty) \cap \{(\xi_{i+1} - \xi_i)_{i=1}^*\} \} < \infty \] then

\[\hat{J}([a, \infty) \cap \{(\xi_{i+1} - \xi_i)_{i=1}^*\} < \{a, \infty) \cap \{(\xi_{i+1} - \xi_i)_{i=1}^*\} \} \]

Proof: From Lemma 1 and the absolute summability assumption.

Corollary 3. If \[\sum_{(a, \infty) \cap \{(\xi_{i+1} - \xi_i)_{i=1}^*\} < \{a, \infty) \cap \{(\xi_{i+1} - \xi_i)_{i=1}^*\} \} < \infty \] then

\[\hat{J}([a, \infty) \cap \{(\xi_{i+1} - \xi_i)_{i=1}^*\} < \{a, \infty) \cap \{(\xi_{i+1} - \xi_i)_{i=1}^*\} \} \]

Proof: Using Corollary 1.

For fixed \(f_i, i = 1, \ldots, r \), and fixed \(A \subseteq \mathcal{N}_r \), we define \(L \) as

\[L_A \equiv E\left(\sum_{(a, \infty) \cap \{(\xi_{i+1} - \xi_i)_{i=1}^*\} < \{a, \infty) \cap \{(\xi_{i+1} - \xi_i)_{i=1}^*\} \} \right) \]

where \(\delta \) is the length of the first 2-cycle for the embedded DTMC \(R \).

Lemma 2. If \[\sum_{(a, \infty) \cap \{(\xi_{i+1} - \xi_i)_{i=1}^*\} < \{a, \infty) \cap \{(\xi_{i+1} - \xi_i)_{i=1}^*\} \} < \infty \] then

\[E \prod_{i=1}^r Y(f_i) = L([a, \infty) \cap \{(\xi_{i+1} - \xi_i)_{i=1}^*\} \]

\[= \sum_{j=1}^{r-1} \sum_{\{\xi_{i+1}, \xi_i\} \in S \subseteq S_i} L([a, \infty) \cap \{(\xi_{i+1} - \xi_i)_{i=1}^*\} < \{a, \infty) \cap \{(\xi_{i+1} - \xi_i)_{i=1}^*\} \} + L([a, \infty) \cap \{(\xi_{i+1} - \xi_i)_{i=1}^*\}) \]
Proof: The first equality follows from the definition of L; the second equality follows from the absolute summability assumption and Corollary 2 of Lemma 1.

Corollary 1. If

$$\sum_{(n_1, \ldots, n_r) \in \{n_i \in \mathbb{S}_i \} \subset \{n_i \in \mathbb{S}_i \}} E\left(\prod_{i=1}^r f_i(R_n)(\xi_{n+1} - \xi_n)1_{\{a > a_i\}}\right) < \infty$$

then

$$L_{\{(n_1, \ldots, n_r) \in \{n_i \in \mathbb{S}_i \} \subset \{n_i \in \mathbb{S}_i \}} = \sum_{j=1}^{[S]-1} \sum_{S \subseteq S_j} L_{\{(n_1, \ldots, n_r) \in \{n_i \in \mathbb{S}_i \} \subset \{n_i \in \mathbb{S}_i \}}$$

$$+ L_{\{(n_1, \ldots, n_r) \in \{n_i \in \mathbb{S}_i \} \subset \{n_i \in \mathbb{S}_i \}}$$

Proof: By using Corollary 3 of Lemma 1, it can be proved in the same way as Lemma 2.

Lemma 3. If $\sum_{n=0}^\infty E\left(\prod_{i=1}^r f_i(R_n)(\xi_{n+1} - \xi_n)1_{\{a > a_i\}}\right) < \infty$, and define $EZ(f) \equiv \sum_{n=0}^\infty G_0 f$, then

$$L_{\{(n_1, \ldots, n_r) \in \{n_i \in \mathbb{S}_i \} \subset \{n_i \in \mathbb{S}_i \}} = \sum_{n=0}^\infty G_0^0 (\circ_{i=1}^r f_i \circ \beta_r) = EZ(\circ_{i=1}^r f_i \circ \beta_r).$$

Moreover, the vector $L_{\{(n_1, \ldots, n_r) \in \{n_i \in \mathbb{S}_i \} \}}$ is the unique solution, y, of

$$y = \circ_{i=1}^r f_i \circ \beta_r + G_0 y$$

satisfying $G_0^0 y \to 0$ as $n \to \infty$.

Proof: Observe that our absolute summability assumption will justify all the interchanges of E's, f's, and \sum's. Since

$$L_{\{(n_1, \ldots, n_r) \}} = E\left(\prod_{a=0}^\infty f_i(R_n)(\xi_{n+1} - \xi_n)1_{\{a > a_i\}}\right)$$

$$= \sum_{n=0}^\infty E\left(\prod_{i=1}^r f_i(R_n)(\xi_{n+1} - \xi_n)1_{\{a > a_i\}}\right)$$

$$= \sum_{n=0}^\infty E\left(\prod_{i=1}^r f_i(R_n)\beta_i(R_n)1_{\{a > a_i\}}\right).$$
and \(E_{\{R_{i}=j \}} \{1_{(s>n)} \} = G_0^t(l, j) \), thus

\[
\sum_{n=0}^{\infty} E_1 \left\{ \prod_{i=1}^{r} \beta_i(R_n) \{1_{(s>n)} \} \right\} = \sum_{n=0}^{\infty} E_1 \left\{ \sum_{j \in E} \prod_{i=1}^{r} \beta_i(j) \{1_{(s>n)} \} \right\} = \sum_{n=0}^{\infty} \sum_{j \in E} G_0^t(I, j) \prod_{i=1}^{r} \beta_i(j) = \left[\sum_{n=0}^{\infty} G_0^t \{ \circ_{i=1}^{r} \beta_i \} \right]_l = [EZ(\circ_{i=1}^{r} \beta_i)]_l.
\]

The first result follows immediately.

The proof of the second part of this theorem is very similar to Theorem (3.1) in Hordijk, Iglehart, and Schassberger (1976), and thus omitted here.

Remark: An immediate consequence of this lemma: If \(\sum_{n=0}^{\infty} E\{f(R_n)(\xi_{n+1} - \xi_n)1_{(s>n)} \} < \infty \), then \(EY(f) = L_{[n]} = \sum_{n=0}^{\infty} G_0^t f \circ \beta_1 = EZ(f \circ \beta_1) \). This is the first part of Theorem (5.14) in Iglehart [3].

Remark: If \(E \) is finite, then \(G_0^t \to 0 \) as \(n \to \infty \), thus the uniqueness is automatically satisfied, and also \(EZ = \sum_{n=0}^{\infty} G_0^t = (1 - G_0)^{-1} \), thus \(L_{[\{n, \ldots, n \}]} = (1 - G_0)^{-1} \{ \circ_{i=1}^{r} \beta_i \} \).

Lemma 4. If \(\sum_{(n, \ldots, n) \in SS} E\{\prod_{i=1}^{r} f_i(R_n)(\xi_{n+1} - \xi_n)1_{(s>n)} \} < \infty \), then

\[
L_{[\{n, \ldots, n \}]} < \infty
\]

\[
= \sum_{s_1=0}^{\infty} G_0^{s_1} \circ_{i \in E_{S_1}} f_i \circ G_{S_1} \sum_{s_2=0}^{\infty} G_0^{s_2} \circ_{i \in E_{S_2}} f_i \circ G_{S_2} \cdots \sum_{s_r=0}^{\infty} G_0^{s_r} \circ_{i \in E_{S_r}} f_i \circ G_{S_r} = EZ(\circ_{i \in E_{S_1}} f_i \circ G_{S_1} \cdots EZ(\circ_{i \in E_{S_r}} f_i \circ G_{S_r} \cdots).
\]

Proof: This lemma can be shown by using a similar path decomposition argument as in Lemma 3. We omit the details.
Remark: Lemma 3 is a special case of Lemma 4.

