Ionic Conductivity in Solid, Crosslinked Dimethylsiloxane-Ethylene Oxide Copolymer Networks Containing Sodium

by

John J. Fontanella & Mary C. Wintersgill

Prepared for Publication

in

Journal of Applied Physics, 15 August 1986

U. S. Naval Academy
Department of Physics
Annapolis, MD 21402

June 1986

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited
IONIC CONDUCTIVITY IN SOLID, CROSSLINKED DIMETHYSILOXANE-ETHYLENE OXIDE COPOLYMER NETWORKS CONTAINING SODIUM

AUTHOR(s)

JOHN J. FONTANELLA & MARY C. WINTERSGILL

PERFORMING ORGANIZATION NAME AND ADDRESS

Physics Department
U. S. Naval Academy
Annapolis, MD 21402

CONTROLLING OFFICE NAME AND ADDRESS

Office of Naval Research
Attn. Code 413, 800 N. Quincy St.
Arlington, VA 22217

REPORT DATE

June 1986

NUMBER OF PAGES

11

DISTRIBUTION STATEMENT (of this Report)

Approved for public release and sale.
Distribution unlimited.

DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Approved for public release and sale.
Distribution unlimited.

KEY WORDS (Continue on reverse side if necessary and identify by block number)

Solid electrolytes, polymer electrolytes, dimethysiloxane-ethylene oxide copolymer, electrical relaxation, NMR, glass transition temperature.

ABSTRACT (Continue on reverse side if necessary and identify by block number)

The preparation of an ion-conducting elastomeric solid based on a dimethysiloxane-ethylene oxide copolymer complexed with a sodium salt is described. \(^{23}\)Na Nuclear Magnetic Resonance measurements reveal the presence of both bound and mobile sodium species throughout the temperature range -120 to 100 °C. Electrical conductivity measurements over a similar temperature range are found to be consistent with the configurational entropy model for transport, with a \(T_0\) parameter about 50 °C.
Below the "central" glass transition temperature T_g.
Ionic Conductivity in Solid, Crosslinked Dimethylsiloxane-Ethylene Oxide Copolymer Networks Containing Sodium

K.J. Adamic and S.G. Greenbaum
Department of Physics, Hunter College of CUNY, New York, NY 10021

M.C. Wintersgill and J.J. Fontanella
Department of Physics, U.S. Naval Academy, Annapolis, MD 21402

Abstract

The preparation of an ion-conducting elastomeric solid based on a dimethylsiloxane-ethylene oxide copolymer complexed with a sodium salt is described. ^{23}Na Nuclear Magnetic Resonance measurements reveal the presence of both bound and mobile sodium species throughout the temperature range -120 to 100 °C. Electrical conductivity measurements over a similar temperature range are found to be consistent with the configurational entropy model for transport, with a T_0 parameter about 50 °C below the "central" glass transition temperature T_g.
Introduction

An intriguing and potentially technologically useful class of solid electrolytes consisting of alkali salts dissolved in polymer hosts has recently received a great deal of attention. Much of the effort to date has focused on poly(ethylene oxide) (PEO) as the host. Although these materials are among the most highly conducting in their class ($10^{-4}\ \Omega^{-1}\cdot\text{cm}^{-1}$) at 10°C), their attractiveness is limited by the high degree of crystallinity of the complex (the ion transport occurs most effectively in the amorphous phase), and the relatively low value of the electrical conductivity at room temperature. The latter property poses a serious threat to ambient temperature electrochemical device applications, most notably batteries.

The advent of polymer complexes with room temperature conductivities substantially higher than observed in Li-PEO complexes was highlighted by the synthesis and study of materials based on polyphosphazene, which appear to incorporate the "best of both worlds" with regard to flexibility of the phosphazene polymer backbone and the cation-solvating properties of ethylene oxide chains contained in the sidegroups. The chain flexibility at room temperature is related to the complex's low glass-transition temperature (T_g), some $30-50\ \text{C}$ lower than in analogous PEO complexes. Another low T_g system that has received some consideration is based on co-polymers of dimethylsiloxane and ethylene oxide. In addition to enhanced electrical properties via higher room temperature conductivities, the low T_g materials generally possess favorable elastic characteristics.
that can be exploited in electrochemical devices. Other motivations for exploring new compositions are associated with finding improvements in such characteristics as thermal and electrochemical stability and moisture resistance.

