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ABSTRACT

2 The work under this contract aimed at three major goals:

(1) Reveal the origin of the despin moment that may cause severe flight

instability of spin-stabilized artillery shells with liquid payloads' After

evaluation of the experimental data and analysis of the equations for the p.

fluid motion in a spinning and nutating cylinder, we have developed a sim-
0 pie model of this flow. For a finite segment of an infinite cylinder, this

model provides the flow field and the viscous contribution to the liquid

moments in analytical form. At low Reynolds number, the flow field

0 agrees well with computational results for the center section of a cylinder

of aspect ratio 4.3. The roll moment associated with this flow agrees with

experimental data for a wide range of Reynolds numbers. Guided by the

analytical work, a spectral code is currently being developed for solving

linearized and fully nonlinear equations of motion in a finite length

cylinder. A small test fixture has been built and used for visualization of

the flow pattern under various conditions.

* (2) Explore the potential of high-order perturbation methods for describing

nonlinear properties of single modes and mode interactions in hydro-

dynamic stability. t We have chosen plane Poiseuille flow and circular

Couette flow as prototype flows. Use of state-of-the-art techniques for

analyzing and improving the convergence of perturbation series has in

many cases shown tremendous potential for describing the nonlinear pro-

perties of single modes at large amplitudes. However, numerous pitfalls of

this method have been encountered that range from zero radius of conver-

gence to the inability of obtaining the solution near and beyond branch

cuts. For multiple modes, the computational effort increases dramatically

and may not pay off due to lacking intuition in selecting relevant and com-

plete models of mode interaction.
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S(3) Analyze the mechanism of state selection in unstable circular Couette

flow. 1 While linear stability theory predicts instability of circular Couette

flow with respect to Taylor vortices in a wide band of axial wavenumbers,

experiments find stable vortices only in a small neighborhood of the critical

wavenumber. We have applied various methods in order to understand this

problem of wavenumber selection. Most successful was a numerical study

on the evolution of Taylor vortices from a discrete spectrum of initial dis-

turbances. We found that for sufficiently large Taylor numbers, the linear

instability with respect to vortices of small wavenumber does not lead to a

0 finite-amplitude equilibrium state associated with this wavenumber. Dis-

turbances of small wavenumber, although stable according to the linear

theory, may lead to Taylor vortices of larger wavenumber. Both,

wavenumbers and initial amplitudes, of the disturbances play a role in the
0 selection process. We found jump phenomena, amplitude overshoot and

oscillatory solutions, and finally, a relation between the band-width of

stable vortices and the finite length of the cylinders used in experiments.

0 Many of the numerical results are supported by results of multi-mode per-

turbation techniques.
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1. Accomplishments

The working period for this contract was originally 82/06/16 - 85/06/15, but

has been extended until 85/12/15 in order to provide for completing the Ph.D.

theses conducted under this contract. During this working period, the following

personnel has been partly supported under contract DAAG29-82-K-0129:

Thorwald Herbert, Professor, Principal Investigator

William S. Saric, Professor, Principal Investigator

Saad Ragab, Assistant Professor

Charles Thompson, Assistant Professor

Joseph W. Croswell, Graduate Student (M.S. level)

Relja Zivojnovic , Graduate Student (M.S. level)

K. Sethuramalingam, Graduate Student (Ph.D. level)

Ri-Hua Li, Graduate Student (Ph.D. level)

Charlotte R. Hawley, Research Specialist

Fabio Bertolotti, Deb-Asish Ghosh (hourly wage students)

David Pierpont, undergraduate student, has been involved in the experimental

work on visualization of the flow in a spinning and nutating cylinder at no cost

(Senior Project). The study of the internal flow in a fluid-filled cylinder in spin-

ning and nutating motion has been jointly supported by this Contract and by the

U.S. Army AMCCOM, Contract DAAK11-83-K-0011. The work of Ri-Hua Li

and K. Sethuramalingam has been jointly supported by the Army Research Office

and by the National Science Foundation under Contract MEA-8120935.

1.1 Presentations

Research findings have been reported at the following conferences:

(1) Th. Herbert and W. S. Saric, "Stability Analysis of the Motion of

Confined Rotating Fluids," 28th Conference of Army Mathematicians,

Bethesda, Maryland (June 1982).

(2) Th. Herbert and W. S. Saric, "Modelling of the Viscous Fluid Motion in

a Precessing Non-Rigid Payload," Aeroballistics and Fluid Dynamics

1982 Research and Technology Conference, Downington, Pennsylvania
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(1982). %

(3) Th. Herbert, "The Flow of Highly Viscous Fluid in a Spinning and

Nutating Cylinder," 1983 Scientific Conference on Chemical Defense

Research, Aberdeen Proving Ground, Maryland (Nov. 1983)

(4) Th. Herbert, "Nonlinear Effects in Hydrodynamic Stability," AGARD

Special Course on Stability and Transition of Laminar Flow, von

Karm2n Institute, Rhode-Saint-Gen6se, Belgium (Mar. 1984).

