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7 This paper studies the estimation of functions d$, cey gé describ%ng the
temporal influence of p covariate processes in a regression model for semi-

martingales. McKeague (1986) introduced sieve estimators for é;; R @éjand
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’

established consistency in L;-norm. In the present paper the asymptotic dis-
tribution theory for the integrated sieve estimators is developed. Smoothed
sieve estimators are shown to be pointwise consistent and rates of convergence

are provided.
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1. Introduction

This work is a sequel to McKeague (1986) in which statistical estimation for
a nonparametric regression model for semimartingales was introduced. The model
is given by

X(t) =X(0) + [pA(s)ds +M(t),  tel0,1] (1.1

where M is a square integrable martingale and

x(s)=z§?=laj(s)\(j(s). (1.2)

Here a,, ..., ap are deterministic functions of time and Y

] Yp are predictable

1o
covariate processes. Grenander's method of sieves was used to obtain estimators,

~(n)

denoted aj , of aj, j=1, ..., p based on n replicates of X and its covariates.
These estimators were shown to be consistent in Lz-norm as n-o,

Our aim in this paper is to obtain some results on the asymptotic distirbutions
and rates of convergence of the sieve estimators. As in density estimation a
satisfactory distribution theory is possible only for the integrated estimator

given by

2 (n) _ fta(n)
A (t)-foaj (s)ds, (1.3)

where 1 <j<p. Also, to obtain rate of convergence results we need to look at a

smoothed sieve estimator

(n)

-8 .
t =)a.
n

L (n) D U
aj (t) = bn fol\(

(s)ds, (1.4

b ]
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where K is a function with integral 1, called the kernel function, and bn >0
is a bandwidth parameter. Our results make it possible to test hypotheses

concerning a ap and to construct confidence bands for

1* o

-— t -~ =
Aj(t)-foaj(s)ds, j=1, ..., p. (1.5)

The model (1.1) contains a number of important special cases. Grenander
(1981), Ibragimov and Khasminskii (1981) and Geman and Hwang (1982) have studied

the case where p=1, Y, =1 and M is a Wiener process. Nguyen and Pham (1982)

1
have treated the linear diffusion process with p=1. Aalen (1980) has studied
the point process case for general p2>1. Aalen provided estimators of Al’ ey A

E but it has not been possible to obtain consistency or asymptotic distribution

results for these estimators except when p=1. The importance of the point process

version of (1.1) is that it provides an alternative to the regression model of

Cox (1972) for the analysis of censored survival data. A practical example might

arise in which X(t) is the hazard rate for the incidence of cancer in a subject

who has been exposed to p carcinogens, where Yj(t) is the cumulative exposure to

the jth carcinogen and aj(t) represents the relative hazard rate of the jth car-

cinogen at age t.

Our asymptotic distribution results are given in section 2. In section 3

we state results on the rate of convergence of the smoothed sieve estimators.

All proof are contained in section 4.
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2. Asymptotic distributions.
;
Let (Xi, Mi’ Yij’ j=1, ..., p), i=1, ..., n, denote n independent copies f
of the generic processes X, M and Yj’ j=1, ..., p which satisfy the model (1.1).
For each j=1, ..., p let (¢jr, r21) be a complete orthonormal sequence in :
L2[0,1]. The sieve estimator &gn) for aj, which was introduced by McKeague -
(1986), is defined as follows. Let
d_ 4
M ey = 3 &.(r;)q>.r(t), 2.1 3
J r=1 J J .
where (dn) is an increasing sequence of positive integers and &§2) is the jr f
&
element in the pxdn matrix 5™ defined by :.
vec(&(n))==A(n) -lvec(B(n)). (2.2) -
»
Here vec is an operator which takes a matrix and places the elements in lexico- .
graphical order to form a long column vector, B(n) is a pxdn matrix given by k
n X
(n) _1 . 1 .
Sir Tw L Jorse 015010 (0), :
(nm) . . o . 2 . (n)
and A is a pan pdn matrix partitioned into p~ submatrices Ajk of order R
d xd_ with -
n n .
m _ 1 0ol
= = T . .. . dt. '
Alere = 7 i=1f0¢Jr(t)¢k€(t)Y1J(t)Ylk(t) |
. . (n) -1 . . o W) 3 .
In equation (2.2), A is a generalized inverse of A whose choice does i
not affect the asymptotic behavior of &gn)' <
0
X
R N e e e e e e e e e e e -1
\'\'z'ula'\laiukmin'ula'uxu'u'a“;i;“;'xi&“xﬁu‘u";’.;;’ulu’)iaimi\’aiai;iai\iui\Z.i.iui:foufafxfx{\f\“x“u’;’x“k*\*3




Define measures Uj, i=1, ..., p by duj(t) =EY§(t)dt. The projections of

2 - ,
aj onto span {¢jr’ r=1, ..., dn} in LZ(EO, 1], duj) and L°({0, 1], dt) are

denoted aj(n) and ai{n} respectively.