This paper reports the synthesis of a highly crosslinked poly(dimethylsiloxane-ethylene oxide) (PDMS-EO) copolymer network containing 11.5% by weight NaCF₃COO. The material has been studied by ²³Na nuclear magnetic resonance (NMR), electrical conductivity, and differential scanning calorimetry (DSC) measurements, the results of which are presented and discussed below.

Experimental Details

The sample preparation consisted of three steps: polymerization (chain extension of the prepolymer); complexing with a sodium salt; and crosslinking. Ethylene-dimethylsiloxane oxide ABA block copolymer (Petrarch; m.w. 1000-1500; ethylene oxide 75 to 80% by weight), and dimethylsiloxane-ethylene oxide block copolymer (Petrarch; m.w. 1120) were used as prepolymers. Triacetoxy and triethoxy silanes were employed as crosslinking agents, 3-isocyanatopropyltriethoxysilane (Petrarch) yielding the best results. Prepolymer(s) and crosslinker in 200 to 300% molar excess were dissolved in THF and polymerization was carried out at 70°C for about 5 hours while refluxing in open air. About 5% water was added as an initial polymerization catalyst for the silicone system. Subsequent addition of glacial acetic acid (1.0 molar with respect to the prepolymer) was found to improve
control over the polymerization reaction, although some compositions were prepared without it. A suitable sodium salt, purified by recrystallization from THF, 10 to 20% by weight of the composition (which is one salt molecule per 4 to 8 ethylene oxide units), was added at the end of the polymerization step. Another 300% molar excess of crosslinker was then introduced and the formulation was vigorously mixed at 70 C while allowing the solvent to evaporate at atmospheric or slightly sub-atmospheric pressure. It is important to evaporate most of the solvent before casting to avoid inhomogeneities and flaws in the solidified polymer composition.

The resulting highly viscous formulation was poured into a teflon mold to be cured by alkoxide condensation in two steps: precured for 15 to 18 hours at 60 C and atmospheric or slightly reduced pressure (about 600 mm Hg) and then cured for 4 to 6 hours at 110 to 115 C under reduced pressure (roughing vacuum) to remove the remaining solvent, catalyst and condensation by-products. The samples exhibiting the most favorable combination of homogeneity and elasticity were transparent, slightly colored (light brown) polymer films.

The samples on which the NMR, DSC, and conductivity measurements were performed utilized 200% molar excess of the crosslinking agent 3-isocyanatopropyltriethoxysilane during polymerization, with an additional 300% molar excess in the complexing and curing stage. Sodium trifluoracetate (Aldrich) constituted 11.5% by weight of the complex, corresponding to 1 salt molecule per 8 ethylene oxide units. The precure was
performed at 60 C for 16 hours, and the final cure at 110 C for 6 hours. The sample was verified to be amorphous by X-ray
diffraction and DSC. Excess water or solvent employed during
polymerization and crosslinking did not appear to affect material
properties, as substantiated by NMR measurements of the sample
prior to, and following outgassing at 80 C for 48 hours in a
roughing vacuum.

The NMR measurements were performed on a Novex pulsed NMR
spectrometer interfaced to an IBM-PC computer, in conjunction
with a Cryomagnet Systems superconducting magnet. The ^{23}Na spin-
lattice relaxation (T_1) data were obtained at an operating
frequency of 81 MHz, utilizing both inversion recovery and
steady-state pulse sequences. The presence of two distinct
lineshape components with vastly different T_1's (details given
later) allowed separate determination of their respective T_1's by
selective saturation and subtraction. The sample temperature
(accurate to ±2K) was controlled by an N$_2$ flow system.

For conductivity determination, aluminum electrodes were
vacuum evaporated onto the surfaces of the material in either a
three-terminal or two-terminal configuration. The samples were
about 1 mm thick and the electrodes about 4 mm in diameter.
Measurements of the equivalent parallel capacitance, C, and
conductance divided by the angular frequency, G/ω, were made at
seventeen audio frequencies, 10x, 20x, 31.25x, 50x, and 100x Hz
where $x=1, 10, 100, \text{ and } 1000$ using a CGA-83 capacitance bridge,
which is a fully automated, microprocessor controlled transformer
ratio arm bridge. The measurements were performed in vacuum using a Cryogenics Associates CT-14 dewar. The data were taken with the temperature held constant with approximately 60 minutes of equilibration time. The temperature was controlled using a Lakeshore Cryotronics DRC 82C controller and silicon diode temperature sensor. In general, the temperature stability was better than 0.005K as determined using a platinum resistance thermometer. The absolute temperature is probably accurate to on the order of 0.1K.

