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Distributed Name Servers:
E Naming and Caching in Large
] Distributed Computing Environments

by

Douglas Brian Terry

Apstract

Name services facilitate sharing in distributed environments by allowing objects
to be named unambiguously and maintaining a set of application-defined attributes
ot for each named object. Existing distributed name services, which manage names
based on their syntactic structure, may lack the flexibility needed by large, diverse,
and evolving computing communities. A new approach, structure-free pame man-
agement, separates three activities: choosing names, selecting the storage sites for
object attributes, and resolving an object’s name to its attributes. Administrative
» entities apportion the responsibility for managing variovs names, while the name
service’s information needed to locate an object’s attributes can be independently
reconfigured to improve performance or meet changing demands.

An analytical performance model for distributed name services provides assess-
ments of the effect of various design and configuration choices on the cost of name ser-
\d vice operations. Measurements of Xerox's Grapevine registration service are used as
inputs to the model to demonstrate the benefits of replicating an object’s attributes
to coincide with sizeable localities of interest. Additional performance benefits result
from clients’ acquiring local caches of name service data treated as hints. A cache
L. management strategy that maintains a minimum level of cache accuracy is shown

to be more effective than the usual technique of maximi-ing he hit ratio; cache
managers can guarantee reduced overall response times, even though clients must
occasionally recover from outdated cache data.
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Chapter 1

Introduction

I knew very well that in addition to the great planets — such as the Earth, Jupiter, Mars,
Venus - to which we have given names, there are also hundreds of others, some of which
are so small that one has a hard time seeing them through the telescope. When an
astronomer discovers one of these he does not give it a name, but only a number.

— Antoine de Saint Exupéry, The Little Prince.

1.1 The Electronic Baobabs

Like the little prince’s galaxy, with planets too numerous to be named, contemporary distributed
computing environments have evolved to the point that it is difficult ‘o name and catalogue the many
available resources. To facilitate the sha ing of information and resources, immense interconnections
of public and private data networks have been established, permitting users access to extraordinary
numbers of potentially shareable resources. The DARPA Internet hosts table, for instance, now
contains over 300 networks connecting most of the major U.S. universities, military organizations,
and computer corporations.

Physical connectivity, however, is not sufficient to allow resources to be effectively utilized by
the various members of these vast, interconnected computing communities. Uniform mechanisms are
needed for identifying and locating objects and resources that are made accessible to the community
by their creators or owners. That is, objects should be given names, names that can be freely passed
around the internet and shared amongst its users so that the objects themselves might be shered.
Once users have a way of referring to objects, services should be provided for locating particular
ohjects and discovering how to access those objects.

This dissertation addresses the issues of providing such a name service! for a widely distributed
computing environment. It progresses in three stages: First, general techniques for managing names
in a distributed manner are developed. Second, the performance of such techniques for large 1ame
services is analytically modeled. Third, a client’s level of performance is enhanced by introduc-
ing caches of naming data. The next section discusses the nature of name services, providing the
background for t..e remainder of the dissertation.

! Throughout this dissertation, terms appear in italics when they are first introduced: their definitions are reproduced
in the glossary for later reference.
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1.2 Name Services

E.

.
i
i

1.2.1 Role e

A name service enables its clients to name resources or objects and provides facilities for accessing
information about these objects. The term object will be used Lereafter to refer to anything that
deserves a name. Both physical and logical entities may be nbjects. For instunce, computers, file
servers, printers, disk drives and files can all be objects. Processes, services, distribution lists, and
computer messages can also be objects, as may computer programmers, .,perators, and technicians. e
Some objects exist within the bounds of the distributed computer system, while others have a iife
of their own. Note also that some objects are active, such as a process executing a program, while
athers play a passive role, and hence must be acted upon and managed by active objects.

The client/server model of distributed computing has become popular in describing relntionships
between active objects. Servers offer services to clients that may make use of those services. (ften,
an active object is both a provider of soine services and a client of others. Since servers and clients
may eist at various locations in a distributed computing environment, means must be provided for
establishing liaisons betwee:s them.

The name service is a “master” service, which acts as a rendezvous point for other servers aud
clients of the services provided by those servers. Services can be made available to the genera! ]
community by registering them with the name service. The information presented on the “registration ® i
form™ includes the name of the service and information needed to make use of the service. A client
of a service may ohtain this information by contacting the name service and presenting the name of
the desired service. From that point on, the client and server may establish a direct connection to h
conduct their businesa. g

The name service thus enables other services to be identified and accessed in a uniform way -
[Abraham and Dalal 80]. Members of a large distributed computing community need only know how @ l
to access the name service in order to gain access to a multitude of services indirectly through the
“well-known" name service. For passive objects, the name service maintains information that allows
them to be manipulated and shared by specialized services.

A name service, described here as a general name management facility, provides more than the .
usual name-to-address bindings. It subsumes services such as directory systems for electronic mail, i
file name managers, and database catalog managers. These services can be viewed as name services \
specialized for a pacticular application domain; for example, the catalog manager for 2 distributed ]
database management system maintains information about named database objects, such as their 1
locations, access controls, and statistics used for query optimization [Martella and Schreiber 80]. :I

Muck. of the curreat confusion and difficulty in interconnecting existing distributed environments
s.~ms from the fact that various incompatible name services are being employed for widely-used ®
applications, like mail. Much can be gained from adopting uniform name services. However, the
question of whether a single general name service should be used for all object:  whether specialized
name services should continue to exist with a global name service used to locate the more specific
services is difficult to answer. The choice is not a critical one to the .iscussions that follow, as the
issues remain the same.

1.2.2 Names )
1.2.2.1 Properties

Simplistically, a name is a character string that identifies an object. However, there is a general
lack of consensus abont what properties distinguish names from other types of identifiers. John &
Shoch made the following incisive. albeit vague. distinction between three types of identifiers used in
computer networks [Shoch 78:
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“The name of a .source indicates what we seek,
an address indicates where it ‘s, and
a route tells us how to get there.”
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Jerome Saltger, on the other hand, suggests a broader use of the werd “name” and portrays the

&

relationship between names and addresses as bindings; that is, he defines an object’s “address” to he :.\
! a “name of the object it is bound to” [Saltzer 8I!. t::'
! This dissertation draws a simple distinction between names and addresses: names are chosen ‘-::'_-w
[ by users, whereas addresses are assigned by the system or system adminis‘rators. This distinc- E:‘:-;

b tion complies with Shoch's basic terminolegy and resembles Richard Watson's distinction between
human-oriented names and machine-oriented identifiers [Watson 81|. Historically, the use of nanes
in commnnication n2tworks emerged as a convenience to humans, who find it difficult to remember
numbers denoting the addresses of network entities. Names, as characterized herein. may be:

4

G |

»

-
>

2 readable by humans and of wnemonic value,

® e independent of network locations.

The first property arises naturally since humans tend to choose names that desc.ibe their referents
[Carroll 78]. The second property allows an object to migrate to a new location in the distributed
environment without changing its name, and hence without rejuiring changes in others’ references
to the narn:~d object?.

The interpreta .n of names pressnts additional properties: A name is unambiguous if and <nly if
it refer. to at most one object. That is, the same name canno: be used by different clients of the name
service to refer to different objects. A name is unique if it represents the only name for its referent.
Several non-unigque names may identify the same object. Often, in such cases, one i.ame is recognized
as the preferred name and the others are called aliases or nicknames. Note thai some people use the
terms “unique” and “unambiguous”’ interchangeably. As defined here, ambiguity corresponds to a %
one-to-many relationship berween names and objects, whereas non-un’.1ueness suggests 3 many-to-one i
Eﬁ binding.

A name is said to be -/»bal or absolute if it is interpreted in a consistent manner by all clients
and services, regardless o. ‘eir location in the environmeut or other factors. Absclute names may
be freely passed around frcw, Jbjecc to object without affecting their interpretation. On the other
hand, relative naines are interpreted according to some state information.

v
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f. The name services of interest in this dissertation manage unambiguous names so that dialogues for
resolving embiguities are not required. In addition, they can guarantee the uniqueness or absoluieness
of names, but the general mechanisms do not assume that these properties are always desired by
applications making use of a name service.

j. 1.2.2.3 Structure

The couvention adopted for naming objects dictates the syntactic representation of names, as
well as their semantic interpretation. The set of names complying with a given naming conr ation
is called the name space.

Names are commonly structured as a series of alphanumeric labels interleaved with various sep-
l® aration ‘haracters. Although many separation characters are in common use in exisiing naming
convent ‘ns, including ‘@, ‘%’, *:’, *’, */’, and ‘!, the ‘.’ will be used for simplicity hereinafter,
except .1 cases where a specific naming convention is being discussed. Thus, the name “A.B.C”
consis’ f three labels, “*A”, “B”, and “C".

2Addresses may be location-independent as well; these are occasionally referred to ar logical addresses Rosen 81 .
Some recent proposals purporting new approaches to namne management are really suggestions for managing logical .
10 addresses in the communication transport layer Cheng and Liu 82! Cheng 84 ‘Chesley and Rom 83.. !
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A component of a name is a substring of that name composed of one or more labels and the
embedded separation characters. The name “A.B.C” contains the following components: “A”, “B”,
“C”, “A.B", “B.C”, and “A.B.C".

Abbreviations are short forms for names that may be used in certain circumstances as a substitute
for the complete name. An abbreviation differs from an alias in that it is a component of a name,
that is, syntactically derived from the name, and is not treated as a fully qualified name. As such,
abbreviations are not generally recognized by the name service. Usually, abbreviations are provided
by an application as a convenience to human users, who <~ not like to type long names, and converted
in an application-specific way to a fully qualified na- : ‘ore being presented to the name service.
As an example, consider a mail system that names .. .1 recipients according to the convention
“user.host”; the system may choose to accept a name of the form “user” as an abbreviatio-. for
“user.this-host”.

1.2.2.2 Contexts

Names alwnys exist within some context. A contezrt can be loosely defined as the environment in
which a name is valid. In many programming languages, the notion of a context is instantiated as
the scope of a variable. In distributed systems, contexts represent a partitioning of the name space,
often along natural geographical or organizational boundaries. A name may naturally occur in more
than one context, and contexts may be nested. For instance, the login name “terry” exists within
the contexts of both “Berkeley” and “Xerox”. fn turn, “Berkeley” exists within the context of the
“University of California”, which exists within the cout2xt of ail universities.

A component of a pame may denote & context in which other parts of the name exist. Such a
context is called an ezplicit contezt since it is explicitly represented in the structure of the name.
For example, given the name “A.B.C”, “B.C” might be viewed as a name existing explicitly in the
coniext of “A”.

On the other hand, a context that is not an explicit part of the name is called an implicst contexzt.
Relative r aming conventions involve interpreting a name according to some implicit context. Only if
impiicit ¢ yntexts are universal can absolute naming conventions be attained. The name service itself
may be 0 1e example of a global implicit context.

The “dot” notation used for delineating the labels of a name does not contain enough information
to indicate the contextual interpretation of the name. For cne thing, some naming conventions may
choose to nest contexts left-to-right while others use right-to-left associativity. Moreover, not all of
the labels of a name necessarily represent contexts. In this dissertation, a name will be presented in
the form “context{subname)” when the contextual structure of the name is important. For example,
the name “A.B.C™ could be expressed as “A(B.C)", indicating that the subname “B.C” should be
interpreted in the context of “A”. Alternatively, “C” could exist in the context of “A.B", or “A.B”
could exist in the context of “C”; these would be written as “A.B(C)” and “C(A.B)", respectively.
If the three labels were nested contexts, the name might be “A(B(C))".

W:th explicit contexts, a sufficient condition for achieving unambiguous names can be recur-
sively given as follows: the name “context(subpame)” is globally unambiguous if the subname is
unambiguous within the context, and the context has a globally unambiguous name.

1.2.3 Object attributes

The information maintained about a named object by the name service consists of a set of at-
tridutes for the object. Object attributes have both a type and a value, where the type indicates the
format and meaning of the value field. The name service does not attempt to interpret an attribute
value. Thus, applications making use of the name service niust agree on the structure and semantics
associated with object attributes. Agreeing on the format of attribute values is particularly imiportant
in a heterogeneous environment where machines have different word sizes, number representations,
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bit orientations, and so on.

Names that have a list of names as an attribute, generically called group names, are used for such
things as mail distribution lists and access control lists. One way of representing these membership
lists is with a single attribute of type “MembersAre” that takes a lis: of names, perhaps separated
by commas, as a value. Alternatively, each member could be listed as a separate attribute of type
“HasMember”. The first representatiorn makes it easy to enumerate the mem?® >rship set, while the
secow:d is move convenient for adding and removing individual members. This iustrates the amount

of freedom available in chonsing various attributes and their representations. \'@
) Clenerally, the types of attributes for an object vary with the type >f the object. For instance, phnd)
information about a user, including anything from his office phone number to his address for receiving ’
electronic mail [Feinler 77|, differs radically from information about files [Mogul 84| [Leach et al. 82 :."
or database objects, such as the data’s location, structure, availability, and usage [Allen et al. 82| Vi
[Martella and Schreiber 80 [Lindsay 80]. The name service may choose to restrict the types of at- o
tributes or require certain attributes for given classes of objects [Cooper 82]. \: :

'ﬁ
i

P In a layered system, such as the Open Systems Interconnection reference model adopted by ISO
(ISO 81], an attribute for an object often represents an identifier to be presented to the next lower

«f]
W4

layer. The binding of names to network addresses, which motivated the conception of name services, :\_.
represents a good example of this. For communicating with a object, one might need an attribute SR
for the object of type “InternetAddress”, whose value is a communication socket particular to the e
communication protocol being employed. Using the DARPA Internet Protocol [Postel et al. 81], I\:::!
the “InternetAddress” attribute for a host would have a 32-bit value; Xerox Network Systems, on )
r the other hand, use 48-bit internet host addresses [Dalal and Prirtis 81]. In some cases, an ob- i
ject mey have several attributes of type “InternetAddress”; for instance, mapping host names to L"
several addresses is useful for packet radio, muiti-homed hosis, and partitioned networks [Cerf 79) o

[Sunshinc and Postel 80} [Sunshine 82]. Additionally, for internetworks that support several diverse
families of communication protocols, an attribute “SpeaksProtocols”, whose value is a list of protocol
types understandable by the named object, may be needed.
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As an example of atiributes at a higher layer, consider clectronic mail systems that
wish to name mail originators and recipients independent of the locatious of their mailboxes
(Garcia-Luna and Kuo 81] [Kerr 81] [Schicker 82] (IFIP 83| [Sirbu and Sutherland 84] These sys-
tems might use the name service to bind a user name to the narue of the host computer on which his
mailbox resides. In particular, the value associated with a “MailboxResidesAt” attribute would be a
k host name, which could then he piesented to the name service to obtain the hort’s “InternetAddress”

attribute. By modifying the value of their “MailboxResidesAt” attributes, users can change where
they receive their mail without having to inform their correspondents.

1.2.4 Operations

L. The basic operation of a name service, then, is to map an object's name to attributes for that
object. A simple operation to do this, Lookup, takes the name of an object and the desired attribute
type and returns any attributcs of the giver type that are associated with the named object. Also,
mechanisms must be provided to dynamically update the set of attributes for an object. For example. d l
an Update operation might take a name and zttribute as parameters along with an indication of -
whether th~ attribute should be added, removed. or modified in the name service database. ]

b Addivionally. name services may have special routines for manipulating group names, such as
adding ot deleting members; enumerating the individual members of a group can be an expensive
operation if relegated to application programs. especially if groups contain other groups as members.
The name service might wish to have operations that distinguish between aliases and preferred object
names. Also, in order to guard against different objects being inadvertently assigned the same name,
the object name should be registered with the name service independent of the object’s attributes.
H‘ In general, various operations on different types of objects and attributes may exist to facilitate
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type checking, access controls, consistency, and concurrency. The set of operations allowec by a
name service can be as rich or baroque as those of any data storage facility. Furthermore, closely N
related services, such as authentication facilities [Needham and S:hroeder 78|, may be included in

name services [Birrell et al. 82]. The clearinghouse client interface, providing dosens of operations 9
[Oppen and Dalal 83}, is a good example of the range of operations that may be desired. “

1.5 The Thesis ' -

Name services to support large distributed environments must themselves be structured as dis- v
tributed systems. The advantages of distribution are well known: modular growth so that the name
service can meet the needs of a continually expanding community, avaslability through using muitiple
processors so that the critical name services remain available to clients, reliability through redundancy
so that valuable name service information is not corrupted, autonomy so that various organizations
may cooperate in the high-level management of objects without compromising their internal security, ®
and performance enhancements achieved through placing the name service information geographically
close to where the interest in that data lies.

]
This dissertation deveiops a frariework for building distributed name services to aid the manage-
ment of objects in environments characterized as being large and diverse. The projected computing
environment contains large numbers of networks of various technologies interconnecting a sizeable
computing community. Vast numbers of diverse objects msy he named and shared by members of Qo
the widely-distributed community; these objects come under the administrative control of & diversity
i of organizations pa-ticipating in the environmeant. The facilities for storing and manipulating objects
range from large mainframe computers to small personal workstations. Generally, end-to-end com-
muaication costs dominate the cost of interactions between distant sites. Environments of this sort :
are emerging with technological advances in coniputing and communications. The size and diversity .
of such computing communities place strenuous demands on name services, 9
|

The major thesis advanced and addressed by the research described herein car be simplistically :
stated as follows:

Physically distributed, but logically centralized, name services can be provided in a general
and cost effective way, even for very large, geographically dispersed computing communi-

ties. o
A name service that supports this claim must solve the following principal problems:

¢ Nare resolution: an object and its attributes may be stored at various, possibly several, loca- -
tions in the internet; the name service must be able to determine these locations when presented d
with the object’s name;

o Administrative control: administrative entities should govern the placement and protection of
their objects; autonomous organizations cooperatively participating in the distributed commu-
nity wish to retain control over the selection of trustworthy locations to store the attributes and
names of their objects; particularly sensitive information should only be accessible by certain ‘
name service clients; .

o Overhead coets: neither the size of the components of the name service at individual sites nor ®
the number of interactions between components should be directly proportional to the size
of the environment; although a name service may manage large numbers of objects and their '
attribu‘es, small workstations with limited resources must be able to participate in and make i
use of the service; .

e Adaptation: internet computing environments are continually evolving and anding in size,
either by the participating organizations acquiring new computing equipm - . or by their in- o
terconnecting to othe: computing environments; the management of the name space must be N

flexible enough to gracefully adapt to changing demands:
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» Performance: reasonable response times for accessing name services must be achieved; difficul-
ties in obtaining reasonable response times arise due to the physical distribution of the envi-
ronment and the cost of communication between distant sites; good performance is exiremely
important for the name service since it plays such a vital role in the overall system.

The next chapter describes existing name services and reflects o2 how they fail to solve some or all
of ihese problems for large and diverse environments.