{n}

n

to (M) (t) =;g¢‘ (3,ds. A function f is said to be

0%;

Lipschitz of order y, where 0 <y<1, if there is a constant C such that for all

Write A§n)(t)= (s)ds, A,
s, t in the domain of £, | f(t)-f(s) | sClt-s | Y. If f is Lipschitz of order
1 we simply say it is Lipschitz. The predictable quadratic variation of M is
denoted <M >,

The following assumptions were used in McKeague (1986) to obtain consistency

5
of &§n) in L°-norm.

(A1) [éa?(t)dt <o for j=1,

sup EY4(t) <o for j
tei0,1]

inf EY2(t) >0 for j
tel0,1] J

| EY. (0)Y, () |
sup e < —
tel0,1] ¢ EY;(t)]z[EYi(t)]z P

1
for all 1 <j<ksp, applicable for p=2.
The function
t,2 \ \
05 (t) = E[joyj(s)d <M> 1, telo,l.
is Lipschitz, for i =1, ..., p.

Additional assumptions needed for our various weak convergence results are

now stated.




E
4
. -5 -
!
|
. 1 {n} 2 R —— -+ ©
; (s1) dnfotaj(t)- a; (£)1%de 0, as n-w,
i (s2) nfOEa (t) - }(t)] dt — 0, as n->w.
h
; sup | EY.(t)Y, (t)|
¢ tef0,11 7 X 1
' (B1) 2. % 7% Pl
[ inf EYS(0)1% inf EY (D)7 P
g te{0,1] tel0,1]

-
v

l-

for all 1<j<k<p, applicable for p=22.

(B2) <M> is absolutely continuous and

d<M>)2] <o, for j:l, eees D

sup EEY (t)(
tel0,1]

Our first result deals with weak convergence of finite dimensional distributions.

1
Theorem 2.1. Suppose that (Al)-(AS), (S1) hold and d ==, d_= o(n?). Then

5
for hieL“LO,l], i=l, ..., P

Al ™ @) - ol PPy
( nthJ(t)[aJ () - o5 (1) Jdt) N(0,2)

where = (ojk) is the pxp matrix defined by
el : -
%k -Efon(t)Hk(t)\j(t)yk(t)d<M>t (2.3)
H=(H1, , H)) (hl, . hp)
H(t) = L(h(t),  L(t) =[K(t)1"} (2.4)
................................................. % ;\.‘ T

.....................

‘A‘-_'LA_AA_AL.A,-_\‘.\ -.\L\AA- \LI’ ;"l; .
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K(t) is the pxp matrix with components

Kjk(t) = E[Yj(t)Yk(t)]. (2.5)

Corollary 2.2. Under the conditions of Theorem 2.1

D
a@am o my £
j j j

where Df denotes convergence of finite dimensional distributions and mj is a

continuous Gaussian martingale with mj(O) =0,

Cov(m (s), ms (t) -F[ At 2 .(u)Yzj(u)d<M>u. (2.6)

Corollary 2.3. Under the conditions of Theorem 2.1 but with (A4) replaced by

the stronger condition (Bl)
D

m@Am Ak £
j j j

Corollary 2.4. Under the conditions of Theorem 2.1 but with (S1) replaced by

the stronger condtion (S2)

[f X is assumed to be a continuous process (equivalently the martingale M is
continuous) then it is possible to strengthen these results to weak convergence

in the function space C[0,1].
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Theorem 2.5. Suppose that (Al)-(A4), (S1) and (B2) hold, dn-*w, dn =o(n4)

and M is a continuous martingale. Then

AAM JaMy D 5y o,
j j j

Corollary 2.6. Under the conditions of Theorem 2.5 but with (A4) replaced by

the stronger condition (B2)

~{n) {n} 1 .
/ﬁ(Aj - A )———»mj in cfo,1].

Corollary 2.7. Under the conditions of Theorem 2.5 but with (S1) replaced by

the stronger condition (S2)

&(A§“) -4 N m, in C00,10.

Under appropriate smoothness conditions on a, condition (S1) or (S2) can be
satisfied by a careful choice of the sieve and (dn). We mention two important

sieves for which this is possible.

(1) The Fourier sieve. Take ;jrz‘: , J=1, ..., p where ¢1(t) =1 and for r =22,

5 (1) = { V2 cos(rmrt), T even
r /2 sin(a(r+ 1)t), r odd.

Then (S1) is satisfied under the following conditons:

F . =a.(1);
(F1) GJ(O) GJ(I),

R T s

Sate e T
A A )
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(F2) The extension of aj to a function of period 1 on (-»,=) is Lipschit:z

of order y >.
The stronger assumption (S2) is satisfied provided (Fl1) and the following
conditions hold:

(F3) The extension of aj to a function of period 1 on (-«,») has Lipschitz
first derivative;
4

(F4) dn/n — @,

These facts are consequences of a result in approximation theory known as

Jackson's inequality, see Lemma 4.4.