Differential scanning calorimetry (DSC) measurements were carried out using a DuPont 990 DSC. All the systems, bridge, temperature controller, and DSC were interfaced with Apple II microcomputers.

Results and Discussion NMR

The 23Na absorption lineshape consists of a relatively narrow (0.5 - 5 kHz) line superimposed on a broader line (20 - 30 kHz) (both FWHM), throughout the temperature range -100 to +100°C. The broad line is associated with the +1/2 to -1/2 central transition of spin-3/2 23Na (as indicated by the optimum pulse widths for the separate absorption components). The strength of the nuclear quadrupole interaction (of the order of 1 MHz) inferred from the second-order splitting implies that the corresponding Na nuclei reside at asymmetric sites for a time scale considerably greater than 10^{-6}s. The broad component is thus associated with a rigidly bonded configuration while the narrow component reflects a highly mobile and ionic disposition.
This assignment is strongly supported by the 2-3 order of magnitude difference in T_1's shown in Fig. 1, a plot of T_1 vs. reciprocal temperature for both the broad and narrow lines. T_1 for the narrow line has a more pronounced temperature dependence than for the broad line, in addition to its substantially shorter timescale. Between the glass transition temperature (≈-50°C) and room temperature, the relaxation is approximately Arrhenius with an activation energy of roughly 0.1eV. A T_1 minimum appears just above room temperature.

It is important to note that motional processes governing spin-lattice relaxation do not necessarily play as important a role in ionic transport due to the vastly different length scales involved. Therefore it is not surprising that the conductivity temperature dependence, which obeys a VTF-type relation (details presented below), is qualitatively different from the Arrhenius T_1 behavior. The conductivity is, in general, strongly influenced by the concentration of mobile species, which is not obtainable from the data in Fig. 1. However, an important qualitative observation concerning the relative intensities of the broad and narrow lineshape constitutes as a function of temperature has been made. There is an increase in mobile Na intensity at the expense of "bound" Na intensity with increasing temperature, although both species are present at all temperatures between -120 and 100°C. This observation is reminiscent of similar phenomena reported in PEO-complexes and, in fact, most polymer systems that exhibit a coexistence of
amorphous and crystalline phases. The important distinction to be made here is that the title compound does not appear to have a crystalline phase, as verified by x-ray and DSC. Quantitative determination of relative concentrations via broad/narrow intensity measurements are complicated by the different $\pi/2$-pulse widths for each component, although such measurements are currently in progress and will be presented in a later publication. With regard to material stability, exposure to ambient atmosphere for several weeks did not result in noticeable changes in either physical appearance of the sample, or in lineshapes and relaxation times.

The conductivity data were analyzed using standard complex impedance techniques allowing the determination of the bulk resistance as a function of temperature. A low temperature impedance plot is shown in figure 2. A single depressed arc is observed over the frequency range of measurement. The data were analyzed using a Cole-Cole distribution:

$$Z^* = \frac{Z_0}{1 + (i\omega \tau_0)^{(1-\alpha)}}$$

(1)

The best-fit Cole-Cole result is shown in figure 2 along with the center of the circle, $+$, and the intercept which gives the bulk resistance, x. For the data shown in figure 2 the Cole-Cole parameter, α, is about 0.25. As temperature increases, less of a semicircle is observed with the onset of a typical slanted vertical line representing blocking electrode effects. In all cases, a best-fit of equation 1 to the data was obtained which
resulted in values for the bulk resistance of the materials.

These values were then used, in conjunction with room temperature geometrical measurements, to calculate the electrical conductivity from:

$$\sigma = Gt/S$$ \hspace{1cm} (2)$$

where \(t\) is the thickness and \(S\) is the surface area. Thermal expansion is not included in the data analysis. The results of a typical data run are shown in figure 3. The curvature often observed for amorphous polymer systems is apparent. That the samples were amorphous is confirmed by the DSC results shown in figure 4. Consequently, the conductivity data were first analyzed via the VTF equation:

$$\sigma = AT^{-1/2} \exp \left[-\frac{E_a}{k(T-T_0)}\right]$$ \hspace{1cm} (3)$$

with the adjustable parameters, \(A\), \(E_a\), and \(T_0\). A non-linear least squares fit of equation 2 to the data was carried out and Table I contains the best-fit parameters. Table II contains the results of the DSC studies.