The remainder of this dissertation embarks on & path to substantiate the maior thesis. Chap-
ter 3 develops a basic architecture for distributed name services, providing a common framework in
which later chapters address the principal problems. It bioaches an important distinction between
attribute data, information about named objects whose piacement is controlled by administrative
organizations, and configuration data, information manage:l entirely by the name service to locate
attribute data. Chapter 4's examination of clustering to rednce the information needed in each name
server for resolving names produces a general and powerful rnodel of name resolution: structure-free
name resolution. Prototype implementations of inechanisms for supporting this model are presented.
Chapter 5 proposes a performance model of distributed name services that identifiex factors con-
tributing to the cost of name service operations. The model is applied to a sample environment to
derive quantiiative projections of the effect of name server placements, replicated data. and various
assignments of authority un name service response times. Chapte= 6 reports actual measurements ob-
tained from the Grapevine registration service and uses them as input parameters to the performance
model. Chapter 7 explores techniques for caching name service data at client sites to further enhance
their performance. Treating caches as hints alleviates the cache consistency problem, while main-
taining minimum accuracy levels guarantees performance benefits. Lastly, Chapter 8 rzcapitulates
the principal problems outlined above along with their solutions.
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Name Service Designs: A Survey ;

o)

Distributed name services have recently emerged in which a set of name servers col-
lectively manage a global name space. The distribution of responsibility for parts of the
name space, as well as the mechanisms for locating names, depends heavily on the name
structure.

.
w 5

.
L N P

2.1 Existing Name Services

The desire to refer to objects by name and exchange information about these objects | is resulted

in the development of network name services for several existing distributed environments. The major .
identifiable name services that have been implemented and documented are briefly summarized in 'i
the following subsections. Later sections of this chapter present in more detail the various aspects of I

these systems along with other proposals and designs for naming mechanisms.

2.1.1 NIC Name Server

The ARPANET [Roberts and Wessler 70|, one of the first geographically-dispersed computer net- e ,.
works, has experienced a slow progression of name services. In the early days, the ARPANET Network :
Information Center (NIC) was established to maintain information about the network, including the :::

B

master database of host names and their respective addresses. Every host stored a complete copy of
I‘: this database, and the administrator of each host was responsible for updating its local copy when _"
the master changed. This host table allowed members of the ARPANET community to name hosts, =
F rather than refer to them by address, when transferring files between hosts or logging into a remote ® !
2 host. :

With the growth in sizte of the ARPANET and its expansion into the DARPA Internet
(Hinden et al. 83] [Cerf and Cain 83|, maintaining up-to-date host name to network address map-
pings became increasingly difficult on individual hosts. The development of an experimental NIC )
Name Server slightly alleviated the situation by allowing the host table information to be retrieved ®
incrementally via network protocols [Pickens et al. 79b]. This service eventually became the NIC In-
ternet Hostnames Server [Harrenstien ¢t al. 82]. The ARPANET host table stored by the server has
been extended to include addresses for networks and gateways, as well as additional host information
such as what protocols u particular host speaks, an indication of the services available, and what
operating system it runs [Feinler et al. 82].

i

The NIC also provides services for obtaining personal information about ARPANET users. The L, ]
NICNAME/WEHOIS server supplies such information, including anything from a person’s office phone :
number to his address for receiving electronic mail [Harrenstien and White 82].
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2.1.2 DARPA Domain Name System
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To ttis day, although the inadequacies of central edministration are widely recognized by the
DARPA Internet community, the master host table is still centrally maintained by the Network In-
formation Center. Fortunately, plans are underway to switch over in the near future to a decentralized
scheme for maaaging the host information [Postel 84]. The new Domain Name system will permit in-
formatiun on network entities to be distributed and replicated; the responsibility for its management
i will reside with the various administrative organizations comprising the DARPA Internet [Postel 84]

[Mockap-tris 83a] [Mockapetris 83b).

P Included in the transition to decentralized name management is the adoption of the Domain

Naming Convention [Mills 81] {Su and Poatel 82| for naming electronic mail recipients as weil as
; hosts. The Domain Naming Convention calls for a tree-structured name space in which each node of

the trre has a label. The domain name of an object is simply the concatenation of the labels starting
at the root and following a path through the tree; labels are listed from left to right and separated
by dots. The Domain Name System stores information associated with each node of the tree as a
P set of “resource records” containing type, class, and data fields. It manages mailboxes, aliases, and
group names in addition to the information currently maintained in the DARPA Internet host table.

W

2.1.3 BIND Server

The Berkeley Internet Name Domain (BIND) Server [Terry et al. 84] is an implementation of
P the DARPA Domain Name System for Berkeley UNIX. As such, it adheres to the Domain Naming
| Convention for identifying objects and to the basic set of operations designed fcr retrieving object

attributes. However, unlike the Domain Name System which maintains a read-only database, it allows
updates to the name service database to be applied dynamically using a primary update scheme with
secondary snapshots for replicated data.

2.1.4 PUP Name Lookup Server -

A decentralized name-lookup service was provided early in the dev.lopment of the Xerox Pup
Internet [Boggs et al. 80]. Servers on each network manage an identical database. Updates performed
at any server are advertised to all other name servers using broadcast (Boggs 83]. This service still
i@ fills the zeeds of the PUP Internet, while Xerox’ Network Systems [Dalal 82] have moved to a more
decentralized clearinghouse service.
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2.1.5 Grapevine

2 s’ .
v 4 h

v,

The Grapevine system [Birrell et al. 82] developed at the Xerox Palo Alto Research Center can
® be viewed as two systems in one, a mail system and a registration service. The latter provides name
services designed primarily to support the mail system, includin resource location, authentication,
and access control. Names in the Grapevine environment identify mail recipients and are of the form,
“F.R”, where “R" is a registry name and “F” is unique within registry “R”. Registries are intended
to reflect organizational divisions.

Rt |
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L. A registration database that maps names to information about the names, including distribution a
lists and access ccntrol lists, is distributed and replicated among the many Grapevine computers.
At this point in time, the Grapevine registration service might be considered the only regularly-used -::
distributed name service. o
<
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2.1.8 Clearinghouse

The clearinghouse [Oppen and Dalal 83| is a decentralized service for locating named objects in
a distributed environment. Like Grapevine, it was developed by Xerax, and the two systems have
many things in common. In fact, tlearinghouse’s design was modeied after the Grapevine system
except that clearinghouse names have three parts, “L:D:0” where “L” represents the local name,
“D" the domain, and “O” the organization. The clearinghouse designers stress that domains and
organisations, like registries in Grapevine, are logical rather than physical divisions.

Xerax's clearinghouse strives to servc as a general purpose binding agent. It maps an object’s
equivalence class, consisting of a distinguished name and associated aliases, into an arbitrary set of
properties, where each property is an ordered tuple (PropertyName, Property Type, Property Value).
Clearinghouse’s “properties” correspond to “attributes” as defined in Chapter i. Property names,
corresponding to attribute types, are standardized s¢ that similar services can be easily identified.
The only property types distinguished are “individual”, an uninterpreted block of data, and “group”,
a set of names. The client interface supports many distinct operations for manipulating entities such
as names, aliases, individuals, groups, and group members. Different operations on different types
exist to facilitate type checking, access controls, consistency, and soncurrency.

2.1.7 CSNET Name Server

One component of an effort to connect computer science research institutions with a long-
haul computer network called CSNET wa. the development of the CSNET Name Server
[Landweber et al. 83| [Solomon et al. 82]. Its primary function is to support mail applications, that
is, aid in locating mail recipients. The CSNET Name Server maintains a centralized database con-
taining keywords supplied by users to describe themselves. A mail recipient can be unambiguousiy
identified in a location-independent way by supplying a suitable set of keywords, which are mapped
by the server to a mailbox address “user@site”. However, most mail users bypass the name service
and simply use mail addresses directly. The major utility of the name service is in discovering the
proper mail address of & particular person given descriptive information about him.

T AT T T N T T T T N N e, T R R e L e a R e T T T T R VY TR

2.1.8 Cambridge Name Server

The Cambridge Distributed Computing System [Needham and Herbert 82| relies on a name server
for translating unstructured names of services and machines into ring addresses. Roger Needham and
Andrew Herbert describe the name server as “the most fundamental of all of the services provided
by the distributed system” [Needham and Herbert 82]. In their environment, for instance, the name
service operation is crucial for booting other services dnd for allowing a machine to discover its own
address. When responding to service lookups, the name server indicates the protocol associated with
the service, as well as the machine on which the service runs; however, the name server does not
guarantee that the service is currently available. To achieve high reliability, the name server program,
along with an initial name tabie, is stored in the read-only memory of a dedicated machine.

2.1.9 COSIE Name Server

The COSIE Nanie Server, designed and developed for use in a distributed office system [Terry 82,
maintains a database of named attributes for an object. In order to support many different clients.
the name server provides a very simple set of operations and places no restrictions on the syntax or
semantics of the names it stores. It manages group names as well as individual names; group names
have been used for lists of teleconferencing participants, mail distribution lists, generic services, and
even to keep track of the users of a shared object (an alternative to reference counts).
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f 2.1.10 R* Catalog Manager RS
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U
i The catalog manager for R*, a distributed database management system developed at the IBM LAY
P San Jose Research Lab, maintains information used in distributed query processing. In addition ro—
to mapping names to the locations of database objects, it provides information about the objects R
such as the available access paths, their data schemas, the authorized users, and usage statistics. ~_:.r'_:
An object’s system wide name has four components, “user@user-site.object-name@object-site”. The A
“user@user-site” component permits different users to select object names that do not conflict, while ;-:':
the “object-site” component partitions the authority over objects. Name completion rules allow parts (.“{‘:i

B

of the name to be left unspecified by database applications.

2.2 Structural Components

A general model has evolved for building name services in which a set of active entities called =
name servers share the responsitility for providing the service, while clients access the service through =,
name agents. TP

2.2.1 Servers : :fii

Each name server manages part of the name space and runs on a single computer; interactions Cm e
with other servers and clients transpire via the communication network. 'n the case of a centralized
service, a single name server manages the complete name service database. Although several existing i
name services are provided in a centralized fashion [Harrenstien and White 82| [Harrenstien et al. 82 SRS
[Solomon et al. 82| [Terry 82|, there is little argument. that name services to support large and diverse oL
computing environments should themselves be organized as distributed systems [Clark 82]. RS
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b In a distributed name service, several name servers collectively manage the name space and ‘
support the basic set of operations. Generally, the name servers act as peers in that they all play -

an identical role in the systemn. That is, the function of the service is not partitioned among servers:

the control and data are simply decentralized. All name servers present a common interface and G

accept operation requests from any client, though the contacted name server may not contain enough o

information to process the operation locally. Grapevine. the clearinghouse, and the Domain Name L

® System are all organized in this manner. GeR

Differing attitudes exist as to whether the name service should use dedicated machines or run on
hosts along with other services and clients. For instance, the CSNET Name Server is a dedicated
host, and the Grapevine system runs on a collection of dedicated machines. On the other hand,

the R* distributed data management system, including its catalog management component, executes
on all hosts. The V-System, developed at Stanford University, adopted a policy where each server =]
® for a class of objects provides the name service for those objects; thus several object-specific name

servers might reside on a workstation [Cheriton and Mann 84|. The Cronus Distributed Operating ~
System also requires a name server on every machine, but for availability reasons; the designers argue =l
that “it should be possible to access an object wher. the site that stores the object is accessible”
1 [Hoffman et al. 83|.

[' 2.2.2 Agents
Clients of the name s~rvice prefer to be unaware of its distributed nature, and hence interact e
with name agents that assume responsibility for communicating with remote name servers. Namie o
agents thus act as intermediaries between name servers and their clients, allowing client programs to
be written as if the name service were locally available. 2 ol
e . . . .
The notion of a name agent has been provided in several systems under various names. =
=
®

R T . .
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The Grapevine system has similar components called “GrapevineUser” [Birrell 83]. the COSIE

Name Server calls them “user interfaces” [Terry 82|, the DARPA Internet Domain Name system

has “resolvers” [Mockapetris 83a, the CSNET Name Server uses “name server agent programs’

[Solomon et al. 82], one proposal calls for “application interface processes” [Su 82|, and the clraring- ®
house requires “stub clearinghouses” to be resident in every client [Oppen and Dalal 83].

P

In cases where a name server and its clients reside on the same machine, as would arise with policies
that require a server on every host, the clients’ name agents might be unnecessary. However, besides
speaking the proper communication protocols, name agents may perform additional functions such
as maintaining a detailed kaowledge of the name space and of existing name servers. One proposal ®
suggests using name agents to negotiate for resource availability and compatibility once a resource
manager is located through the name service [Su 82|. Chapter 7 addresses the issues of caching the
results of recent name service queries within name agents.

o

gy
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The interface provided by a name agent to its clients may mimic the interface provided by the
name servers, or may be tailored to a particular application. “Value-added” services provided by

the name agent, such as caching or resource negoiiation. undoubtedly require interfaces to new ®
operations.

’: Each name service client most likely utilizes a single name agent. However, each name agent

Eg:-’ may either serve a single client or be shared by different clients in the same locale. These two

= organizational choices are depicted in Figures 2.1 and 2.2.

If the name agent is structured as a set of subroutines that are simply linked into the client ®
program, then each client has a private name agent. On the other hand, a name agent that is shared
among clients may be incorporated into the operating system kernel, with system calls used to invoke
name service operations, or may exist as a separate process and be accessed via an interprocess com-
muvication (IPC) mechanism. For example, the initial BIND name agent, a domain name resolver,
was implemented as a set of C language ibrary routines [Terry et al. 84); current efforts are under-
way to migrate the resolver to a separate UNIX process so that a shared cache can be maintained by ®
the name agent.

2.3 Functional Components

A name service can be functionally decomposed into three components: communication, database )
management, and name management. A name service must be able to store data reliably and com-
municate among servers aud between servers and agents. Name management builds upon database
and communication technology to allow the distributed name service database to be queried and
modified.

2.3.1 Communication

Name servers and name agents reside on various machines distributed throughout the environ-
ment and hence must rely on a communication protocol for their interaction. The usual three styles
of communication exist for the server/agent and ser-er/server protocol: using self-contained data-
grams for exchanging data, establishing virtual circuits to transmit byte-streams, or employing remote PY
procedure calls to invoke remote operations in a similar manner to local ones. Selecting the proper
protocol involves weighing the cost of the protocols against the benefits they provide. For instance.
datagrams are generally unreliable, though less expensive than virtual circuits, which provide re-
liable data transmission. Remote procedure calls are conceptually simple to use because of their
resemblance to local procedure calls; nevertheless, the request-response paradigm enforced by remote
precedure calls may not always be desirable. ®

In practice, different protocols may be desired for different modes of communication taking place
between name servers and agents. For example, reliable communication may be unnecessary for
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Figure 2.2: Shared name agents.

Lines represent loosely coupled interfaces while common edges represent tightly coupled interfaces.
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invéking name service operations since they can be easily made idempotent, allowing the operations
to simply be retried in case of communication failure. However, critical communication, such as the
exchange of authoritative data between servers, should be reliable.

Grapevine [Birrell 83] and R* [Lindsay ¢t al. 84] use byte stream protocols for communication so
that the cost of authenticating communicants can be completely incurred at connection establishm .
The DARPA Internet, on the other hand, has traditionally used datagrams for invoking name service
operations [Harrenstien 77| [Postel 79]. The Domain Name System, however, specifies that a virtual
circuit should be established if the name service response is too large to fit in a single datagram
[Mockapetris 83b]. It also uses virtual circuits for reliably propagating updates to replicated data.
To accommodate a diversity of clients, the CSNET Name Server accepts queries in a variety of forms,
including electronic messages [Solomon et al. 82].

2.3.2 Database management

Oune of the major responsibilities of a name service deals with managing the name service database
of objects' attributes. A lot of work has been done by the database community in developing tech-
niques for query processing, concurrency control, and transaction managemen: [Gray 78|. However.
surprisingly enough, the COSIE Name Server [Terry 82] is the only one of the services discussed in
this caapter that uses a general purpose database management system to store its information (aside
from data dictionariez); perhaps because database management systems have reputations for being
big and slow, perhaps because complex query languages are not needed to support the simple name
service operations, perhaps because name services have very simple data schemas.

Althovh database transactions [Lampson 81] are useful for implementing atomic name service
operations, reliable data storage may not always be necessary. For example, the COSIE Name Server
[Terry 82] makes a distinction between temporary and permanent objects. Updates to attributes of
permanent objects use the underlying database management system, while temporary object infor-
mation is placed in the in-core buffer pool, but never committed to the resident database. Registering
temporary objects is thus faster than registering permanent objects since a database transaction is
not required. Registering objects as temporary is useful for processes that rendezvous through the
name server or for distributed programs t-at are being debugged. In both cases, the permanence
of the information is neither required, nor desired. For example, programs that are being debugged
often fail in ways that prevent them from unregistering themselves with the name service; if registered
as temporary, the information associated with these programs is automitically purged from the name
service database when its buffer storage is reused.

Severed beumiques for maraging seplested dats in & Jistelbuted sompating environdienl howe
been proposed and thoroughly discussed in the literature. Bruce Lindsay et al. [Lindsay ct al. 79|
and Elmar Holler [Holler 81] provide good overviews of these techniques. These general algcrithms
for maintaining consistent copies of replicated data can be adopted for the distributed rnanage-
ment of name service information. However, they assume no knowledge about the semantics of the
data being managed. Researchers at Carnegie Mellon University developed a special algorithm for
replicated directories based on Gifford’s weighted voting [Gifford 79| that takes advantage of the
properties of name directories to achieve high availability and performance [Daniels and Spector 83|
(Bloch et al. 84]. Basically, they achieve higher concurrency by dynamically partitioning the set of
names stored in a directory and maintaining a version number for each partirion.

Also, general replica‘ed data algorithms, such as weighted voting, almcst cXciusively “coisider
strong consistency to be important. The designers of the Grapevine system argue that name service
clients can cope with temporary inconsistencies. Much of the work in the design of the Grapevine
registration service was in designing an algorithm for replicated data that exploits the semantics of
registration data [Birrell et al. 82] |Schroeder et al. 84]. The Grapevine system has a weak notion
of consistency among the various replicatcd copies of a registry. Availability is enhanced by allowing
updates to a registry to be performed at any site and then propagated to all other storage sites. The
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only guarantee is that all of the copies will eventually converge to a consistent state. Active and
deleted sublists of entries, as well as timestamps, must be maintained in order to merge copies that
have been simultaneously up.'ated. However, conflicting simultaneous updates are not guaranteed
to be resolvable. Greg Thiel developed similar algorithms for merging replicated database catalogs

Gy AAAAA

G that have beer independently updated during a network partition [Thiel 83]. Again, the goal was to
{:": improve update availability by reducing the consistency requirements.

> Lastly, many algorithms for replicated data assume that all data storage sites are always able
:: to communicate with each other. However, for dialup networks with very loose topologies, such as

UUCP |Nowitz 78] c: CSNET's PhonelNet (Comer 83, servers may caly be able to exchange updates
at limited times. For this reason, the BIND Server uses > primary update scheme in which the
responsibility for requesting updates lies with the secondary servers [Terry et al. 84]. For simplicity,
all updates are directed to a primary server, whic®. transfers incremertal updates to secondary servers
upon request. The restriction that updates get directed to a single server eliminates the need for
metge algorithms, but reduces update availability and concurrency.
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2.3.3 Name management
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Several schemes for naming objects have been proposed, though few of the propoeals have ad-
dressed the issues of distributed name management. The major aspects of name managemeit include
name distrsdution, the assignment of authority for parts of the name space to various name servers,
and name resolution, the mechanivm for locating the attributes of a specific object given its name.
Generally, the structure of name= influences the way in which they are resolved and distributed.
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Many naming mechanisrus trivialize’ name management by utilizing centralized nane services.
Others, such as the Pup name service [Boggs 83] or the Mininet system [Livesey 79), fully replicate
the name service information in all servers; name resolution is thus unnecessary since 22y name server
is able to respond to any lookup request.

