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1 INTRODUCTION

Because of an increased technological interest in materials to be used in

the submillimeter region and higher frequencies, it has become important to
measure the properties of useful materials at these frequencies. The complex

dielectric constant of a number of materials has been measured in the 4 to I.

20 cm range,' but very little has been reported on the magnetic properties r

of ferrites or other ferromagnetic materials.

In this report we present a theoretical analysis applicable to the meas-
urement of the magnetic properties of materials in the energy range 1 cm -

< v < 120 cm 1 (30 GHz < f < 3600 GHz). The analysis consists of an investi-

gation of the transmission of a ferrite slab magnetized in the plane of the
slab with the electromagnetic wave polarized parallel or perpendicular to the

magnetic field. The direction of propagation is perpendicular to the plane of

the slab.

The first case anal zed is for ferromagnetic resonance occurring in the

range 3 cm< v < 7 cm This range of energy is somewhat hypothetical for

conventional ferrites because of the requirement of extremely large magnetic
fi*-lds (50,000 gauss). Nevertheless, an investigation of resonance at these

frequencies does illustrate the resolution requirements on any Fpectrum ana-
lyzer that might be used in the measurements. However, the resonance of
hexagonal ferrites does occur at submillimeter frequencies for moderate

fields, and the analysis given is useful for these materials. A number of

antiferromagnetic materials have their resonances at very high frequencies and
at moderate external magnetic fields. These materials have received little
attention as to their possible application in the submillimeter region. This

analysis should be useful with possibly slight modification.

The second aspect of this report is the investigation of the magnetic

effects far from ferromagnetic resonance (V v ). Because of the appli-r es
cation of a number of ferrites at microwave frequencies, good quality materi-
ala are available in that frequency range. These materials have low internal

fields, and magnetic resonance is determined predominately by the application --

of an external field. Little is known of the properties of these latter

materials in the frequency band from 1 to 20 cm The results predicted here
use the vaiu,3 characterizing the ferrite at X-band and may be altered when

such quantities as the dielectric constants are better determined.

'George J. Simonis, Joseph P. Sattler, Terrance L. Worchesky, and Richard P. Leavitt,

Characterization of Near-Millimeter Wave Materials by Means of Non-Dispersive Fourier Transform
Spectroscopy, J. Infrared and Mill. Waves, 5 (1984), 57. (This reference reports the measured

complex dielectric constant of TT2-111, the prototype ferrite used here.) See also George J.
Simonis, Index to the Literature Dealing with the Near-Millimeter Wave Properties of Materials,

Int. J. Infrared and Mill. Waves, 3 (1982), 439 (170 articles referenced).
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2. THEORY

In a previous report, 2 an expression for the effective permeability, oe'
was derived for a lossless medium. In the appendix of that report, the ex-

.%tpressions for p and K were derived using Gilbert's 3 damping to give (e - iwt as-
sumed time dependence)

K + = 1i ± (Ii,.K

w+ i YAH YH

P+ i ,

with "a - -

B _ iB y = + iH)

and
/

Bx = Hx + iKHy By = y iKHx

where

4nM = the saturation magnetization,

Y = the gyromagnetic ratio,

AH = one-half the full line width at half
maximum,

H = the external field along the z direction.
0

The W+ in equation (1) corresponds to the permeability seen by right or

left circular polarized waves propagating in the direction of the external

field in an infinite medium. The experimental results are usually given as
the full line width at half maximum, 6H. Then AH in equation (1) is given by

AH 6H/2. If the external magnetic field is applied along a principal axis,

the magnetic anisotropy can then be taken into account by letting H. 0 Ho +

HA where HA is the effective anisotropy field.' If we assume that we have a

2 Clyde A. Morrison, A. F. Hansen, and K. M. Sorenson, Theoretical Analysis of Nonreciprocal

Electromagnetic Surface Wave Devices, Harry Diamond Laboratories, HDL-TR-2017 (September 1983).
3 T. A. Gilbert, Armour Research Foundation, Rept. No. 11 (25 January 1955).
4 W. H. Von Aulock, ed., Handbook of Microwave Ferrite Materials, Academic Press, New York

(1965), 464.
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plane wave with E parallel to the field H and in the plane of a slab of
thickness, a, the relative amplitude of the transmitted wave is

-ika
T (2eal cos ka - ( + -) sin (ka e

where

k

k = 21T

2 2

e
Pe = 

" °C

and E is the dielectric constant. In equation (2), k is always real,
but E and P are, in general, complex.

