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HIGH GAIN FREE ELECTRON LASER OSCILLATORS .:E

I. Introduction :-:
o

We have conducted an analytical and numerical analysis of the field evolution in a high j;'..:

gain free electron laser operating in the oscillator configuration, as depicted in Fig. 1. The
analysis is applicable to systems with electron beam pulse lengths which are longer that the
particle transit time in the resonator. The electron beam equilibrium is therefore assumed ff;
to be spatially uniform and temporally stationary. The radiation field and phase averages
which are performed with the ensemble of electrons is conducted for an interaction length , .
which consists of the entire wiggler structure. This is in contrast to other simulations -
{theories) which perform the ensemble average over the wavelength of the ponderomotive *
botential; as is applicable to systems with temporally stationary fields! or short beam x
pulses? that are spatially periodic. ' .
o

We find that the numerical simulations yield qualitative and quantitative agreement ;_\1
with the theory. The theory for the example given (strong pump Compton regime) can '
be separated into three operation regimes which we shall denote as the ultra-high gain, k.
moderate gain and low gain regimes. Both the ultra-high gain (TxL >> 1) and the low
gain (I'xL << 1) regimes yield zrowth rates that exhibit the same scaling with beam :
current, energy and wiggler field as is obtained for an FEL amplifier operating in these
regimes. Additionally. we consider a moderate gain regime (TxL > 1) which is of direct j
interest to NRL experimental parameters.
o

1. Theoretical Model O
l

An analysis of the space time evolution of the fields and particles within an FEL os- ﬂ"
cillator requires a self-consistent coupling of the fundamental equations for the particles T
ﬁanu—script—approved December 5, 1985, ‘:
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and fields®*~%. We have considered a Maxwell-Vlasov description of the fields and par-
ticles. The analysis in Appendix A results in the following system of equations for the
coupling of the fields and particles. The backward travelling wave evolves according to,
ddy(=)/0z — iady(z) = 0. The forward travelling potential and the electrostatic potential

evolve according to,

agls) + iady () =

—€) /;~ d;"(;' - :) exp[-—i_\K(z: _ :)}(0/6:' _ 3K)[3w&f(z')/2 _ 5(:')]

+icy /;:d:’ exp[—iAK (s - 2)|(0/05" —iK)[(1 + 3%))3wds(2')/2 - o()], (1)
d

Eo’(:) —-iKo(:)/2 =

—C3 /; d='(:" = ) exp|~iAK (' = )(8/3:' = iK)[3uas(2")/2 - ol )]
e /) dz' exp[~iAK (' = 2)|(8/95" — iK)[Juwis()/2 - (1 - 3%)o().  (2)

The parameters in Eqs. (1) and (2) are given by, a = Aw/e = w2 (1= 32)/2ue™. o) =
(,‘2(1 - 3:0)(«'0 + A‘.«‘ /l.-':g. Cy = '..«. 3 /-..«0(,3~0 o Cs = Clw")/jw}\(.‘. Cy = 1,‘3/(1 - 3:._.0),
K =ky+ky and AR = K — {wy + Aw)/v;0. By making use of the convolution theorem,

the Laplace transfcrm of Egs. (1) and (2) yields,

{{s +ia){{s —iAK)2+2c;) + iKe; 3, /2)d,(s) =
{{s —iAK)? + 2e5(L ~ 32 /4)}d,(0). (3)

{{s = iAR)® + 2c5}o(s) = es dufas(s) ~ ids(0) /K, (4)

where d,(s) and o{s} are the Laplace transformed vector and scalar potentials. and we have
retained only the terms in the driving current that arise from the momentnm derivatives of
the phase, JAK/dp.. We have also assumed that the electron beam enters the resonator
unbunched so that 13(: =0)=0.

Since the singularities of the Laplace transformed potentials are isolated poles. the