A T A W . - e ]

Some proposals allow the name service database to be partitioned and distributed, but rely on
broadcast or searches of name servers to find information. Such a protocol for locating resources in
the DARPA Internet has been recently proposed [Accetta 83]. Often, the name service database is
distributed such that each name server manages local objects. References to local objects can then
be resolved by consulting the local name server; resolution of names for nonlocal objects resorts to
using broadcast [Janson et al. 83] (Lyngbaek and McLeod 82] (Gelernter 34]. Bremer and Drobnik
2 carry this a step further and suggest a scheme in which the environment is divided into regions
1 where regional directories maintain name-to-address mappings for all objects residing in their region
[Bremer and Drobaik 79]. Name resolution proceeds ir three steps: the local name server, which
.. may contain incomplete informaticn, is consulted; if the desired name is not found, then a regional
3 server is contacted; if that is unsuccessful, then a request is broadcast to all other regions. '

T L Ty Y PN

To avoid broadcast but permit distributed data, many systems incorporate an object’s net- ol
work location into its name and adopt the policy that a local name server manages local objects
(Lyngbaek and McLeod 82| [Chou et al. 83] [Cheng 84] [Curtis and Wittie 84b]. These location-
dependent names, of the form “local-name@machine”, carry with them the information necessary .
for name resolution. Mail systems, including those used in the DARPA Internet and CSNET, have "
traditionally accepted such names for identifying mail recipients. RSEXEC, perhaps the first attempt .
ie creaie a network-wide name space for objects other than mailboxes, used this approach to refer .I
to filess on TENEX machines scattered around the ARPANET [Thomas 73)|.

The R* system requires =ach catalog manager to maintain information about all locally stored
objects and all objects that were created locally [Lindsay 80]. Names are of the form, “object-
nameQobject-site”, where the “object-site” represents the birthsite of the object, not its storage R
site. These might be called authority-dependent names since an object is allowed to migrate to other .
sites, but its birthsite remains the authority for the object. The birthsite must track the object’s .!
movements so that its name can be resolved. Debra Deutsch also proposed using birthplaces as a g
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means for distributing and locating information about mail recipients [Deutsch 79|. 1

The V-system also uses authority-dependent names, but manages them in a slightly different man- b'::i

ner: each server for a class of objects mauages the names for those ohjects [Cheriton and Mann 84]. t_':

e In order to allow a uniform way for interpreting object names, all names are prefixed by the server ey
identifier. Names of the form “server.object-name” are resolved by first contacting a local “context

prciix server” that indicates where to forward the resolution request; different servers can resolve the At

“object-name” in different ways, though many use hierarchical name spaces with nested contexts. -f:

Systems, such as Grapevine or the Domain Naming System, use location-inlependent names,

R

» sonetimes called domain names or organizationally-partitioned names. In these systems, an object’s
name is only indirectly associated with the sesver or servers that manage information about the

object. =

S

In the Grapevine system [Birrell et al. 82|, registries represent the granularity for partitioning

and replication of the registration data; that is, a registry is treated as an indivisible unit when it +

[

comes to storage site selection. Registries can be replicated in several servers, and a given server may
L manage more than one registry. A special registry, which is replicated in every registration server,
enables any Grapevine sexver to determine which servers contain the database entries for a particular
registry. Since object names explicitly contain the registry in which the object resides, all name
lookups require two steps: first the authorities for the name's registry are discovered, then one of
them is contacted. Clearinghouse’s distributed lookup algorithm is basically the same as Grapevine's
except tlat name resolution takes place in three steps since clearinghouse names have three parts
™ instead of two [Oppen and Dalal 83].
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The Domain Naming System [Mockapetris 83a] [Mockapetris 83b| partitions the name space into
“zones”. A zone can be specified by the domrain name of its root and the names of its endpoints. If
an endpoint of a zone is not a leaf node, ther. that node serves as the root of another zone. Zones
represent the administrative divisions within the name space. For example, Figure 2.3 indicates a
couple of zones that might exist on the Berkeley campus. As with Grapevine registries, zones are
) indivisible units c{ storage, and a many-to-many mapping may exist between zones and name servers.
Thus, the boundaries between zones indicate possible delegations of authority. The Domain Naming
System resolves names a label at a time starting at the root and traversing down the branches of the
tree. The resolution of a name migrates from server to server in accordance with the delegations of
authority until all labels of the name have been ecamined. As an optimization, if a server receives a

name lookup request for a name that is in one of its zones or a zone that it has delegated authority
L to, the resolution of the name need not start at the root of the tree, but rather can start at the root
of a zone in which the domain name of the root is a prefix of the name being resolved.

The Cronus [Hoffman et al. 83] and LOCUS [Popek et al. 81] [Walker et al. 83| distributed op-
erating systems also support tree-structured symbolic object names. LOCUS has the notion of “file

-
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groups” that correspond to zoncs; it maintains a network-wide “mount” table for resolving names.
The Cronus designers adopted a policy in which a “dispersal cut” is made through the name space ]
» such that the “root portion” is fully replicated at all sites, and ~ntire subtrees below the cut are .

stored within a single site. In other words, the entire name space above the cut is a single zone, and
subtrees below the cut represent individual zones, as depicted in Figure 2.4. This enables names to
be resolved by contacting at most two name servers.

2.4 Performance Issucs .
The existin, work on pame services stresses functionality, while performance considerations have :‘_
remained of secondary importance in most work to date. .
.
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2.4.1 Models

Performance models of name services have been noticeably lacking. Typically, the name service
designers or administrators distribute the name space among servers according to their intuition or
experienced observations of tke environment rather than modeling various alternatives. The few
recent attempts to analyze distributed name management schemes have been concerned with very
simple strategies.

Yen-Yi Wu studied file directory systems for locating files in networks with either loop or star
configurations {Wu 83|. The directory schemes conside ‘ed include centralized directory data, fully
replicated directory data, and some hybrid schemes bas:d on localized authority and searches. Wu's
model allor ed expected query response tirses for the virious directory schemes and network config-
urations to be computed.

The only known paper that discusses the performance of name services in an internet environ-
ment proposes having regional name servers manage a two-part name space in a hierarchical fashion
[Chou et al. 83]. All regional servers store complete information about objects in their local network:
updates are propagated by broadcasts. Chou et al. introduced a network communication model,
which was used in simulations to analyze the cost of this proposed distributed update scheme for
high transmission error rates.

2.4.2 Measurements

Measurements of distributed computer systems invariably provide needed insights into their op-
eration and suggest ways of improving their performance. Of the name services discussed in this
chapter, only the Grapevine system manages a partitioned and replicated name space with a large
user community. Other emerging name scrvices, such as the DARPA Domain Name system, should
benefit from experiences with Grapevine. As the Grapevine designers put it, “There is no alterna-
tive to a substantial user community when investigating how the design performs under heavy load
and incremental expaasion™ [Birrell et al. 82]. Some measurements and experiences with Grapevine
have been recounted concerning the administration and reliability of the system [Birrell et al. 82]
[Schroeder et al. 84|; ro work has been identified in which measurements were obtained to aid in
configuring name services.

2.4.3 Caching

A couple of present-day name services, Grapevine and the R* catalog manager, employ caches
to improve the performance of name service lookups. Grapevine message servers cache hints about
individuals’ ; referred inbox sites; out-of-date cache entries are easily detected when servers attempt
to deliver a message to a moved or deleted mailbax [Birrell et al. 82]. R* database sites use locally
cached catalog entries in distributed query planning; when the formulated plan is distributed to the
sites involved, version numbers for the catalog entries on which the plan is based can be compared
against the current catalog entries to determine the validity of the plan [Lindsay 80]. Other systems
have suggested the use of caches, but concrete designs have yet to emerge.

2.5 Evaluation of Previous Work

Significant work has been done in the area of communication protocols for accessing name services
and in the area of database management systemx for storing object attributes. The currently unre-
solved problems in designing name services concern how to manage large distributed name spaces.

Contemporary name services are emerging in which the attribute information is both distributed
and partitioned. These planned or existing systems make substantial contributions to the general
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techniques needed to build distributed name sezvices. Nevertheless, all of the existing designs fail to
adequately address some of the problems outlined in Section 1.3 for very large and diverse cornputing
environments:

o Name resolution: All name services are able to resolve unambiguous object names in one way

or another. In existing name services that do not rely on broadcast, the process of resolving
names is driven by a name’s syntactic structure and dependent on how names are distributed
among name servers. Name resolution always proceeds by successively resolving individual
labels of a name. Unfortunately, existing name services’ reliance on syntactic structure in order
to locate an object or its attributes place constraints on the management of the name space;
these constraints prevent solutions for some of the other principal problems from being realized.
As an extremue example, location-dependent names restrict the mobility of an object once a
name has been assigned. Changing the name of an object is an expensive operation since all of
the references to the named object become invalid; hence, object names are generally considered
permanent. Location-dependent names force objects to change their names in order to relocate.

Administrative control: Even authority-dependent and existing location-independent naming
schemes provide less than perfect administrative contrnl over the placement of an object’s
attributes. All current name services distribute the authority for names to various servers
based on the structure and contents of the name; syntactically similar names, for some similarity
criteria, have the same authorities. For example, in the Grapevine system, all of the names
belonging to a particular registry have the same set of authoritative name servers; in the Domain
Naming System, a name’s zone determines its authorities. Because of the syntactic distribution
of names in existing systems, the assignment of a name to a new object is partially governed by
an organization’s concerns for the name servers that store the object’s attributes. Changing an
objeci’r name servers requires changing its name or assigning new name servers for all objects
in the same syntactic partition of the name space.

Ovethead costs: Name management schemes in which the entire database is maintained by
a single name server place an unreasonable load on the server, when it is used in large envi-
ronments, due to the storage requirements and the frequency of updates. A few exisiing name
services are able to successfully manage large numbers of objects by partitioning the name space
among many servers. A potential difficulty arises, however, for naming conventions with a fixed
number of levels. Grapevine, for example, with its two-part name space, requires all servers to
know about all registries; truly enormous computing communities would require a significant
number of registries. The clearinghouse and R* catalog manager face similar problems.

A lack of scalability also represents a major failing of systems that rely on broadcasting name
resolutio:l requests to all name servers. Although David Boggs claims that any network should
provide broadcast mechanisms [Boggs 83|, the cost of such mechanisms for large internetwork
environments renders full broadcasts infeasible.

Adaptation: The inability to adapt to growing communities with changing requirements is the
main deficiency of traditional name management techniques. Existing name services, whose
basic mechanisms have such a strong reliance on the syntactic structure cf the name space, may
lack the flexibility to scale up to very large environments. At best, the system administrators
that configure the name service initially must carefully partition the name space according to
the projected growth of the environment so that no partition becomes unmanageably large.
Name services should be able to be reconfigured if the present servers become overwcrked or
overburdened with data. With current services, reconfiguration occasionally requires objects to
change their names because the name space is distributed among servers according to syntactic
partitions. As an example of a lack of flexibility, as a Grapevine registry grows over time,
no provisions can be made for dividing its data between different name servers. At least cne
Grapevine registry has already been split, causing some of its members to be renamed.

Performance: As indicated earlier, very few studies have attempted to measure or predict the
performance of name service operations. Within the framework of most name services, decisions
must be made concerning how to distribute and replicate parts of the rame space; these decisions
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D drastically affect the response times for name service lookups or updates. The Grapevine %
g designers have provided some suggestions based on their experiences, but measurement and .
1 modeling tools are really needed to aid in configuring large name services. The utility of .:
-~ techniques such as caching and data replication can only be determined once the operation of !
Saa a narue service is fully understond, including clients’ referencing behavior. \
v , w
- The DARPA Internet’'s Domain Naming System seems to come the closest to handling very large and :
\ diverse computing environments, though it has yet to become fully operational. This dissertation i
adopts many of the architectural properties of such a service, but develops a more flexible approach t
to name management: structure-free name management breaks the strong ties between the structure o|
\ of names and their management. f
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Chapter 3

Name Distribution

A basic architecture for distributed name services provides the framework in which
to explore the problems of managing large name spaces. Facilities for internetwork com-
munication and for maintaining replicated and distributed copies of data serve as the
foundation for building distributed name management mechanisms. Structure-free name
distribution, achieved by introducing a special attribute that indicates each object’s re-
sponsible name servers, permits more flexible assignments of authority than those based
on the name structure.

3.1 Foundations

3.1.1 A Layered Architecture

This dissertation develops an architecture for building distributed name services, including inech-
anizmna for distributing, resolving, and caching names. As in current name service designs, several
name servers collectively manage the name space and support the basic set of operations. The facil-
ities required of each name server can be organized in layers as depicted in Figure 3.1. Subsequent
sections describe each of these layers in more detail as well as the interactions between layers.

Segments of programs to implement the name management mechanisms are provided in places in
order to make the architecture concrete and present guidelines for future implementors of distributed
name services. The programs are written to be easily understandable, not to be efficient or complete
implementations. The casual reader concerned with simply understanding the concepts presented
should bte able to skip the program segments; though they often help to clarify the discussion.

All of the program examples are presented in the Mesa programming language [Mitchell et al. 79].
The intent is that the reader need not be familiar with Mesa in particular; familiarity with constructs
common in block-structured languages should suffice for understanding the examples. Explanations
of unconventional or esoteric language facilities are given in the footnotes.

3.1.2 Communication Support

The examples presented throughout this dissertation utilize a hypothetical remote procedure call
mechanism that allows procedures to be executed reliably on remote machines. Its use requires
adding a new NETADDRESS data type to the programming language, which is the internet address of
the host on which the called procedure i3 to be executed. and a new primitive, AT , which binds the
call to a particular address. For instance,
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name service operations

name resolution

replicated data

communication database

NSNS s e F LY TR S

Figure 3.1: Functional layers in a name server.

address: NETADDRESS;

result — Module.Procedure{args| AT address;

invokes the given procedure of the giver: module at the specified host address and waits for the result
to be returned. This assumes an internetwork environment with a global address space from which
values of type NETADDRESS can be drawn.

The use of the AT operator is introduced to explicitly indicate the interactions bet~een programs
running on separate machines. Such a facility does not actuaily exist in the Mesa programming
language. Nor would a real remote procedure call mechanism be incorporated into the language
in this manner since remote procedure calls are generally intended to look identical to local proce-
dure calls with the bindings between servers and clients being performed by the runtime package
(Birrell and Neison 84].

Remote procedure calls were selected so that the semantics of the communication can be presented
in an easily understandable way without being concerned with the details of a particular commuani-
cation protocol or package. Furthermore, the details of packing operations, their parameters, and
their results into messages can be ignored.

h
i
.
o
3
.

|

3.1.3 Database Support

The name service database, containing attributes for the universe of named objects, is distributed
and replicated among the name servers. A given attribute may be managed by one or more name
servers. However, for simplicity, all of the attributes belonging to a given object should be main-
tained together. That is, if a name server stores one attribute for a named object, then it stores all
attributes for that object. The name servers that store information about a particular object, and
assume responsibility for reliably managing that information, are called the naming authorities or
authoritative name servers for that object.
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P Database: DEFINITIONS IMPORTS NS = BEGIN

] AttributeTuple: TYPE = RECORD|
name: NS.Name,

attribute: NS.AttributeType,

value: NS.Attribute Value

I
E
» |

v

| DatabaseObject: TYPE = LIST OF AttributeTuple; oy
Query: PROCEDURE[db: DatabaseObject, name: NS.Name, attribute: ~
NS.AttributeType| RETURNS[AttributeTuple];

o )

AddTuple: PROCEDURE[db: DatabaseObject, tuple: AttributeTuple};

DeleteTuple: PROCEDURE[db: DatabaseObject, tuple: AttributeTuple};

T e d

Lo AL A

ModlfyTuple: PROCEDURE(db: DatabaseObject, tuple: AttributeTuple|;

e 2
v

TuplelD: TYPE ; -- opaque type

Enumerate: PROCEDURE[db: DatabaseObject, next: TuplelD)|
RETURNS|tuple: AttributeTuple, next: TupleID];

END.
g
u"_:
Figure 3.2: Database interface. e
o 3.1.3.1 Local database management i

» ¥
v
Ay

Each name server uses a database management system to store a set of attribute tuples, each
consisting of an object’s fully qualified name along with an attribute type and value. Attribute
tuples are maintained by the database management system in special database objects. Figure 3.2
presents the interface for the Database module that provides facilities for storing and retrieving
P attribute tuples!.

-
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The Query operation retrieves the attribute tuple with a given name and type from the specified
database object. An attribute type of “ANY” may be given. indicating that any attribute for the
named object may be returned. AddTuple inserts the given tuple into the database object. while
Delete Tuple removes a tuple from the database object. ModifyTuple performs an atomic update to
a database attribute tuple; that is, it looks for a tuple whose name and type matches the parameter
o tuple and replaces its value. Finally, Enumerate allows the contents of a database object to be
retrieved a tuple at a time; a parameter indicating the next tuple to return may be given as NIL to
start the enumeration.
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Protection of database objects, that is, the right to change existing attributes or add new attributes

to an object, is enforced by the underlying database management system. The database interface .

e ! This module makes explicit use of type declarations from the name server interface, NS, presented later in Figure 3.4. =
The list of construct is actually an extension to Mesa present in the Cedar programming language. h
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Replicated: DEFINITIONS IMPORTS NS, Database = BEGIN
OPEN Database;

StorageSites: TYPE = LIST OF NETADDRESS;
Query: PROCEDURE|sites: StorageSites, db: DatabaseObject,

name: NS.Name, attribute: NS.AttributeType]
RETURNS|AttributeTuple;

AT T T A TN RN

TR
i

AddTuple: PROCEDURE(sites: StorageSites, db: DatabaseObject,
tuple: AttributeTuple];

DeleteTuple: PROCEDURE(sites: StorageSites, db: DatabaseQbject,
tuple: AttributeTuple;

ModifyT.sle: PROCEDURE(sites: StorageSites, db: DatabaseObject,
tuple: AttributeTuple;

Enumerate: PROCEDURE|sites: StorageSites, db: DatabaseObject,
next: TupleID] RETURNS[tuple: AttributeTuple, next: TupleID|;
END.

Figure 3.3: Replicated data interface.

presented is oversimplified in that it does not show the parameters needed for protection, error
handling, and transaction management. Although these are important issues being tackled by the
database research community, they are not discussed in this dissertation. 7Y

Generally, a database management system resides on the same machine as each name server.
However, the database support could come from separate database machines accessed via the remote
procedure call protocol, as long as they support the Database interface.

3.1.3.2 Replicated data ®

An object with several authoritative name servers has its attributes replicated among those servers.
Name service operations thus require the participation of possibly several machines in order to read
or update replicated database tuples. Complete up-to-date copies of the cbject’s attributes could be
stored by all authorities, necessitating a Read-any/Write-all algorithm for replicated data. Alter-
natively, a more elaborate scheme, such as weighted voting [Gifford 79], could be used to maintain °
consistent replicas.
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Rather than attempting to choose a particular algorithm for maintaining consistency among repli-
cated database objects, this dissertation presumes the existence of a Replicated module providing
the interface given in Figure 3.3. The operations allowed on replicated database objects are iden-
tical to those provided by single-site database managers. The replicated operations merely take an
additional parameter indicating the storage sites of all copies.