The most interesting result is that \(T_0\) is about -100 C which is about 50 C lower than the "central" \(T_g\) which was determined by DSC to be about -50 C. A similar result has also been recently reported for ion containing PPO. In that paper, it was stated that \(T_g\) was 30-40 C above \(T_0\). However, in that paper \(T_g\) was defined as the "onset" \(T_g\). A similar result is obtained in the
present work since as is apparent from Table 2, the "onset" T_g is about 35 C above T_o. Such results are not unexpected since $T_g - T_o$ is often on the order of 50 C for polymer systems.11-13 Further, this phenomenon is consistent with the configurational entropy model14,15 where T_o is interpreted as the temperature of zero configurational entropy which would be expected to occur at a much lower temperature than DSC T_g's. However, this result disagrees with that of Bouridah et al.6 who find $T_o \approx T_g \approx -60$ C. This is accompanied by a disagreement in the values of E_a in that Bouridah et al. report 0.069 eV while the corresponding value for the present work is about 0.1 eV. A similar discrepancy, higher E_a and lower T_o, has been noted previously in comparing reported VTF parameters for ion containing PPO.3,10 It was pointed out in reference 10 that because of the positions of E_a and T_o in the VTF equation opposite variation will produce relatively little change in the conductivity. Thus, the discrepancies may be partially attributable to the data fitting techniques. Because of this possibility, further details concerning the present data analysis techniques are given.

In the present work and that of reference 10 the sum of the squares of the differences:

$$ S = \sum \left(\log_{10} \exp \frac{1}{a} - \log_{10} \exp \frac{1}{b} \right)^2 $$

was formed and explicit expressions for the three equations $dS/da_i = 0$ were derived and then solved numerically for three fitting parameters a_i. As a check of the procedure, the value of T_o was fixed at -65 C and the remaining two parameters were best
fit. The value of E_a decreased from 0.1 to 0.052 eV and $\log_{10}A$ decreased from -0.5 to -1.73. However, the RMS deviation in $\log_{10}C$ increased by over an order of magnitude from 0.0096 to 0.14. Consequently, it is concluded that the present data cannot be best fit by the VTF equation if T_o is on the order of T_g.

In addition, since data are often presented in linear form, the results of the present work for sample #1 are replotted in figure 5 using a linear plot using the value of A from Table 1. Also shown is the best-fit straight line. The intercept at T_o 176K is obvious from the plot.

Next, the data were analyzed in terms of the WLF equation16:

$$\log_{10} \frac{\sigma(T)}{\sigma(T_g)} = \frac{C_1(T-T_g)}{C_2+(T-T_g)}$$

(5)

The resultant parameters are listed in Table II. The values of C_1 and/or C_2 are somewhat lower than the "universal" values of 17.4 and 51.6.

Finally, for completeness, the data were analyzed via the VTF eq. in the form:

$$\sigma = A' \exp \left[-\frac{E_a'}{k(T-T_0')} \right]$$

(6)

The results are also listed in Table I. It is interesting that on the basis of the RMS deviation it is equation 3 which best fits the data.
SUMMARY

In summary, an ion conducting, highly crosslinked P(DMS/EO) copolymer network complexed with sodium trifluoroacetate has been synthesized. 23Na NMR measurements demonstrate the simultaneous presence of a long T_1 bound sodium and a short T_1 mobile sodium. It is believed that the process of bound to mobile conversion of species with increasing temperature, observed qualitatively, is crucial to fast ion transport. Electrical conductivity has been measured and analyzed in terms of VTF and WLF equations. The most important result is that for the VTF equation T_0 is found to be about 50 C below the "central" T_g. This is consistent with the usual behavior of these qualities and is predicted by the configurational entropy model. As regards the WLF equation, the values of C_1 and/or C_2 are found to be slightly lower than the "universal" values.

Acknowledgements

The authors acknowledge Ms. Gillian Reynolds for assistance with the NMR measurements, and Mr. Michael K. Smith for help with the conductivity data reduction. This work was supported by the Office of Naval Research and the PSC-CUNY Research Award Program.
REFERENCES

1. See, for example, Proceedings of 5th Int'l Conf. on Solid State Ionics, Lake Tahoe, 1985; Solid State Ionics, 18 and 19 (1986).