Remark: If E is finite, then $L_{[(a_1, \ldots, a_r) < (a_1, \ldots, a_{r-1})]} = (1 - G_0)^{-1} \{ \otimes_{i \in S} f_i \circ G_{i|S} (1 - G_0)^{-1} \{ \otimes_{i \in S} f_i \circ G_{i|S} \cdots (1 - G_0)^{-1} \{ \otimes_{i \in S} f_i \circ G_{i|S} \} \cdots \} \}.$

Theorem 1. For an irreducible SMP and arbitrary integer r, if $\sum_{(a_1, \ldots, a_r) \in \mathbb{N}^r} E \{ (\prod_{i=1}^r f_i)(\xi_{a_1} + \xi_{a_2}) \} < \infty$ then.

1. For each $r' \leq r$, and $EZ(f) = \sum_{n=0}^{\infty} G_0^n f$, we have

$$E\{ \prod_{i=1}^{r'} Y(f_i) \} = L_{[(a_1, \ldots, a_{r'})]}$$

$$= \sum_{j=1}^{r'-1} \sum_{\delta_i \in \mathbb{N}^r \setminus S} EZ(\otimes_{i \in S} f_i \circ G_j E \{ \prod_{i \in S \setminus \delta_i} Y(f_i) \}) + EZ(\otimes_{i=1}^{r'-1} f_i \circ \delta_i)$$

$$= EZ\left(\sum_{j=1}^{r'-1} \sum_{\delta_i \in \mathbb{N}^r \setminus S} \otimes_{i \in S} f_i \circ G_j E \{ \prod_{i \in S \setminus \delta_i} Y(f_i) \} + \otimes_{i=1}^{r'-1} f_i \circ \delta_i \right).$$

2. For arbitrary partition $S_1, \ldots, S_t (t \geq 2)$ of N_r,

$$L_{[(a_1, \ldots, a_t) < (a_1, \ldots, a_{t-1}) < (a_1, \ldots, a_t)]}$$

$$= EZ(\otimes_{i \in S_1} f_i \circ G_{S_1} E \{ \prod_{i \in S \setminus S_1} Y(f_i) \}) \cdots EZ(\otimes_{i \in S_{t-1}} f_i \circ G_{S_{t-1}} E \{ \prod_{i \in S \setminus S_{t-1}} Y(f_i) \}) \cdot$$

3. For arbitrary nonempty proper subset S of N_r,

$$L_{[(a_1, \ldots, a_t) < (a_1, \ldots, a_{t-1}) < (a_1, \ldots, a_t)]} = EZ(\otimes_{i \in S} f_i \circ G_{S} E \{ \prod_{i \in S \setminus S} Y(f_i) \}).$$

Remark: If $r' = 1$, (1) becomes: $EY(f) = EZ(f \circ \delta_1) = \sum_{n=0}^{\infty} G_0^n (f \circ \delta_1)$; when $r' = 2$, (1) becomes: $EY(f_1)Y(f_2) = EZ(f_1 \circ G_1 EY(f_2) + f_2 \circ G_1 EY(f_1)) + EY(f_1 \circ f_2 \circ \delta_2)$. These quantities agree with Theorem (5.14) in Iglehart [3].

Remark: If E is finite, in addition to the existing assertions, it would also be true if we substitute $(1 - G_0)^{-1}$ for EZ in all the three assertions.
Proof: Let \(r_1 = r' \) in (1), \(r_2 = |S_i| \) in (2), and \(r_3 = |N_r \setminus S| \) in (3). We will prove this theorem by induction on \(r_1, r_2 \) and \(r_3 \); and the absolute summability assumption will justify all the following interchanges of \(E \)'s, \(f \)'s, and \(\Sigma \)'s.

Induction basis:

For \(r_1 = 1, 2 \), (1) is correct. (cf. Iglehart, theorem 5.14.)

For \(r_2 = 1 \), (2) is correct. (This is a special case of Lemma 4.)

For \(r_3 = 1 \), (3) is correct. (This is a special case of (2.).)

Induction step:

Assuming that (1) is correct up to \(r_1 = k < r \), (2) and (3) are correct up to \(r_2 = r_3 = k - 1 < r \), then for arbitrary set partition \(S_1, \ldots, S_t \) of \(N_r \) with \(|S_i| = k \leq r \), by using the induction hypothesis, Corollary 1 of Lemma 2, and Lemma 4 (notice that the absolute summability assumption justifies the usage of each of them), we have:

\[
L[[(n_i:E S_i)<<(n_i:E S_{i-1})<(n_i:E S_i)]] = \sum_{j=1}^{k-1} \sum_{\begin{subarray}{l} s_1 \leq s_2 \leq \ldots \leq s_r \\ s_r \leq S_i \end{subarray}} L[[(n_i:E S_i)<<(n_i:E S_{i-1})<(n_i:E S_i)]] + L[[(n_i:E S_i)<<(n_i:E S_{i-1})<(n_i:E S_i)]]
\]

\[
= \sum_{j=1}^{k-1} \sum_{\begin{subarray}{l} s_1 \leq s_2 \leq \ldots \leq s_r \\ s_r \leq S_i \end{subarray}} A(EZ(\otimes_{i \in E S_i} f_i \circ G_{|S_i|} \prod_{i \in E S_i} Y(f_i))) + A(EZ(\otimes_{i \in E S_i} f_i \circ G_{|S_i|} \prod_{i \in E S_i} \otimes_{i \in S_i})].
\]

where \(A(y) \) is defined as

\[
A(y) = E Z(\otimes_{i \in E S_i} f_i \circ G_{|S_i|} E Z(\otimes_{i \in E S_i} f_i \circ G_{|S_i|} \cdots E Z(\otimes_{i \in E S_i} f_i \circ G_{|S_i|} y) \cdots)).
\]

Since \(A \) is a linear operator and (1) is correct up to \(r_1 = k \), the last equation becomes:

\[
L[[(n_i:E S_i)<<(n_i:E S_{i-1})<(n_i:E S_i)]] = A(E \{ \prod_{i \in E S_i} Y(f_i) \})
\]

\[
= E Z(\otimes_{i \in E S_i} f_i \circ G_{|S_i|} E Z(\otimes_{i \in E S_i} f_i \circ G_{|S_i|} \cdots E Z(\otimes_{i \in E S_i} f_i \circ G_{|S_i|} E \{ \prod_{i \in E S_i} Y(f_i) \}) \cdots)).
\]
This shows that (2) is correct up to \(r_s = k \). Since (3) is a special case of (2), we also have: (3) is correct up to \(r_s = k \).

Now, for \(r_t = k + 1 \leq r \),

\[
E \prod_{i=1}^{k+1} Y(f_i) = L_{[(a_1, \ldots, a_{k+1})]} \\
= \sum_{j=1}^{k} \sum_{S \subseteq N_{k+1}} L_{[(a_1, \ldots, a_j) \subseteq (a_1, \ldots, a_{N_{k+1}})]} + L_{[(a_1, \ldots, a_{k+1})]} \\
= \sum_{j=1}^{k} \sum_{S \subseteq N_{k+1}} EZ(\otimes_{i \in S} f_i \circ \eta_j \circ G_0 E\{ \prod_{i \in N \setminus S} Y(f_i) \}) + EZ(\otimes_{i=1}^{k+1} f_i \circ \beta_{k+1}).
\]

Notice that the first two equalities follows from Lemma 2, and the last equality follows from (3) and Lemma 3. We also notice that the usage of each of the above properties is justified by the absolute summability assumption. Since the RHS of the last equality is exactly (1) with \(r_t = k + 1 \), we have proved that (1) is correct up to \(r_t = k + 1 \). This completes the induction step, and the theorem now follows.