Bromwich inversion of these transforms can be easily performed.
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o(z) = ZResidue{qB(s), 8;}exp(s;2), (5)
b
ar(z) = ZResidue{&f(s), 35} exp(s;2), (6)

where s;, are the poles of the Laplace transformed potentials. The solution for the radiation
potential given in Eq. (6) is of the same generic form as the solution obtained by Bernstein
and Hirshfield® for the FEL amplifier configuration. Our analysis shall differ in that the
backward travelling waves are not neglected, and the combination of the forward and
backward travelling waves are required to satisfy the appropriate boundary conditions
at the mirror surfaces. Specifically. the tangential component of the electric field must
be zero at the non-transmitting mirror surface, i.e., ds(0) + @,(0) = 0. At the partially
transmitting mirror surface at the end of the resonator, the tangential components of
the electric field must be continuous, i.e., a;(L)exp(—ikoL) + as(L)exp(ikoL) — (1 —
VR)iys(L) exp(—ikoL) = 0, where L is the length of the resonator and R is the fractional
power reflected from the far end resonator mirror. This yields the following expression for

the boundary conditions at the mirror surfaces,

"A‘:L - &ﬁ) exp{;[—-—g:fﬁ(l- F2/2) = 2ko|L} 3 Residue{ay(s). s;} exp(s;L), (7)

J

exp

which is the equation that self-consistently determines the complex operating frequency,

Aw. of the oscillator.
III. Results for Compton Regime

In the Compton regime the effect of the electrostatic potential can be neglected!10:11)
In addition we shall assnme that the spatial derivative of the vector potential in the driving
currens is negligible. These derivatives are negligible when. {(s — {AK)?] >> 2c3 and
|s| << K. Under these conditions the Laplace transform of the vector potential is given

by,

TN e
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ds(s) = ds(0)(s — iAR)?/ (s - 5,). (8)
1=1
where s; are the roots of the dispersion relation, (s — iAK)?(s + ia) = —ic, 3, K/2 »

—iwd (1 + 3:0)82 ky [433,¢°F. Since ko is a free parameter, choose ko such that, AR =

ko +ky = (wo + Aw)/vz0 = —Aufe+w2(1 - 32 /2) /20 c¥. Which results in the following

solutions to the dispersion relation,

T T TVEEE.C O YV I FPER RN

2 . i2/V3
- 32 /2 —i :
¢ 2w0c7(1 ﬂ"’/')] +0o il ./'\//\5/2_' (9)

AW )

where Ty = ﬁkw{wg(l + 3:0)32 /4k2wc2‘7]1/3/23;0 is a spatial growth rate corresponding
to the largest spatial growth rate in the amplifier case!®. By evaluating the residues of
ay{s) for each of these poles, one obtains the following solution for the spatial structure of

the radiation potential,

&t

-

dg(z) =

0 3
f:i ! Zexp(s]:). (10)

=1

It is evident from Eq.{10) that the spatial growth of the radiation field can be de-
scribed by the interference of three modes; which can be identified as the positive and
negative energy beam modes, and a transverse electromagnetic mode. The constructive or
destructive nature of this interference is dependent on the values of the physical parame-
ters which characterize the roots, 3;,. For physical parameters such that, I'yL >> 1, the
unstable mode dominates and one obtains exponential spatial growth at the rate T';.

The temporal growth rate of the radiation field is obtained from the negative imaginary
part of the complex oscillator frequency, Ax. The oscillator frequency is determined by
the boundary conditions as expressed in Eq. {7). which for the approximate roots under

consideration yields.

AL VR W2 . e
exp — = TexP{,IZ;.’;c?(l - 35/2) - 21:.\,,L})Z—:l exp(s,L). (11)
4
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We shall consider three distinct solutions to this equation for the complex oscillator fre-
quency. The first of which is the ultra-high gain regime (I'zL >> 1), in which case, only
the fastest growing mode in Eq. (11) is retained. The second case is the moderate gain
regime (I'yL > 1), where only the decaying mode in Eq. (10) is neglected. The final case
is valid for arbitrary gain and all terms in Eq. {11) are retained. The imaginary part of

the oscillator frequency yields the following temporal growth rates,

I‘.,,-ii = %ln \/TE +ToL/2, Ultra-High Gain  (12)
ng = -;-ln @ + iln[‘Zcosh(l‘oL) + 2cos(v/3T, L)),

Moderate Gain (13)
FJ§ = %ln g + %ln[l + 4cos(\/§I“OL)cosh(1"oL) + 4 cosh®(ToL)].