Using a Read-any/Write-all scheme. the replicated query routine would simply be
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" Query: PROCEDURE[sites: StorageSites, db: DatabaseObject,
name: NS.Name, attribute: NS.AttributeType]
RETURNS(AttributeTuple] = BEGIN
o address NETADDRESS — SelectSite(sites];
Database.Query[db, name, attribute] AT address;
END;

The choice of a particular server to direct the operation to, as embodied in SelectSite, should be
based on some criteria such as cost, closeness, or availability. Choosing randomly from the list of

& storage sites has the nice property that no knowledge of other servers is required. Nevertheless, as
demonstrated in Chapter 5, subatantial performance benefits can be obtained if the server is selected
intelligently. Thus, servers may wish to know what fellow servers are currently operationai, how
expensive cross communication is, and how busy other servers are. A name server could acquire such
information by exchanging status information with other servers or by consulting local routing tables
to determine how close servers are to one another.

As another example of an instantiation of the replicated data module, consider a weighted voting
scheme. Using the CollectReadQuorum, Collect WriteQuorum, and SelectFastestCurren-
tRepresentative routines from Dave Gifford’s prototype implementation [Gifford 79}, the operations
to retrieve and modify a database attribute tuple could be implemented as follows:

) Quorum: TYPE = StorageSites;

Query: PROCEDURE[sites: StorageSites, db: DatabaseObject,
name: NS.Name, attribute: NS AttributeType]
RETURNS|AttributeTuple] = BEGIN
readq: Quorum ~ Collect ReadQuorum|sites];
best: NETADDRESS « SelectFastestCurrentRepresentative[readq];
Database.Query|db, name, attribute| AT best;
END;

ModifyTuple: PROCEDURE[sites: StorageSites, db: DatabaseObject,
tuple: AttributeTuple] = BEGIN
writeq: Quorum «~ Collect WriteQuorum |sites|;
WHILE writeq # NILDO
Database.Modify Tuple[db, tuple| AT writeq.first;
writeq «— writeq.rest:
ENDLOOP;
END;

Notice that the query routine is similar to that of the previous approach, except the selection of a site
from which to retrieve the desired data is confined to those sites belonging to the read quorum with
up-to-date copies; the database management system must maintain version numbers for the data so
that current representatives can be determined.

3.2 Structure-free Name Distribution

3.2.1 Assigning authority

For large computing environments, not all name servers can be authoritative for all objects: the
authority for objects must be divided among servers according to administrative concerns. The
various organizations sharing a common name space desire flexibility in configuring the distributed
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name service, that is, choosing the authorities for an object. This dissertation proposes structure-free
name distribution, which places no restrictions on the administrative control over parts of the name
space. In particular, the owner of an object may choose its authoritative name servers, subject to
administrative constraints, independent of the object’s name.

-

e
a

This differs from existing name services, which distribute names to authoritative servers based on
syntactic characteristics of the names, as described in Chapter 2. Syntactic distribution of the name
space generally fails to satisfy the desires for strong administrative control and graceful growth.
Recall that, with location-dependent and authority-dependent names, an object’s authority is di-
rectly represented in its name so that changing the authority requires changing the object’s name, a
prohibitively expensive operation.

Systems that use location-independent names assign authority based on zones; what zone an
object’s name belongs to, based on syntactic characteristics of the name, determines the object’s au-
thorities. Structure-free name distribution can be considered a scheme in which each object belongs
to its own zone. This permits maximum flexibility in the administrative assignment (and reassign.
ment) of authority. It also simplifics name management since name servers need not agree on what
zones make up the name space.
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3.2.2 Authority Attributes

In order to resolve names in a distributed environment, the name service must be able to determine
the authoritative name servers for every named object. This can be accomplishe] by maintaining
configuration dats that contains lists of the authoritative name servers for every object. Such data
is stored in the name server database as attribute tuples of type “Authorities™:

.:i

S

ServerName: TYPE = Name; ;_;
o

AuthorityList: TYPE = LIST OF ServerName; i

;

-~ Attribute Type = “Authorities” -- :‘i
AuthoritiesData: TYPE = AuthorityList; o
Essentially, an object's naming authorities are attributes of that object, though these attributes are o -
treated specially since they are used solely by the name service; authority attribute tuples are not ‘:
stored with the rest of an object’s attributes.
Conceptually, authority attributes comprise the configuration database used for name resolution, ‘:.

: : ol
configurationDB: Database.DatabaseQObject;
Assuming all name servers store the complete set of configuration data, name resolution involves a |
single database query, -
Resolve: PROCEDURE|name| RETURNS[{AuthorityList] = BEGIN .!
authorities: AuthoritiesData; =

tuple: Database.AttributeTuple; -1

tuple — Database.Query|configurationDB. name,*Authorities™]; K
authorities — LOOPHOLE tuple.value, AuthoritiesDatal?:

END; =

ok
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However, for very large and diverse environments, the configuration database is undoubtedly too
cumbersome to be stored everywhere in its entirety. The next chapter introduces means to reduce
the amount of storage required in each name server for configuration data and the amount of update
activity required to add new name servers or named objects to the environment.

T
. _\';
3.3 Distributed Operations o
ENS
3.3.1 Basic ateps o
Performing a name service operation on the attributes of an object involves first determining o,
and locating authoritative name servers for the named object, and then accessing the appropriate ::-:
attribute tuples. Specifically, these distributed operations consist of several steps: Al
LSRN
1. Determine the authoritative name servers for the object; *+]

2. Get the internet addresses of the authoritative servers; B
3. Select the authorities necessary to perform the operation; e
4. Perform the appropriate database operations at the machines on which the selected zervers run; ':-:::
5. Return the result, if any, to the calling client. -!.'

The first step, name resolution, uses the authority attributes stored in the configuration database.
The second step requires additional configuration data, as described in the next section. The seman-
tics of a  ticular name server operation are embodied in the last three steps. The third and fourth
steps ma e of the replicated data facilities to query or update the name service database. Note
that the sel. .tion of authorities in step three depends strongly on the replication algorithm employed.
The last step simply returns the result of the operation as specified in the name service interface.

3.3.2 Locating name servers
Name servers, like all other objects, may exist anywhere in the network and, hence, must be

located before they can be accessed. The main attribute maintained about a name server is its
internet address,

-« Attribute Type = “InternetAddress” -- o

InternetAddressData: TYPE = NETA::DRESS; L
While name agents only need to discover the location of a single name server in order to utilize
the name service, name servers should be able to locate other servers without resorting to global u
broadcast. Assume, for now, the number of servers is small enough that a database of server addresses -

can be feasibly stored at all servers:

serverDB: Database.DatabaseObject: N

l.'.i

This database is part of the overall configuration database. !
With a local database of server addresses, the procedure to locate servers is a simple database A
query: 2
e

0

IMesa's l oophole construct provides a way of anhverting its strong type-checking. The first argument of the loophole ,':'_-

is taken to be of the type given by tbe second argument. %

. . -_"-."" o "- ;»"7 < '\‘- ""» -7, "‘. RPN
OIS AP DN PNt XS AN TN IR N



?ﬁﬁj‘j"_:x* B gsf i Bt B s i T B i e il e RO, e e B L R o fop A T e B Ll e B R B i R e T LR L ey

30

LocatéServers: PROCEDURE[servers: AuthorityList]
RETURNS|Replicated.StorageSites] = BEGIN
address: NETADDRESS;
sites: Replicated.StorageSites « NIL;
tuple: Database.AttributeTuple;
WEILE servers # NIL DO
tuple — Database.Query[serverDB, servers.first, “Internet Address”|;
address — LOOPBOLE[tuple.value, NETADDRESS];
sites — CONS[address, sites]®;
SeTVers «— servers.rest;
ENDLOOP;
RETURN(sites];
END;

The requirement that the name server address database be stored at all servers in its entirety will be
relaxed in the next chapter. - ]

3.3.3 Name service interface

Given the architecture for distributed name services developed in this chapter, all name servers
present a common inte./ace and accept lookup requests for any name from any client. Since the o
emphasis of this dissertation is not on designing a complete set of name service operations, two basic
interface procedures, Lookup and Update, will suffice as sample operations in this and later chap-
ters. Keep in mind, however, that a practical name service would likely desire a more sophisticated
interface for reasons of performance and/or protection as discussed in Section 1.2.4.

Figure 3.4 presents a Mesa definitious module for the name service operations, which includes the
type declarations for names and attributes. Assuming each name server has a single local database o
object,

TR TTTTRTT [

localDB: Database.DatabaseObject;

a prototype implementation module might include: ®

Lookup: PROCEDURE[name: Name, attribute: AttributeType]

RETURNS[AttributeValue] = BEGIN
authorities: AuthorityList:
sites: Replicated.StorageSites;
tuple: Database. AttributeTuple; 9
authorities — Resolve[name]; -
sites ~— LocateServers(authorities|;
tuple — Replicated. Query[sites, localDB, name, attribute|; =
RETURN|tuple.value];
END; a

Update: PROCEDURE[op: UpdateOps. name: Name, attribute: AttributeType, o
value: AttributeValue] RETURNS|| = BEGIN
o . . . -nﬁ
authorities: AuthorityList; o
sites: Replicated.StorageSites;
authorities ~— Resolve[name];

3The cons constructor, in this procedure. adds an element to the beginning of a list. This facility is part of Cedar's

extensions to Mesa. "
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L NS: DEFINITIONS = BEGIN
Name: TYPE = STRING;
AttributeType: TYPE = STRING;
AttributeValue: TYPE = STRING;

s Lo. .up: PROCEDURE[name: Name, attribute: AttributeType]
RETURNS[AttributeValue);

UpdateOps: TYPE = {add, deiete, modify};

Update: PROCEDURE[op: UpdateOps, name: Name, attribute:
® AttributeType, value: AttributeValue] RETURNS|J;

END.

Figure 3.4: Name Service interface.

sites — LocateServers[autho-ities|;
SELECT op FROM
add =>

I® Replicated.AddTuple[sites, localDB, [nameattribute,value||;
delete =>
Replicated.DeleteTuple[sites, localDB, [name,attribute, value]|;
modify =>
Replicated.Modify Tuple[sites, localDB, [name,attribute,vz lue||;
ENDCASE ;

. END;

The five steps outlined previously are represented in these Lookup and Update implementations.
Notice that all external communication is encapsulated in the replicated data facilities.

A client’s name agent might preseni a procedure call interface identical to that of the name
service, as in Figure 3.5. A simple name agent of this sort could merely use the hypothetical remote
® procedure call mechanism to invoke name servicc operations:

mainServerAddre.s: NETADDRESS;

Lookup: PROCEDURE[pame: Name, attribute: AttributeType]
° RETURNS|AttributeValu.| = BEGIN
value: AttributeValue;
value — NS.Lookup|name, attribute] AT mainServerAddress;

RETURN[value];
END;
° Update: PROCEDURL[op: UpdateQps. name: * ae, attribute:
AttributeType, value: AttributeValue] RETURN = BEGIN
®
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N A: DEFINITIONS IMPORTS NS = BEGIN

Name: TYPE = NS.Nam«;
AttributeTypo: TYPE = NS.AttributeType;
AttributeValue: TYPE = NS.AttributeValue;

Lookup: PROCEDURE({name: Name, attribute: AttributeType]
RETURNS[AttributeValue];

>
Ly

e ing

UpdateOps: TYPE = NS.UpdateQps;

e
B

s i

Update: PROCEDURE{op: UpdateOps, name: Name, attribute:
AttributeType, value: AttributeValue] RETURNS(J;

E: END.
£
Figure 3.5. Name Agent interface.
x NS.Update[op, name, attribute, value| AT mainServerAddress;
X END;
" The address of the name server to send requests to must be obtained by means other than the name

service, such as broadcast piobes sent over a local network [B- ggs 83].

A distributed name service is provided by a collection of name servers that rely upon existing
facilities for communication and database management to manage a name space in a decentralized
fashion. This chapter present .. aa architecture for a distributed name service that allows the author-
ity for parts of the name sp:«ce to be freely divided amongst the various organizations participating in
the distributed computing eavironment. The major difference between centralized and decentralized
name management is the need to resolve names when the name space is dispersed throughout the

i)
. 3.4 Summary

environment.
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Chapter 4

Name Resolution

Structure-free name resolution, unlike existing naming mechanisms, locates the set of
authoritative servers for a named object without relying on the structure i the name
space. Names are clustered, not necessarily syntactically, into contexts according to
space and performance considerations. Name resolution proceeds by a series of context
bindings until it encounters an authorities attribute for the named object. Structure-free
name resolution permits easy reconfiguration of the service since an object’s name remains
independent from the location of its attributes or the details of its resolution. The amount
of configuratiou data maintained by a name server can be easily reduced by leugthening
the resolution chain for object names. Diflerent styles of resolution allow the mechanism
to be tailored to the division of computational power between servers and clients, as well
as to the available communication paradigms.

4.1 Name Resolution Model

4.1.1 Distributing configuration data

Name resolution denotes the process of determining the authoritative name servers for a named
object. In the name service architecture developed in this dissertation, the authorities for a named
object are stored as the value of an “Authorities” attribute tuple. The previous chapter presented a
simple model of name resolution in which the set of authorities attributes for every object, constituting
the configuration database, was maintained in its entirety at every name server. Thus, all names could
be resolved in a single step by any name server.

For environments with large numbera of ohjects. the configuration database may likely be too large
to be stored everywhere. The knowledge of authorities for various named objects must be distributed
so that no server needs complete knowledge of the configuration. The primary difficulty in resolving
a name then lies in locating tiie authority attribute tuple for an object. Several interactions between
servers may be required as the name resolution activity migrates from one name server to a potentially
more knowledgeable server until the set of authoritative servers is determined.

4.1.2 Context objects

For the purpose of name resolution, contezts provide a means of partitioning the configuration
database so that it may be distributed among servers. Contexts represent indivisible units for stor-
age and replication of configuration database tuples. A context is thus materialized as an object
containing configuration data,
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ContextObject: TYPE = LIST OF ConfigTuple;
for now, assume that tuples holding configuration data are identical to other database tuples:
ConfigTuple: TYPE = Database.AttributeTuple;
This notion will be slightly modified in the next section.
Contexts have names just like any other object known to the name service,
ContextName: TYPE = N.me;
and may be maintained at any collection of name servers, listed in an “Authorities” configuration
tuple. However, contexts differ from other objects registered with the name service in that they are
actually managed by the name service and central to its functioning. Also, The choice of particular
- names for contexts is not important since context names are only used internally within the name
& service.
E:- Since the configuration database, stored in context objects, contains no attributes for clients’ ob-
> jects, its distribution should be of no concern to clients of the name service. Thus, the decomposition
o of the configuration database into context objects and the choice of authorities for those contexts
can be done to facilitate name resolution, rather than being governed by administrative desires. The
Y next section presents criteria for this decomposition.
.,
k",
o 4.1.3 Clustering conditions for configuration tuples
} A clustering condition is an expression that allows the name space to be conveniently partitioned
. into contexts. Specifically, a clustering condition applied to a name yields either a TRUE or FALSE
E‘;‘. value:
8
J-.n
; ClusteringProc: TYPE = PROCEDURE(name: Name| RETURNS[BOOLEAN];
Any procedure that exhibits this behavior might serve as a clustering condition. The particular value
o returned, TRUE or FALSE , indicates whether or not the given name exists in the particular cluster.

L Names can be clustered algorithmically according to the value that results from applying a function
+a to them. In this case, the clustering condition is of the form “flname| = value”. For instance, a he 2
function is a well-known technique for clustering names into buckets.

More typically, clustering is done syntactically through pattern matching. Patterns are templates
against which a name is compared. They range from names that may simply contain wildcards, which
are denoted by “*” and match any sequence of characters, to regular expressions. Names matching a
particular pattern, such as names with a common prefix “prefix.*”, are considered part of the same
cluster. That is, the clustering condition, when applied to a name, returns TRUE if the name matches
the pattern.

Recent work on attribute-based naming conventions suggests a third type of clustering condition:
attribute clustering. In this case, names are grouped according to what attributes they possess. For
instance, an attribute-based name might consist of an unordered set of attribute type/value pairs of
the form “AttributeType = AttributeValue” [IFIP 84]. Each attribute of this form could serve as a
clustering condition; all names containing a particular attribute type with a particular value, such
as “Organization=U.C.Berkeley”, would belong to the same cluster.

Clustering conditions are used to assign names to contexts. That is, the authority attributes for
all names belonging to a given .luster are stored in a single context object. Section 3.2.2 portrayed a
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situation in which all names exist in a single context that is stored at all servers. Clustering conditions
may be applied to an existing context to further partition the context into smaller contexts.

e
&

ftcn, configuration attributes apply to a cluster of named objects. For instance, the names
belonging to a given context might all hav the sane authoritative name servers. Thus, configuration
| attribute tuples are redefined to contain ciustering conditions instead of fully qualified names:

Config Tuple: TYPE = RECORD|
cluster: ClusteringProc,
o attribute: NS.AttributeType,
value: NS.AttributeValue

B

Configuration tuples resemble ordinary database tuples, except they can be considered attributes for
all names satisfying the clustering condition. Note that a configuration tuple for a specific named

i) object could contain a degenerate syntactic <lustering condition that matches only the particular

t name.

]

I -
4.1.4 Context bindings and name resolution chains

Once the configuration database is partitioned into various contexts, the process of name reso- o
L lution is no longer a simple database query. When presented with a name to be resolved, a server .
might first look in local contexts for an authority atiribute for the named object; if the authority can
not be readily decermined, additional configuration data must exist locally that enables the server to
direct the resolution to another context, perhaps on a different server.

Contezt bindings, bindings between names that exist in a context and information that allows

P name resJution to proceed, direct the name resolution activity based on clustering conditions. The i
server trving to resolve a name applies a series of clustering conditions to the name until one of them .
is satisfied. Associated with each clustering condition is the name of another context in which to
look for authority attributes of names in the cluster. This information is maintained in configuration
tuples of type “ContextBinding”:

o

] -- Attribute Type = “ConteztBinding” -- |

ContextBindingData: TYPE = RECORD' .
newContext: ContextName

I g

Contexts may contain configuration tuples of types “Authorities” and “ContextBinding”.

Specifically, the algorithm for recolving names works as follows: Given a name to be resolved in
some context, the particular context is searched for either an authorities attribute “~r the named
object or a context binding containing a clustering condition that yields TRUE wnen applied to the
name; in the latter case, the name is then resolved in the new context specified by the context binding
attribute. Thus, resolving a name is a matter of successively binding names within contexts until
the authoritative name servers for the named object are discovered. That is, the name resolution
¢ mechanism traverses a resolution chain of “ContextBinding” attribute tuples until it encounters an
“Authorities” attribute.