Formula (1) can be simplified when \(X \) has a special structure. Note that when \(X \) is a CTMC, then \(F(x, y, dt) = \lambda(x) \exp(-\lambda(x)t) dt \), for \(t > 0 \), so that \(\mu_n(x, y) = n!/(\lambda(x))^n \equiv \eta_n(x) \). Hence \(G_n = G_0 \circ \eta_n \) and \(\beta_n = (\mu_n \circ P)e = \eta_n \). We find that (1) can be rewritten as

\[
E \left(\prod_{i=1}^{r} Y(f_i) \right) = \sum_{j=1}^{r-1} \sum_{S \subseteq N_{r}} EZ(\otimes_{i \in S} f_i \circ \eta_j \circ G_0 E\{ \prod_{i \in N \setminus S} Y(f_i) \}) + EZ(\otimes_{i=1}^{r} f_i \circ \eta_r) \\
= EZ \left(\sum_{j=1}^{r-1} \sum_{S \subseteq N_{r}} \otimes_{i \in S} f_i \circ \eta_j \circ G_0 E\{ \prod_{i \in N \setminus S} Y(f_i) \} + \otimes_{i=1}^{r} f_i \circ \eta_r \right).
\]

On the other hand, for a DTMC, \(\mu_n(x, y) = 1 \) for each \(x, y \in E \), thus \(\beta_n = 1 \) and \(G_n = G_0 \) for each \(n \), so that (1) takes the form:

\[
E \left(\prod_{i=1}^{r} Y(f_i) \right) = \sum_{j=1}^{r-1} \sum_{S \subseteq N_{r}} EZ(\otimes_{i \in S} f_i \circ G_0 E\{ \prod_{i \in N \setminus S} Y(f_i) \}) + EZ(\otimes_{i=1}^{r} f_i) \\
= EZ \left(\sum_{j=1}^{r-1} \sum_{S \subseteq N_{r}} \otimes_{i \in S} f_i \circ G_0 E\{ \prod_{i \in N \setminus S} Y(f_i) \} + \otimes_{i=1}^{r} f_i \right).
\]
Notice that when $r \leq 2$, the above two special cases reduce to the formulas given in Hordijk, Iglehart, and Schassberger (1976).

The above formulas are based on the special structure of X. Other reductions are possible, for example, if $f_i = f$, for $i = 1, \ldots, r$, then

$$E(Y(f))^{r} = \sum_{j=1}^{r-1} \binom{r}{j} EZ(f^j \circ \mathcal{G}, E(Y(f))^{r-j}) + EZ(f \circ \beta_r)$$

$$= EZ\left(\sum_{j=1}^{r-1} \binom{r}{j} f^j \circ \mathcal{G}, E(Y(f))^{r-j} + f \circ \beta_r\right).$$

On the other hand, if $f_i = g, i = 1, \ldots, m; f_i = h, i = m + 1, \ldots, m + n$, then

$$E(Y(g))^m(Y(h))^n$$

$$= \sum_{(i,j) \leq (m,n)} \binom{m}{i} \binom{n}{j} EZ(g^i \circ h^j \circ \mathcal{G}, E(Y(g))^{m-i}(Y(h))^{n-j}) + EZ(g^m \circ h^n \circ \beta_{m+n})$$

$$= EZ\left(\sum_{(i,j) \leq (m,n)} \binom{m}{i} \binom{n}{j} g^i \circ h^j \circ \mathcal{G}, E(Y(g))^{m-i}(Y(h))^{n-j} + g^m \circ h^n \circ \beta_{m+n}\right).$$

Notice that this is exactly the equation (2.3) in Glynn and Iglehart (1984).
4. A recursive formula for discrete time Markov chains

Let \(\{X_k : k \geq 0\} \) be an irreducible DTMC with countable state space \(E \), and one step transition matrix \(P = \{P_{xy} : x, y \in E\} \). For fixed \(z \in E \), let \(T(z) = \inf \{n : X_{n-1} \neq z, X_n = z\} \) and set (notice that we will always suppress the \(z \) in \(T(z) \) when there is no confusion)

\[
Y(f) = \sum_{k=0}^{T-1} f(X_k),
\]

where \(f : E \to \mathbb{R} \) is an arbitrary function. We wish to study mixed moments of the form

\[
E \prod_{i=1}^{r} Y(f_i),
\]

when \(f_i : E \to \mathbb{R} \) is an arbitrary function for \(i = 1, 2, \ldots, r \), and \(r \) is a positive integer. We notice that \(Y(f) = \sum_{k=0}^{T-1} f(X_k) = \sum_{k=0}^{\infty} f(X_k)1_{\{T \geq k\}} \), this is almost of the same form as the decomposition for \(Y(f) \) given before, this gives us the motivation to follow the development in the SMP case quite closely. We also need the following modifications of notations:

\[
G_0(z, y) = \begin{cases} P_{zy}, & \text{if } y \neq z; \\ 0, & \text{if } y = z. \end{cases}
\]

And revise \(L \) into \(L^D \) (\(D \) for DTMC) such as:

\[
L^D_A \equiv E \left\{ \sum_{(n_1, \ldots, n_r) \in A} \left(\prod_{i=1}^{r} (f_i(X_{n_i})1_{\{T_{n_i} \geq 1\}}) \right) \right\},
\]

for each arbitrary set \(A \subseteq \mathcal{N}_r \). Notice that an immediate consequence of this definition is:

\[
E \prod_{i=1}^{r} Y(f_i) = L^D_{\mathcal{N}_r}.
\]

Lemma 5.

\[
1_{\{(n_1, \ldots, n_r)\}} = \sum_{j=1}^{r-1} \sum_{S \subseteq \mathcal{N}_r, |S| = j} (-1)^{r-1} 1_{\{(n_1, \ldots, n_r, S) \subseteq (n_1, \ldots, n_r)\}} + (-1)^{r-1} 1_{\{(n_1, \ldots, n_r)\}}.
\]

Proof: We first notice that

\[
\{(n_1, \ldots, n_r)\} = \bigcup_{i=1}^{r} \{n_i \leq (n_j : j \in \mathcal{N}_r \setminus \{i\})\}.
\]
since at least one of the element in parameters \(\{n_1, \ldots, n_r\} \) must be less than or equal to the rest; and each set of RHS is a subset of the set in LHS. Define \(W_i \equiv \{n_i \leq (n_j : j \in N_r \setminus \{i\})\} \), then

\[
1_{[(n_1, \ldots, n_r)]} = \bigcup_{i=1}^{r} W_i = \sum_{j=1}^{r} \sum_{S \subseteq N_r} (-1)^{j-1} \chi_{n_j \in S} W_i,
\]

\[
= \sum_{j=1}^{r-1} \sum_{S \subseteq N_r} (-1)^{j-1} \chi_{(n_1, \ldots, n_s) \subseteq \chi_{(n_{s+1}, \ldots, n_r) \subseteq S}} + (-1)^{r-1} 1_{[(n_1, \ldots, n_r)]}.
\]

This completes the proof.

We now state a sequence of corollaries, lemmas, and theorems, which can be regarded as the "\(\leq \)" version of their counterparts in Section 2. We will omit all the proofs because of the similarity between their proofs and their counterparts'.