In the derivation of equation (2), the slab is assumed to lie in the y-z
plane and to be of thickness a. The wave equations for E in the two regions
were taken as

2
- E = -k 2E in free space

dx2  z z

a < x , x < 0

ana (3)

Ez -k' eE in the ferrite

0 < x < "

The result given in equation (?) was obtained by using the general solu-
tion to equation (3) and boundary condition: on E., and H at the interfaces
x = 0 arid x a. The amplitude transmission corfficient for plane waves
polarized with E H (the z-axis) is obtained by letting w- 1 in equation

0e(2), or

-i ka

T 1 --°7 .)ir(KaV7)

7

2°•
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In the derivation of equation (4), the field E was assumed to be polarized
along the y-direction, and the wave equation inside the ferrite is

2I
d 2 2
- E = -kE (5)
dx2  y Y

In all the equations given above, c and 1'e are, in general, complex.

Measurements are generally made on the power transmitted which is ITaI? in
either equation (2) or (4). If we assume that the thickness, a, is very
small, then

cos(kavCeV) - 1 

and

sin(ka/YI) - ka/vC e  -

And, from equation (2),

T1al 1- +Iea
Ia C 11 kae

The power transmitted, Tp = ITal 12, becomes

T 1 1 + (2 + ka

where

= 1  + iE 2 ,'; .

and

Pe Wel + iWe2

The effective permeability, u e given in equation (2) is the permeability
as seen by a plane wave propa;atinrg in the x-y plane polarized with E in the z
direction. on )Using the result -ff equation ( ) and the expression for i given

* in equation (2) , we obtain

(It~ L)(1i1 + B AH + i1-B)Al
,1 =, ( ) , ' -

Ce (H1  - (H) %H + H + AH i*B + H]A

e:..-:
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where

tH
2

y= 8.795 x 106 radians/(second-oersted) g

and

g = effective g factor (generally -2)

The complex index of refraction, n, is given by

.

n = n, + in2

S1 + iE 2
and

+- ipi
el e2

The components of the complex Pe and n are shown in figure 1 for an ap-
plied field of 50,000 oersteds. The parameters of the ferrite (see TT2-111,

Von Aulock ) are

41M = 5000 gauss
5

AH = 67.5 oersteds (experimental full half power
width 135.0 oersteds),

g 2.08

12.5

and

C 0.0125

* 4W. H. Von Aulock, ed., Handbook of Microwave Ferrite Materials, Academic Press, New York

(1965), 464.
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The linewidth of the ferrite 40.0
chosen for figure 1 is characteris-
tic of the linewidths observed at 30.0 -e 2 N2 ""-
microwave frequencies. It is quite n, -----
possible that this width will not 20.0 -n 2

change significantly at higher 10.0 . -- , \ "
frequencies. Thus, to observe reso---------/--------------
nance directly at these high fre- 0.0 ..-- "---
quencies (v > 5 cm - ), the spectrom-
eter will have to have a very high -i0.0
resolving power. Resonance could

"-" most readily be directly observed -20.0 , I i .
with a stabilized oscillator and by 5.02 5.04 5.06 5.08 5.10 5.12 5.14 5.16
sweeping the magnetic field through Frequency (cm- ')
resonance, as is done at microwave
frequencies.' Figure 1. Ferromagnetic resonance for

a plane wave in an infinite medium

The results shown in figure 1 characterized by 12e = Pel + 'Pe2.
are for an infinite medium. When = + , n T n + in2.
the sample is of finite extent, the Parameters characterizing ferrite
boundaries of the ferrite affect the TT2-111 are 4TMs = 5000 gauss,
resonance condition. In fact, for 6H = 135 oersteds, gaff = 2.08, El -

different shaped samples whose 12.5, and = 0.0125.
dimensions are small compared to the
wavelength, Kittel 6 shows that the resonance condition varies considerably
with the shape of the sample. Using the result of equation (8), we obtain