When a name is originally presented for resolution, an initial contert must be chosen in which to
start the resolution chain:

o initialContext: ContextQbject;

-~
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)
The initial éontext must contain authority attributes or context bindings for all names in the name .
space. :
Global names result if and only if the initial context is a global one, that is, all name servers .i
share a common initial context. Relative names arise if the initial context used in name resolution 3
is not a global one, but is relative to the particular server presented with the resolution request or \
to some other implicit context. The UUCP network for sending mail presents a good example of a 3
Y, relative naming convention arising from interpreting recipient names relative to the sender’s machine :
% (Nowitz 73]. N
L ]
E‘l 4.1.35 Applying the name resolution model !
2% a
i:'\ At this point, examples of how the mode] of name resolution presented above can bec used to
“: describe existing naming conventions should help to clarify matters. The set of clustering ~onditions
“ chosen by a given naming system partitions the name space such that each name exists in 2xactly one
cluster; each cluster is stored in a separate context object. Generally, existing naming conventions
. can be characterized by the types of clustering used.
N
i:: 4.1.5.1 Syntactic clustering

Syntactic clustering allows names to be resolved in a manner similar to their structure, as is done
3 by virtually all current name management systems; simple pattern matching suffices as a clustering

: technique. That is, suppose a routine exists that takes a name and a pattern as arguments and
'E returns an indication of whether the name matches the pattern:
i Patwern: TYPE = STRING;

]
o

Matches: PROCEDURE(name: Name; pattern: Pattern] RETURNS[BOOLEAN];

F
a“
IS B 2NN 2 4

Current approaches to name management rely solely on clustering procedures consisting of a single
pattern match:

o
1«

o
-y

| J

L

PatternCP: ClusteringProc = BEGIN

x

~ RETURN{Matches{name, “some-pattern”]];
& END;
g The particular approaches can be classified according to the name structure’s effect on name resol- K
: tion:
b
’.
i-: Authority-dependent names: Names with the structure, “subname.server”, explicitly indicate
K. the authorities over parts of the name space. Technically, such a scheme requires no configuration
E“ data. Conceptually, a virtual context exists with an attribute for each server,
wr
e (Matches(name,“* server”],“Autkorities”, “server”] .

=

e A name space of this sort is said to be physicaily partitioned since a name reveals the physical storage

site of information about its referent.
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Organisationally partitioned names: A name space that is organizationally partitioned, as usec
by Grapevine [Birrell ¢¢ al. 82], allows flexible name management since the organizational autkorit-
for assigning names is explicitly recognized, but decoupled from the authoritative name servers for
those names. With such a naming scheme, the database partitions correspond to organizations rather
than n¢ me servers. With names of the form, “subname.org”, the initial context contains a context
binding tuple for each organization,

[Matches|name,“*.org"],“ContextBinding”,“org”|

while each organization maintains a context object containing authority attributes for all named
objects within that organization. An organization’s name serves as a convenient name for its context.

In Grapevine, all named objects within an organization have identical authorities, so each orga-
nization's context contains a single attribute,

Pl
.
R

-
€

¥,

[Matches[name,“*.org”|,“Authorities”,“server,, ..., servergx "]

Il

-
»

A more general name distribution scheme requires an authorities attribute for each named object.
An organization’s context object would be of the form:

org:
[Matches[name,“name,.org”],“Authorities” ,“server,y, ..., server x”

e 1 4 "&-"Vi".v -,

[Matches[name, “name.org”|,“Authorities” , “serverny, ..., servernk”|

assuming the organization contained N named objects that had K authoritative servers each.

Hlerarchical names: Organizations can themselves be partitioned into smaller clusters, resulting
in hierarchical names consisting of more than two parts. The contexts at the lowest level of the !
hierarchy contain the authority attribute tuples, while those at higher levels contain context bindings, ot
which indicate a delegation of authority for managing parts of the name space. The amount of *
configuration data that must be stored in context objects at the various levels of the hierarchy is g
proportional to the degree of branching of the name space tree. For this reason, hierarchical naming .
conventions with several levels are often well suited for naming large numbers of objects.

Consider the name space depicted structurally in Figure 4.1. The inherent structure in the name
space can be exploited by applying syntactic clustering conditions as indicated in Figure 4.2. In the
example, names are initially clustered according to their last character. Clusters that are too large to
be conveniently stored as a single context, perhaps the set of names erding in “A” in Figure 4.2, can
be further partitioned by applying additional clustering conditions. Figure 4.3 presents a complete
configuration database needed to resolve these names.

4.1.5.2 Variable syntactic clustering

Although existing name management mechanisms for hierarchical name spaces resolve names a
label at a time, as is done in Figure 4.2, syntactic clustering conditions are not restricted to matching
a single additional label in each step. That is, even using syntactic clustering, the length of the
resolution chain for various names need not correspond exactly to the number of labels in the names.
Name resolution can be tailored according to the desired response time for resolving names and the
size of contexts.
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Figure 4.1: Sample hierarchical name space.

matches "*1 A"a
.

matches "*A" :
———) iitizA \ matches " ‘2A";

matches " ‘B"a

matches " ‘C"a @
[ -]

Figure 4.2: Syntactic clustering of a hierarchical name space.
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Initial:
[Matches[name,“* A"}, “ContextBinding”,“A"|
[Matches[name,“*B”|,“ContextBinding”,“B"
[Matches[name,“*C"],“ContextBinding”,“C"|

A:
[Matches[name,“*1A”],“ContextBinding”,“1A”]
[Matches[name,“*2A"],“ContextBinding”,“2A"
1A:
[Matches(name,“1A"],“Authorities”,*. . "]
2A:
[Matches[name,“i2A”|,“Authorities”,“. - "]
{Matches[name, “1i2A" ], “Authorities”,“. - .|
[Matches[name, “1ii2A",“Authorities” “. - " |
B:
[Matches[name,“1B”|,“Authorities” ,“: - "
C:

[Matches[name,“1C”],“Authorities”, * - 7]
[Matches[name,“2C”],“Authorities”,*. - -”]

Figure 4.3: Conflguration database for syntactic clustering.

Once again, consider the name space in Figure 4.1. Suppose the initial context has enough storage
space to contain four context bindings instead of three. All names, including those with three labels,
can be resolved in a single step by matching multiple labels at time as demonstrated in Figure 4.4.
If the name space grows over time, then the intermediary context binding present in Figure 4.2 can
be easily reintroduced; no names need to change, only their clustering and distribution.

Syntactic clustering in which a variable number of labels can be matched allows potential per-
formance advantages to be obtained over traditional resolution schemes. Particularly, regions of the
name space that are abnormally sparse may be clustered together for purposes of name resolution.
Also, the name resolution chain for special names can be reduced by adding new clustering condi-
tions that match larger components of the names than a single label. Section 4.1.7 formalizes these
space/time tradeoffs.

4.1.5.3 Non-syntactic clustering

Algorithmic clustering allows names to be resolved independent of their structure. Clients of the
name service can choose names for their objects without requiring agreed-upon name structures; the
only requirement is that names be unambiguous. Hashing represents a familiar way of clustering
names algorithmically.

Suppose functions exist that map a name into a real number in the range (0..1], such as,

Hash: PROCEDURE([name: Name| RETURNS[REAL];

The name space of Figure 4.1 could be partitionea as in Figure 4.5. Notice that the partitions
do not correspond to the inherent structure of the name space. In fact, the name resolution tree is
binary while the name space has various branching factors if one looks at it syntactically.

A complete configuration database for these names is given in Figure 4.6. Pattern matching is
used for authority attributes since each object has its own set of authoritative name servers. Both the
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matches "*1 A"a

matches "*2A ”a '

?
!
1
l
a
;
[
1
:
L
L
|
|
:
|
i
!

matches " *B" ﬂ ‘
ol
i
matches "=C"a @ i
o
Figure 4.4: Clustering varying numbers of labels. )
4
o

hash2 > 0.5 a
hash1 < 0.5 hash2<= (.

hash1 > = 0.55 2C c hash2 <= O.E: '

ii2A

1A hash2)0.5; l

Figure 4.5: Clustering 1 name space through hashing.
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E Initial:
E [Hash1[name|< 0.5,“ContextBinding”,“C1"|
[Hash1{rsme|>= 0.5,“Context!'inding",“C2"]
Cl:
l [Hash2[name]> 0.5,“ContextBinding”,“C3"|
[Hash2[name]<= 0.5.“ContextBinding”,“C4"]
C2:
(Hash2[name] <= 0.5,“ContextBinding”,“C5"]
f‘ [Hash2[name|> 0.5,“ContextBinding”,“C6"|
C3:
| [Matches[name,“ii2A"],“Authorities”,“: - -]
C4:
[Matches[name,“1B"|,“Authorities” “- - -"]
E [Matches[name,“i2A"],“Authorities™,“. - "]
E. C5:
i [Matches[name, “iii2A"|,“Authorities”,“- - "]
| [Matches[name,“1C"|,“Authorities”,“- - "]
Cé:

[Matches[name,“2C"],“Authorities”,“- - -"]
[Matches[name,“1A"],“Authorities”, . - -"|

Figure 4.6: Conflguration database for algorithmic clustering. :

v

&

configuration database in Figure 4.3 and the one in Figure 4.6 allow the set of names tn be resolved, L)
)

but in drastically different ways. Even the name resolution chains for a given name vary in length
for the different clustering strategies.

4.1.5.4 Mixed clustering for growing systems

A mixture of syntactic and non-syntactic clustering can often prove useful for resolving names
® in evnlving systems. Current problems of scale in the Grapevine system serve as a good example.
Grapevine clusters names syntactically based on the registry name embedded in all object names.
Some of Grapevine's registries are becoming quite large. Suppose that a particular registry grows
too large to be feasibly managed as a single context; what can be done?

One course of action might be to add another layer to the name structure, yielding three-part
names as —~as done for the clearinghouse system. Unfortunately, this approach forces all objects
® to change their names, a costly operation for well-established systems. It also requires changes to
Grapevine's name resolution mechanism. Within the framework of the existing Grapevine system,
the only solution is to split the registry into two separate registries. Again, some or all members of
the registry must change their names.

A better approach might be to algorithmically partition large registries into smaller clusters.
The resolution chains for some object names would grow from one link to two; the first context
L binding being done syntactically, while the second is done perhaps by a hash function as depicted
in Figure 4.7. Thus, changes to the Grapevine servers’ resolution mechanism are required, but no
object names need to change.
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Figure 4.7: Clustering large Grapevine registries algorithmically.

4.1.6 Extensions for other naming styles -

In all of the name management schemes described thus far, the name to be resolved at any point .
in the resolution chain did not change; only the context in which to resolve the name changed. Some
naming mechanisms involve changing the name being resolved as well as the context. Often, this
nei. name is a function of the old name to be resolved, perhaps some partially qualified part of the
old name:

Lt it n e P i i i et Ra e sl B e g g

PartialName: TYPE = Name;
NewNameProc: TYPE = PROCEDURE(pname: PartialName]
RETURNS|PartialName};

To support these more elaborate styles of naming, context binding configuration attributes must be
extended to include the new name to be resolved in the new context:

ContextBindingData: TYPE = RECORD|
newContext: ContextName,
newName: NewNameProc

li

In all of the previously described conventions, the NewNameProc was simply the identity mapping.
However, it could also have been a name reduction mapping in which the new name is a strict tail
component of the old name. Such name reductions can either be used solely to reduce the amount
of storage required in context objects or to guarantee termination of the name resolution chain.

4.1.6.1 Naming networks

Hierarchical naming conventions are special cases of the more general naming networks in which
objects are identified by path names [Saltzer 78|. Naming networks can be easily built up from
the name resolution model presented because of the general relations allowed between contexts via
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Figure 4.8: Mutually encapsulated name spaces.

» context bindings. In a naming network, names are resolved syntactically a label at a time as in
hierarchical name spaces, but cycles may exist in a name resolution chain. Because of these cycles,
name truncation is necessary to halt the resolution. That is, the new name to be resolved is derived
from the old name by stripping off a label; the name resolution process terminates when only a single
labe] remains.

Naming mechanisms in which the naine left to be resolved at any point in the resolution process
0 is a tail component of the original name presented for resolution are defined herein as predestinate
naming conventions. Naming networks typify the class of predestinate naming couventions. Notice
that, for naming coaventions of this sort, a name strictly decreases in length as the resolution proceeds,
thus ensuring that the resolution activity will eventually terminate. For example, consider the name
“A.B.C.D.E” romplying with a hierarchical naming convention or naming network. The resolution
chain is as follows:

®
INITIAL(A.B.C.D.E)
— A(B.C.D.E)
— A.B(CD.E)
— A.B.C(D.E)
° -— A.B.C.D(E)

The name resolution mechanism simply scans the name fr m left to right extracting a label at a time
and migrating to an authority for the new context obtained by concatenating the label just scanned
with the previous context name.

Naming networks that are not strictly hierarchical might naturally arise in practice when two
L existing hierarchical name spaces wisk to reference each other's objects by mutually encapsulating
their name spaces, as depicted in Figure 4.8. Clients of the first name space can reference objects in
the second by prepending their names with “B.OTHER.”, whereas clients of the second name space
can reference objects in the first by prepending their names with “other.”. Notice, however, that the
two name spaces retain their original scparatc initial contexts, probably for backward compatibility.
In this exampie. the naming network resulting from the junction of the two original name spaces is
not only unrooted, but also has cycles.
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4.1.6.2 Beyond naming networks

Name resolution is not limited to predestinate naming conventions, such as naming networks, ror
which the resolution chain is predictable from the syntax of the name. In particulaz, within the name
resolution configuration data the newName and newContext fields of a *ContextBinding” attribute
need bear no relationship to the containing context’s name or the current name being resolved, or
the relationship may not be as simple as stripping off a single label of the name.

e AT P T W B S S

As a simple example of non-predestinate name resolution, consider the convention for naming
Arpanet mail recipients currently used within the U. C. Berkeley Computer Science Division. Mail )
clients are named according to the convention “user@Berkeley”, though, internally, users are par-
titioned according to what computer they use. The name “frank” might exist in the context of
machine “ernie”, while “joe” exists on machine “kim”"; though their official mail addresses are
“rankQBerkeley” and “joe@Berkeley”, respectively. Thus, the “Berkeley” context might contain
two context bindings for these users as follows:

a
+
.

Berkeley:
(Matches[name, “frank” |, “Context Binding” ,“Berkeley.ernie(frank)” |
(Matches[name,“joe”],“ContextBinding” , “Berkele;" kim(joe)"]

In these cases, the context bindings discard no components of the name to be resolved; only the
context itself becomes more refined.

Subaliases, aliases for particular comporents of a name, fit nicely into the context binding model.
For instance, if “Berkeley” is a subalias for “ucbvax”, the two names can be made interchangeable by a
NewNameProc that takes a name of the form “front.Berkeley.back” and returns “front.ucbvax.back”.

In general, mapping conterts that change a name to be resolved ir a wide context to a new
name in some smaller context are useful for converting between standard global names and naming
conventions particular to the internals of an organization. The inevitable evolution of distributed
computing environments often makes name conversions between oid and new formats necessary. The
rewriting rules incorporated into the Sendmail internetwork mail router [Allman 83| were a response
to conversion requirements between varivus existing mail facilities. The pattern matching abilities in
context objects and the generality in context bindings allow them to accommodate such conversions
within the name resolution architecture.

4.1.7 Advantages of structure-free name resolution

LI

The model of name resolution developed in this dissertation in which the process of resolving
names need not be strictiy tied to the name structure, structure-free name resoly ‘ion, permits names
to be managed more flexibly than existing naming mechanisms. Specifically, it aliows tradeoffs to be
made in how names are managed without affecting the structure of the names or the resolvability of
the names. These space/time tradeoffs are demonstrated by the following two rules, which change
the content and distribution of the configuration database while preserving name resolution:

b A ML
s «

The partition rule: Let DB be a context and ¢ be a clustering condition applied to names in that
context; if all names in DB for which the clustering condition ¢ applied to them yields true are
removed frcm DB and placed in a new context DB,, and one attribute tuple is added to DB:

! o
L] .

(¢[name],“ContextBinding”,“DB."|

then all names that could be resolved in the old DB context can be resolved in the ncw onc.

DR i it
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The indirection rule: Let DB be a context whose authorities are A, A;...., A, where n >= 2;
if name server A, replaces its local context DB with a new context DBnew containing two
attribute tunles:
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[Matches[name,“*"|,“ContextBinding”,“D B"|
[Matches[name,“D B"|,“Authorities” “As, ..., Ap"|

™) then all names that could be resolved in the DB coutext can be resolved in the DBnew context.

Theses two rules govern the modifications that can be made to reduce the overall amount of ""
configuration data without impairing name resolution. In particular, the partition rule prevides a .:-:::
way of splitting up a large context into smaller, more manageable, pieces; the indirection rule allows a _.;
name server to offload the responsibility for maincaining a context to other servers, thereby reducing e
its local storage requirements. Note that both rules add another binding to the resoiution chain for ~

certaii. ‘amr?s, thus increasing the time to resolve a name. On the other hand, the indirection rule
reduces the total amount of storage required in the name service, assuming contexts are larger than -
a couple of attribute tuples. KR

Starting with a single context .tored at all name servers that contains the complete set of “Au-
thorities” attributes for ali named objezts, these two rules can be repeatedly applied to partition and
o distribute the configuration data while ensuring cthat au names can be resolved. The rules are not
meant to represent operatijons that can be performed on a running system. Rather, they suggest the
range of option -~vailable to administrators when configuring or reconfiguring a name service.

Importantly he cost of name resolution varies with the amount of storage dedicated to configu-
ration data. At one extreme, if all servers have enough storage to hold the complete set of authority
attributes for all named objects, then any name can be resolved in a single step. On the other hand,
) if authority attributes are distributed among servers, then context bindings are zeeded and name
resolution becomes more costly. Chapter 5 quantifies how the cost of resolution varies with the length
of the resclution chain.

Different name servers may observe different costs for name resolution depending on how much
configuration data they store locally. One small name server with very little storage need not increase
the name resolution chains for the complete service; only the particular server’s clients are affected. If
o certain name servers are upgraded with additional storage, gains in name resolution can be achieved
for some names.

4.2 Name Resolution Mechanism

4.2.1 Configuration database queries

The name service configuration database consists of a collection of contexts that are stored and
replicated on verious name servers. Looking up a name in a context involves applyin;” a configuration
attribute's clust ring condition to the name until one that returns TRUE ic discovered. This is
performed Ly tte Query operation of the Cluster module!:

-- record format for storing ConfigTuples in Attribute Tuples ‘.

CTuple: TYPE = RECORD| 0
unuse : NS.Name, :‘
attribute: NS.AttributeType, - :;'_‘
cluster: ClusteringProc, i
value: NS.AttribateValue =

B -

'For simplicity, all exceptional condition handling is left out of the prototype implementation. Particularly, this

dure assumes that, for any name, some clustering conditioning in the context yields tr ue . This can be easily "f'
cosured Ly ending every context with a clusteling condition that always returns tr ue . —_=
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Query: PROCEDURE[cname: ContextName, name: Namc]|
RETURNS[ConfigTuple] = BEGIN
tuple: Database.AttributeTuple;
next: Database TupleiD ~ NiL;
dbContext: Database.DatabaseObject;
configData: ConfigTuple;
cb: CTuple;
dbContext — ContextNameToOQbject[cname|;
DO
[tuple, next] — Database.Enumerate{dbContext, next|;
cb — LOOPHOLE(tuple, CTuplej;
IF cb.cluster[name| = TRUE THEN EXIT;
ENDLOOP;
configData — [cb.cluster,cb.attribute,cb.value];
RETURN(configData];
END;

This routine uses the ordinary database facilities to store configuration data tuples. Names of locally
stored contexts are mapped to the appropriate database object by the ContextNameToQbject
routine.

The routine for querying configuration attributes makes use of the single-site database facilities
rather than the replicated data facilities. Since confignration data changes infrequently and name
resolution should proceed as quickly as possible, fancy techniques for replicated context objects are
unwarranted. The name resolution algorithm that calls upon the Cluster module assumes that all
copies of a context are up-to-date and chooses one to suit its needs. This allows different styles of
resolution to be accommodated as demonstrated in Section 4.2.3.