Corollary 1.

\[
1_{[(n_1, \ldots, n_s) \leq (n_1, \ldots, n_{s-1}) \leq (n_1, \ldots, n_r)]} = \sum_{j=1}^{r-1} \sum_{S \subseteq N_r} (-1)^{j-1} \chi_{(n_1, \ldots, n_s) \subseteq \chi_{(n_{s+1}, \ldots, n_r) \subseteq S}} + (-1)^{r-1} 1_{[(n_1, \ldots, n_r)]}.
\]

Corollary 2. If \(\tilde{f}_{[(n_1, \ldots, n_r)]} = \sum_{(n_1, \ldots, n_r) \in N_r} |f(n_1, \ldots, n_r)| < \infty \) then

\[
\tilde{f}_{[(n_1, \ldots, n_r)]} = \sum_{j=1}^{r-1} \sum_{S \subseteq N_r} (-1)^{j-1} \tilde{f}_{[(n_1, \ldots, n_s) \subseteq \chi_{(n_{s+1}, \ldots, n_r) \subseteq S}} + (-1)^{r-1} \tilde{f}_{[(n_1, \ldots, n_r)]}.
\]
Corollary 3. If $|\tilde{f}((s_i;e_{S_1})) < (\mu_{Est_1};e_{S_1})| < \infty$, then

$$
\tilde{f}(s_i;e_{S_1}) \leq (s_i;e_{S_{t-1}}) \leq (s_i;e_{S_1})]
$$

$$
= \sum_{j=1}^{\lvert S_1 \rvert-1} \sum_{S_2 \subseteq S_1} (-1)^j \sum_{S_3 \subseteq S_2} (-1)^{j-1} \tilde{f}(s_i;e_{S_1}) \leq (s_i;e_{S_{t-1}}) \leq (s_i;e_{S_1}) \leq (s_i;e_{S_2})]
$$

+ (-1)^{\lvert S_1 \rvert-1} \tilde{f}(s_i;e_{S_1}) \leq (s_i;e_{S_{t-1}}) \leq (s_i;e_{S_1})] .
$$

Lemma 6. If $\sum_{(s_1,\ldots,s_\tau) \in \mathcal{N}^\tau} E\{\prod_{i=1}^\tau |f_i(X_{s_i})|1_{\{T>s_i\}}\} < \infty$ then

$$
E\prod_{i=1}^\tau Y(f_i) = L_{(s_1,\ldots,s_\tau)}^D
$$

$$
= \sum_{j=1}^{\lvert S_1 \rvert-1} \sum_{S_2 \subseteq S_1} (-1)^j \sum_{S_3 \subseteq S_2} (-1)^{j-1} L_{(s_i;e_{S_1}) \leq (s_i;e_{S_{t-1}}) \leq (s_i;e_{S_1}) \leq (s_i;e_{S_2})} + (-1)^{\lvert S_1 \rvert-1} L_{(s_1,\ldots,s_\tau)}^D .
$$

Corollary 1. If

$$
\sum_{(s_1,\ldots,s_\tau) \in \mathcal{S}(s_i;e_{S_1}) \leq (s_i;e_{S_{t-1}}) \leq (s_i;e_{S_1}) \leq (s_i;e_{S_2})} E\{\prod_{i=1}^\tau |f_i(X_{s_i})|1_{\{T>s_i\}}\} < \infty
$$

then

$$
L_{(s_i;e_{S_1}) \leq (s_i;e_{S_{t-1}}) \leq (s_i;e_{S_1})}^D \leq (s_i;e_{S_2})]
$$

$$
= \sum_{j=1}^{\lvert S_1 \rvert-1} \sum_{S_2 \subseteq S_1} (-1)^j \sum_{S_3 \subseteq S_2} (-1)^{j-1} L_{(s_i;e_{S_1}) \leq (s_i;e_{S_{t-1}}) \leq (s_i;e_{S_1}) \leq (s_i;e_{S_2})} + (-1)^{\lvert S_1 \rvert-1} L_{(s_1,\ldots,s_\tau)}^D .
$$

Lemma 7. If $\sum_{n=0}^\infty E\{\prod_{i=1}^n |f_i(X_{s_i})|1_{\{T>s_i\}}\} < \infty$ then

$$
L_{(s_1,\ldots,s_\tau)}^D = \sum_{n=0}^{\infty} G_n(\otimes_{i=1}^n f_i) = E(Z(\otimes_{i=1}^n f_i)) = E(Y(\otimes_{i=1}^n f_i)).
$$

Moreover, the vector $L_{(s_1,\ldots,s_\tau)}^D$ is the unique solution, u, of

$$
u = \otimes_{i=1}^{\tau} f_i + G_n v.$$
satisfying \(G_0^n y \to 0 \) as \(n \to \infty \).

Remark: For \(r = 1 \), this lemma says: \(EY(f) = \sum_{n=0}^{\infty} G_0^n f = EZ(f) \). Thus for DTMC, if \(G_0^n(\cdot) \) is absolute summable, then \(EY(\cdot) = EZ(\cdot) \).

Remark: If \(E \) is finite, then \(G_0^n \to 0 \) as \(n \to \infty \), thus the uniqueness is automatically satisfied, and then

\[
L^D_{\{[n_1, \ldots, n_r]\}} = (1 - G_0)^{-1}[\delta_{i=1} f_i].
\]

Lemma 8. If \(\sum_{(a_1, \ldots, a_r) \in \{(a_i, i \in S_1) \leq \ldots \leq (a_i, i \in S_r)\}} E\{\prod_{i=1}^{r} |f_i(X_i)|1_{(T > a_i)}\} < \infty \) then

\[
L^D_{\{[n_1, \ldots, n_r]\}} \sum_{(a_1, \ldots, a_r) \in \{(a_i, i \in S_1) \leq \ldots \leq (a_i, i \in S_r)\}} \sum_{i=1}^{r} (-1)^{r+1} EY(\delta_{i \in S_1} f_i \circ E\{ \prod_{i \in S_r \setminus S} Y(f_i) \}) + (-1)^{r+1} EY(\delta_{i=1} f_i)
\]

Theorem 2. For an irreducible DTMC, and arbitrary integer \(r \), if \(\sum_{(a_1, \ldots, a_r) \in \{(a_i, i \in S_1) \leq \ldots \leq (a_i, i \in S_r)\}} E\{\prod_{i=1}^{r} |f_i(X_i)|1_{(T > a_i)}\} < \infty \) then,

1. for each \(r' \leq r \), and \(EZ(f) \equiv \sum_{n=0}^{\infty} G_0^n f_i \), we have

\[
E\{\prod_{i=1}^{r'} Y(f_i)\} = L^D_{\{[n_1, \ldots, n_r]\}}
\]

\[
= \sum_{j=1}^{r'} (-1)^{r-j} EZ(\delta_{i \in S} f_i \circ E\{ \prod_{i \in S_r \setminus S} Y(f_i) \}) + (-1)^{r-j} EZ(\delta_{i=1} f_i)
\]

2. for arbitrary partition \(S_1, \ldots, S_t (t \geq 2) \) of \(N_r \),

\[
L^D_{\{[n_1, i \in S_1) \leq \ldots \leq (a_i, i \in S_r)\}} \sum_{i=1}^{r} EY(\delta_{i \in S_1} f_i \circ E\{ \prod_{i \in S_r \setminus S} Y(f_i) \}) + (-1)^{r-1} \sum_{i=1}^{r} f_i
\]
(3) for arbitrary nonempty proper subset \(S \) of \(N_r \),

\[
L_D^{\mathcal{S}}_{\{(n_i; i \in S)\leq (n_i; i \in N \setminus S)\}} = E\left(\bigotimes_{i \in S} f_i \circ E\left(\prod_{i \in N \setminus S} Y(f_i) \right) \right).
\]

\textbf{Remark:} Since \(E\left(\cdot \right) = E\left(Y(\cdot) \right) \) if any of them converges absolutely, under the condition of this theorem, each assertion is correct if we substitute \(E\left(Y(\cdot) \right) \) into \(E\left(\cdot \right) \).