{(2) The Walsh sieve. The following definition of the Walsh functions is due

to Paley (1932), other definitions can be found in Beauchamp (1975). First

define the Rademacher functionc (wr, r>0) on .0,1) by

e« e Tk e ...
e . PR

v (t) = (-1 if k27D cp e a2 (0t
) r, T
Then put @O(t) =1 and for r=2 "+ 2 "+ ,.,+2 °, with SR S Y >0 let
5 =3 ... .
(B rl(t)wr,(t) wrv(t) for te (0,1

. is called the rth Walsh function in Paley ordering. Results of Fine (1955,

ae

p. 3934) show that the Walsh sieve, defined by taking Sip as the rth Walsh function,

satisfies assumption (Sl) provided aj is Lipschitz of order y>".. Unfortunately,

in general (S2) is not satisfied for the Walsh sieve unless the rate of increase

P T
. Wt .
L LA

[ N N

of dn is prohibitively large. However some examples discussed in Beauchamp

s

e BB

(1975, p. 33) show that the Walsh sieve would be preferable to the Fourier sieve

P )
S

R
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if the aj's have a rectangular form. Also the Walsh sieve has an advantage over

the Fourier sieve in terms of computational simplicity.

In order to use the results of this section to obtain confidence intervals

and confidence bands for Aj(t) it is first necessary to estimate the function

2 N
Gj(t) =Em‘j(t). The matrix K(t) given in (2.5) can be estimated by K(n)(t)=

(R}E)(t)), where Kgﬂ)(t) =nt

fn o3

lYij(t)Yik(t)‘

Assuming that the covariate processes have paths in D{0,1] and

i

E sup lY.(t)Yk(t)[ <
tef0,11

it follows from Ranga Rao (1963, Theorem 1) that

a.s.

~(n) -
sup lkjk (t) - Kjk(t)l —— 0. (2.8)

tel0,1]
If M is a standard Wiener process Gj(t) can be estimated by
c(n) tr(n) «(n)
G: t) = L7 (s)) K" ds,
38 = gLy () K (s)ds

where f(n)(s)= (ﬂ§£)(s)) is a generalized inverse of kgn)(s). Then from

a.s.

sup Iﬁ§n)(t) -Gj(t) | ——— 0. (2.

tel0,1]

If X is a point process the predictable quadratic variation process <.\1>t

f;x(s)ds which involves «

LIREEE ap. In turn Gj(t) involves the unknown

TN R

- v e »
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(n)

a ap. However, as we have seen, &j is a consistent estimator of aj in

RREE
L2-norm, so it is possible to consistently estimate Gj(t) in this case as well.
It follows from Corollary 2.4 that upper and lower limits of a 100(l - a) percent
-4

(n) i} 56 (M) (1% L
s (t) + n Gj (t)*, where 24/2 is

confidence interval for Aj(t) are given by AJ 20)2

the upper «/2 quantile of the standard normal distribution.
If M is a standard Wiener process we can give a confidence band for Aj'

G. (t)

1. . . o ]
is distributed as W (EETTTfTE;T?T),

A -
First note that mj(t)Gj(l)z(Gj(l) +Gj(t)

where W° is the Brownian bridge on [0,1]. It follows from (2.9) and Corollary

2.7 that upper and lower limits of a 100(l - o) percent confidence band for Aj

are given by

~(n)
R ” G, 7 (1)
AWy sen 8™yt )Y, tel0,1]
J S ¢ 1)
J
where <, is the upper a quantile of the distribution of suptﬁrO 1..[Wo('c)l. A

table for this distribution can be found in Hall and Wellner (1980).

The assumptions (A4) and (B1) can be weakened by assuming that the sequence

(n)

of eigenvalues of the matrices R n>1, defined in Lemma 4.3, is bounded away

from 0. However in practice it probably would not be necessary to go to the

trouble of checking this given a lack of any obvious collinearity in the covariates.
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3. Smoothing the sieve estimators

Ramlau-Hansen (1983) has used the methods of kernel density estimation to
smooth the Nelson-Aalen estimator and obtain a pointwise consistent estimator of
the hazard function. We now apply kernel function smoothing methods to the sieve

estimators. Consider the smoothed sieve estimator a}n) defined by (1.4) where,

for simplicity, we assume that the kernel function K has support [-1,1]. The

following result shows how the sieve dimension dn and the bandwidth parameter
bn can be specified so that &§n) is a pointwise consistent estimator of aj.

Theorem 3.1. Suppose that the Fourier sieve is used, conditions (A2), (A3), (AS5),

(B1), (F1) and (F3) hold and K is differentiable with Lipschitz derivative. Let

e S sl
dn-[n 1, where -1-5<6<2,
bn=n‘B, where %<B<%6.
Then for each te (0,1)
=1 -
&j(n)(t) - e, (6) =0 (n ((1-8)y (3.1)

If it is assumed that X is a continuous process then we can establish uni-

The rate of convergence in uniform metric is naturally

form consistency for &§n).

slower than the pointwise rate given by (3.1).