4.2.2 Locating context objects

Since names are always resolved with some context, a major problem in resolving names is deter-
mining the avthoritative servers for the particular context. Contexts are themselves objects that may
be distributed and replicated in any number of name servers. Thus, as with other types of objects,
locating a context involves resolving its name,

FindContext: PROCEDURE|cname: ContextName|

RETURNS|[AuthoritiesData] = BECIN
RETURN|[Resolve| “initialContext”, cname}||;
END;

However, the attempt to locate the context was triggered by the process of resolving a name in the
first place. Thus, if the FindContext routine calls Resolve, infinite recursion results unless some
special cases are utilized for locating certain contexts. That is, some special way of locating contexts
must be provided as the base case of the recursive name resolution.

One approach is to have a special “context” context containing the authoritative name servers for
all other named contexts, also referred to as a metacontert. Locating a context, then, would simply
involve binding that context’s name in the special mctacontext. The problem then becomes locatizy:
the metacontext. Fortunately, the metacontext is small compared to the complete name serve:
database since it contains only information about contexts. Moreover, it changes very infrequently.
Thus, in many cases, the metacontext can be stored at all name server sites, making it readily
available for resolving context names:
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" myself: ServerName; -- name of local server

FindContext: PROCEDURE|cname: ContextName)]
= RETURNS|AuthoritiesData] = BEGIN
} IF cname = “metaContext” THEN
RETURN{myself]
ELSE
RETURN|Resolve[“metaContext”, cname]|;
b END;

For very large name spaces with many contexts, however, even the metacontext may consume more
storage than some name servers can afford. In this case, such servers need only store references
to the servers that actually store the metacontext and not the context itself by making use of the
indirection rule. A remote metacontext contains the actual “Authorities” attributes for all contexts,
while the local metacontext needs only two tuples:

metaContext:
[Matches[name, “ContextBinding” , “remoteMetaContext”|
[Matches{name, “remoteMetaContext”|,“Authorities”,“: - ."|

"% 24
1

™) Context names can be easily resolved by calling on an authoritative server for the remote metacontext.
The servers for the metacontext can be viewed as providing a special name gervice for context objects.

For widely distributed name spaces, a better approach to requiring the existence of a metacontext
is to distribute the context configuration database just like the configuration data for other objects is
decentralized. In order to guarantee that a name server can resolve any context name presented to it
without contacting other servers, a context that contains context bindings to other contexts should
()] also include the authority attributes for those contexts. With this coupling of context bindings and
authority data, a new context name can always be readily resolved in the current context:

FindContext: PROCEDURE[oldContext: ContextName, newCname:
ContextName| RETURNS|{AuthoritiesData] = BEGIN
ﬁ. RETURN|Resolve[oldContext ,newCname]|;

END;

Context names appearing in a context binding, rather than being globally unambiguous, are thus
relative to the context in which the context biriding occurs. Without a single metacontext, no context
must grow with the size of the complete name space. Each name server need only maintain knowledge
® of a localized portion of the name space.

4.2.3 Styles of name resolution

4.2.3.1 Recursive

While the policy for resolving names according to a particular naming convention is embodied in
the contents of context objects, the mechau.ics of name resolution is independent of the given adopted
naming convention. One algorithm for resolving a name relative to a context is as follows:

Resolve: PROCEDURE|context: ContextName. name: Name|
RETURNS[AuthoritiesData] = BEGIN
-- local variables
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authorities, contextAuthorities: AuthoritiesData;
contextServer: ServerName;
contextAddress: Internet.Address;
binding: ContextBindingData;
tuple: ConfigTuple;
-« lookup name in contezt
tuple — Cluster.Query[context, name];
SELECT tuple.attribute FROM
“Authorities” =>
authorities — LOOPHOLE[tuple.value, AuthoritiesDatal;
“ContextBinding” => BEGIN
binding ~— LOOPHOLE[tuple.value, ContextBindingData;
contextAuthorities — FindContext{context, binding.newContext|;
contextServer «— SelectServer[contextAuthorities|;
IF contextServer = myself THEN
authorities — Resolve[binding.newContext,
binding.newName[name||
ELSE BEGIN
contextAddress — LocateServer{contextServer|;
authorities «— Resolve[binding.newContext,
binding.newName name||
AT contextAddress;
END;
END;
ENDCASE ;
RETURN[authorities|;
END;

This algorithm is a recursive one in that names are recursively resolved in new contexts until an
authoritative name server is determined. The name resolution activity migrates to servers containing
the necessary contexts through remote procedure calls.

In the resolution algorithm presented above, the responsibility for performing the name service
operation rests with the initial name server that received the operation request. This server returns
the appropriate response after the name has been resolved and the operation performed. Using such
a recursive style of name resolution, the name service appears to a name agent to be a centralized
service; name agents may be unaware of the existence of multiple servers. However, because of the
recursive nature of the name resolution mechanism, a disparity in work results: the name agent has
little work to do while name servers may be involved in processing several requests at the same time.
This disparity is particularly alarming when one realzes that an order of magnitude more name
agents exist than name servers.

4.2.3.3 Iterative

An alternative to resolving names recursively is to use iterative name resolution in which the name
agent retains control over the resoluiion activity. The algorithms are similar, except that servers do
not call each other directly in the iterative case. A name server does its best to resolve names using
only locally available configuration data and returns to the calling name agent when it can no longer
continue. The name agent then calls vn a different name server to continue resolution of the name.

A name service operation can be in one of two stages when a server replies to the calling name
agent:

Unresolved. The name has been only partially resolved.

Resolved. The name has been completely resolved and the operation has been completed.
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The state of the resolution process at any point in time can be represented by a context name and a
name to be resolved ia that context:

ResolveState: TYPE = RECORD|
context: ContextName,
name: Name

I3
Initially, the resolution state consists of the initial context and a complete name.

When a server can not further resclve a name, it returns the current state along with the internet
address of a server that the name agent should contact next, presumably an authority for the current
context in the resolution chain?. The iterative version of the Resolve routine is thus as follows:

Resolvel: PROCEDURE|[context: ContextName, name: Name]
RETURNS|ConfigTuple, NETADDRESS| = BEGIN
tuple: ConfigTuple;
address: NETADDRESS;
binding: ContextBindingData;
authorities: AuthoritiesData;
server: ServerName;
tuple — Cluster.Query[context, name];
IF tuple.attribute = “ContextBinding” THEN
BEGIN
binding — LOOPHOLE[tuple.value, ContextBindingDatal;
authorities — FindContext|context, binding.newContext|;
server «— SelectServer|authorities];
IF server = myseif THEN
[tuple, address] — Resolvel[binding.newContext,
binding.newName|name||
ELSE
address — LocateServer[server];
END;
RETURN|tuple, address];
END;

The name agent is responsible for presenting the current resolution state to a name server along with
an operation request so that the resolution activity can continue where it left off.

In order to allow iterative name resolution, all name service operations should take the current
resolution state as an additional parameter. These operations must also return an indication of the
stage of the operation,

Stage: TYPE = {Unresolved.Resolved};

along with enough information for processing to continue at another name server. If the name has not
been completely resolved, the operation returns the current state of the resolution and the address
of the next server to contact,

2In some cases, it would be better for the server to return the list of authorities rather than choosing one and returning
its address. A name agents that has knowledge about the existence and locations of servers would be able to select
a server based on its own criteria rather than the name server’s. For instance, the closest authority to the server is
nout necessarily the closest to the agent. Moreover. name agents could cache the authority information and use it to

intelligently direct future operations. Caching is discussed in more detail in Chapter 7.
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i\: UnresolvedData: TYPE = RECORD| N
:::f state: ResolveState, .

next: NETADDRESS d

: oi

1 -
o :
:-.. If the operation has been completed, then the name agent receives the desired result of the operation, 5
> as usual.

For instance, the name server lookup routine for iterative name resolution has a similar interface
to that for a recursive style of resolution, except it accepts the resolution state as a parameter and
returns the current operation stage:

s PR A

Lookupl: PROCEDURE([name: Name, attribute: AttributeType,
state: ResolveState] RETURNS[AttributeValue, Stage] = BEGIN
-« sterative version of the Name Server

tuple: Database.AttributeTuple;

ctuple: ConfigTuple:

address: NETADDRESS;
: authorities: AuthoritiesData,; .
- sites: Replicated.StorageSites; #

X

R e

3 '

binding: ContextBindingData;
continue: UnresolvedData;
st: Stage;
value: AttributeValue; +
[ctuple, address] — Resolvel[ResolveState.context, ResolveState.name|;
SELECT ctuple.attribute FROM
“ContextBinding” => BEGIN
binding «— LOOPHOLE(ctuple.value, Context BindingData);
continue.state.context — binding.newContext;
continue.state.name — binding.NewNameProc[name;
continue.next — address;
value — LOOPHOLE|continue,AttributeValue;
st — Unresolved;
END;
“Authorities” => BEGIN
-~ same as for rccursive name server
authorities — LOOPHOLE[ctuple.value, AuthoritiesData||;
sites — LocateServers(authorities);
tuple — Replicated.Query[sites, localDB, name, attribute|:
value — tuple.value;
st — Resolved;
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END;
ENDCASE => ERROR;
RETURN(value,st|;

END;

The value returned by this routine depends upon the stage of the operation, as does the name agent's
action:

AN (AL AR . A AL

Lookup: PROCEDURE[name: Name, attribute: AttributeType|
RETURNS[AttributeValue] = BEGIN
-- iterative version of the Name Agent

value: AttributeValue:

s
N tan
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st: Stage;
continue: UnresolvedData;
state: NS.ResolveState — [name,“initialContext”];
address: NETADDRESS+— mainServerAddress;
DO
[value, st] — NS.Lookupl|name, attribute, state] AT address;
SELECT st FROM
Unresolved => BEGIN
continue — LOOPHOLE|value, UnresolvedData];
state — continue.state;
address — continue.address;
END;
Resolved => EXIT;
ENDCASE => ERROR;
ENDLOOP;
RETURN|value];
END;

Notice that the name agent’s interface presented to its clients remains the same regardless of the
style of resolution employed.

4.2.3.3 Transitive

A third style of name resolution, transitive name resolution, falls somewhere between recursive
and iterative resolution. With transitive name resolution, the name server currently processing an
operation simply passes the operation to a server that can continue its processing. As in the recursive
approach, name agents are not involved in the act of name resolution; and, like the iterative approach,
a name server gives up its responsibility for performing an operation when it can no longer resolve
the name Jocally.

The implementation of transitive name resolution is similar to the iterative style presented above,
except that the operation, along with its current state, is sent directly to the selected next server
instead of returned to the name agent; the authoritative name server that eventually performs the
desired operation returns the result. The only way that a name agent may be aware of the distributed
nature of the service is that the response to its request may be received from a different server than
the one it was sent to.

4.2.3.4 Comparisons

Figure 4.9 shows the communication patterns induced by the different styles of resolution. The
choice of a particular style of name resolution should be based on the relative processing powers of
name servers and name agents and on the semantics of the communication protocols employed.

The transitive approach to resolving names results in the fewest number of high-level messages,
though it is more susceptible to failures since servers do not receive feedback once an operation is
passed on. Thus, transitive resoiution is best suited for an environment in which reliable communica-
tion connections between name servers can be cheaply maintained. Recursive and iterative styles of
resolution, on the other hand, adapt nicely to a remote procedure call communication paradigm. An
iterative approach also works well if an unreliable datagram protocol with timeouts is utilized; the
periodic replies from servers makes it easy for the name agent to monitor and recover from failures.
Timeouts are much harder to set with a recursive or transitive style because of the large variation in
the time necessary to resolve names.

As for computation, the iterative style of name resolution requires the name agent to do more work.
However, it also provides more opportunities for the name agent to play an intelligent role in name
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Figure 4.9: Styles of name resolution.
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resolution; for instance, a name agent may chocse to cache the results of recent name resolutions and
use this to direct future name lookups to the appropriate server. If an iterative approach is adopted,
small computers with dumb name agents could be accommodated by interjecting a name resolution
P server between the agent and servers. Such a server would control the resolution activity so that the
simple name agent need not be involved.

All three styles require approximately the same amount of computation from the name servers; the
only major difference is the lack of communication between servers in the iterative case. Recursive
resolution, however, would undoubtedly require the name server to be multiprogrammed since a
server can not afford to wait for a recursive resolution request to return before processing the next
» request. Thus, the internal organization of a name server performing recursive name resolution is
much more complicated than that for the other styles.

4.3 Dynamics of Name Management

» 4.3.1 Updates

Large distributed computing environments are constantly changing and evolving. Name services
gain their utility by insulating users froin the immediate effects of changes and allowing them to
discover these changes through late binding. For instance, if an object moves then the name service
should be informed of its new location; other objects that reference the moved object by name need
® not be aware of its migratior. since they locate it indirectly through the name service.

When designing a name service, one must allow updates to the name service database but try to
isolate the effect of these updates, not only from name service clients, but also from as many servers
as possible within the name service. The many kinds of updates to the name service include adding,
removing, or changing:

» e object attributes

e object names

& contexts

= authorities

k ® name servers

Changing the set of attributes for a given object, as previously discussed, requires first resolving the
name and then performing a replicated database operation. Only the authoritative name servers for

the object are involved. The other classes of updates are more difficult. and are discussed in detail
in the next two sections.

4.3.2 Name registration

With the simple name service interface presented, registering or unregistering an object with
the name service is simply a matter of adding an attribute for the object or removing all of the
attribute tuples for the object, respectively. However, to guarantee that two different objects do not
™ inadvertently register under the same name, rendering the naine ambiguous, it may be desirable to
provide additional name service routines:

Register: PROCEDURE[name: Name] RETURNS|J;

UnRegister: PROCEDURE [name: Name| RETURNS(|;
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UnRegister is not strictly necessary since it simply deletes all of the attribute tuples associated
with the named object; Register, on the other hand, has very special semantics.

“r'v'"' ""V"v

Name service clients are allowed to choose a name for their objects. but a name must be determined P
to be unambiguous upon registration, that is, the name must not be already in use. The registration
activity attempts to resolve the name presented for registration until either the resolution mechanism
can no longer continue or an “Authorities” tuple for the name is encountered. In the latter case, the
registration request is rejected since the name is already in use. In the former case, the part of the
name that was to be resolved when the mechanism halted, the remainder, is added to the current
context with a list of authorities. For example, if one attempts to register the name “A.B.C” and
“A.B” is an existing context that contains no attributes for “C”, then the name's resolution will fail
when a “ContextBinding” or “Authorities” attribute for “C” is searched for in the context “A.B”
and not found. At that point, an authorities tuple for “C” will be added to context “A.B”.

Ly
»

1i may be desirable to put some constraints on the types of names that are accepted for reg-
istration. The protection on context objects enforced by the database system can serve to restrict
the registration of undesirable names in many cases. In addition. constraints may be placed on the
structure of a name’s remainder. Typically, the remainder should be a simple label of the name, and
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S_" not a structured component. For instance, if the name in the previous example were “A.B.C.D" then
: adding an authority tuple for “C.D” may be undesirable; perhaps the name should be only accepted ]
%.‘ if a context for “C" already exists. ‘<
p‘: Several options exist for choosing the set of authoritative name servers for newly registered objects. 5
A parameter could be added to the Register routine to allow clients to explicitly specify a desired ®

\ set of authorities. However, clients probably are not interested in such levels of detail, while system i
E:_ administrators are interested in keeping balanced loads on the various servers. A set of default +
\ servers could be assigned as a simple scheme. A better method would be to search for an arbitrary g
E-g “Authorities” tuple in the current context and assign the same authorities to the new object. In this 1
k. way, objects within the same context would tend to have identical authorities, often the authorities .
! for the context itself. ® %
L.:. After registration, the named object has been assigned authoritative name servers, though it o
L has no other attributes. Only the authoritative servers for the updated context are affected by the -
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registration. The time required for the new object to be observed by the complete name space depends
on the algorithms employed for updating replicated database objects and the degree of consistency
provided.

Registering a new context requires adding an “Authorities” attribute for it to the name service
configuration database. Also, in order for the context to be useable, one or more “ContextBinding”
attributes must reer to it. Initially, the context will be empty, though, once it is registered, object
names may be inserted into it. Facilities for deleting a context are straight-forward provided that all
names belonging to the context have been previously deleted.

[l
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4.3.3 Name service reconfiguration

As the distributed computing community grows over time, it will occasionally be necessary to
reconfigure the name service to balance the demands placed upon it or to add new servers to ofload
existing servers that have become overloaded. Since the assignment of object names is independent
of the assignment of responsibility for maintaining information about the objects, the name service
can be easily reconfigured. That is, new name servers can be added to the environment and assume
authority over part of the existing name space; application programs which rely on the name service
are unaffected since the object names do not reflect the name server configuration.

ML AR

Changing the authorities for a named object is more than just changing the “Authorities” attribute
for that object. New authorities must acquire the complete set of attribute tuples for the object by
establishing a connection to an authoritative -erver and retrieving the attributes. Problems may
result if the “Authorities” tuple is updated hefore the transfer actually takes place unless the servers
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are prepared to try a different authority if the first does not have the desired data. To be safe, ihe set
of authorities should be updated first in the case of a delete; the server that is no longer authoritative
can then delete the object's attributes at its leisure. When adding new authorities, the authorities
list should be updated after the attributes have been transferred.

Lastly, putting a new name server into service requires introducing the new server to all existing
servers in the worst case, a potentially expensive operation. As an optimization, the new server's
internet address need only be known by servers that contain context objects which reference contexts
or objects aver which the new server has authority. For a strictly hierarchical narme space, this means
that only servers who have direct authority over the new server need be informed of its existence.
Thus, the update activity can once again be limited to a small area for well defined name spaces.

4.4 Summary

Name server configuration data enables the name resolution activity to migrate around the en-
vironment from server to server until a name is completely resolved. The configuration database,
consisting of authority data and context bindings, is itself distributed and replicated so that the size
of the overall name space does not place undue regquirements on any single name server. The process
of resolving names is inherently independent of the structure of names, although the name service
administrator, when configuring the name space, may choose to exploit the structure of names to
reduce the size of the configuration database.

Specifically, the following concepts play an important role in structure-free name resolution:

Authority attributes enable an object’s attributes to be located.
Contezt objects allow the set of authority attributes to be partitioned and distributed.
Clustering conditions serve as criteria for assigning authority attributes to context objects.

Context bindings allow names to be resolved.

The policy for resolving names, as represented in the configuration database, is separated from the
mechanism for resolving names. Three styles of name resolution, recursive, iterative, and transitive,
place different computation and communication requirements on the name servers and name agents.

The mechanisms supporting this new approach to name management are more complicated, and
hence more expensive, than existing schemes for resolving names based solely on their structure.
However, the added flexibility allows name spaces for large computing environments to evolve over
time. Since the configuration data is stored as attributes of objects, just like any other name server
data, the name service can be easily configured and recontigured. Space/time tradeoffs exist in
which the amount of storage dedicated to configuration data can be reduced if the resolution chain is
lengthened for some names. On the other hand, the name resolution chains can be reduced compared
to existing name resolution schemes by dedicating more storage to configuration data.
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Chapter 5

s Performance Analysis

An analytical model for distributed name services allows one to investigate the effect of
various design and configuration choices on the cost of name service operations. Although
a name service plays a vital role in internetwork environments, few attempts have been
previously made in the computing literature to quantify the performance of distributed
name resolution. New results show that the cost of name service operations with a
decentralized service need not be appreciably greater than with a centralized service
(though more storage space is required for configuration data). Applying the simple
performance model to a sample environment indicates that substantial cost benefits can be
accrued through replication of name service data; however, the benefits depend heavily on
the topology of the environment. For a moderate degree of replication, the unavailability
of a few name servers does not significantly increase the costs of name service operations,
ignoring increased server congesticn.