Formula (1) can be simplified when \(f_i \)'s have some special structure, for example, if \(f_i = f \), for \(i = 1, \ldots, r \), then

\[
E(\sum_{j=1}^{r} \binom{r}{j} (-1)^{j-1} E\left(f^j \circ E\left(Y(f)^{r-j} \right) \right) + (-1)^{r-1} E\left(f^r \right))
\]

\[
= E\left(\sum_{j=1}^{r-1} \binom{r}{j} (-1)^{j-1} f^j \circ E\left(Y(f)^{r-j} \right) + (-1)^{r-1} f^r \right)
\]

\[
= E\left(\sum_{j=1}^{r-1} \binom{r}{j} (-1)^{j-1} f^j \circ E\left(Y(f)^{r-j} \right) + (-1)^{r-1} f^r \right).
\]

Notice that this is exactly the equation (2.6) in Glynn and Iglehart (1984). On the other hand, if \(f_i = g, i = 1, \ldots, m; f_i = h, i = m + 1, \ldots, m + n, \) then

\[
E(\sum_{j=1}^{m} \binom{m}{j} (-1)^{j-1} E\left(g^j \circ h^j \circ E\left(Y(g)^{m-j}(Y(h)^{n-j}) \right) \right) + (-1)^{m+n-1} E\left(g^m \circ h^n \right))
\]

\[
= E\left(\sum_{j=1}^{m} \binom{m}{j} (-1)^{j-1} g^j \circ h^j \circ E\left(Y(g)^{m-j}(Y(h)^{n-j}) \right) + (-1)^{m+n-1} g^m \circ h^n \right)
\]

\[
= E\left(\sum_{j=1}^{m} \binom{m}{j} (-1)^{j-1} g^j \circ h^j \circ E\left(Y(g)^{m-j}(Y(h)^{n-j}) \right) + (-1)^{m+n-1} g^m \circ h^n \right).
\]
5. A recursive formula for continuous time Markov chains

We will show how to get another recursive moment formula for CTMC in this section. First, let \(X = \{X(t) : t \geq 0\} \) be a CTMC with countable state space \(E \), transition matrix \(P(t) = \{P_{xy}(t) : x, y \in E\} \), and \(Q \)-matrix \(Q = \{q_{xy} : x, y \in E\} \) as the infinitesimal transition parameters. Recall that in a continuous time case \(Q = P'(0) \) is the given data of the model and that \(P(t) \) is generally hard to calculate and rarely given explicitly. The exponential distribution holding time in any state \(x \in E \) has mean \(q^{-1}_x = q_x^{-1} \). For all \(x \in E \), we assume that \(0 < q_x < \infty \), so that all states are stable and nonabsorbing. In addition, we assume that \(\sum_{y \in E} q_{xy} = 0 \), which guarantees that, starting from any state \(x \in E \), the CTMC makes a transition to a next state \(y \in E \). The element of the jump matrix \(G = \{G(x, y) : x, y \in E\} \) of \(X \) are defined by

\[
G(x, y) = \begin{cases}
q_{xy}/q_x, & \text{if } x \neq y; \\
0, & \text{if } x = y.
\end{cases}
\]

We will assume that \(G \) is irreducible. Notice that this is equivalent to \(X \) is irreducible, and therefore, positive recurrent. For fixed \(x \in E \) as the regenerative state, let \(T(x) \equiv \inf\{t > 0 : X(t-) \neq x, X(t) = x\} \) and

\[
Y(f) = \int_0^{T(x)} f(X(t)) \, dt,
\]

where \(f : E \to \mathbb{R} \) is an arbitrary function. (Hereafter, we will suppress the \(x \) in \(T(x) \) when no confusion is likely.) Our objective is to study the mixed moments of the form

\[
E \prod_{i=1}^r Y(f_i),
\]

when \(f_i : E \to \mathbb{R} \) is an arbitrary function, for \(i = 1,2,\ldots,r \), and \(r \) is a positive integer.

We need to define, as in Iglehart [3], \(_0P_{xy}(t) = P_{xy}(T > t, X(t) = y) \), and \(_0P(t) = \{_0P_{xy}(t) : x, y \in E\} \); also let

\[
G_0(x, y) = \begin{cases}
G(x, y), & \text{if } y \neq x; \\
0, & \text{if } y = x.
\end{cases}
\]

And let \(\sigma \equiv (\sigma_1, \sigma_2, \ldots, \sigma_r) \) to be a permutation of \((1,2,\ldots,r) \); \(\sigma' \equiv (j, \sigma_j, \sigma_{j+1}, \ldots, \sigma_r) \), where \((\sigma_j, \ldots, \sigma_r) \) is a permutation of \((1,\ldots, j-1, j+1, \ldots, r) \); and \(\bar{\sigma}' \equiv (\bar{\sigma}_{j+1}, \ldots, \bar{\sigma}_{j'-1}) \) to be a permutation of \((1,\ldots,j-1, j+1, \ldots, r) \).

From the above definition, we immediately have

\[
(\sigma) = \bigcup_{j=1}^r (\sigma').
\]
which means: the set of all permutations of \((1, \ldots, r)\) is the union (over all \(j\)'s) of the sets of all permutations beginning in \(j\). As a consequence

\[
R'_+ \equiv \{(w_1, \ldots, w_r) : 0 \leq w_i < \infty, i = 1, \ldots, r\}
\]

\[
= \bigcup_{\sigma_j} \{(w_1, \ldots, w_r) \in R'_+ : w_{\sigma_1} \leq \cdots \leq w_{\sigma_r}\}
\]

\[
= \bigcup_{j=1}^r \bigcup_{\sigma_j} \{(w_1, \ldots, w_r) \in R'_+ : w_j \leq w_{\sigma_j} \leq \cdots \leq w_{\sigma_r}\}.
\]

We also notice that the sets in the RHS are almost mutually exclusive, in the sense that each pair of sets have an intersection which is Lebesgue measure 0.

We begin by citing a theorem from Hordijk, Iglehart, and Schassberger (1976).

Lemma 9. (Hordijk, Iglehart, and Schassberger (1976).)

\[
EY(f) = \int_0^\infty oP(t)f dt \approx \sum_{a=0}^\infty G_a(f \circ q^{-1}) = EZ(f \circ q^{-1}).
\]

provided that the integral (or equivalently, the sum) converges absolutely.

Lemma 10. If \(\int_{w_{\sigma_r} \leq w_{\sigma_1}} E\left[\prod_{i=1}^r |f_{\sigma_i}(X(w_{\sigma_i}))| \mathbf{1}_{(T \geq w_{\sigma_1})}\right] dw_{\sigma_1} \cdots dw_{\sigma_r} < \infty\), then

\[
E \int_{w_{\sigma_r} \leq w_{\sigma_1}} \left\{ \prod_{i=1}^r f_{\sigma_i}(X(w_{\sigma_i})) \mathbf{1}_{(T \geq w_{\sigma_1})} \right\} dw_{\sigma_1} \cdots dw_{\sigma_r}
\]

\[
= \sum_{n=0}^\infty G_n(f_{\sigma_1} \circ q^{-1} \circ \cdots \circ G_n(f_{\sigma_r} \circ q^{-1} \circ \cdots) = EZ(f_{\sigma_1} \circ q^{-1} \circ \cdots) = EY(f_{\sigma_1} \circ \cdots) = EY(f_{\sigma_r} \circ \cdots) = EY(f_{\sigma_r} \circ \cdots)
\]