TABLE I. Best fit VTF parameters.

(Eq. 3)	RMS Deviation	$\log_{10} A$	E_a(eV)	T_0(K)
Sample #1 | 0.0096 | -0.50 | 0.103 | 176.4
Sample #2 | 0.0106 | -0.61 | 0.104 | 171.8

(Eq. 6)	RMS Deviation	$\log_{10} A'$	E'_a(eV)	T'_0(K)
Sample #1 | 0.0105 | -1.90 | 0.098 | 178.2
Sample #2 | 0.0119 | -2.00 | 0.099 | 173.6
<table>
<thead>
<tr>
<th>Sample #1</th>
<th>Onset 208</th>
<th>-18.4</th>
<th>16.5</th>
<th>29.8</th>
<th>0.0105</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central 223</td>
<td>-12.9</td>
<td>11.0</td>
<td>44.8</td>
<td>0.0105</td>
<td></td>
</tr>
<tr>
<td>End 238</td>
<td>-10.1</td>
<td>8.2</td>
<td>59.8</td>
<td>0.0105</td>
<td></td>
</tr>
<tr>
<td>Sample #2</td>
<td>Onset 208</td>
<td>-16.5</td>
<td>14.5</td>
<td>34.4</td>
<td>0.0119</td>
</tr>
<tr>
<td>Central 223</td>
<td>-12.1</td>
<td>10.1</td>
<td>49.4</td>
<td>0.0119</td>
<td></td>
</tr>
<tr>
<td>End 238</td>
<td>-9.7</td>
<td>7.7</td>
<td>64.4</td>
<td>0.0119</td>
<td></td>
</tr>
</tbody>
</table>

TABLE II. Best fit WLF parameters.

<table>
<thead>
<tr>
<th>Sample #1</th>
<th>Onset 208</th>
<th>-18.4</th>
<th>16.5</th>
<th>29.8</th>
<th>0.0105</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central 223</td>
<td>-12.9</td>
<td>11.0</td>
<td>44.8</td>
<td>0.0105</td>
<td></td>
</tr>
<tr>
<td>End 238</td>
<td>-10.1</td>
<td>8.2</td>
<td>59.8</td>
<td>0.0105</td>
<td></td>
</tr>
<tr>
<td>Sample #2</td>
<td>Onset 208</td>
<td>-16.5</td>
<td>14.5</td>
<td>34.4</td>
<td>0.0119</td>
</tr>
<tr>
<td>Central 223</td>
<td>-12.1</td>
<td>10.1</td>
<td>49.4</td>
<td>0.0119</td>
<td></td>
</tr>
<tr>
<td>End 238</td>
<td>-9.7</td>
<td>7.7</td>
<td>64.4</td>
<td>0.0119</td>
<td></td>
</tr>
</tbody>
</table>
Figure Captions

Figure 1. $^{23}\text{Na} T_1$ vs reciprocal temperature for broad and narrow lineshape components.

Figure 2. Typical low temperature complex impedance plot. The horizontal intercept yields the bulk resistance.

Figure 3. Electrical conductivity vs reciprocal temperature, showing curvature characteristic of amorphous polymer systems.

Figure 4. DSC plot, from which a "central" T_g of -50°C is deduced.