41TM (B2 +H 2 A 2) Al
1 (9)

e (H~ H + LH) (B + H)2AH

The result given in equation (9) was substituted into equation (7), and
the minimum values of TpI were found for a range of slab thicknesses a, such
that ka < 1. The increase in the linewidth of the power transmitted is shown
in figure 2 for the same parameters used in the calculations of figure 1. As
can be seen, the linewidth increases quite rapidly with slab thickness (slope

10.0 cm /cm). The frequency at resonance also shifts with slab thick-
ness. This shift is important in determining the gyromagnetic ratio or,
equivalently, the effective g value (Y = g(1.3998 - 10 )Hz/oersted).

The shift of the peak at maximum absorption is shown in figure 3 for the
" same range of thickness as shown in figure 2. Also, the same ferrite was

chosen. For, the ferrite chosen in figure 3, the shift in frequency at

resonance is seen to be negligible for a < 10 pm. For thicker ferrite samples,
- the behavior near resonance becomes very complicated, and the extraction of

the properties of the material that determine resonance is difficult or

5Joseph Nemarich, Measurement of Narrow Magnetic Resonance Linewidths, Harry Diamond

Laboratories, HDL-TR-1246 (10 August 1964).
6 C. Kittel, Introduction to Solid State Physics, Wiley and Sons, New York (1976).
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Figure 2. Increase in measured line- Figure 3. Shift in resonance frequen-
width as a function of thickness of cy as a function of thickness of fer-
the ferrite slab. External magnetic rite slab. External magnetic field,
field is 50,000 gauss. Parameters Ho, is 50,000 gauss. Parameters
characterizing ferrite are given in characterizing ferrite are given in
figure 1. figure 1.

impossible. To illustrate the effect of increasing thickness on the
transmitted power through a ferrite slab, several thicknesses were chosen, and
the results are shown in figures 4 through 8. All these figures are for the
same ferrite (TT2-111). In figure 4, the ferrite thickness is chosen by using
the results of figures 2 and 3. For a 2-jm-thick sample, the increase in
linewidth is approximately 0.3 cm- 1, and the shift is approximately 2
x 10-3 cm-1 . This small shift is negligible, but the increase in linewidth
may be significant, depending on the desired precision of the experimental
results. Figure 5 gives the transmission of a 10-pm-thick sample as a func-
tion of frequency. Pronounced asymmetry of the resonance line has begun to
appear due to an increase, at magnetic resonance, in the optical thickness of
the sample. As the thickness is increased to 40 jm, the entire transmission
becomes distorted so much that resonance behavior is obliterated, as shown in . -.
figure 6. Figures 7 and 8 are for 70- and 100-pm-thick samples and illustrate
the complicated behavior of the transmission near ferromagnetic resonance.
These latter results illustrate the difficulty, if not the impossibility, of
extracting the prope ties of the ferromagnetic material near resonance if the
samples are too thick.

For most of the ferrites developed for use at microwave frequencies, the
external magnetic field required for resonance at submillimeter wavelengths (5
< V < 100 cm- ) is very large (H0 - 50,000 oersteds in the previous
examples). Such magnetic fields are unobtainable in most laboratories. Thus,
it is important whether or not meaningful measurements can be made in the
region f >> Y(H2 _ AH2)1 / 2 (approximately the frequency of resonance in
infinite media). For very high frequency (HI larger than all other quantities
in equation (8)),

+4i , (10)

11 H-H"

°
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*Figure 4. Power transmission coeffi- Figure 5. Power transmission coeffi-
*cient for 2-urn-thick ferrite slab. cient for 10-pjm-thick ferrite slab.

External magnetic field, H0, is 50,000 External magnetic field, Ho, is
oersteds. Parameters characteri zing 50,000 oersteds. Parameters char-

ferrite are given in figure 1. acterizing ferrite are given in
figure 1.