5.1 Name Service Performance

The cost of communication between clients and name servers is the major bottleneck in locating
remote resources in environments consisting of a *ubstantial number of interconnected networks with
a large number of hosts. In such an environment, the performance of name server operations is
dominated by the number of name servers that must be accessed and the cost of accessing those
name servers. The name service, that is, the group of name servers that collectively manage the
name space, should be configured so as to minimize the cost of name service operations for the
average client.

Once a naming convention has been adonted, the many factors affecting the efficiency with which
the name space can be managed and the cost of performing operations on name server information
include:

the performance of each individual name server,

the placement of name servers throughout the internet,

the amount of replication of name server information,

the choice of authoritative name servers for parts of the name space,
the number of name servers that are currently operational,

the clients’ patterns of reference to name server information.

These factors. with the exreption of the last one. characterize the current configuration of the name
service. This chapter look:: at each of these issues in detail.
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The next section presents a simple model of distributed name services that enables the cost of a
name server operation to be quantified for a variety of name server configuratiors and name resolution
policies. The model does not attempt to give detailed performance predictions, such as those that
® might be o’.tained through simulations, but rather concentrates on analytical formulations of the
high-level interactions required betwecen name servers to complete an operation. The goal is to be
able to compare the cost of operations for different choices that must be made by administrators
when configuring a name service.

In practice, the cost formulas derived for name server operations can be applied to existing

b environments to analyze and subsequently improve the performance of the system, or they can aid
in making design decisions when configuring a new system. For instance, a network administrator

may wish to assess the benefits of increased replication or the addition of a new name server. AON

] '\':._:\

5.2 A Model for Name Server Interaction 3

L J ol

5.2.1 Name servers and clients e

A name service consists of N servers, NS,... NSy, distributed throughout an internet. At any

point in time, some fraction of these servers will be accessible; the others may have crashed or become "

detached froiu the network. Sp represents the current set of name servers whose data is inaccessible "\

°® because of some failure; Sp C {NS,,..., NSy} has cardinality F. La

The various name server clients are enumerated 1...U. The term “client” may refer to a specific
program, host, network, or some combination thereof. In general, clients are distinguished by their
location in the internet relative to the name servers and by the particular objects they reference.
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A name service client need only know the location of a single name server, presumably the
closest one, to make use of the name service. Name service operations are assumed tc be performed
o iteratively: if tLe primary name server, NS m4in, is unable to resolve a name, then it returns the
location of a more knowledgeable colleague. Several iterations may be necessary to perform an
operation for some naming conventions and management strategies.
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5.2.2 The network

[4

Ty

The round trip transmission cost between client u and name server ¢ is givcn by ¢,;. Observe that
¢yi strongly depends on the sites at which the client and server are executing. It varies according to

P .
2995 U
o T2 e

the number of gateways traversed and the speeds of the intermediate transmission lines. The number e
of bytes transferred is assumed to have a negligible influence on the communication cost since name
server queries and responses are generally quite amall. -:::-
o This is a very simple static measure of the cest of communication between clients and servers. In “
particalar, variations due to network congestion are ignored. While such a model may be reasonable o
for widely distributed environments with slow speed lines and many gateways, it certainly would .
not suffice for local area networks. The model does not include the cost of communication between '_:::

servers since an iterative style of name resolution is assumed. -

e
5.2.3 The database
The name service database is strictly partitioned into A database objects. In the degenerate case,
each database entry is a separate object. The database objects, db; ...dbg. correspond to indivisible
units of storage. That is, either the complete database object is stored at a given name server or
none of it is. 3
o

Each name server has authority over some subset of the database partitions. Typically, no single
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name server stores the complete database. The set Sj contains those name servers that store object
dby; Sy, fork=1...K,is asubset of {NS;,...,NS~}. Inother words, S; is the list of authoritative
name servers for db;.

For each name server, d; denotes the cost of executing a database operation at N S;. For simplicity,
this cost, which could depend on such things as the overall size of the database maintaiced by N'S;
and the kind of database facilities employed, is assumed to be fixed over time. In particular it does
not account for variations in the load at the server. Moreover, no distinction is made between different
types of database operations.

5.2.4 Reference patterns

Each client has a set of objects (or resources) that it regularly references. Different clients generally
perform different name service operations on sets of objects with varying frequencies. Client u’s
reference mix is represented by ry;...r,x. Thst is, r,; is the percentage of name server accesses
performed by client u to the database partition ¢ by. Note that the r,;'s characterize a client’s logical
access patterns.

Physical access patterns, the fraction of accesses to individual name servers by each client, are
dependent on both the frequency of accesses to the name service database entries (r i fork = 1... K)
and the mapping of data to storage sites (S, for k = 1... K). The locality of reference is the degree to
which local name servers are accessed more frequently than distant servers. Locality in the physical
access patterns is desirable since local servers can be accessed more cheaply than distant name servers.
The amount of locality achievabl= in practice depends on the distribution of clients that are interested
in a particular name server entry.

5.2.5 Operation costs

Fur a given name server, VS;. Cy; specifies the cost of accessing that name server remotely 1rom
client u. This cost includes both the communication and processing costs. Hence, Cy; is the sum of
d.' and Cusg -

For a particular operation o € {lookup,update}, L,yi represents the total cost of performing
operation o by client u on information in database object db;. For a centralized name service with
a single server, NS main, Loux Would be simply Cy main- However, for a distributed service, Loux
includes the cost of locating the desired data; this name resolution cost may involve retrieving con-
figuration data from one or more name servers. L,y is often denoted as simply L,i in cases where
the particular operation is clear from context or where Liookup uk = Lupdate uk-

The complete cost of operating on name server information, such as performing a name lookup,
varies per client according to the client’s location relative to the various name servers and the client’s
reference mix. The expected value of this cost for client u, denoted by E(L,), is weighted according

to the client’s reference mix: «

E(L,) = Z'ukE(Luk)- (51)
k=1
Deriving an optimal configuration would involve minimizing the svm of the expected costs for all
clients.

5.2.6 Summary

TLi: section advanced a model for distributed name services. The parameters of the model.
which characterize the name service's configuration, are summarized in Figure 5.]. When applying
this model to study a proposed name service configuration. system administrators have control over
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NS,;...NS~ 4¢f set of name servers

1...U *Y name server clients
of ,
db,...dbg 4’ pame server database objects

Sk d8f set of authoritative name servers for dby

Puk 4¢f fraction of client u’s accesses to dby
Cui el cost of communicating with NS, from client u
d; def cost of performing an operation at VS,

def
Cui = Cui+ 6,

Sr o/ set of failled name servers

Figure 5.1: Name service mode. parameters.

N, dby, and Sx. Th= parameters, d;, r,x, and c,;, to a large extent, should be measured or projected.
The communication cosis, cy;, however, also depends upon the placement of servers, which can be
controlled.

L Clients and system designers are primarily interested in the expected name service operation
cost E(L,), which is a function of these parameters. Studring t'.e effects of varic us configuration
choices can be accomplished by varying a parameter, while hiolding tue uihers constant, and observing
changes in the etpected cost. Typically, the cost values for the parameters are specified in units of
time 3o that L, gives an expected level of performance. Alternative measures of cost, such as dollars,
could also be used.

5.3 Performance of Individual Serve. s

The model is not concerned with being able tc predict the performance of a particular name 55
server since standard performance evaluation and improvement techniques can be applied to ana-
] lvze and erhance an individual server’s level of performance. Also, additional name servers can be .
emplouyed if existing ones become overloaded. Instead, the performance of various servers is used
indire~tly to gauge the distributed performance of the overall service. In the model, NS§;'s perfor-
mance is completely embodied in the database operation cost, d;, and che processing component of
the communication costs between clients and the server, c,;.
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5.4 Name Server Placement

4“’—‘

Generally, the placement of name servers in the distributed environment is dictated by admin- R
istrative considerations, rather than by performance. An organization provides the name servers ::
required to manage the objects created and owned by members of that organization, or else arranges t;.‘

9 to lease time and storage from another organization’s server. The location of servers has an indirect !
influence on performance through the database objects that are assigned to particular name servers e
and the cost of communicating with these servers. This influence may be substantial for very large .
distributed communities. L
As an exam' ¢+ of a widely distributed environment, consider the network topology of the ;'-\
Grapevine syste... as of summer 1983 [Schroeder et al. 84]) presented in Figure 5.2. The circles :’-:
|0 represent Ethernet local area networks, while the Lines are long distance links with data rates of
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interconnections:
- ethernetinterface
ethernet

———
- 56K line
— 96K line

Figure 5.2: A sample internet.

This is the configuration of Grapevine servers in everyday use at the Xerox Palo Alto Research Center as of
summer 1983.
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from to server |
network A B C D E F G H 1
1 56 56 111 111 166 166

2 56 56 56 1 1 56 56 111 111 |
3 111 111 111 56 56 1 1 56 56
4 166 166 166 111 111 56 56 1 1
5 479 479 479 424 424 369 369 314 314
6 682 682 682 627 627 682 682 737 737
7 682 682 682 627 627 682 682 73T 737
8 682 682 682 627 627 682 682 73T 737
9 369 369 369 314 314 369 369 424 424
10 682 632 682 627 627 682 682 737 737
11 682 682 682 627 627 682 682 73T 737
12 424 424 424 369 369 314 314 369 369
from to server
| netwerk J K L M N (0] P Q
166 479 682 682 369 682 682 424
111 424 627 €27 314 62 627 369
56 369 682 682 369 682 682 314
1 314 737 737 424 737 137 369
314 1 1050 1050 737 1050 1050 682
737 1050 1 627 314 327 627 627
737 1050 627 1 314 627 627 627
737 1050 627 627 314 627 627 627
424 737 314 314 1 314 314 314
737 1050 627 627 314 1 627 627
737 1050 627 627 314 627 1 627
369 682 627 627 314 627 627 1

fefie—U-3. IR - Y0 RO AR

Table 5.1: Communication costs.

Entries are derived for the internet depicted in Figure 5.2 and listed in units of T, where T represents the
cost of communicating over a local ethernet.

either 56 kilobits/second or 9.6 kilobits/second. The local networks are numbered from 1 to 12. The
rectangles depict the various name servers, labeled from A to Q.

In an existing environment of this sort, the values for ¢; could be easily obtained from mea-
surement studies. For the sake of example, suppose that estimates for these quantities are needed,
as would be required if the system were in the planning stages. Table 5.1 enumerates the costs of
communicating between a client on each network and each name server using the following simple
algorithm: Communication costs are normalized so that communicating over a local Ethernet incurs
one unit of cost, denoted by T. Assuming that the communication cost is proportional to the data
transmission rate of the communication medium®, transmission over a 56K bps line costs approx-
imately 54T, and similarly, communication over a 9.6K bps line custs around 312T. The host to
host cemmunication costs, then, are derived by adding the costs of the various comununication links
traversed; added costs due to delays in the gateways have been ignored.

Notice that the costs of communicating between a client and various servers may differ by several

!'This assumption is 1nade solely for the sake of example. Studies show that the cost of communication over high-
speed local networks actually bears little relationship to the bandwidth. For long-haul slow-speed communication
lines, however, the assumption used in this example is more realistic.
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orders of magnitude. Fortunately, the distributicn of database objects among servers can alleviate .
much of these differences by storing name server information close to where it is frequently used. 1
o
~ 5.5 Assigning Authority
5
L~ .
o 5.5.1 Basics
%

The association between an adopted naming convention and the assignment of authorit;' for .E
o~ managing the name space has been previously explored Terry 84]. This section uses the model of )
o a distributed name service to quantify the cost implications of various classes of existing naming :
N conventions. The analysis assumes that a single copy of each database object exists; the benefits of N

s . . . . . - .

) replicating database objects are studied in a later section. Since the cost of lookups and updates are )

iy identical under this assumption. the analysis is worded in terms of name server lookups without loss :
of generality. .!

Althiougn a client’'s reference mix, which the system designer has no control over, contributes

significantly to the client’s expected name server lookup cost, it plays no part in the cost of retrieving /|
or updating an individual object’s attribute. Thus, the following analysis concentrates on formulating i
Ly, and igneres the clients’ access patterns in £(L,). The client subscript u is left out of the formulas "
to increase their clarity; this can be safely done since the performance observed by a particular client i
is independent of the locations of other clients. It should be kept in mind that L, which really varies [
from client to client, is a shorthand for L., and C; is a shorthand for Cux. 1
5.5.2 Flat name space i
To start with a simple case. consider managing a flat name space. The two basic alternatives .!

- are giving a single name server authority over the complete name server database or choosing an

i arbitrary anthority for each database object and using broadcast or searches to resolve names. In

E‘: Chapter 2, both of these approaches were ruled out for performance reasons, among others.

In the first case, with S = {NScen(rat} for all k, the name server can perform any operation
since it contains the complete set of information about all named objects in the environment. Thus,
the retrieval cost is simply

Ly = Ccentral- (52)

This approach appears very attractive in tae cost of uame server lookups, though, in reality, the
single name server would have to be centrally located in the environment and hence the cost for
accessing it, Ceentral, Ww2uld generally be much greater than the cost of accessing the closest server
in a distributed name service, Cpmain-

For Sy = {NS;} with the authoritative name server ior an object chosen at random, if the name
service contains no configuration data, locating the desired attribute may necessitate querying each
name server in succession until the authoritative one is discovered. The retric .al cost becomes

Lg = Z':Cj’ (53)
j=1

assuming that the name servers are queried in numerical order. This second approach is costly in
term: of name server interactions since half of the name servers must be accessed on the average
to retrieve the object’s information. As noted earlier, neither approach is very practical for large
environments.

If authority attributes are introduced. so that the set S; is maintained at all name servers for all
database objects while the database itself remains distributed as proposed in section 3.2.2, then the
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cosf can be reduced to
Ly = Cmal'n + dmau'n + Cc’- (54)

The first interaction (Cmain) resolves the name while the second (C;) performs the desired operation;
the extra database access (dmqin) is required to retrieve the internet address of the authority.

At first glance it may appear that the cost in Equation 5.4 has more than doubled that of
Equation 5.2 for a centralized server. Actually, E(C;) is approximately the same as Ceentral
assuming that data is distributed randomly and referenced with equal likelihood. Moreover,
Cmain = min{C,...,Cn}, so the difference may be quite small. With locality of reference, studied
in section 5.8.1, E(C;) could be significantly less than Ccentral, and hence, the lookup cost for a
distributed name service may actually be less than that for a centralized service.

5.5.3 Physically partitioned name space

With a physically partitioned name space, a one-to-one mapping exists between database objects
and name servers. That is, K = N and S, = {NS,}. Even though the authority for an object can
be explicitly recognized from its name, two accesses are required to perform a name server operation:
one to locate the naming authority and one to access the data. A special case arises if the desired
naming information is stored at the primary name server; in this case, only a single access is required

since the main name server can recognize that it is the authority and return the data directly. The
cost of a lookup is thus

(5.5)

[ = { Cmain + Cx  if k # main,

(L if k = man.

However, if the total number of name servers is small, clients can easily cache the network addresses
of the various name servers, thereby reducing the cost to

L: = Ck. (5.6)

The access to the local name server has been eliminated since the individual hosts are knowledgeable
enough to query the correct storage site directly. The resulting lookup algorithm is optimal given
the assumption thnt naming data is stored exactly once.

5.5.4 Organizationally partitioned name space

Suppose the name space is partitioned according to administrative organizations and that each
organization’s data is managed by a single name server, §; = {NS;}. If each name server knows
which server has responsibility for each organization. name server queries can be processed in two
steps as before. First, a client’s local name server maps the organization name to the authoritative
name server for that organization and returns its network address. Then the remote name server is
contacted o retrieve the appropriate naming information. The lockup cost is basically the same as
Equation 5.4 for a flat name space using authority attributes for name resolution,

Ly = Crngin + dmain + C;. (57)

The major difference is that the organizational clustering serves to reduce the total amount of con-
figuration data compared to a flat name space with an authority attribute per name.

Note that, unlike physically partitioned data, two database retrievals are always required since
a name server can not determine whether or not it is the authority for the desired data without
consulting the local database. One round trip transmission cost can be saved, however, if the primary
name server retrieves and returns the name server entry directly upon discovering that it is the storage
site for the desired data. Thus,

Ly = Crmgin + dmain if S, = {NSmam}~ (58)
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Often, rather than all of an organization's objects having identical authorities, the authority
for objects is distributed within an organization. In this case, the authority for each organization :
contains inform-*ion about which servers are authoritative for objects within the organization; the |
initial context need only contain a list of authorities for top-level organizations. The resolution chain o L
for names is thus increased in length, and the cost of an operation becomes, }

ik

“
VieH

i

Le = ((Crmain + dmain) + Corq + dorg) +C;. (5.9)
The nesting in the formula corresponds to the iterative name resolutic- calls. ) {
The analysis for longer name resolution chains is a straightforward extension. If the name resolu- o

tion activity performs a context binding at the list of servers, NS; ,NS;,,...,NS;,, where i, = main,

then,
¢
Ly =) (Cy, +d;) + Ci. (5.10)
j=1

Therefore, assuming database objects are uniformly distributed throughout the environment, the |

expected cost of retrieving an attribute stored in database object dby is given by,
E(Li) = ((Crmain + dmain) + (t = 1)(C + d)) + C.. (5.11)

Of course, each step in the resolution chain does not necessarily require communication between the

client and a name server. For example, if N Si, = N§;,,, forsome 1 < j < ¢, then the communication ®
cost ¢;; can be aveided. Thus, the formula given for Ly in Equation 5.10 can be ~onsidered an upper

bound on the cost of a name server operation. +

5.6 Benefits of Replication

Assuming that a read-any/write-all algorithm for replicated data is adopted, replicating database
objects decreases the cost of name server lookups, but increases the cost of update operations. The i
main cost of increased replication results from the need to maintain consistency among the various
copies of a database object when updates are applied to the object. Although the update cost depends
on the exact algorithm employed for maintaining consistent replicated copies, a simple estimate can
be obtained by adding the costs of perforining an update at each individual authoritative name server. o/
For an organizationally clustered name space, the update cost can then be estimated by,

Lypdatex = Crain + dmain + Z Ci. (5.12)
NS. €S

Observe that the update cost is an increasing function of the degree of replication.