Figure 5. Linear fit to the conductivity data, utilizing the value A from Table 1.
$\log_{10}(\sigma \text{(ohm-cm)}^{-1})$
<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>2</th>
<th>Dr. David Young</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 413</td>
<td></td>
<td>Code 334</td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
<td>NORDA</td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
<td>NSTL, Mississippi 39529</td>
</tr>
<tr>
<td>Dr. Bernard Douda</td>
<td>1</td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td></td>
<td>Attn: Dr. Ron Atkins</td>
</tr>
<tr>
<td>Code 5042</td>
<td></td>
<td>Chemistry Division</td>
</tr>
<tr>
<td>Crane, Indiana 47522</td>
<td></td>
<td>China Lake, California 93555</td>
</tr>
<tr>
<td>Commander, Naval Air Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command</td>
<td>1</td>
<td>Scientific Advisor</td>
</tr>
<tr>
<td>Attn: Code 310C (H. Rosenwasser)</td>
<td></td>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td></td>
<td>Code RD-1</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td></td>
<td>Washington, D.C. 20380</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko</td>
<td>1</td>
<td>U.S. Army Research Office</td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
<td>Attn: CRD-AA-IP</td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12</td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td></td>
<td>Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td></td>
<td>Mr. John Boyle</td>
</tr>
<tr>
<td>DTNSROC</td>
<td>1</td>
<td>Materials Branch</td>
</tr>
<tr>
<td>Attn: Dr. G. Bosmajian</td>
<td></td>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
<td>Philadelphia, Pennsylvania 19112</td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
<td>Naval Ocean Systems Center</td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>1</td>
<td>Attn: Dr. S. Yamamoto</td>
</tr>
<tr>
<td>Superintendent</td>
<td></td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
<td>San Diego, California 91232</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Paul Delahay
Department of Chemistry
New York University
New York, New York 10003

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 44106

Dr. P. J. Hendra
Department of Chemistry
University of Southampton
Southampton SO9 5NH
United Kingdom

Dr. C. E. Mueller
The Electrochemistry Branch
Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, Maryland 20910

Dr. J. Driscoll
Lockheed Palo Alto Research Laboratory
3251 Hanover Street
Palo Alto, California 94304

Dr. Sam Perone
Chemistry & Materials Science Department
Lawrence Livermore National Laboratory
Livermore, California 94550

Dr. D. N. Bennion
Department of Chemical Engineering
Brigham Young University
Provo, Utah 84602

Dr. Royce W. Murray
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. R. A. Marcus
Department of Chemistry
California Institute of Technology
Pasadena, California 91125

Dr. B. Brummer
EIC Incorporated
111 Downey Street
Norwood, Massachusetts 02062

Dr. J. J. Auborn
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Joseph Singer, Code 302-1
NASA-Lewis
21000 Brookpark Road
Cleveland, Ohio 44135

Dr. A. B. Ellis
Chemistry Department
University of Wisconsin
Madison, Wisconsin 53706

Dr. P. P. Schmidt
Department of Chemistry
Oakland University
Rochester, Michigan 48063

Library
Duracell, Inc.
Burlington, Massachusetts 01803

Dr. Manfred Breiter
Institut fur Technische Elektrochemie
Technischen Universitat Wien
9 Getreidemarkt, 1160 Wien
AUSTRIA

Electrochimica Corporation
20 Kelly Court
Menlo Park, California 94025-1418
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. John Owen
Department of Chemistry and
Applied Chemistry
University of Salford
Salford M5 4WT ENGLAND

Dr. Boone Owens
Department of Chemical Engineering
and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. J. O. Thomas
University of Uppsala
Institute of Chemistry
Box 531
S-751 21 Uppsala, Sweden

Dr. O. Stafsjudd
Department of Electrical Engineering
University of California
Los Angeles, California 90024

Dr. S. G. Greenbaum
Department of Physics
Hunter College of CUNY
New York, New York 10021

Dr. Menahem Anderman
W.R. Grace & Co.
Columbia, Maryland 20144
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Robert Somoano
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103

Dr. Johann A. Joebstl
USA Mobility Equipment R&D Command
DRDME-EC
Fort Belvoir, Virginia 22060

Dr. Judith H. Ambrus
NASA Headquarters
M.S. RTS-6
Washington, D.C. 20546

Dr. Albert R. Landgrebe
U.S. Department of Energy
M.S. 68025 Forrestal Building
Washington, D.C. 20595

Dr. J. J. Brophy
Department of Physics
University of Utah
Salt Lake City, Utah 84112

Dr. Charles Martin
Department of Chemistry
Texas A&M University
College Station, Texas 77843

Dr. H. Tachikawa
Department of Chemistry
Jackson State University
Jackson, Mississippi 39217

Dr. Theodore Beck
Electrochemical Technology Corp.
3935 Leary Way N.W.
Seattle, Washington 98107

Dr. Farrell Lytle
Boeing Engineering and Construction Engineers
P.O. Box 3707
Seattle, Washington 98124

Dr. Robert Gotscholl
U.S. Department of Energy
MS G-226
Washington, D.C. 20545

Dr. Edward Fletcher
Department of Mechanical Engineering
University of Minnesota
Minneapolis, Minnesota 55455