0.8
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Figure 6. Power transmission coefri- Figure 7. Power transmi.3 3iOn coeffi-

cierit for 40-ur-thick ferrite slab. cient for 7O-pmr-thick ferrite ,ilab.
*External magnetic field, Ho, 5)0,000 External magnietio fielo, hc.t is

oersteds. Parameters characteri zing 50,000 oersteds. Pa~ramneters chdr-

ferrite are given in figure 1. acterizing ferrite aire g7iven in
figure 1



and the index of refraction is much o.8
smaller than when near ferromagnetic 0.7
resonance. Thus, much thicker slabs
of ferrite can be used in the measure- 0.6-
ments at these higher frequencies. 0.5
Even with thicker samples, the fre- .) 0

quency intervals between maxima and E0.4-
minima of the transmission ( - h
1/an I ) are resolvable so that the
complex index of refraction can be 0.2
extracted from the data. Further, the 0.1
complex dielectric constant can be
measured using the resul given in 0.14.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0
equation (4) (T4i = ITall , and this
result can be used to extract le by Frequency (cm-')

using measurements of2T 1 given eby Figure 8. Power transmission coeffi-
equation( 2),Tp1 = ITaI ~cient for 100-m-thick ferrite slab.

External magnetic field, H0 , is
For the ferrite characterized in 50,000 oersteds. Parameters char-

figure 1, the transmitted power was acterizing ferrite are given in
determined for a slab of thickness a = figure 1.
1 mm using equation (4) and the re-
sults shown in figure 9. The effect
of the periodic oscillations ("channel spectrum") is very evident. In thelower frequency range (v < 7 cm), the differences between T and Tp are

distinguishable. Below 2.5 cm- , ferromagnetic resonance efects are evi-
dent. Thus, in the range 2.5 cm-1 < v < 7 cm-1 , the dielectric constant can
be determined using the transmission curve, T J. At a higher frequency, v >
5 cm-1 , the dielectric losses increase signi~icantly. The measured values
of E2 (c I + i 2 ) for the ferrite TT2-111 are given in figure 9 as reported
by_ Simonis et al.1 The region 0 < 7 < 7 cm-  is estimated, but the region 7
< v < 17.5 cm has been measured experimentally. The solid lines in figure
are approximate fits to the data in the two regions. The variation of e
with v in the region 0 < v < 5 cm- 1 has been checked for the cases given in
figures 4 through 8, and it has negligible effect. However, figure 10 shows
the transmission through a slab of 1 mm with c2 = 0.0125, and figure 11 shows
the results when the data of figure 9 are used. As can be seen, the effect of
the increase in c2 with frequency is significant and must be considered in the
higher frequency calculations. For the same thickness samples, the transmis-
sion was calculated for external magnetic fields of 10,000 and 15,000
oersteds, and the results are shown in figures 12 and 13. The range of fre-

quencies for v >> YH (v > 5 cm- I ), over which the two curves Tpi and
T i increase with magnetic field, is as would be expected from equation
(0). With the results given in figures 11, 12, and 13 viewed as experimen-
tal data, it seems reasonable to assume that the parameters 47TM and Y can be

IGeorge J. Simonis, Joseph P. Sattler, Terrance L. Worchesky, and Richard P. Leavitt,
Characterization of Near-Millimeter Wave Materials by Means of Non-Dispersive Fourier Transform
Spectroscopy, J. Infrared and Mill. Waves, 5 (1984), 57. (This reference reports the measured
complex dielectric constant of TT2-111, the prototype ferrite used here.) See also George J.
Simonis, Index to the Literature Dealing with the Near-Millimeter Wave Properties of Materials,
Int. J. Infrared and Mill. Waves, 3 (1982), 439 (170 articles referenced).

13



determined by using equation (10) in conjunction with experimental data. The
transmission coefficient for a 1-cm-thick sample (TT2-111) is shown in figure
14. Despite the complicated appearance of the curves, the effective index of
refraction can easily be extracted from the data for the entire range of fre-
quencies (3 cm- < v < 6 cm-1).