Arbitrary Gain  (14)

In each of the expressions for the growth rate the first term is negative definite. This
represents the effect of losses at the mirrors and che coupling losses due to the splitting of
the radiation into three modes. The necessary condition for the oscillator to lase is that
the remaining terms exceed this loss. For the ultra-high gain case this requires I'oL >
—ln(\/_é/?a). This expression has been confirmed experimentally!® in recent operation
of the NRL FEL oscillator. The interaction length, L, can be varied by dumping the
beam at different axial locations within the wiggler. For the following set of experimental
parameters, beam energy E, = 500 kel, beam current I = 100 A4, wiggler field strength
B, = 615 G, beam radius r, = 0.64 ¢m and wiggler length ¢, = 4.0 em, the minimum
interaction length is determined to be 45 ¢cm. Inserting this value into Eq.{12) yields a
theoretical value of 0.64 for the reflection coefficient. The independently measured Bragg

reflection coefficient has the value 0.65. which is in excellent agreement with the theoretical

value.
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IV. Multi-Mode Simulation

The space-time evolution of the fields in the resonator is simulated by numerically
evolving the equations for the fields and particles. The radiation field model for the multi-

mode simulation is given by,

Ag(z,t) = Zan(t) sin (ky 2)exp(iwnt)e~ + c.c., (15)
n
o(z,t) = Zoln(t) sin{{kn, + kw)z — wnt] + Q2n(t) cos|(kn + ky)z — wat]. (16)

where &k, = n7/L = w,/c and the sum is over the discrete number of modes under con-
sideration. This model has the property that the complex expansion coefficients in the
harmonic analysis, a,(f),01n{t). 224 (t), are only functions of time; which results in ordi-
aary differential equations for the particle and field evolution. This model also has the
atiribute that the field boundary conditions at two perfectly reflecting mirrors is automat-
ically satisfied, and we model the resonator losses heuristically by adding a dampicg term
to the wave equation, [02/9:2 — ¢729% /0t — ve=29/dt|Ag(z. t) = 47171 (=, t). where
v = «» /1 and @ is the quality factor of the resonator. The driving currents and charge den-
sities for the vector and scalar potentials are modeled with a discrete distribution funcrion

as follows,

pl=t) = —e/d:on'){t)ﬁ(: -z t)). (17)
- A4
Jif{=t)= i /d:on.)(!)ﬁ(: = X z0. )} /700 {18)

where, 4= 1g+.4,. na(t) = naix)il —exp(—t/tg)l and n,(x) is the Hartop density

of the electron beam pulse. tg is the characteristic rise time for the beam current or density.

and 3(z4.t) is the axial orbit of a particle located at position :zy at { = 0.

w7

The slowly varying field approximation, da,(f)/dt << wpa,(t). yields the following

set of equations for the evolution of the fields and particles.
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v*A T ~ ¥
A == —dln/ dro sin[yn (70, 7)| —P(7), (19)
2 r—1 Yo
vy A1 T ¥
.9’=——’-+,—"-/ drcosu (ro. 7)]—P(70), 20
n R A [ ],YO (7o) (20)
O1p = —ﬂt_,n/ dry cos|ir (7o, 7)|P (). (21)
—
A T “~
Oan = —Jan / drg sin[w, (70, 7)| P (7). (22)
T—1
W' = —6" + Iy, Z(km + kw)L[égm cos|Wm (7, 7)] = O1m i [ (7o, 7)]]
m
+ 34 > {[(km + k)L = km L3z + 3028:00 ) Am sin[em (7. 7)]
m
~ 30:3:-A", cos[lf!m(ro,r)]}. (23)

We have introduced the following normalized parameters, 7= vy:t/L, 4, = edy, /mc?.
o = eo/met. (..)) = 8(..)/dr. We have also made the following definitions,
@, = —i.-in(r)exp(iﬁnr). Calfont) = (kb + ku)i(m0,7) = wnlffro: = 8,(7), vh =
vL[vo:. vi = WikyLF(1 - 321222 c*T. Fin = FIuL307w] )20 33 ke J2a =
2Fu2 30 [ (kn + kuw)? Joze Fan = Likn + ko) [T7335,.  Fan = Ju(ka + ku)L7/235.73
and P(ry) = 1 —exp(—ry/7r), where L is the length of the resonator, F is the filling factor
and w, is the nonrelativistic plasma frequency.