D T T T o N R S e T e e G e R P R et e et
e e T e e T T, T e e T T

- - S B - - ER TP R S B I L AL AP e P R T S
LA L LSV ANV E S CTE PRI G RN T PR S S G, R DWW G R S S P S G PO PR PR P RV A AT U A A T U U P PO




J.J'
- 12 - <
Theorem 3.2. Suppose that (Al)-(Ad), (S2) and (B2) hold, @, and K are Lipschitz, "
'z -8 1 1 . . , v
d »=, d =o(n), b_=n where —<B <=, and M 1s a contlnuous martingale. -
] n n n 3 2 t
Then R
- . I -
- sup 3™ (t)-a.(t) | =0 (n L7 28y
. tef0,1] J P -
5 4. Proofs of Theorems.
The following notation was used in Mckeague (1986) where a more detailed
discussion can be found.
Notation .~:
(wjr’ r 21) denotes a complete orthonormal sequence in L‘([O,IJ, duj) such ',;”
N that span{‘i’jr, r=1, ..., dn}=span{¢jr, r=1, ..., dn}
:f for all n2>1. ::.'1
Ejr’ éJ(I;) denote the coordinates of aj(n) and &j(n) with respect to the basis i

(er, rz1) in Lz([O,l], duj), respectively.

: .10
aj({(‘iz:n iilfo‘{/jr(t)‘{’kz(t)\’ij(t)Yik(t)dt

5
a(n) denotes the pdnxpdn matrix partitioned into the p~ submatrices

() _ () | ] 5

ajk = (ajkrﬂ' r, £=1, ..., dn). .

3 p n o

(n) _ -1 1 _(n)

Sy =N kzl z fo‘}’jr(t)Yij(t)Yik(t){ak(t) a7 (2) 3t

=] 1=1

s

L) .

+n i fo‘{‘jr(t)Yij(t)d.\I.l(t) 2

R TN
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RICOIIEE Yy, v, yam, (1)
jr Eodo¥r(t)Yy; i

i=1

(n)

= (! ) !
Cjkrz"fowjr(t)wkz(t)E[Yj(t)\k(t)Jdt

ey

2 .
g denotes the pdn xpdn matrix partitioned into the p~ submatrices

(n) _ ., (n) . b
Cjk '(Cjkrz’ r, £=1, ..., dn).

(n), é(n), C(n) (n)

£ , P are p an matrices defined by their entries given
above.
It is easily checked that
vec (é(n) _E(n)) =a(n)-1 vec c(n) (4.1)
where a(n)-1 is a generalized inverse of a(n). The next two lemmas collect

various facts proved in McKeague (1986).

Lemma 4.1. Suppose that (Al)}-(A3), (A5) hold. Then

d

(1) E I a(n) -c(n) |I2==O(7?), where || « || denotes operator norm;
5 .4
8 (ii) E Il vec o(") i1 = ot=);
p , d
(iii) E 1l vee (¢™-pMy 1 2-0(z f(l)taj(t) 'agn}(t)]"dt) ro(h).
j=1 .

Lemma 4.2. (i)(A2)-(A4) imply that C(n) is invertible for all n>=1 and

n)-1
sup il ;( ) Qo< o,
n21
. e ‘-. "‘ - . - . ..‘ - " P A . -’ P " - . N . . T . LI \u‘ - ‘.. “.' N ‘--.—-'o - " m
SR AP SIS AL, S A RPN WU PR YR Uiy S AP TP URPULPUR, ST, Sl SR S L T S S 6.
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~
) . m) . _ . . .
(i1) (Al)-(A5) imply that P(a is invertible) )
+1 and { || a(™-1 l , n21} is a tight sequence of random variables. 4
L. ~(n) (n) . .
Proof of Theorem 2.1. Writing aj and aj in terms of the basis (er, rz1l) ?
we obtain E
|% dn

fl h, (t)[‘(“)(t) (n)(t)]dt-/ﬁ I (8 (‘r‘) ?;)) (4.2) &
J-1 j=1 r=1 JT ) J -
where h = f h (t)w (t)dt. By Lemma 4.2 we may define a p><dn matrix o
A () 2 (A(n)) satisfying i;
vee AMy =M1 yae (M), (4.3) -
where h(n) =(h§2)). Let I(n) denote the pdn xpdn identity matrix. Then using 2%
(4.1) we can split (4.2) into four parts N
/n vec (A(n))‘ vec p(n) (4.4 &