Dr. John Fontanella
Department of Physics
U.S. Naval Academy
Annapolis, Maryland 21402

Dr. Martha Greenblatt
Department of Chemistry
Rutgers University
New Brunswick, New Jersey 08903

Dr. John Wasson
Syntheco, Inc.
Rte 6 - Industrial Pike Road
Gastonia, North Carolina 28052

Dr. Walter Roth
Department of Physics
State University of New York
Albany, New York 12222

Dr. Anthony Sammells
Eltron Research Inc.
4260 Westbrook Drive, Suite 111
Aurora, Illinois 60505

Dr. C. A. Angell
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907

Dr. Thomas Davis
Polymer Science and Standards Division
National Bureau of Standards
Washington, D.C. 20234

Ms. Wendy Parkhurst
Naval Surface Weapons Center R-33
R-33
Silver Spring, Maryland 20910
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Hector D. Abruna
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. D. H. Whitmore
Department of Materials Science
Northwestern University
Evanston, Illinois 60201

Dr. A. B. P. Lever
Chemistry Department
York University
Downsview, Ontario M3J1P3

Dr. Alan Bewick
Department of Chemistry
The University of Southampton
Southampton, S09 5NH ENGLAND

Dr. Stanislaw Szpak
Naval Ocean Systems Center
Code 633, Bayside
San Diego, California 95152

Dr. E. Anderson
NAVSEA-56Z33 NC #4
2541 Jefferson Davis Highway
Arlington, Virginia 20362

Dr. Gregory Farrington
Department of Materials Science and Engineering
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. Bruce Dunn
Department of Engineering & Applied Science
University of California
Los Angeles, California 90024

M. L. Robertson
Manager, Electrochemical and Power Sources Division
Naval Weapons Support Center
Crane, Indiana 47522

Dr. Elton Cairns
Energy & Environment Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Dr. T. Marks
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Dr. Richard Pollard
Department of Chemical Engineering
University of Houston
Houston, Texas 77004

Dr. Micha Tomkiewicz
Department of Physics
Brooklyn College
Brooklyn, New York 11210

Dr. M. Philpott
IBM Corporation
5600 Cattle Road
San Jose, California 95193

Dr. Lesser Blum
Department of Physics
University of Puerto Rico
Rio Piedras, Puerto Rico 00931

Dr. Donald Sandstrom
Boeing Aerospace Co.
P.O. Box 3999
Seattle, Washington 98124

Dr. Joseph Gordon, II
IBM Corporation
5600 Cattle Road
San Jose, California 95193

Dr. Carl Kannewurf
Department of Electrical Engineering and Computer Science
Northwestern University
Evanston, Illinois 60201

Dr. Nathan Lewis
Department of Chemistry
Stanford University
Stanford, California 94305

Dr. Joel Harris
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. M. Wrighton
Chemistry Department
Massachusetts Institute
of Technology
Cambridge, Massachusetts 02139

Dr. B. Stanley Pons
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112

Donald E. Mains
Naval Weapons Support Center
Electrochemical Power Sources Division
Crane, Indiana 47522

S. Ruby
DOE (STOR)
Room 5E036 Forrestal Bldg., CE-14
Washington, D.C. 20595

Dr. A. J. Bard
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. Janet Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. Donald W. Ernst
Naval Surface Weapons Center
Code R-33
White Oak Laboratory
Silver Spring, Maryland 20910

Mr. James R. Moden
Naval Underwater Systems Center
Code 3632
Newport, Rhode Island 02840

Dr. Bernard Spielvogel
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709

Dr. Aaron Fletcher
Naval Weapons Center
Code 3852
China Lake, California 93555

Dr. M. M. Nicholson
Electronics Research Center
Rockwell International
3370 Miraloma Avenue
Anaheim, California

Dr. Michael J. Weaver
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907

Dr. R. David Rauh
EIC Laboratories, Inc.
111 Downey Street
Norwood, Massachusetts 02062

Dr. Aaron Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02192

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton SO9 5NH ENGLAND

Dr. R. A. Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. John Wilkes
Air Force Office of Scientific Research
Bolling AFB
Washington, D.C. 20332

Dr. R. Nowak
Naval Research Laboratory
Code 6171
Washington, D.C. 20375

Dr. D. F. Shriver
Department of Chemistry
Northwestern University
Evanston, Illinois 60201
END
DITC 1-86