On the other hand, with replicated data, any available copy of an organization's name server data
can be used to answer queries. For performance reasons, accessing the closest authoritative name
server for the named object is generally desirable. Assuming that the closest authoritative name
server, NSmin, € Sk, can be determined with negligible cost?, the name server lookup cost becomes

Lluokupk = Crnain + dmain + Cmin.- (513)

This formula looks similar to previous formulas, such as Equations 5.4 and 5.7. However, the cost
should be less with replicated data since the name server accessed by various clients, NSpm;n, , could

3For a large environment with a substantial number of name servers, determining the closest server may not always be
feasible. In the Grapevine system, each registration server naintains a complete list of the other servers ordered by
distance Schroeder et al. 84!. For other environments, it may be sufficient for a server to keep lists of neighboring ®
servers: if none of the neighbors are authoritative for the current context or object. meaning all authorities are
distant, then an authority could be arbitrarily chosen without unduly impacting performance.
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[“client's | replication factor R =

network 1 2 3 4 5 6
207.35 14599 84.83 56.72 41.53 32.15
261.76 12496 7440 53.69 4339 36.94
27147 125.76 7424 53.63 4338 36.94
300.50 14234 8265 5596 4134 32.12
576.76 398.65 323.48 281.71 251.52 226.25
645.18 548.70 488.14 435.57 387.66 343.13
645.18 548.70 488.14 435.57 387.66 343.13
976.59 896.22 849.47 808.41 769.71 732.08
369.00 307.04 278.71 256.05 235.77 216.55
10 645.18 548.70 488.14 435.57 387.66 343.13
|11 645.18 548.70 488.14 435.57 387.66 343.13
12 43941 34785 302.26 271.68 246.62 223.93
avg. v06.14 390.30 335.21 298.34 268.66 242.46
A% “ — -2289 -1411 -11.00 -995 -9.75

© 00 1D N

Tabl: 5.2: Effects of replication on lookup costs.

Entries give the expected cost of a name service lookup in units of T.

differ from client to client, whereas before each client was forced to access the same server. Never-
theless, without some knowledge of how the authoritative name servers are selerted and how many
exist for a given database partition, comparing the costs of the different name space management
techniques is very difficult.

One simple approach would be to distribute R copies (R < N) of each database object uniforinly.
In other words, R authoritative name servers are chosen at random for each named object. Without
loss of generality, assume for the moment that the name servers are ordered relative to a particular
client such that C; < C; for ¢ < j and N§; = NSpain- Under this assumption, the expected lookup
cost can be computed as follows,

& 8 9 @

N
E(Llaokupk) = Cmm’n + dmal'n + Z PTOb(i = mink)C.- (514)
i=1
( N-i ) ]
h's R-1 e d
= Crmain + dmain + ) ~————=Ci. (5.15) o

1
i=1 N -
o g I
This formula allows one to quantitatively determine the benefit of replication on performance by Gy

increasing the value of R. Of course, the benefits that can be achieved depend greatly on the
physical configuration of the internet and the placement of the name servers.

The randem selection of a fixed nuinber of storage sites for database objects is a particularly &
naive configuration technique. Generally, if the client reference patterns are known, the cost of -
o lookup operations can be reduced by distributing data intelligently to coincide with its regions of g
interest. The cost formula derived above in Equation 5.15 based on randomly selected storage sites ]
thus provides a good indication of the minimum achievable performance.

Using the configuration in Figure 5.2 and the associated estimates of communication costs given e

in Table 5.1 along with Equation 5.15, Table 5.2 presents the effects of replication on the expected

o performance of name server retrievals assuming that copies are uniformly distributed. In this example. —
=

the database access cost, d;, i3 taken to be 6T in accordance with experience indicatirg that. for
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retrieval over a local network, the cost of database queries generally dominates the communication
cost by about a factor of 4 to a factor of 8. The number of copies of each partition has been varied
from 1 to £. The expected cost of a name server query is computed for a client on each of the 12
networks and then averaged over all networks. The last line of the table indicates the change in the
average expected cost resulting from an additional copy of each database partition.

On the average, having two copies of the data instead of one reduced the expected lookup cost
by over 22%. For networks 1-4, which a e connected by high speed lines, improvements of over 50%
are achieved. Notice that clients on network 8, which has no local name server and is separated from
the rest of the world by low speed lines, suffer the worst performance. Furthermore, replication does
not help them as much as others. Networks 1 and 4, which have three local name servers apiece,
benefit the most from replication. In all cases, adding an extra copy of the name server data has a
substantial impact on performance regardless of the replication factor. These performance increases
are due entirely to reducing the amount of communication between clients and very remote name
servers.

@
R

5.7 Name Server Failures

With partially redundant name server data, the failure of a name server should potentially degrade
performance, but should not render any information unavailable provided the number of failures is
less than the degree of replication. If the number of name server failures, F, exceeds the degree ® ,
of replication, R, then all respoasible name servers for the information may have crashed. The
probability that a given piece of data is inaccessible becomes +

- . -
2V

F-1
—1

Z

R-1
Prob(data inaccessible) = H
=0

which is always zero for F < R.

Basically, failures introduce a variability in the degree of replication of database objects. Not only
do different database objects have different numbers of available copies depending on which servers
are down, but also a given object’s degree of replication varies over time.

The effect of name server failures on performance can be gauged by incorporating such failires ®
into the previous lookup cost formula. For the set of failed name servers selected at random, S with
F < R, the lookup cost formula remains as in Equation 5.14,

N
E(Llookupk) = Crmain + dmain + Z PfOb(l. = mink) C;, (516)

=]

But the probability of retrieving the desired resource information from name server i, Prob(i = min,),
becomes substantially more complex. The name server operation on db, is performed at N S; if and
only if name server i stores the data (N 5; € Si), is atill alive (NS; € S¢), and all authoritative servers
that are closer to the requesting client are inaccessible (NS; € S Vj such that NS; € S N j <i).

The probability of name server 1 being available is simply,

F
I—N.

Crmbinatorics says the probability that g authoritative name servers are closer than N S; is given by,

(2 (%) o
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b
client’s number of failures F = ,:
network 0 1 2 3 4 P
1 41.53 46.00 51.42 5808 66.36 F
2 43.39 4642 50.22 5506 61.32 ot
3 43.38 46.39 50.17 55.01 61.31 ~an
4 41.34 4564 50.83 57.21 65.19 e
5 251.52 260.40 270.13 281.03 293.53 RS
6 387.66 401.75 416.19 431.01 446.33 ‘ol
7 387.66 401.75 416.19 431.01 446.33 !
8 769.71 781.09 79265 804.42 816.53 ot
9 235.77 241.73 247.87 254.24 260.92
10 387.66 401.75 416.19 431.01 446.33 e
11 387.66 401.75 416.19 431.01 446.33
12 246.62 253.99 261.77 270.09 279.14
0 avg. 268.66 277.39 286.65 296.60 307.47
A% | == 3.25 3.34 3.47 3.66
| Table 5.3: Effects of failures on lookup costs for R = 5. :'_::::
Entries give the expected cost of a name service lookup in units of T'. ’.:'
At w
9 !
while the chances that all ¢ of them are dead givea that NS; is alive is, '
"H‘ F-j ]
! N
E J=0 N l J -:':-‘
9 Putting this all together and enumerating over possible values of ¢, d
. (.--1)( N ) . o
-1 [ o " h
0 0 q R - g-1 F F- ] ‘\_\.
Prob(; = mm,‘) = z ( N ) [l = I—V-] H m‘; (517) ‘:::\.:
=0 Jj=0 e
R A
o Returning to the sample distributed computing environment in Figure 5.2, Table 5.3 presents -
the effect of failures on the cost of retrieving name server information. Again, the results are given ]
for clients on each network and averaged over all networks. These results indicate that name server
failures actually degrade performance by very litile for a replication factor of 5. Even if almost one o
fourth of the name servers are down, the expected lookup cost increases by only 15% on the average, N
and around 50% for the worst case. 3
;. The availability of name server data, not performance, appears to be the primary concern when (ﬂ
| considering name server failures. However, recall that the simple name server model used in this
E chapter assumes that the load on servers does not vary over time. With failures, added congestion :—
| at servers would likely increase the cost of name service operations more than the analytical results S
g suggest. -
Yo
°
| 5.8 Exploiting Client Behavior
| 5.8.1 Locality of reference
& A name service client’s behavior is characterized by the frequency of operations it performs and the
database objects those operations affect. Re. all that a particular client’s reference mix is represented
.
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by a list of the probabilities of accessing individual database objects, ry, ...rux for client u. and that
the effect of the client’s referencing behavior on its expected operation cost is as given in Equation 5.1:

K
E(Lu) = Y rurE(Lys). (5.18)

k=1

Locality of reference occurs if the most frequently accessed database objects are those that can be
operated on with the lowest extpected cost, generally objects that are in the proximity of the client.

If the client references all database objects with equal likelihood, ryx = r for all 1 > k,1 € K,
then the overall expected operation cost does not depend on the particular assignment of authority,
assuming that all name servers are assigned the same number of database objects. Even if database
objects are referenced with varying frequencies, the expected lookup cost remains independent of
che client’s particular reference mix as long as the assignment of authority for database objects is
performed arbitrarily.

As an example, for a simple organizationally partitioned name space, the expected cost obtained
from plugging Equation 5.7 into Equation 5.18 is

K
E(L,) = Z rukE(Cu main + du main + Cui)- (519)

k=1

K
= z ruk(Cu main + dy main + E(Cm))
k=1 *
If the authority for database objects is randomly distributed among name servers, that is, the storage
site for a database object is chosen arbitrarily, then £(C;) = C, and Equation 5.19 becomes

K
E(Lu) = (Cu main + du main + CTu) Z Tuk (520)
k=1

= Cy main + du main + 6:
Note that this expect.:d cost is independent of the values for ry; ...7r k.

Substantial gains in the expected operation cost can only be achieved by storing data close to
where it is frequently used. In other worde, £(L,) is reduced if for two database objects db, and
dbi, Lyx < Ly when ryp > ry. Fortunately, localities of interest naturally arise in large distributed
systems. For example, clients residing in a local environment, such as Berkeley, are presumably most
often interested in objects created within that environment, and much less frequently interested in
referring to distant objects. The assignment of authority for storing database objects should be done
intelligently to exploit the measured or expected locality of interests. Replication can be used in
cases where two geographically-distant clients share certain localities of interest. Chapter 6 discusses
the results of an experiment to measure the locality present in the Grapevine system.

5.8.2 Lookup/update ratio

A second aspect of clients’ referencing behavior that can be exploited to reduce the expected
name service costs is the frequency of various operations, such as the ratio of update to lookup
operations. Wkile E(L,) is the expected cost of performing a given name service operation, the
overall cost incurred by a particular client, E(TOT AL,), is the sum over all operations, weighted by
the probabilities of those operations. For the two operations, lookup and update, this is given by

E(TOTAL,) = Prob(lookup) E(Liookup u) + Prob(update) E(Lypaate u) (5.21)

where Prob(lookup) + Prob(update) = 1.
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Generally, techniques that reduce the expected cost of one operation increase the coet of an- t‘::t-:
other. This is, choices can be made that trade off the costs of different operations. For example, as r:".!-}
demonstrated earlier in this chapter, increasing the replication facte. . 7 tabase objects improves ::-"1
) the cost of lookups, but renders updates more expensive. The proper choices for configuring the ==
E name service thus depend on the expected ratio of operations, Prob(lookup)/Prob(update). For N
Prob(lookup) >> Prob(update), efforts should be made to reduce E{Liookup u), and vice versa for .":\
Prob(lookup) << Prob(update). :::;\;

Given that name services are primarily used to locate and maintain information about named . W
i objects, and that lony-lived objects move infrequently, one would expect name service lookups to be &
[ much more prevalent than updates. Therefore, one’s intuition would be to optimize the cost of name '
service lookup operations at the expense of updates. \"-V::

5.9 Summary

® Once a naming convention and associated name space management strategy have been selected, -
the observed performance of name service operations is dictated primarily by the placement of the N
name servers, the distribution of the name service database, and the patterns of reference to name b
service information. The simple analytical model of a distributed name service presented in this 1‘
chapter allows one to quantitatively measure the high-level impact of a name service’s configuration ':\
on a given client’s level of performance. SN
e Since the costs of communicating with name servers in a large distributed computing environment -
may vary from client to client and server to server by several orders of magnitude, minimizing ‘the
number of interactions with servers and localizing those interactions ia the key to low operation costs. . “
The name management policy adopted determines the amount of communication required to resolve o
a name and access the appropriate database object. Reducing the cost of this communication is ":‘::',

achieved mainly through replicating name service data and exploiting inherent localities of client
o references.

The random selection of a fixed number of storage sites for database objects was analyzed as a
particularly naive configuration technique. For such a scheme, the degree of replication of database
entries was shown to considerably impact the cost of accessing a given database entry. In cases where
some locality of reference exists, and data is distributed intelligently so as to coincide with its regions

® of interest, the cost formulas based on randomly selected storage sites can serve as a lower bound on
performance. -,
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Chapter 6

LIS W

Measurements of Grapevine

Experimental measurements of Xerox's Grapevine registration service indicate proper-
ties of clients’ reference patterns that can be exploited to enhance performance, including
large localities of interest. The ratio of name service lookups to updates initiated by
electronic mail clients, which is high for individuals, is surprisingly icw for group names

5 in Grapevine. The measurements, used as inputs to the model presented in the previ-
! ous chapter, demonstrate the benefits of intelligent name service configuration and client D
reference locality on name service response times.

6.1 Basics of the Experiment

6.1.1 Goals ®

The previous chapter discussed several aspects of clients’ behavior that have drastic influences

on the performance of name service operations. It also suggested ways in which, given knowledge of .
the clients’ behavior, such behavior could be exploited to improve performance. Prompted by these o
analytical results, an experiment was undertaken to obtain actual measurements of the amount of i
reference locality that exists in a large distributed community; tabulations of the frequency of various ® |

operations performed by name service clients were also desired. J

6.1.2 Why Grapevine?

widely distributed name service with a sizeable user community. Close to 5000 individuals within
the Xerax Corporation use Grapevine daily to exchange electronic messages. At the time of the
study, the Grapevine system consisted of 20 dedicated servers distributed throughout the continental
United States, with one server in Canada and one in England. Its implementors claim that. as of

The Grapevine registration service was chosen as the object of the study since it is perhaps the only e i
5
\

the Summer of 1983, over 8,500 messages were submitted to the Grapevine mail service in a typical :
day [Schroeder ¢t al. 84]. Figure 6.1 shows the interconnection topology of the 17 Grapevine servers L Y
that existed at this time. -

Large widely distributed systems that are heavily relied upon by users to perform their daily work X

are difficult to modify. Adding hooks to such a system to keep statistics and obtain measurements
would be painful at best, probably unacceptable. Fortunately, Grapevine servers maintain logs of
their activities, Although these logs were designed as a tool tc monitor and debug the system -
(Schroeder et al. 84], they contain sufficient data to derive most of the desired numbers. A snapshot ® !
of Grapevine’s logs thus served as the basis for studying how Grapevine is used by its clients.




F‘. S S AP Sl Sl A SO Sl AP S D N AT S i e G Bl R S Ry te A% S8k o A0 S BB A LR R R Rl St A T lad i Aal R dUC AR o )

.

v

v .

13

..

)

& ¥

® Interconnections:
- Othernet interface :
- Sthernet
- 56K line e
— 9.6Kline

v e
R
10 4

K

Figure 6.1: Topology of the Grapevine internet.

Pl 2R S
l".'

'l-?l
AP

R
o/

Y ‘l L}
v N
et
A

.
% ¥




N R R e A R R s R TR A T R T T T s T e T TR R TR T e Te T T LT RN T W T T e W N A NHE NS TR W T W E e e TR LT L T N

i
o

6.1.3 Grapevine’s logs

Each Grapevine server keeps a local log, consisting of 120 512-byte Alto pages treated like a
circular buffer [Birrell 83]. The log contains a list of one-line log records pertaining to both the
registration and mail services. Date records start with octal 377 and give the current date, such as
“10-Dec-83". All other log records consist of an indication cf the current (local) time, relative to the
last date record, followed by a description of some activity. For example, if ihe server “Cabernet”
was booted &t time 17:12:38, it would write a log record of the form,

R
" o,

PR

W e

17:12:38 Grapevine: Registration Server Cabernet.gv. Mail Server Cabernet.ms )

T

A

The contents of individual log records depend on the particular activity bei~ - logged. No explicit

i:‘ relationship exists between adjacent log records other than their chronologicai .. lering. 3
E’-:' When half of the server’s log fills up, the server dumps it to a file server while the other half is :,?
i being used. Forty files containing full logs are kept on a file server for each Grapevine server. These 3
files are themselves treated like a large circular buffer, that is, the dumping of a server’s log causes (Y

the contents of the oldest log file to be overwritten. Forty log files (2,457,600 bytes) should be large 7_‘5

enough to hold a week’s history [Schroeder et al. 84]. ~

N

-

6.1.4 Retrieving, parsing, and analyzing log data "

The first phase of the study involved retrieving each server’s log files from the appropriate file
servers. Using the Cedar programming envircnment, this was accomplished from a program using
a file transfer protocol; even the servers in Canada and England could be easily accessed. The logs +
files were then concatenated into a single file for each server, being careful to preserve the records’
chronological ordering.

»
 a

P
P N )

g g™

This provided a snapshot of Grapevine's activity for a certain period of time, the period varying
from server to server based on its amount of activity. Some servers had months of log data while
others had barely a week’s worth. For consistency, each server’s log file was pruned to span exactly
one week. That is, all records outside of the range 00:00:00 PST December 4, 1983 to 23:59:59 PST
December 10, 1983 were discarded!. This left about 20 megabytes of log data to be analyzed.

The templates for various log records can almost always be identified by the record’s first word.
The j.arser built to read the log data takes advaatage of this fortuitous property in the following way:
the first word of a log record, denoting the record’s type, is read and sequentially compared against
a list of valid record types. If a match is found, the semantic routine associated with the record type
is called to parse and analyze the remainder of the record. This allows new semantic routines that
perform different types of analyses to be introduced without changing the basic parser. Uninteresting
types of log records were given “null” semantic routines that simply skipped to the end of the record.

»
L

Rl -EBCNIEIIASaTE SV

Initially, a routine that incremented a counter associated with the particular record type was used
as the semantic routine for all log records. The resulting counts were then used to arrange the list
of valid record types by their frequency of occurrence. The performance improvements accrued from
this reorganization were much appreciated since parsing the complete 20 megabytes of log data took
several hours on a Dcrado personal computer.

!Often a certain activity, such as the delivery of a message, generates several log records. Sunday at Midnight, a [ !
time of low network activity, was chosen as the cutoff point to help minimize the crhance of discarding a subset of

related log records.
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6.2 Locality cf Reference L
et
68.2.1 Methodology N
o
A system'’s locality of reference was de'ined in Chapter 5 as “the degree to which local name r_':g
servers are accessed more frequently than distant servers.” In Grapevine, “local” can be interpreted ; ‘:-
as belonging to the same registry since registries correspond to geographical divisions. Localities of r: .
interests can e ascertained with a matrix that is indexed in both dimensions by registry names; rows F‘s xC
of tk matrix indicate the fraction o7 neme service operations requested by members of the row’s Qf;
@ registry concerning names in the columns’ registries. A diagonal matrix would suggest strong locality ?
of reference. -_#E
If Grapevine logged all name service operations, then a locality matriz could be easily constructed e
from the collected log data. Unfortunately, *o conserve space in the log file, Grapevine does not »::-}i
record name serv’-e lookups. Thus, a different strategy was needed: measures of the locality of :{‘:‘)
reference in Crapevine were obtained indirectly by observing the electrozi: .cail traffic within and avh
o between registries. Although, this does not account for all clients of Grapevine s registration service, -
the mail service is by far that largest client. o
E Grapevine's log data includes records of many of the events occurring in the delivery of an
electroiic message. Figure 6.2 depicts the log records written at various stages in the delivery process. S
Ea ... message, upon creation, is assigned a unique identifier called a postmecrk [Birrell et al. 82]. o
® The first log record written concerning a particular message indic<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>