+ &\wc(AM)T WC(CM)-pm)) (4.5)
+ /n vec (A(n))‘(a(n)a(n)-l-I(n)) vee ¢ M (3.6) -
*+ v/n vec (X(n))'(l(n) -a(n))a(n)-l vee ¢ (M (4.7) X
o
By Lemma 4.2(ii) (4.6) converges to zero in probability. (4.7) is bounded in )

absolute value by

Yt Nt e e et e T e Yt e DR e e s et Ce e . . el . Ca et ‘.-. LIPS e .~.‘_' LT \
3 . B
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4 Ky
1 h\
9 - 15 - .‘
) r.
A o
) L - 1 %
. ovee A 2 &% g™ o a™yy 1 a™ ey d? vee <™y 4
n N
‘
and this tends to zero in probability since .
h2(t) 3
p " (t 1, _ o~
sup vec AWy scz I ger®sup M <a (4.8) -
. 0 2 ,
nx1 j=1 EY. (t) nz1 o
J -
- Z,; SN
by Lemma 4.2(i), () a™ 7}, n21} is tight and d? || vec <M By g by =
1. ..
Lemma 4.1 (ii), (iii), (S1) and the assumption dn=o(n2). Similarly (4.5) A
converges to zero in probability. It remains to consider (4.4) which we write -
in the form "
n "
% Tz, (+.9) -
) vnoi=1 ™ iy
where
T fHum™ iy, am, (n) (3.10)
ni j=1 0 7j ij j ’
o dn
N uMW ey = 3 x.(';)w.r(t). (4.11) .3
. Introduce ::'
P 1 .
2,4 =jil [0 Hj(t)Yij(t)dM.l(t) (4.12) :::
where Hj is defined by (2.4). In an Appendix (Lemma 4.6) we have used some -
o) e )
operator theory to show that uj ), Hj in L7[0,11 as n+>~. C(onsequently Ny
Z .-z in L%, F, P) as n~w: <
ni ®©]1 ."n
Y
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: Bz -2 )%<p 5 B @™ (o) - 1o ()Y, (1))
3 ni ~ fwi’ =P jep 700 j j ;
- -p ; ™ ) -1, ()%, (1)
- sop 100 j j -

+ 0, by (A5). Now apply the Lindeberg-Feller Theorem to (4.9). Note that for

>e2n))

noo2 2 .2
E E(Z,1(] znil >e vn)) =E(z, Iz ,

, n21} is uniformly integrable, so the Lindeberg condition is

. 2
+ 0, since {an i

2
satisfied. Thus (4.9) converges in distribution to N(0,0"), where

p -
= I 0.,. An application of the Cramér-Wold device completes the X
=l 5o k=1 K e

1}
N
N

[arleo

proof of the theorem.
Of the corollaries to Theorem 2.1 only Corollary 2.3 needs some explanation.
-
The following lemma can be used to rework the proof of Theorem 2.1 in terms of E
the basis (¢jr, r2>1) instead of (er, r>1) to yield Corollary 2.3. Note that i‘

we have replaced (A4) by the stronger condition (Bl) in order to do this.

Lemma 4.3. Suppose that (A2), (A3), (B1) hold and let R(n) denote the panpdn

n
matrix partitioned into the p“ submatrices R§E), j, k=1, ..., p with entries
R(Y = rle (tye,, (DECY. ()Y, (t) )dt (3.13)
jkrg ‘0%jr k€ T k ) )

-"-.'-'. - -'."-.' o - ‘-. . . . - . . - g - . . - - . - - - - . A . . T T T S T - T
B T S T Tl O e S T I ST L SR GRS
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Then R(n) is invertible for all n=1 and sup IIR(n)_1 || <o,
nz1
. 2 T -1 . =(n)
Proof. Let ¢. = inf EYj(t), Yj(t) =c, ijt) for j=1,...,p and let R

tel0,1]

be a panpdnmatrix partitioned the same way as R(n) but with entries

RJ@&,_:[O ()8 (DET (1Y, (8)Tdt.

It suffices to show that R(n) is invertible for all n=21 and sup | R(n) 1| <,
nzl
. . . (n) _ -1 -1 (n)-1 . .
For then the matrix with entries Djkr£ j S\ (R )Jer 1s an inverse for
R(n) and
sup IR™M™M < max i) sup HRM ) <,
nx1 j=1,...,p nx1
Condition (Bl) implies that
sup [E[Y.(t)?k(t)] [ < —%T for j=k (4.14)
tel0,1] ] P
Also note that
. o2 .
inf EY((t) =1 for j=1,...,p.
te[0,1]
Let b. = sup EY (), f (t)y=1 -b EY (t) and I denote the dnxdn identity matrix.
tel0,1]

Then

DO N A -.~-.".' .“ T e A S A '-'-~'~‘~‘.‘-'\ .\\\

(A< 1--' AR J' OO I AP I PSP SR P AP SR S ._‘A-_.L-_.a.r.e.g_- YA

AR
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R
RS
dn

b R s s g (fcl)h(t)¢jr(t)fj (t)dt)? ;::
het?r0,1] =} -
Hhii<1 X
- 1,2, .2 D :
< sup fh ()£, (t)de (by Bessel's inequality) -
0 ] o
th Il =1 ~
2 -
< sup f.(t)<1l. :
te(0,1] v
It follows that §§?) is invertible and "
- (n)-1 1 -1.(n).-1 N
R o Loy iRy ;
b,
J3 j J 1) >
1 1 N
< = (5= ) -
b. 1 sup f.(t) -
J te[0,1] 7 .