This system of equations is solved numerically by using a four-point Adams-Bashforth
predictor corrector scheme which is initialized by nsing the three point Runge-Kurtta

« v T
method. The ensemble average over initial electrons, fh

{--)dm. is typically performed
with two thousand (2000) particles. The results of the simulations and the linear theory.

obtained from the linearization of Eqs. {19) - (23}, are shown in Figs. 2 and 3

V. Conclusions

A comparison of the temporal growth rates obtained from the linear theory and the
numerical simulations is shown in Figs. 2 and 3. The growth rates for the simulations are

obtained numerically from the field amplitnde data during the initial jeld evolution. where

-1

o -




the wave growth is linear. In Fig. 2 the data is presented for a low gain case with physical
parameters given by, v = 2.0,/ = 54, F = 0.2. kyry, = 0.62831, 3, = 0.2 andL/¢, = 50.
There is an excellent agreement between theory and simulation. In Fig. 2 we also compare
the theoretical and numerical efficiencies for a high gain case. Where the efficiency is
defined as the stored electromagnetic energy density normalized to the incident beam
energy density. The theoretical estimates of the efficiency are based on particle trapping
arguments'?, with the assumption that all the energy lost by the particles is converted
into electromagnetic energy. The characteristic change in velocity of a particle is given by
the difference in the beam velocity and the phase velocity of the trapping potential. This
phase velocity is approximated from the results of the linear dispersion relation. Again we

find good qualitative and quantitative agreement between the simulation and theory.
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Appendix A

In the following, we shall consider the space-time evolution of the radiation fields
produced by the interaction of a beam of relativistic electrons with a helical wiggler field
contained within the mirrors of an optical resonator. The analysis is fully relativistic
and is conducted self-consistently within the framework of the Vlasov-Maxwell system of
equations.

The wiggler vector potential is modeled as follows,

- By

Au(z) = E[exp(ikw 2)é_ + exp(~—iky z)éy ], (A1)

where the wiggler magnetic field strength is B,,, the wiggler period is ¢, = 2x/k, and
the basis vectors are é; = (é; £ i¢,)/2. We have assumed in this model that the beam
radius is small compared to the wiggler period (kyry < 1) hence the transverse gradients
in the wiggler field are neglected. We similarly invoke the para-axial approximation to the
radiation fields and neglect transverse coordinate dependencies in the fields, to obtain the

following radiation field model for the vector and scalar potentials,

Az, 1) = [ag (= t)exp(—ikoz) + ap(z, t)exp{ikoz)]exp(iwgt)e— + c.c., (42)

oz, t) = (=, t)exp|—ilko + ku)z + iwot] + c.c., (43)

where ay(z,t) and ay(z,t) denote the forward and backward components of the wave field
respectively, and wg = cky is the frequency. These field coefficients are assumed to be
slowly varying functions of space and time compared to the radiation wavelength and
temporal period. The slow spatial dependence of the feld coefficients is expressed by,
| @718Q/d: |<< ky. with Q = as(=.t).as(z, t).(S(:. t) and the slow temporal dependence
of the the field coefficients is expressed by, | @~19Q/dt |<< wy.

The space-time evolution of the fields is governed by Maxwell's equations, which can
be cast in the form, (92/9:% — ¢=29%/9¢*)A(z,t) = 4z~ JL(=.t) and 82/9:20(z,t) =
—4xp(z,t). The driving current and charge densities are obtained from the appropriate

moments of the Vlasov distribution fupction. The Vlasov distribution function is evolved
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according to the equation, {3/3t + (p./m~)8/3z — e|E + (7 x B)/m~c]-8/35}g(z. p.t) =
0. By making nse of the fact that the canonical transverse momentum is an invari-
ant of the motion and assuming that the beam is cold in the transverse direction (e.g.,
9(z. Pz, Py, p:,t) = §(z.p..t)5{P;)8(Py) ) the evolution of the reduced distribution func-

tion is governed by,

{2 p: 0O [ea¢ e 9
ot  m~r 9z 9z 2m~re?d:z

(,T-A“)] ;p—g—}@(:,p:.t) =0, (A4)
where me2yr = {m?c! + ¢2p? + €2(A - A)}/2. Since (4, - 4,)/dz = 0, the equilibrium
distribution function satisfies the equation, {0 /dt+(p./m~)9/82}§® (z.p..t) = 0, where
me2~y = {m?ct + c2p? + B2 (k2 }1/2. For long electron beam pulses we shall consider
spatially and temporally homogeneous equilibria given by §(°) (2,p:0t) = §(® (p:)- To first
order in the perturbed fields, the evolution of the linearized distribution function is given

by.