(5) Th. Herbert, "Highly Viscous Fluid Flow in a Spinning and Nutating

Cylinder," Second Army Conference on Applied Mathematics and Com-

puting, Troy, New York (May 1984).

(6) Th. Herbert, "Instability of the Viscous Flow in a Spinning and Nutat-

ing Cylinder," ARO Workshop on Liquid-Filled Shells, Aberdeen Prov-

ing Ground, Maryland (Sept. 1984).

(7) Th. Herbert, "Instability of the Viscous Flow in a Spinning and Nutat-

ing Cylinder," Scientific Conference on Chemical Defense Research,

Aberdeen Proving Ground, Maryland (Nov. 1984).

(8) Th. Herbert and R. H. Li, "State Selection for Taylor-Vortex Flow,""

Third Army Conference on Applied Mathematics and Computing,

Atlanta, Georgia (May 1985)

(9) Th. Herbert and R. H. Li, "On the Domain of Stable Taylor-Vortex

Flow," Proc. Conference on Mathematics Applied to Fluid Mechanics

and Stability - Dedicated in Memory of Richard C. DiPrima, Troy. New

York (Sept. 1985).

(10) Th. Herbert, "Zur Stabilitit axialsymmetrischer Taylor Wirbel," Insti-

tut fUr Aerodynamik und Gasdynamik, Universitt Stuttgart (Oct.

1985).

(11) Th. Herbert, "On the Fluid Motion in Liquid-Filled Shells," Scientific

Conference on Chemical Defense Research, Aberdeen Proving Ground,

Maryland (Nov. 1985).

(12) Th. Herbert and R. H. Li, "State Selection in Taylor-Vortex Flow,"

Meeting of the Division of Fluid Mechanics of the American Physical

-.............. . •.... ........ -. " .'.............. ...
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Society, Tucson, Arizona (Nov. 1985).

(13) An abstract of a paper entitled "Fluid Motion in Liquid-Filled Shells"

by Th. Herbert has been submitted for presentation at the Army Conf.

on Mathematics and Computing, Ithaca, New York (May 1986)

1.2. Theses and Degrees Awarded

(1) Ri-Hua Li, "Analysis for Taylor Vortex Flow," Ph.D. Thesis, Virginia

Polytechnic Institute and State University, Blacksburg, Virginia (1986).

Ph. D. awarded March 1986

(2) K. Sethuramalingam, "High-Order Parameter Expansions for Equili-

brium States in Plane Poiseuille Flow," Ph.D. Thesis, Virginia Polytech-

nic Institute and State University, Blacksburg, Virginia. In preparation.

(3) David Pierpont, "Design of an Experiment for Visualization of the Flow

in a Spinning and Nutating Cylinder," Senior Project Report, Virginia

Polytechnic Institute and State University, Blacksburg, Virginia (1985).

1.3. Publications

A selection of results has been published in the following papers:

(1) Th. Herbert "Fluid Motion in a Rotating and Nutating Container,"

Report partly prepared under Scientific Services Program (1982), Pub-

lished as Report CRDC-CR-84087 (1984).

(2) Th. Herbert "The Flow of Highly Viscous Fluid in a Spinning and

Nutating Cylinder," 1983 Scientific Conference on Chemical Defense

Research, Report CRDC-SP-84014, (Eds.) R. L. Dimmick and M. Rausa,

p. 617 (1984).

(3) Th. Herbert "Nonlinear Effects in Hydrodynamic Stability," in:

AGARD Report No. 709, Special Course on Stability and Transition of

Laminar Flow (1984)

(4) Th. Herbert "Highly Viscous Fluid Flow in a Spinning and Nutating

Cylinder," Trans. Second Army Conference on Applied Mathematics

and Computing, ARO Report 85-1 (1985).

(5) Th. Herbert "On the Viscous Roll Moment in a Spinning and Nutating

Cylinder," 1984 Scientific Conference on Chemical Defense Research,

..... ".
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Report CRDC-SP-85006, (Ed.) Michael Rausa, p. 529 (1985). Aberdeen

Proving Ground, Maryland.

(6) Th. Herbert "Viscous Fluid Motion in a Spinning and Nutating

Cylinder," J. Fluid Mech., Vol. 167, pp. 181-198 (1986).

(7) Th. Herbert and R. H. Li "State Selection in Taylor-Vortex Flow," Bull.

Amer. Phys. Soc. 30, p. 1689 (1985).

(8) Th. Herbert and D. Pierpont, "Visualization of the Flow in a Spinning

and Nutating Cylinder," Proc. 1985 Scientific Conference on Chemical

Defense Research, November 19-22, 1985, Aberdeen Proving Ground,

Maryland. To appear.

The following papers are in preparation:

(9) R. H. Li and Th. Herbert, "Numerical Study of Taylor Vortex Flow" to

be submitted to J. Fluid Mechanics.