0 07 -_ _ _ _ _ _1.0 - __ _ _

0.9
0.06 0.8

Experimental ,. -- 0.705 -Values Ref 0.7

"0. 6
*0.04- ./o.5

* O.3~- 0.5
0.0 a10.34 m

0 02 -/ 
0.3

0 Estimated Value 0.2
001 I I 0.1 '

0.0 5'0 100 15'0 20.0 0.0o ,_,_.._

Frequency (cm-i) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.016.0 18.0 20.0
Frequency (cm - 1)

Figure 9. Experimental values of £2" Figure 10. Power transmission
The E2 values for 0 to 7.5 cm coefficient (E I H0 solid,
are estimated, and the values E J H dotted) for 1-mm-thick
7.5 < f < 17.5 cm-  are reported sample. External field, Ho, is
by Simonis et al. Solid lines are 5000 oersteds. Parameters charac-
approximate fits to the experimental terizing ferrite are given in
data and are used in the computation. figure 1.)

A A *A08 8: ** , A 08

S06 !06"

Ec 0 4 -. :

0 2 
I-0.2

000 0 10 15 200.' _

00 500 100 50 200 O0 50 100 150 200
Frequency (cm-1 ) Frequency (cm-)

Figure 11. Power transmission Figure 12. Power transmission

coefficient (E I H0 solid, E J H0  coefficient (E I H0 solid, E J H0
dashed) for 1-mm-thick sample. dashed) for 1-mm-thick sample.
External field, Ho, is 5000 Magnetic field, Ho, is 10,000
oersteds. Parameters charac- oersteds. Parameters charac-
terizing ferrite are given in terizing ferrite are given in
figure 1, except for value of figure 1. (See fig. 9 for £2.)
E2 . Values of c2 are taken
from the fit to experimental data
given in figure 9.
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Figure 13. Power transmission Figure 14. Power transmission
coefficient (E I He solid, E J H0  coefficient (E iH solid, E i H
dashed) for 1-mm-thick sample. dashed) for 1-cm-t ick sample.
Magnetic field, H0 , is 15,000 Magnetic field, H0 , is 5000
oersteds. Parameters charac- oersteds. Parameters charac-
terizing ferrite (TT2-111) are terizing ferrite are given in

given in figure 1. (See fig. 9 figure 1. (See fig. 9 for c
* for 2

3. DISCUSSION AND CONCLUSION

We have investigated in detail both the frequency region of ferromagnetic
resonance and the region above resonance for a typical ferromagnetic material
(TT2-111). In order to investigate the region near resonance with any preci-
sion experimentally, the spectrometer (or other frequency source--a stabilized
source) must have very high resolution (Av < YAH). The ferrite chosen for
many of the calculations required a field of 50,000 oersteds for resonance at
-5 cm 1 . This handicap can be overcome somewhat by using barium ferrite. For
barium ferrite with HA = 18,000 oersteds, the external magnetic field H o is

Ho = 50,000 - HA - 32,000 oersteds (Van Aulock--p 464). Nevertheless, some
barium ferrites have a smaller AH than the prototype chosen here." Thus, the
direct measurement of the properties of these ferrites near magnetic resonance
requires very high resolution (Av < YAH/5 = 25 MHz) by the spectrometer or, if
the measurements are made at constant frequency, the source must have a corre-
sponding stability.

The frequency region above resonance was examined for the possibility of
meaningful measurements. The results presented here tend to indicate that the
spectrometer requirements are much less stringent. Meaningful measurements
can be made on ferrite material developed for the microwave region by somewhat
conventional Fourier transform spectrometer".

4W. H. Von Aulock, ed., Handbook of Microwave Ferrite Materials, Academic Press, New York

(1965), 464.
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Finally, in developing and checking the computer programs to calculate the

results presented here, we are in a position to determine the experimental

variables (sample thickness, external magnetic field, etc) necessary to make

measurements on a particular ferrite. All that is necessary is a reasonable

approximation to the real and imaginary parts of the dielectric constant and

the anisotropy field, if appropriate.
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