18
Proof:

\[E_l \int_{w_{s_1} \leq w_{s_2} \leq \cdots \leq w_{s_r}} \left\{ \prod_{i=1}^{r} f_{\sigma_i}(X(w_{s_i})) \mathbf{1}_{\{T > w_{s_i}\}} \right\} dw_{s_1} \cdots dw_{s_r}, \]

\[= \int_{w_{s_1} \leq w_{s_2} \leq \cdots \leq w_{s_r}} E_l \left\{ \prod_{i=1}^{r} f_{\sigma_i}(X(w_{s_i})) \mathbf{1}_{\{T > w_{s_i}\}} \right\} dw_{s_1} \cdots dw_{s_r}, \]

\[= \int_{w_{s_1}=0}^{\infty} \int_{w_{s_2} \geq w_{s_1}} \cdots \int_{w_{s_r} \geq w_{s_{r-1}}} E_l \left\{ \prod_{i=1}^{r} f_{\sigma_i}(X(w_{s_i})) \mathbf{1}_{\{T > w_{s_i}\}} \right\} dw_{s_1} \cdots dw_{s_r}, \]

\[= \int_{w_{s_1}=0}^{\infty} \int_{w_{s_2}=0}^{\infty} \cdots \int_{w_{s_r}=0}^{\infty} E_l \left\{ \prod_{i=1}^{r} f_{\sigma_i}(X(\sum_{j=1}^{i} w_{s_j})) \mathbf{1}_{\{T > \sum_{j=1}^{i} w_{s_j}\}} \right\} dw_{s_1} \cdots dw_{s_r}, \]

\[= \int_{w_{s_1}=0}^{\infty} \int_{w_{s_2}=0}^{\infty} \cdots \int_{w_{s_r}=0}^{\infty} E_l \left\{ \sum_{j_1 \in E} f_{\sigma_1}(j_1) \mathbf{1}_{\{T > w_{s_1}\}} \mathbf{1}_{\{X(w_{s_1}) = j_1\}} \right\} \]

\[\sum_{j_2 \in E} f_{\sigma_2}(j_2) \mathbf{1}_{\{T > w_{s_1} + w_{s_2}\}} \mathbf{1}_{\{X(w_{s_1} + w_{s_2}) = j_2\}} \cdots \]

\[\sum_{j_r \in E} f_{\sigma_r}(j_r) \mathbf{1}_{\{T > w_{s_1} + \cdots + w_{s_r}\}} \mathbf{1}_{\{X(w_{s_1} + \cdots + w_{s_r}) = j_r\}} \right\} dw_{s_1} \cdots dw_{s_r}, \]

\[= \int_{w_{s_1}=0}^{\infty} \int_{w_{s_2}=0}^{\infty} \cdots \int_{w_{s_r}=0}^{\infty} \sum_{j_1 \in E} f_{\sigma_1}(j_1) \mathbf{1}_{\{T > w_{s_1}\}} \sum_{j_2 \in E} f_{\sigma_2}(j_2) \mathbf{1}_{\{T > w_{s_2}\}} \sum_{j_r \in E} f_{\sigma_r}(j_r) \mathbf{1}_{\{T > w_{s_r}\}} \]

\[\cdots \sum_{j_r \in E} f_{\sigma_r}(j_r) \mathbf{1}_{\{T > w_{s_r}\}} dw_{s_1} \cdots dw_{s_r}, \]

\[= \int_{w_{s_1}=0}^{\infty} \sum_{j_1 \in E} f_{\sigma_1}(j_1) \mathbf{1}_{\{T > w_{s_1}\}} dw_{s_1} \int_{w_{s_2}=0}^{\infty} \sum_{j_2 \in E} f_{\sigma_2}(j_2) \mathbf{1}_{\{T > w_{s_2}\}} dw_{s_2}, \]

\[\cdots \int_{w_{s_r}=0}^{\infty} \sum_{j_r \in E} f_{\sigma_r}(j_r) \mathbf{1}_{\{T > w_{s_r}\}} dw_{s_r}, \]

\[= \sum_{s_1=0}^{\infty} \left[G_{0}^{s_1} f_{\sigma_1} \circ q^{-1} \circ \sum_{s_2=0}^{\infty} G_{0}^{s_2} f_{\sigma_2} \circ q^{-1} \circ \cdots \circ \sum_{s_r=0}^{\infty} G_{0}^{s_r} f_{\sigma_r} \circ q^{-1} \right]_l, \]

where our absolute integrability assumption justifies the various interchanges of \(E \)'s, \(f \)'s, and \(\Sigma \)'s; and Lemma 9 is used \(r \) times to obtain the last equality.

This completes the proof.
Theorem 3. If \(\int_{R^r} E\left\{ \prod_{i=1}^{r} |f_{\sigma_i}(X(w_{\sigma_i}))| \mathbb{1}_{\{T > w_{\sigma_i}\}} \right\} dw_{\sigma_1} \cdots dw_{\sigma_r} < \infty \), then

\[
E \prod_{i=1}^{r'} Y(f_i) = E \sum_{\sigma} \int_{w_{\sigma_1} \leq \cdots \leq w_{\sigma_{r'}}} \{ \prod_{i=1}^{r'} f_{\sigma_i}(X(w_{\sigma_i})) \mathbb{1}_{\{T > w_{\sigma_i}\}} \} dw_{\sigma_1} \cdots dw_{\sigma_r}
\]

\[
= \sum_{i=1}^{r'} \left[\sum_{n=0}^{\infty} G_0^n f_{i} \circ q^{-1} \circ E \prod_{j \neq i} Y(f_j) \right]
\]

\[
= \sum_{n=0}^{\infty} G_0^n \left[\sum_{i=1}^{r'} f_{i} \circ q^{-1} \circ E \prod_{j \neq i} Y(f_j) \right]
\]

\[
= E \left[\sum_{i=1}^{r'} f_{i} \circ q^{-1} \circ E \prod_{j \neq i} Y(f_j) \right]
\]

\[
= E Y \left[\sum_{i=1}^{r'} f_{i} \circ E \prod_{j \neq i} Y(f_j) \right]
\]

for any \(r' \leq r \).

Remark: When \(r = 2 \), the theorem reduces to

\[
E Y(f_1) Y(f_2) = \sum_{n=0}^{\infty} G_0^n [f_1 \circ q^{-1} \circ E Y(f_2) + f_2 \circ q^{-1} \circ E Y(f_1)].
\]

This agrees with equation (3.13) in Hordijk, Iglehart, and Schassberger (1976).

Proof: We prove this theorem by induction.

Induction basis:

From Hordijk, Iglehart, and Schassberger (1976), the assertion is correct for \(r' = 1 \).
Suppose the assertion is correct up to $r' = k - 1 < r$, consider

$$E \prod_{i=1}^{k} Y_{f_i}$$

$$= E \int_{R_+} f_1(X(w_1))1_{\{T > w_1\}} \, dw_1 \int_{R_+} f_2(X(w_2))1_{\{T > w_2\}} \, dw_2 \ldots \int_{R_+} f_k(X(w_k))1_{\{T > w_k\}} \, dw_k$$

$$= E \int_{R_+} \{ \prod_{i=1}^{k} f_i(X(w_i)) \} \, dw_1 \ldots dw_k$$

$$= E \sum_{j=1}^{k} \sum_{\sigma_j} E \sum_{j \leq w_{e_j} \leq w_{e_j} \leq w_{e_j}} \{ \prod_{i=1}^{k} f_i(X(w_i)) \} \, dw_1 \ldots dw_k$$

$$= \sum_{j=1}^{k} \sum_{\sigma_j} \left[\sum_{n_1=0}^{\infty} G_0^{a_1} f_j \circ q^{-1} \circ \sum_{n_2=0}^{\infty} G_0^{a_2} f_{e_j} \circ q^{-1} \circ \ldots \sum_{n_{k-1}=0}^{\infty} G_0^{a_{k-1}} f_{e_j} \circ q^{-1} \right]$$

$$= \sum_{j=1}^{k} \sum_{\sigma_j} \sum_{n=0}^{\infty} G_0^{a_j} f_j \circ q^{-1} \circ \left[\sum_{g_j} \sum_{n_2=0}^{\infty} G_0^{a_2} f_{e_j} \circ q^{-1} \circ \ldots \sum_{n_{k-1}=0}^{\infty} G_0^{a_{k-1}} f_{e_j} \circ q^{-1} \right]$$

$$= \sum_{j=1}^{k} \left[\sum_{n=0}^{\infty} G_0^{a_j} \circ q^{-1} \circ E \prod_{i \neq j} Y_{f_i} \right]$$

$$= \sum_{n=0}^{\infty} G_0^{a_j} \left[\sum_{j=1}^{k} f_j \circ q^{-1} \circ E \prod_{i \neq j} Y_{f_i} \right]$$

where the absolute integrability assumption justifies the various interchanges of \sum's, f's, and E's; Lemma 10 justifies the fifth equality; and the last equation is obtained by the induction hypothesis.