(10) Th. Herbert and Stephen D. Greco, "Higher Approximations for the

Viscous Flow in a Spinning and Nutating Cylinder" to be submitted to

J. Fluid Mechanics.

(11) Th. Herbert and R. H. Li, "Perturbation Analysis of Taylor Vortex

Flow" to be submitted to J. Computational Physics.

(12) R. H. Li and Th. Herbert "Side-Band Instability of Taylor Vortices," to

be submitted to Phys. Fluids.

2. Technical Discussion

The work under this contract aimed at three major goals: (1) Reveal the

origin of the despin moment that may cause severe flight instability of spin-

stabilized artillery shells with liquid payloads. (2) Explore the potential of high-

order perturbation methods for describing the nonlinear properties of single

modes and mode interactions in hydrodynamic stability. (3) Analyze the

mechanism of state selection in Taylor-Couette flow. The essentials of our efforts

to achieve these goals are described in Sections 2.1 - 2.3.

0o

** . . .. . .. . .*... .*.* . o* ."
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2.1. The Flow in a Spinning and Nutating Cylinder

It is well-known that spin-stabilized shells carrying liquid payloads can suffer

dynamical instability. For cylindrical cavities and low viscosity of the liquid, the

instability due to basically inviscid inertial waves can be predicted by the

Stewarts)n-Wedemeyer theory. This theory rests on the boundary-layer

approach and is, therefore, restricted to the range of sufficiently large Reynolds

numbers. The instability of certain shells like the smoke-screening projectile

XM761, however, escapes such a prediction and is also distinguished in character

owing to the rapid loss in spin rate. Experiments with a full-scale liquid-filled

cylinder (Miller 1982) and subsequent field tests (D'Amico & Miller 1979) estab-

lish that this new flight instability is most pronounced for liquid fills of very high

viscosity.

40 We have conducted an analysis of this problem in order to support the ongo-

ing experiments and to independently obtain insight into the anatomy of the flow

phenomena. The initial steps of this analysis were reported by Herbert (1082):

evaluation of the experimental data base, dimensional analysis. scaling aspects.

governing equations, and discussion of various simplifying assumptions. Two

observations in this earlier work led to developing a rather successful approach.

First, if the despin (negative roll) moments (Miller 1982) and void observations

(Miller 1981) are correlated with the Reynolds number Re , at least three regions

can I- distinguished. At low Re, the despin moment increases proportional to

Re, and the void in an incompletely filled cylinder is parallel to the spin axis.

This suggests a simple fluid motion that is essentially independent of the axial

coordinate, except in the neighborhood of the end walls. In a middle range of

Re, the despin moment assumes a maximum, and a wavy distortion of the void

seems to indicate a cellular structure of the fluid motion. This cellular motion

can, in principle, originate from hydrodynamic instability of the basic flow with

respect to axially periodic disturbances. At still higher Reynolds numbers, the

despin moment decreases with increasing Re in a manner not clearly defined by

the few available data points. The void observations indicate, however. that the

motion ultimately becomes turbulent.

............* .:-<
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The second observation is the appearance of the nutation rate and angle as a

small parameter in the equations for the deviation from solid-body rotation. The

forcing term due to nutation can be considered small enough for linearization of

the equations in the situations of practical interest.

Consequently, our research focused on three topics. First, we performed a

theoretical analysis of "simple" fluid motions at low Reynolds number that

satisfied the linearized equations for the deviation from rigid body rotation.

Second, we designed a small-scale, low-cost experiment for visualization of the

interior fluid motion. The results of these efforts are discussed in sections 2.1.1

and 2.1.2, respectively. Third, the work on the "simple" fluid motion stimulated

and guided the development of a spectral code for solving the Navier-Stokes

equations in a finite cylinder. This ongoing effort is described in Section 2.1.3.

2.1.1 The Deviation from Solid Body Rotation

A formal analysis of the equationst for the deviation of the velocity field

from solid body rotation suggests that (1) the equations can be linearized without

introducing major errors, (2) at low Reynolds numbers Re *, the velocity field is

independent of the axial direction over a considerable part of the relatively long

(' = 4.3) cylinder, and (3) the flow is essentially in the axial direction and turns

at the ends. Application of these conceptual assumptions turned out very fruitful.

A detailed description of the results and comparison with computational and

experimental data is given in the paper "Viscous Fluid Motion in a Spinning and

Nutating Cylinder" (Appendix A), that will soon appear in the Journal of Fluid

i Mechanics (Herbert 1986). Here, we report only the main conclusions.

The model of a two-dimensional unidirectional flow in a finite segment of an

infinite cylinder yields the solution of the linearized equations in analytical form.

The disregard of the end walls has some obvious consequences: the turning flow

near the ends and the associated contributions of pressure and shear stresses to

the moments cannot be obtained from this model. Nevertheless, we gather under-

standing as well as quantitative information. The velocity field of the core flow
* U

* Detailed equations are given in Appendix A.
* We use the notation introduced in Appendix A.