= 1 = = 1.
inf EY:(t) .
tef0,11 7 .
Let F(n) denote the pdn><pdn matrix obtained by replacing all off diagonal sub- &
matrices of F-{(n) by zero matrices. Let G(n) = ﬁ(n) - F(n) and I(n) denote the
pd > pd identity matrix. Then (M) s invertible and o
M e max AR < (4.15) 5
i=l,...,p -
f::

- * . . - - - . . -~ N .
. PRI IR B T e e e e e e T e e et e e, -
' .(.'-J.L"‘L(L'rA{L'L\*'t_ PO SIS SSRGSyl RN S AR TR
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Using (4.14) and an argument from McKeague (1986, 4.10)

sup || 6™ ) <1,
n21

so that

sup || 1™ - R@EML coupe @™ g M-y <,
n=1 n=1

Thus ﬁ(n)F(n)-l is invertible for all n21,

sup || (R(MEpM-1y-1

nx1

<cx>,

(n)

and using (4.15) we conclude that R is invertible for all n=1 and

sup || g(m)-1 I <w. [
n21

Proof of Theorem 2.5. Condition (B2} implies that (AS5) holds, so that the

conditions of Corollary 2.2 are satisfied and the finite dimensional distributions

of /ﬁ(ﬂ;n)-A§ )) converge. From the proof of Theorem 3.1 it can be seen that

1 (n) (n) _ Y ,
/B(Aj (t) - Aj (1)) =U_(t) +V_(t) (4.16)

sup U (t) | & o0,
tef0,1] "
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V()= = £ 2..(1) o
n /moi=1 M o
v
o
Zni(t) =k§1j0 u (s,t)Yik(s)dMi(s)
d ¥
(n) ")
U (s,t)= L )‘kr (t)‘{’kr(s) S
r=1 .
vec D\(n) (t)]-= c(n)—l vec [h(n) (t)]
1 . :
=3, r=1, ..., :
h(n)(t) _ IO lto,t](s)wjr(s)ds for k=j dn -
kr 0 for k=j, r=1, ..., d_. -]
It remains to show that the sequence of processes {Vn, n21} is tight in C{0,1]. .
In what follows C denotes a postive constant independent of n whose value may -
change at each occurrence. From Billingsley (1968, Theorem 12.3) the required
tightness is implied by the following condition: there exist constants q 20, -
y >1 such that for all n21, t tze[O,lJ N
; v q ) Y , i
E I\n(tz) \n(tl) [VY< C| ty -ty (A (4.18)
The processes an,..., znn are independent and have zero mean so that by the "
Marcinkiewicz-Zygmund inequality (see Chow and Teicher, 1978, p. 356) for q=>1 N
2}
e
)

e et e . e e e e L - - . .
. L P N S T PO - . - M b LI
Dl

R A S 4".-C.~'. R L A P S L LU ST . P S L
POC T ST N S LS W WA A SRS P ORI, P TV VT TSV YRIVA VR T DU T I TR D O YRR DU A D S R W § § S R L
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, q 1 ‘ - .2,9/2
E lvn(tz)- Vn(tl) | *<C E{n . “Zni(tz) Lni(tl)J }

1

H~3

1

i q
SCElZ  (t)) -2 ;(t)) |

E | fé{ulgn)(s,tz) - u}En)(s,tl)}Yk(s)dMS 14, (4.19)

1

<C
k

n ™Mo

For fixed t tz, k, n define the process

Nt= jg{uén)(s,tz)-uﬁn)(s,tl)}Yk(s)dMs, tetr0,l]

which is a square integrable martingale. By the Burkholder-Davis-Gundy inequality

(see Dellacherie and Meyer, 1982, p. 287), for q=1
o
E( sup txt|)qsc E[N]?/". (4.20)

tel0,1]

Also, by Dellacherie and Meyer (1982, Theorem V1Il1.30) and the assumption that

M is a continuous martingale,
s L te M), () 2,2 . .
NI = [ole " (saty) s up (s, ) TY () d (4.21)

so that combining (4.19), (4.20) and (4.21) with q=4

p
, . 4 . 1.
ELV (t5) -V (t)) | SLk?lE{fOLu

(n)

(s.t2) - ul™ s e ) ITYS (s 1das 32
K At N S s
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<C

K k

[l os Baw]

E{fé[u(n)(s,t7)- uﬁn)(s,tl)lzds}z
1 2

(by Lemma 4.3 of McKeague (1986) and (B2))