This completes the induction step, and the theorem follows.
6. Generalisation and discussion

We will discuss some generalizations in this section. As before, let \(X = \{ X(t) : t \geq 0 \} \) be an irreducible semi-Markov process (SMP) on countable state space \(E \), and \(R = \{ R_n : n \geq 0 \} \) be the underlying Markov chain of \(X \). For each \(t \), denote \(X^*(t) \equiv X(t + t^*) \), where \(t^* = \inf \{ t' \geq 0 : X(t + t') \neq X(t) \} \); namely, \(X^*(t) \) is defined as the "next state" process of \(X \) at time \(t \). For fixed \(z \in E \), let \(T(z) = \inf \{ t \geq 0 : X(t-1) \neq z, X(t) = z \} \).

\[\delta(z) = \inf \{ n \geq 0 : R_{n-1} \neq z, R_n = z \} \]

and set

\[Y'(f') = \int_0^{T(z)} f'(X(t), X^*(t)) \, dt, \]

where \(f' : E \times E \to R \) is an arbitrary function. (Hereafter, we will suppress the \(z \) in \(T(z) \) and \(\delta(z) \) when no confusion is likely.) Our first objective is to study the mixed moments of the form \(E \prod_{i=1}^{r} Y'(f'_i) \), when \(f'_i : E \times E \to R \) are arbitrary functions, for \(i = 1, 2, \ldots, r \), and \(r \) is a positive integer.

We begin by noting

\[Y'(f') = \int_0^{T(z)} f'(X(t), X^*(t)) \, dt \]

\[= \int_0^{\infty} f'(X(t), X^*(t)) \mathbf{1}_{T > t} \, dt \]

\[= \sum_{n=0}^{\infty} \int_{\xi_n}^{T(z)} f'(X(t), X^*(t)) \mathbf{1}_{T > t} \, dt \]

\[= \sum_{n=0}^{\infty} f'(R_n, R_{n+1}) \mathbf{1}_{t > \xi_n} (\xi_{n+1} - \xi_n), \]

it follows that \(\prod_{i=1}^{r} Y'(f'_i) = \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \cdots \sum_{n=0}^{\infty} \prod_{i=1}^{r} f'_i(R_n, R_{n+1})(\xi_{n+1} - \xi_n) \mathbf{1}_{\{t > \xi_n\}}. \)

Next, we define \(L' \) as follows: for fixed \(f_i, i = 1, \ldots, r \), and fixed \(A \subseteq N_+ \), let \(L' \) be

\[L'_A \equiv E \left\{ \sum_{|A| = \delta} \prod_{i=1}^{r} f'_i(R_n, R_{n+1})(\xi_{n+1} - \xi_n) \mathbf{1}_{\{t > \xi_n\}} \right\}, \]

where \(\delta \) is the length of the first \(z \)-cycle for the embedded DTMC \(R \).

We proceed via a series of lemmas. Note that the proofs for them are very similar to the proofs for their counterparts in Section 3 and thus omitted here.
Lemma 11. If $\sum_{(\xi_1, \ldots, \xi_n) \in \mathbb{N}^n} E\{ \prod_{i=1}^{r} |f_i'(R_{\xi_i}, R_{\xi_i+1})|((\xi_{i+1} - \xi_i)1_{\{s > n\}}) \} < \infty$ then

$$E \prod_{i=1}^{r} Y'(f_i') = L_{[(\xi_1, \ldots, \xi_n)]]}$$

$$= \sum_{j=1}^{r-1} \sum_{S_j' \subseteq S_j} L_{[(\xi_1, \ldots, \xi_S) \in (S_j, \xi_{S+1}) \in (S_j, \xi_{S_0})]} + L_{[(\xi_1, \ldots, \xi_n)]]}.$$

Corollary 1. If

$$\sum_{(\xi_1, \ldots, \xi_n) \in (S_1, \xi_{S_1-1}) \in (S_2, \xi_{S_2})} E\{ \prod_{i=1}^{r} |f_i'(R_{\xi_i}, R_{\xi_i+1})|((\xi_{i+1} - \xi_i)1_{\{s > n\}}) \} < \infty$$

then

$$L_{[(\xi_1, \ldots, \xi_S) \in (S_j, \xi_{S+1}) \in (S_j, \xi_{S_0})]}$$

$$= \sum_{j=1}^{S_1-1} \sum_{S_j' \subseteq S_j} L_{[(\xi_1, \ldots, \xi_S) \in (S_j, \xi_{S+1}) \in (S_j, \xi_{S_0})]} + L_{[(\xi_1, \ldots, \xi_n)]]}.$$

Lemma 12. If $\sum_{n=0}^{\infty} E\{ \prod_{i=1}^{r} |f_i'(R_{\xi_i}, R_{\xi_i+1})|((\xi_{i+1} - \xi_i)1_{\{s > n\}}) \} < \infty$, and define $EZ(g) \equiv \sum_{n=0}^{\infty} G_{\xi}g$. then

$$L_{[(\xi_1, \ldots, \xi_n)]]} = \sum_{n=0}^{\infty} G_{\xi}^{n}[(\bigcup_{i=1}^{r} f_i' o \mu_1 o P)e] = EZ[(\bigcup_{i=1}^{r} f_i' o \mu_1 o P)e].$$

Moreover, the vector $L_{[(\xi_1, \ldots, \xi_n)]]}$ is the unique solution, y, of

$$y = (\bigcup_{i=1}^{r} f_i' o \mu_1 o P)e + G_{\xi}y$$

satisfying $G_{\xi}y \rightarrow 0$ as $n \rightarrow \infty$.

Remark: A consequence of this lemma: If $\sum_{n=0}^{\infty} E\{ |f'(R_{\xi_i}, R_{\xi_i+1})|((\xi_{i+1} - \xi_i)1_{\{s > n\}}) \} < \infty$, then $EY'(f') = L_{[n]} = \sum_{n=0}^{\infty} G_{\xi}^{n}[(f' o \mu_1 o P)e] = EZ[(f' o \mu_1 o P)e].$

Remark: We notice that by setting $f'(x, y) = f(x)$ for all $y \in E$, then $(f' o \mu_1 o P)e = f o \delta_1$. Thus we immediately have another consequence of this lemma: If $\sum_{n=0}^{\infty} E\{ |f(R_{\xi_i})|((\xi_{i+1} - \xi_i)1_{\{s > n\}}) \} < \infty$, then $EY(f) = \sum_{n=0}^{\infty} G_{\xi}^{n}(f o \delta_1) = EZ(f o \delta_1)$. This is the first part of Theorem (5.14) in Iglehart [3].
Remark: If \(E \) is finite, then \(G^0_n \rightarrow 0 \) as \(n \to \infty \), thus the uniqueness is automatically satisfied, and also
\[
EZ = \sum_{n=0}^{\infty} G^0_n = (1 - G_0)^{-1}, \text{ thus } L_{[\{n_1, \ldots, n_r\}]} = (1 - G_0)^{-1} \left[\left(\sum_{i=1}^{r} f'_i \circ \mu_{i} \circ P \right) \varepsilon \right].
\]

Lemma 13. If \(\sum_{(n, \ldots, n_r) \in \{n_1, \ldots, n_r\}^r} E \left[\prod_{i=1}^{r} \left[f'_i (R_{n_i}, R_{n_i+1}) \right] \left(\xi_{n_i+1} - \xi_n \right) 1 \{ t > n_i \} \right] < \infty \) then,
\[
L_{[\{n_1, \ldots, n_r\}]} < \left(\sum_{(n, \ldots, n_r) \in \{n_1, \ldots, n_r\}^r} E \left[\prod_{i=1}^{r} \left[f'_i (R_{n_i}, R_{n_i+1}) \right] \left(\xi_{n_i+1} - \xi_n \right) 1 \{ t > n_i \} \right] \right).
\]

Remark: Lemma 12 is a special case of Lemma 13.