* U
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agrees well with computational results (Vaughn et al. 1983, 1985) for low Rey-

nolds numbers. The analytical result is an evident example for the formation of -

boundary layers. The core flow can be utilized as a basic flow in studies of hydro-

dynamic instability with respect to cellular motions. The parametric excitation of

such cells by the azimuthally periodic deviation has been discussed by Herbert

(1985a). The core flow also represents the lowest-order approximation to the solu-

tion of the nonlinear equations and can be extended by higher-order terms.

The roll moment agrees well with measured and computed values and can

also be found at Reynolds numbers too large for successful numerical simulations.

The roll moment originates from Coriolis forces. While the direct calculation of

the yaw moment suffers from neglecting the pressure contribution, the yaw

moment can be found from the roll moment using the relations given by Murphy

(1984, 1985). The pitch moment remains an open issue. The average rate of

change of temperature is found to be proportional to roll moment and spin rate.

This estimate needs further verification once more experimental data become - '

available.

The simple form and scaling relations of our results provide guidance for

sorting and evaluating the experimental data base. The results also suggest vari-

ous improvements in the experimental procedures. First, the changes in tempera-

ture and viscosity should be carefully monitored. With the effective viscosity

known, a closer agreement between theory and observation is to be expected.

Second, the yet neglected variation of the roll moment with the spin rate is con-

sidered relevant and in fact provides the roll moment in some range of Reynolds

numbers. Instead of recording the roll moment as a function of Re by using

numerous viscosities at fixed spin rate, very similar data can be generated by

varying the spin rate for a few fluids. For directing the research efforts within

this project, it has been most revealing that the characteristic variation of roll

moment versus Reynolds number, in particular the sharp maximum at Re ; 19,

is a property of the unidirectional model flow. This result contradicted the ear-

lier working hypothesis which attributed the occurrence of this maximum to

* hydrodynamic instability and the onset of cellular motions.
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Recently, we have extended the analysis of the flow in an infinitely long

cylinder to account for nonlinearity by using a perturbation method. The equa-

tions up to the third order were solved partly with analytical, partly with numer-

ical (spectral) methods. The second order solution provides azimuthal and radial

velocity components in agreement with computational results. The aperiodic

component of the azimuthal velocity causes the shear stress on the wall that

tends to despin the cylinder. The second-order terms have no effect on the despin

moment derived at lower order. The third-order correction to the moments is

very small, and can be neglected for practical purpose. The results of the pertur-

bation analysis indicate that there is little difference between the velocities

governed by the linear and nonlinear system. This fact is important for the

design of efficient spectral solvers. The analytical results provide a simple mean

for estimating the number of expansion functions needed in the azimuthal and

radial directions.

2.1.2 Flow Visualization

Although theoretical (Herbert, Appendix A) and computational (Vaughn et

al. 1985) work provides some insight into the interior fluid motion, the nature of

the phenomena remains largely in the dark. This is especially true for the range

of medium and high Reynolds numbers where finite-amplitude cellular motions

and ultimately turbulence are expected to occur. This range is barely within the

scope of computational methods, nor can it be fully explored with the theoretical

means of sections 2.1.1.

Previous experiments (Miller 1981) using a partially filled full-scale cylinder

revealed some axial nonuniformity of the flow at higher Re without showing

details of the flow field. Later attempts to use flow tracers (Miller & Oberkampf,

personal communication) had little success due to the high spin rates (accelera-

tions) combined with minute density differences between working fluid and tracer

particles. Even carefully centrifuged and selected particles failed to follow the

liquid path, probably due to changes of temperature during the run. Attempts to

* employ laser-induced fluorescence (Miller 1985) were partly successful after

changing the time scale, i.e. to lower spin rate, nutation rate, and viscosity at "i-

fixed values of the dimensionless parameters. These efforts have been

0

....................................................•. . . .
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discontinued, however, due to continuing lighting problems.

Evaluation of the experimental attempts to visualize the fluid flow clearly

reveals the extreme full-scale conditions as evil. Conclusive experiments can be

conducted by exploiting the principals of dynamical similarity and appropriate

scaling laws. These aspects have been discussed in earlier work (Herbert 1982)

and extended by the analysis in Appendix A.

A description of our experimental setup, the visualization technique, and

some results are given in Appendix B. More details are provided in the Senior

Project Report by D. Pierpont (1985).

The experimental effort has clearly shown the feasibility of flow visualization

with relatively simple means. The numerous photographs obtained reveal the

basic pattern of the flow and the changes of the flow structure as the Reynolds

0 number increases. Perhaps the most striking result of this visual study is the

manifold of patterns at higher Reynolds numbers that has not been revealed by

the computational work. The study also has suggested improvements in the

experimental setup and procedures that would enhance the quality of the results.