. '“-'L—l.". N

é
: P n 2.2
9 =Ccr{z [Ag) (ty) - )\IET;) (tl)]“}“
f k=1 r=1 -
P dn
, (n) o, (m) 2.2
<C{ z z [Akr (tz) Akr (tl)] }
k=1 r=1
= hvee x™ () Ayt
, 2 3
<C 1| vec [h(n)(tz) —h(n)(tl)] I 4 {(by Lemma 4.2(1))
1 (s) -1 (s))°
oyt [0,t,] 2
2 <C { IO - = ds (bv Bessel's inequalityv:
¥ EYS(s) J
- J
3
sCle,-t 17, (by (A3))
Thus (4.18) 1s satisfied for q=4 and y=2. [
The proof of Theorem 3.1 depends on a result from approximation theory
(- known as Jachkson's inequalityv. The following L™ -version of this result (see

Cernyh, 1969) 1s suitable for our purposes.
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Lemma 4.4. Let f: R -+ R have period 1 and denote the partial sums of
. {d) d
Fourier series of f by f (t) = ¢ fr¢r(t), d=1, where ¢r is defined by
r=1
and fr= Iéf(t)¢r(t)dt. There exist universal constants Cl’ C2 such that
(i) for all d=1
5
_f(l)[f(t) -l y1%ae SCp sup | £(8) - £(s)17;
|t-s|< 7%
(ii) if f is differentiable then for all d=1
1 dy,. 2.4 2
j‘O[f(t) -EON()) s = sup  £7(t) - £7(s)]°.
d C2
ft-si{< a
Proof of Theorem 3.1. Introduce

M) = g [ Do, (s)ds
n n

and note that

- (n)
j

t/b

n .
(t) - o (t) = j'(t_l)/bnuu)[aj(t-bnu) -0, (t)1du.

Since aj is Lipschitz, this implies that

....................

- (n)
sup  la; “(t) -a.(t)| =0(b))
tel0,1] ] ] n

-5(1-8)

=0(n ), (4.22)

PRI L T i Tt T R T O R SN
Ca .
-
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A e il *g - J - w

the

(2.7)

.«

e e R e, e - AN, et T e el “.‘. e e A S
Y RN R RS ISR ST B WS PN LIS IR, I AR I A DAL AT PNV Wk e O




because 3 >%(1-8) for B>1/3. Define

a; ™ (@) = lfl (—) Msyas,

which we shall use to approximate &§n)‘ By (F1), (F3) and Lemma 4.4 (ii), for

§>1/4,
foti™ o) - (332 as =0 )

so that, using the Cauchy-Schwarz inequality,

{n}

R O O e fo (s) - () 1ds |

n}

<5 oK s i (5) -y ()
n

-0 ohy
b

n
n

-vé(l-B)) .

=o(n (4.23)

In view of (4.22) and (4.23) , to complete the proof of the theorem it suffices

to show that (/b (3 Mty -a ( ") (t)), n21} is tight for all te (0,1). Fix
te(0,1). Using Lemma 4.3 we can rework the proof of Theorem 2.1 replacing the

basis (Wkr’ r21) by (¢kr’ r2>1) and hk by

..........
..................
..................

..............

s e e L o
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Ty

*

for k=1,..., p. Provided we can show that

d

n
sup I h.(n)2<co (4.24)
nzl r=1 jr

(n) _ 1, (n) )
where hkr -fohk (s)qbk(s)ds, it follows that

/nbn(dgn) (t) - on; ™ ey =va féh§n) (s) (&J@ (s) - aJ{.n}(s))ds J

=U +V_,
n n

n
where U —LO, Vn=—1- r Z i
/=1 "
Py
T kE foup 7 ()Y, (8)dM, (s),
=1
dn
(n) _ (n)
ue sy = T AL e (s),
r=1
vec (}\(n)) =r(M-1 e (h(n)),
N
l.-1
RS
(n) . . . . (n) 1 RS
and h is the pxd matrix with entries h ', The condition d_=o(n?% of
n

Theorem 2.1 is satisfied here since § <’. Next

AT
a'a'a"s"a"

e Mt et e T et L e et T a T e et Vet et T T S vt .

AP P SN AP PEPE I IOIT SF ST IS TSP AT AT A I
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P
2 1 (m) 2
Ean_.pkzlE(fouk ()Y, (5)dM)

p
-p L Efluén)z(s)Yi(s]d<M>S

k=1 ©
Py ()2
gckz [0 u - (s)ds (by (AS))
=1
=C]|| vec A(n)ll2
<Cl| vec h(n)llz, (by Lemma 4.3)

where C is a constant independent of n throughout. Given (4.24), this implies

sup EZ2

a1l <7 and that {Vn, n>1} is tight. It remains to check (4.24). First
nx1

note that the derivative of hﬁn) satisfies the Lipschitz condition

|h§")151) -h§“)152)|25 C s -s.1? (4.25)

for all S0 S5 € [0,1]. Since Khas compact support there exist ¢ >0, n, 21 such
that the support of h§n) is contained in the interval (g, 1l-¢) for all nzanl.