9 . ps 9 ). | do e 3 - - 193"
RN & spst)=|—e— — (A : ’
{3( + m~g a;}g ( ~ ) 68: + n'l",’o(}z 05(4 :LU) dﬂ: (45)

The solution to the linearized Vlasov equation is formally given by,

(46)

9% 1 3%\ - —47 [ —€® - g (s, pot)
(‘a‘ﬁ } :eaTi)A‘~“’- o ”-"’”/d"*'_

a2

5 .
(—9-30(:.0 = 4:rnoe/ dp.g't =z ps.t). (48)
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By making use of the slowly varying coefficient approximations, the components of

NN AN

Maxwell’s equations can be expressed as:

[
d 19 Wy oy (982
—t+ = alV) — oY g (5 1) = .
{32 cat 2woci( 2 ) jar(zt) ;,-t
. 2 —
ws B o .
o P exp|—i(Kz ~ wot)] /dpzlg“\'(:,pz, t), (A49)
'0CT Rw o N
9 19  iw? 3 3
(1) {3) = .-
—_— - - —(a'Y -« ap(z,t) =0. AlD
{65 cat 2w0c7( 2 ) o=, 8) ( ) =
b} ] .27n5e s . 2
{—~ - ;’)-K} =i KO exp[i{Kz — wot)] /dng(”(:.pz, t), (A11) .
where me*T = {m2ct + c*p?, + 2 B2 /E2 12, o™ = [dp.(F/%)"3® (p:), 52
wr = dwnge?[m, 3y = eBy,[/mTc*ky and K = ko + ky. Also note that in the fre- IZ‘;?
quency regime for resonant interaction of the radiation field and the beam particles, '}E:'
(wo =~ 23:72kyc) the driving current for the backward wave is negligible. We shall solve ::
this system of equations in the time asymptotic limit for which the forward wave oscillates -
at a single complex frequency. as(z.t) = Gs(s)exp(iAwt). where Aw is to be determined E:::
self-consistently from the boundary conditions at the mirror surfaces. ‘;:::
The ponderomotive potential in terms of the time asymptotic field coefficients is given o
by, :E;:
nd g Bw ~ o
Ay-dA= 3k—af(:)exp{—x[lx s ~ (wo + Aw)¢|} + nonresonant terms. (412) o
alvyy *. .
Retaining only the phase resonant terms, the formal solution to the linearized Vlasov 8
equation can be written as follows,
Pt 0+ )y 25 (p:) o
iV (z,p: ¢t —f d' B0 exp ! — i[K - Lo + is! : e
g ( po ) 0 pz p l [ vz 1 } ap: ._..\
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Inserting this result into the Vlasov-Maxwell system of equations one obtains,

J AW w? o .
g +15 ~ it - st Jarte) =

y . Wi 3,(1 = 3.0) (wo + Aw)
. -3
2woey 83 ¢

/~d:'(z' - z)exp{ — iAK (¢ - z)}
0

8 - iw? 3
- 3 DL I (V) TRy p_ v
(a/a‘ 'K)[ 2 af(") Q("’ )]+2u1007,3?0
/ deexp{ —iAK(< - 2)}(8/0% — iK)[(1+ 3%)dwis()/2 - 6()]. (A14)
0

(a i )~(~)=_ wy (1= 8%) (wo + Aw)
o 2K ¥y 33, c

/{;k S5 = z)exp{ ~ iAK (' - 2)}(8/9 - iK) [3uas(:)/2 - 5(:')]

R 1 < -
14 - 2 - A" sy | ~ . T
2Kc2»73—‘;’§ i d-'exp{ —iAK ('~ 2)}(8/8: = iK)[3wd () /2 - (1 - 3%)e( )]

<+

(A15)

where we have defined AK = K — (wy + Aw)/vz0. The previous set of equations yields a
dispersion relation which we shall refer to as the complete dispersion relation. A simplified
dispersion relation is obtained by noting that in the momentum integration . the results
are most sensitive to changes in the exponent, AK(z' — :}). Retaining only the terms in
the integration by parts which are proportional to dAK/dp., one obtains the following

simplified system of equations,

i) AW '..,'g ) 2 1~ )
{E ' :[T =l Sl J""f(-)
. —wy Ju(l=3%) (wo +Aw) [°
) = ? w ED) 0 d:,:'—; : . ’:,—:
2woc 32 ¢ /0 { Jexp{ — iAK( )}
a . r13 - -
(@“IKH‘;ZEG‘,(:')_O(:;)]‘ (416)

e

o i) - wi (1= 3%) (wy + Aw)
5B ol
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/Ozds'(::' — z)exp{ —iAK (' - :)}(607 - )[ﬂ?w&f(:') - o(")]. (A17)

In both the cases of the complete and simplified set of equations. the equations are of the
convolution type and can be solved by Laplace transiorm methods. The text of the paper

consists of a detailed analysis of the simplified set of equations in the Compton regime.
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