An exploratory study has indicated that an improved test fixture with proper

timing devices would also allow for laser-Doppler velocimetry. In this way, data

for verification of computer solutions could be obtained.

2.1.3 Spectral Navier-Stokes Solver

Two independent efforts have provided codes for finding the steady solution

to the Navier-Stokes equations in a finite cylinder. Vaughn et al. (1983, 1985)

introduced artificial time-dependence by Chorin's method and used finite

differences in space and time. The code is rather demanding in terms of com-

puter time due to the large number of time steps required for convergence. A

direct approach to the steady solution has been implemented by Nagel &

Strikwerda (1984) using a pseudospectral method for the azimuthal, finite

differences in all other variables. Details on the potential of this code have not

yet been published. Both codes, however, are known to be deficient at large Rey-

nolds numbers and demanding in terms of computer time. Guided by our analyt-

ical work, we are in the process of developing a fully spectral (collocation)

0
. . -
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approach to the steady problem with Fourier series in azimuthal (€) and Che-

byshev series in radial (r) and axial (z) direction. With Nr, No, and N colloca-

tion points in the spatial variables, a straightforward approach in the N" = 4

natural variables leads to an algebraic system of dimension N = N, Nr "NO'N,.

The resolution of the code of Vaughn et al. can be matched with a matrix size

that can be handled with desk-top computers (e.g. Apollo DN300, DN3000 or

Sun). The task can be simplified by (1) exploiting symmetry of the motion, (2)

reducing and splitting the number of variables, e.g. into N, = 3 vorticity com-

ponents plus N, = 1 pressure, or (3) utilizing divergence-free expansion func-

* tions (Leonard 1981, Leonard & Wray 1982). At present, we have successfully

used two codes (without and with exploiting symmetry) in all four natural vari-

ables. These codes provide accurate velocity components resulting from the

linear or nonlinear system of equations. Samples of the velocity field near the

Reynolds number of maximum despin are shown in Figures 1-5. Comparison of

Figures 1 and 2 indicates the small effect of nonlinearity. The further develop-

ment was slowed down by the occurrence of a spurious pressure term due to the

* lack of non-redundant conditions along the joint between cylindrical sidewalls

and the end plates. We have attempted a solution of this (known) problem by

studying a two-dimensional analogon, the flow in a square under a given force

field. The study has just been completed. Continuation of this work is sup-

ported by the Army AMCCOM under Contract DAAK11-83-K-0011.

2.2 Analysis and Improvement of Perturbation Series

The use of perturbation expansions is the foundation of the weakly nonlinear

stability theory. With very few exceptions, research in this framework has only

considered the lowest-order nonlinear correction to the results of linear stability

theory. Often, however, these weakly nonlinear results are used at definitely
finite values of the perturbation parameter given e.g. by experimental data. The

questions that arise are whether these physical values are "sufficiently small,"

and whether the low truncation provides a reasonable approximation. In

mathematical terms, these questions are whether the series is used within the

radius of convergence and how large the truncation error is.

*-
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A second problem area in the weakly nonlinear stability theory concerns the

relevance and completeness of multi-mode models for the analysis of nonlinear

interactions. Numerous such models have been suggested and studied. They

failed, however, to provide reliable qualitative and quantitative information on

the physical phenomena under consideration.

The aim of our work has been to extend perturbation series to higher order,

to analyze their radius of convergence and the nature of the singularLy nearest to

the origin, and to recast the series in other forms in order to extend the radius

and improve the rate of convergence. As prototype problems, we have chosen

various topics related to the stability of plane Poiseuille flow and circular Couette

flow. The results for circular Couette flow are given in the Ph.D. thesis of R. H.

Li. Detailed results for plane Poiseuille flow will be reported in the forthcoming

Ph.D. thesis of K. Sethuramalingam.

2.2.1 High-Order Expansions for Single Modes

It has been shown by Herbert (1980) that the construction of high-order Lan-

* dau series is just a matter of computer time once a rational formulation of the
.. ;,

problem has been found. In a rather general way, a rational formulation of the

nonlinear stability problem for single TS-modes in plane Poiseuille flow has been

given by Herbert (1983). The results for this case can be easily checked by com-

parison with data obtained from using the concept of harmonic balance in combi-

nation with an arc-length continuation method (Herbert 1978).

Computer programs for constructing high-order series have been provided

with restrictions on the maximum order by computer time and/or memory only.

Parameter expansions (in Reynolds number or wavenumber) and two types of

coordinate expansions (Herbert 1983) have been implemented. Given the expan-

* sion coefficients, numerous techniques for analyzing and improving the conver-

gence of perturbation series (VanDyke 1984) have been explored. For plane

Poiseifille flow, the constraint on the radius of convergence arises from a branch

'lit caused by a non-physical solution at negative disturbance energy. Although

0 [roper' .s of this nearest singularity can be analyzed in detail, it has not been

possible to remove or displace this singularity. Application of Pade" approximants

- * * . . - *.-
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nevertheless provides accurate results at amplitudes up to 15%, far beyond the

physically relevant range, while the original series has a comparable rate of con-

vergence at amplitudes less than 2%.