For n zn, extend h§n) to a periodic function on the whole real line. This

extension is differentiable and satisfies the Lipschitz condition (4.25) for all

Sl, Sze R.

s




Now applying Lemma 4.4 (ii)

d 3
n C . . 2 K
gp™2 1 h™1s) -n{Misy
=1 T b> C; 3 v
- n 1-51l< I

2T £

"o

0c< fé[h§n) (s) ]st -

T Is

=0(—) = o(1)

nn

since B8 <% §. Also

- lp [ ™ o)1%s = [1) Poar

so that d
n
. (n)2 _,1 )2
1111 ril hjr -f_lk (v)dv

and this proves (4.24). [

", Proof of Theorem 3.2. Since Kis Lipschitz it is of bounded variation. Denote

- its total variation by V(K). Then

() - (n) _ 1 ¢l t-s ~(n)
sup &V (t) mar ()= sup | [oR(EEya @AM DA (s
tel0,1] J J te(0,1] bn 0 bn J J)(b)

<2 v sup 1AM (s) A ()]
n se(0,11 J

=0 (—, (4.26)
Po /m v

PRENERE AR

.............
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since {/H(R§n)-Aj), n21} is tight in C[0,1] by Corollary 2.7. Combining (4.26)

with (4.22) completes the proof of the theorem. [

Appendix to the proof of Theorem 2.1.

Let V be a Hilbert space and T a bounded linear operator on V. Suppose
that T is invertible, i.e. '1"1 exists and is continuous. We shall need the
following Euler-Knopp series representation for T-l. Let 0 <) <I|Tll—2 and
define

sk o (1-AT*T) T+, (4.27)

0

n o=

i

where 1 1is the identity operator. Then S(k) converges to T—1 in the uniform

topology. From Groetsch (1977, p. 69) an error bound is given by
TR S IPNTE S (4.28)
where 0 <8<} and
g=1-Amin (NTHT w17 hn 73, (4.29)
In the following result we shall apply the Euler-Knopp representaticn to obtain

. : -1. . . - . .
an approximation to T ~ in terms of projections of T onto finite dimensional

subspaces. Let {Vn,n > 1} be an increasing sequence of finite dimensional subspaces

« -
te e Y,

PR AP TS SRR S I




f il g

e w
Uy
- o'

of V such that wu Vn is dense in V. The projection of V onto Vn is denoted
nx1

P . Define the operator T :V >V by T =P TP*
n n"'n n n n n

Lemma 4.5. Suppose that Tn is invertible for all n21 (T is not assumed to be t;

invertible here). Then the following statements are equivalent.

(1) T is invertible and P;T;an-+T_l in the strong operator topology;

(i) sup I T Ml <.
n>1

Proof. (i) =(ii) by the principle of uniform boundedness. Conversely, suppose

that M = sup IIT-lll <o, Put E1=P;Pn and note that % converges strongly to
nz1

I. By the definition of T, || LTLxIl =IP*T P x|l >M '|II x|l and letting
n n n nnn n

n+>« we obtain || Tx|| zkflllxll, for all xeV, so that T is invertible. Let

0 <A <||T||-2. Then we also have 0 <A <|1Tnl|-2 for all nx=1, so we may use

the same A in the Euler- kopp approximations S(k), Sik) of T-l and T;l

respectively. It is easily checked from (4.29) that the £'s corresponding to

-

T and Tn are bounded above by y =1 - M it follows from (3.28) applied to

T and Tn that

1 k+1

s Iy cwmy (4.30)

and

I Shwk+l

.....
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Proof. Let V= @LZ(EO,IJ, duj) and Vn= & span(y
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for all n21, k21. In particular

1 k+1

||P;s§k)pn-P;T; Pl <, (4.31)

for all n=21, k21. But, for k fixed, an induction argument shows that P;Sék)Pn

s (k)

converges strongly to as n>«. The triangle inequality, (4.30) and (4.31)

I-D

then show that P;T;an converges strongly to T

Lemma 4.6. Suppose that conditions (A2)~(A4) are satisfied. Then the matrix
K(t) 1is invertible a.e. (dt) and uj(n) converges to Hj in L2[0,1] as n-«, Here

K(t), u}n) and Hj are defined by (2.5), (4.11) and (2.4) respectively.

p p

.., =1, ..., d). Define
j=1 j=1 ) "
T: V-V by T(u)(t) = K(t)u(t), ueV, tel[0,1]. The matrix representation of

T =P _TP* with respect to the basis {(¥, , 0,...,0),...,(0,...,0,¥ ), r=1,...,d }
n n n Ir pr n

() ()

is precisely ¢ It follows that u =P;T;‘1Pnh, where u(n) = (ufn),...,u(n)).

By Lemma 4.2(i), Tn is invertible for all n=>1 and sup || T;ll.'<w. Thus, in
n>1

(n)

view of Lemma 4.5, T is invertible and u -»T'lh in V as n-+>«,
Thus, since the norms in LZ(LO,IJ, duj) and Lz([O,lj, dt) are equivalent under

(A2) and (A3), K(t) is nonsingular a.e. (dt), T 'h=H given by (2.4) and

(n)_’ . 2
uJ. Hj in L°[0,1]. 0O
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