Theorem 4. For an irreducible SMP, and arbitrary integer \(r \), if
\[
\sum_{(n_1, \ldots, n_r) \in \mathbb{N}_r^r} E \left[\prod_{i=1}^{r} \left[f'_i (R_{n_i}, R_{n_i+1}) \right] \left(\xi_{n_i+1} - \xi_n \right) 1 \{ t > n_i \} \right] < \infty
\]
then,

1. for each \(r' \leq r \) and \(EZ(g) \equiv \sum_{n=0}^{\infty} G^0_n g \), we have
\[
E \left[\prod_{i=1}^{r'} Y'(f'_i) \right] = L_{[\{n_1, \ldots, n_r\}]}
\]
\[
= \sum_{j=1}^{r'} \sum_{S_j, S_j' \in \mathbb{N}_{r'} \setminus \mathbb{N}_{r'}} EZ \left[\left(\sum_{i \in S_j} f'_i \circ G_{i} \right) E \left[\prod_{i \in \mathbb{N}_r \setminus S_j} Y'(f'_i) \right] \right] + EZ \left[\left(\sum_{i=1}^{r'} f'_i \circ \mu_{i} \circ P \right) \varepsilon \right]
\]
\[
= EZ \left[\sum_{j=1}^{r'} \sum_{S_j, S_j' \in \mathbb{N}_{r'} \setminus \mathbb{N}_{r'}} \left(\sum_{i \in S_j} f'_i \circ G_{i} \right) E \left[\prod_{i \in \mathbb{N}_r \setminus S_j} Y'(f'_i) \right] + \left(\sum_{i=1}^{r'} f'_i \circ \mu_{i} \circ P \right) \varepsilon \right]
\]

2. for arbitrary partition \(S_1, \ldots, S_l \) \((l \geq 2) \) of \(\mathbb{N}_r \),
\[
L_{[\{n_1, \ldots, n_l\}]} < \left(\sum_{(n, \ldots, n_{l-1}) \in \{n_1, \ldots, n_l\}^{l-1}} E \left[\prod_{i=1}^{l-1} \left[f'_i (R_{n_i}, R_{n_i+1}) \right] \left(\xi_{n_i+1} - \xi_n \right) 1 \{ t > n_i \} \right] \right).
\]
for arbitrary nonempty proper subset S of N,

$$L_{(\xi_{s'+1,n},\xi_{s+1,n})}\subseteq N \times G_{|S|} E\{ \prod_{i \in N \setminus S} Y(f'_i) \}. $$

Remark: If $r' = 1$, (1) becomes: $E Y'(f') = E Z[(f' \circ \mu_1 \circ P)e] = \sum_{n=0}^{\infty} G_0[(f' \circ \mu_1 \circ P)e]$. This agrees with Lemma 12.

Remark: If E is finite, in addition to the existing assertions, it would also be true if we substitute $(1 - G_0)^{-1}$ for $E Z$ in all the three assertions.

Corollary 1. For an irreducible SWP, and arbitrary integer r, if

$$\sum_{(n_1,\ldots,n_r) \in N^r} E\{ \prod_{i=1}^{r'} Y(f_i) \} = \sum_{n=0}^{\infty} \sum_{N, r'} E\{ \prod_{i \in N \setminus S} Y(f_i) \} + E\{ \prod_{i \in N \setminus S} Y(f_i) \}. $$

then for each $r' \leq r$, we have

$$E\{ \prod_{i=1}^{r'} Y(f_i) \} = E\{ \prod_{i=1}^{r'} Y(f_i) \} = E\{ \prod_{i=1}^{r'} Y(f_i) \} + E\{ \prod_{i=1}^{r'} Y(f_i) \}. $$

Remark: This is exactly Theorem 1.

Corollary 2. For an irreducible SMP, and arbitrary integer r, if

$$\sum_{(n_1,\ldots,n_r) \in N^r} E\{ \prod_{i=1}^{r'} Y'(f_i) \} = \sum_{n=0}^{\infty} \sum_{N, r'} E\{ \prod_{i \in N \setminus S} Y'(f_i) \} + E\{ \prod_{i \in N \setminus S} Y'(f_i) \}. $$

where $Y''(c) \equiv \sum_{n=0}^{\infty} c(R_n, R_{n+1})$, and $c, c_i : E \times E \to R$, are arbitrary functions for $i = 1,\ldots,r$, then for each $r' \leq r$, we have

$$E\{ \prod_{i=1}^{r'} Y'(c_i) \} = E\{ \prod_{i=1}^{r'} Y'(c_i) \} = E\{ \prod_{i=1}^{r'} Y'(c_i) \} + E\{ \prod_{i=1}^{r'} Y'(c_i) \}. $$

25
A further generalization of Theorem 4 is possible. Let \(F_i : E \times E \to R \) be a random matrix for each \(i = 1, \ldots, r \), and let \(E[F_i] \equiv \overline{F_i}, E[F_i \circ F_j] \equiv \overline{F_i} \circ \overline{F_j}, E[\odot_i F_i] \equiv \overline{\odot_i F_i}, \) etc. By following the same procedure as in Theorem 4, we will have:

Corollary 3. For an irreducible SMP, and arbitrary integer \(r \), if \(F_i \)'s are independent of the holding time \(\xi_{n+1} - \xi_n \) for each \(n \), and

\[
\sum_{(n_1, \ldots, n_r) \in N^r} E \left\{ \prod_{i=1}^{r} \left(\overline{F_i}(R_{n_i}, R_{n_i+1}) \right) \left(\xi_{n_i+1} - \xi_n \right) 1_{\{\xi_n \neq \xi_i\}} \right\} < \infty
\]

then,

\[
E \left\{ \prod_{i=1}^{r} Y'(F_i) \right\} = L'_{\{n_1, \ldots, n_r\}}
\]

\[
= \sum_{i=1}^{r-1} \sum_{S \subseteq N^r, S \neq N^r} E \left[\left(\odot_{i \in S} \overline{F_i} \circ G_i \right) E \left\{ \prod_{i \in N^r \setminus S} Y'(F_i) \right\} \right] + E \left[\left(\odot_{i=1}^{r} \overline{F_i} \circ \mu_r \circ P \right) e \right]
\]

\[
= E \left(\sum_{i=1}^{r-1} \sum_{S \subseteq N^r, S \neq N^r} \left(\odot_{i \in S} \overline{F_i} \circ G_i \right) E \left\{ \prod_{i \in N^r \setminus S} Y'(F_i) \right\} + \left(\odot_{i=1}^{r} \overline{F_i} \circ \mu_r \circ P \right) e \right)
\]

Finally, denote \(T_1 \wedge T_2 \equiv \min(T_1, T_2) \), then for arbitrary \(z_1, z_2 \in E \), \(E \int_{0}^{T(z_1) \wedge T(z_2)} f'(X(t), X^*(t)) \) can be computed in exactly the same way as in Theorem 4 by redefining \(G_n \), for each \(n \), as:

\[
G_n(x, y) = \begin{cases}
P_{xy} \mu_n(x, y), & \text{if } y \neq z_1 \text{ or } z_2; \\ 0, & \text{if } y = z_1 \text{ or } z_2. \end{cases}
\]

Further generalization along this idea is obvious.

7. Acknowledgement

The author is especially grateful to Professor Donald L. Iglehart for all his help and encouragement.

8. References