For Taylor vortices in circular Couette flow, accurate results can be obtained

at sufficiently small supercritical Taylor numbers and wavenumbers larger than

the critical value. At low wavenumbers, the single-mode expansion fails due to

resonance in the perturbation equations and the occurrence of secular terms.

This failure has led to the development of a two-mode model that reveals the

interesting phenomenon of a changeover from low wavenumber disturbances to

Taylor vortices of twice this wavenumber. At higher Taylor numbers, the radius

of convergence of the single-mode series is limited by a physical branch cut. The

origin of this singularity depends on the type of expansion. In coordinate (time)

expansions, the cause is an overshoot of the amplitude and an oscillatory

approach to the equilibrium value. In parameter expansions for equilibrium

states, the branch cut reflects a maximum of the equilibrium amplitude.

Although Pad approximants can be used to continue the solution beyond branch

0 cuts, their convergence deteriorates. Attempts to recast the series in terms of

curvature versus arc length were partially successful. However, this procedure is

very sensitive to round-off or truncation errors.

2.2.2 Interacting Modes: Weakly Nonlinear Models

The evaluation of weakly nonlinear models was conducted in parallel with

an analysis of secondary instability using Floquet systems of disturbance equa-

tions (Herbert 1984). The development of the Floquet analysis was supported by

the National Science Foundation. As a prototype for both approaches, we

choose plane Poiseuille flow.

We have concentrated our efforts on the Benney-Lin model (Benney & Lin

1960), Craik's resonant triad (Craik 1971), and the model of parametric excita-

tion of streamwise vortices by two-dimensional waves (Herbert & Morkovin

1980). As a general conclusion, the use of high-order expansions for multi-mode

interactions was found very demanding in terms of computer time and storage.

Moreover, we were not able to quantitatively reproduce the observations.

-7
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The Benney-Lin model considers the interaction between a two-dimensional

wave and oblique waves of arbitrary spanwise wavelength. In the light of

resonant wave interaction, the question of synchronization has created much

interest. In contrast to previous investigations, we found that nonlinear synchron-

ization can occur at reasonable amplitudes. The relevance of this model to peak-

valley splitting in plane Poiseuille flow, however, cannot be assured. Results of

the Floquet analysis clearly reveal that the principal mode of three-dimensional

instability does n 3t originate from a Benney-Lin type interaction.

Craik's model of a resonant triad of a two-dimensional wave with subhar-

monic oblique waves of a specific spanwise wavelength has been found to be

relevant in boundary layer trapnition. In plane Poiseuille flow, this mechanism is

inactive by reasons of symmetry. Floquet analysis has shown that subharmonic

three-dimensional instability in plane Poiseuille flow originates from a near-0
resonant triad between modes of Squire's equation. These modes have been disre-

garded in all weakly nonlinear theories.

The model of parametric excitation of longitudinal vortices by two-

dimensional waves reveals some pitfalls of weakly nonlinear modeling. Reasonable

results are obtained only in some range of the spanwise wavelength. For large

wavelength, the results suffer from the low order of truncation. For small

wavelength, the results suffer from the incompleteness of the model.

2.2.3 Floquet Analysis of Secondary Instability

In this approach, it is recognized that primary instability with respect to

spatially periodic disturbances causes the original basic flow to be modulated e.g.

by a Taylor vortex or TS wave of small but finite amplitude. In shear flows, the

local flow can be considered as streamwise periodic in a frame moving with the

phase velocity. It was suggested (Herbert & Morkovin 1980) that such periodic

modulation of the flow may cause parametric excitation of secondary instability.

This secondary instability is a new linear mechanism and is governed by a Flo-

quet system of disturbance equations with periodic coefficients. The main prob-

lems then are to identify classes and forms of solutions from known mathematical

properties of such systems and to solve the resulting high-order systems of

.........................
. .. .
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ordinary differential equations. All results for plane Poiseuille flow and Blasius

boundary layer flow yet obtained are consistent and in good quantitative agree-

ment with experimental data.

A comprehensive survey on the development and application of this

approach (Herbert 1985b) has been given as an invited lecture at the Second

IUTAM Symposium "Laminar-Turbulent Transition," July 0-13, 1984, Novosi-

birsk, USSR.

2.3 Analysis of Taylor-Vortex Flow

The flow between coaxial rotating cylinders is one of the basic problems in

nonlinear hydrodynamic stability theory and one of the fluid mechanical models

for the cascade of bifurcations into chaotic motion. Certain puzzling features,

however, occur near the first bifurcation of circular Couette flow into Taylor-

vortex flow. In contrast to the wide region of wavenumbers /3 for which linear

stability theory predicts instability, experiments can obtain Taylor-vortex flow

only in a surprisingly small region of wavenumbers near the critical value f".'.o
We have used various perturbation methods and a numerical method in order to

analyze the properties of finite-amplitude Taylor vortices and the mechanism of

wavenumber selection. Both the evolution and the steady state of the flow ori-

ginating from single or a discrete spectrum of disturbances were studied. The

results of this study are reported in the Ph.D. thesis of R. H. Li. A series of

papers for archival publication are in preparation. The results of perturbation -''

methods for single-mode expansions are summarized in Section 2.2.1 above.

2.3.1 Sideband instability.

It is common to attribute the small band of observable Taylor vortices to a

sideband instability (DiPrima & Swinney 1985). The original analysis of this

mechanism in the neighborhood of the critical point by Kogelman & DiPrima

(1970) reduced the wavenumber band of stable Taylor vortices to 1/V3_ times the

baud predicted by the linear theory to both sides of 0,,. Nakaya (1974) per-

* formed an analysis of this problem taking fifth-order terms into account. His

results seem to indicate that higher-order terms tend to reduce the band of

L .7
. . . . -
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stable, observable Taylor vortices. We have, therefore, used high-order parame-

ter and coordinate expansions in order to establish the region of stable Taylor

vortices. In contrast to Nakaya, we find little effect of the high-order terms on

the Kogelman-DiPrima result. Since we applied two different methods to arrive 1

at this conclusion and because other studies revealed additional support, we con-

sider Nakaya's results to be wrong and misleading as to the cause of the small

band of stable Taylor vortices.

2.3.2 Two-mode models of Taylor vortices.

One of the outcomes of the study on side-band instability was the

occurrence of a singularity in the third-order Landau constant. This singularity

originates from resonance in the perturbation equations for the harmonic with

wavenumber 2/3 if the Taylor number is large enough for modes with 0 and 2/3 to

be inside the unstable domain. The occurrence of the resulting secular terms can

only be removed by introducing a second mode of wavenumber 2,3, and to con-

sider a set of two coupled Landau equations. Evaluation of this two-mode model

clearly revealed that the growth of linear Taylor-vortex modes with small

wavenumbers 0 does not lead to an equilibrium Taylor vortex at this

wavenumber. Instead, energy is transferred into the harmonic with 2,3. This

means that the common picture of a neutral surface of stable equilibrium Taylor

vortices in the full linearly unstable region does not hold up. Taylor vortices of

finite amplitude do not exist at small wavenumbers. This finding is consistent

with the results recently reported by Keller & Meyer-Spasche (1985).

An extension of our two-mode model for the interaction of modes with

wavenumbers n,3 and (n + 1),6 also show that Taylor vortices at large

wavenumbers tend to be unstable in the presence of low-wavenumber com-

ponents, and evolve into vortices of a wavenumber as close as possible to /3 •

The two-mode models provide useful information on stable and unstable

equilibrium solutions and predict a band of stable Taylor vortices consistent with.

but smaller than that obtained from the sideband instability mechanism. The

results are not satisfactory throughout, however, since solutions at larger Taylor

numbers and amplitudes suffer from the overshoot singularity (see Section 2.2.1).

0
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Moreover, the perturbation method is invalid for small values of / that are

located in the linearly stable domain (Herbert 1983). It was, therefore, decided to

complement our study by the analysis of the temporal development of Taylor

vortices from various initial conditions using a numerical scheme. J.

2.3.3 Numerical studies.

The numerical method uses spectral collocation with Chebyshev polynomials

in the radial direction, finite differences in time, and solves the coupled system of

equations for Fourier modes of wavenumbers fl - n A#, n = 0, .. N, in

the axial direction. The value of N depends on the special application, especially

on the value of A0, and may be N 50 or even larger. The detailed knowledge

of the eigenvalue spectrum of the linear problem has been very useful in design-

ing the implicit scheme. Accurate and reliable operation for the nonlinear prob-

lem has been secured by numerical experimentation.

Application of the numerical method to a single small initial disturbance of

wavenumber 31 verifies the results of the perturbation methods. Disregarding

the sideband instability mechanism, Taylor vortices of finite equilibrium ampli-

tude can exist only in the unstable domain if 01 is sufficiently large. For smaller

wavenumbers, the flow -lects a Taylor vortex of wavenumber 0,, with n such

that 0, is as close as possible to fl ,. It is interesting to note that disturbances

with 131 in the stable domain initially decay. Their harmonics, however, lead to

the development of Taylor vortices of appropriate wavenumber I3 near

This result suggests a revised view of the role of linearly stable modes in a non-

linear framework.

Analysis of more complicated initial data shows that the development is

characterized by only a few patterns of behavior. One of these is essentially the

same as for single input modes. The most interesting behavior, however, starts

with the development of a finite amplitude Taylor vortex at relatively large i.,

into a virtual equilibrium that may last for a long time. In the presence of a dis-

turbance of sufficiently small wavenumber g and arbitrarily small amplitude,
this Taylor vortex is ultimately destroyed and replaced by a vortex of

wavenumber fim near Icr. The width of the band of stable vortices near 3 cr is

0

,.. -. .. .
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directly related to the lowest wavenumber /3. Considered the finite length of

cylinders used in experiments and the presence of a large disturbance of circular

Couette flow caused by the cylinder ends, we find a direct relation between the

baud width of observable Taylor vortices and the smallest wavenumber possible :

for a given length experiment. One may suspect that the Taylor flow in infinite

cylinders at fixed Taylor number is unique.
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Figure 1. Vector plot of the radial and axial velocities in the

plane of the spin and nutation axes (p = 0) based on equa-

tirs linearized in c.
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ABSTRACT

Spin-stabilized projectiles with liquid payloads can experience a severe flight instability charac-

terized by a rapid yaw-angle growth and a simultaneous loss in spin rate. Laboratory experi-

ments and field tests have shown that this instability originates from the internal fluid motion in P

the range of high viscosity. After evaluation of the experimental data and analysis of the equa-

tions for the fluid motion in a spinning and nutating cylinder, we have developed a simple

model of this flow. Disregarding the finite length of the cylinder, this model provides the flow

field and the viscous contribution to the liquid moments in analytical form. At low Reynolds

" number, the flow field agrees well with computational results for the center section of a cylinder

of aspect ratio 4.3. The roll moment caused by this flow largely agrees with experimental data

for a wide range of Reynolds numbers. Estimates of the temperature variation indicate that

discrepancies at very low Reynolds numbers may originate from associated changes of the

viscosity during the experiments.

. ..- . . . . . . . .
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1. Introduction

It is well-known that spin-stabilized shells carrying liquid payloads can suffer dynamical

instability. For cylindrical cavities and low viscosity of the liquid, the instability due to basically

inviscid inertial waves can be predicted by the Stewartson-Wedemeyer theory (Stewartson 1959;

Wedemeyer 1966). This theory rests on the boundary-layer approach and is, therefore, res-

tricted to the range of sufficiently large Reynolds numbers. The instability of certain shells like

the XM761 (D'Amico 1977; 1978), however, escapes such a prediction and is also dis-

tinguished in character owing to the rapid loss in spin rate. Experiments with a full-scale

liquid-filled cylinder (Miller 1982) and subsequent field tests (D'Amico & Miller 1979) estab-

lish that this new flight instability is most pronounced for liquid fills of very high viscosity.

We conduct a theoretical analysis of this problem in order to support the ongoing experi-

ments and to independently obtain insight into the anatomy of the flow phenomena. The initial

steps of this analysis are reported elsewhere (Herbert 1982): evaluation of the experimental

data base, dimensional analysis, scaling aspects, governing equations, and discussion of various

simplifying assumptions. Two observations in this earlier work led to the approach discussed in

the following. First, if the despin (negative roll) moments (Miller 1982) and void observations

(Miller 1981) are correlated with the Reynolds number Re, at least three regions can be dis-

tinguished. At low Re, the despin moment increases proportional to Re, and the void in an

incompletely filled cylinder is parallel to the spin axis. This suggests a simple fluid motion that

is essentially independent of the axial coordinate, except in the neighborhood of the end walls.

In a middle range of Re, the despin moment assumes a maximum, and a wavy distortion of the

void seems to indicate a cellular structure of the fluid motion. This cellular motion can, in

principle, originate from hydrodynamic instability of the basic flow with respect to axially

periodic disturbances. At still higher Reynolds numbers, the despin moment decreases with

increasing Re in a manner not clearly defined by the few available data points. The void obser-

vations indicate, however, that the motion ultimately becomes turbulent.

The second observation is the appearance of the nutation rate and angle as a small param-

eter in the equations for the deviation from solid-body rotation. The forcing term due to nuta-

tion can be considered small enough for linearization of the equations in the situations of prac-

tical interest.

In the following, we describe the development of a simple system of equations for the

basic flow. Analytical solutions are given for the flow field, for the liquid moments, and for the

- . . .]
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rate of change of temperature. A comparison is made with computer simulations of the flow

(Vaughn et al. 1983; 1985) and with experimental data for the moments (Miller 1982).

2. Governing Equations

We consider the motion of a fluid of density p and viscosity 1 in a cylinder of radius a

and length 2c that rotates with the spin rate w about its axis of symmetry, the z-axis. We con-

sider the motion with respect to the nutating coordinate system z,y,z. This system is obtained

from the inertial system XY,Z, by a rotation with the nutation angle 0 about the axis Y=y.

Therefore, z is in the Z,z-plane, and this plane rotates about the Z-axis with the nutation rate

* . The two axes of rotation intersect in the center of mass of the cylinder, as shown in figure

1. We consider w>O, Q2 , and 0<0<7r/2 as constant. This is in some contrast to the experi-

mental procedures for measuring the despin moment (Miller 1982). In these experiments, the

apparatus is held at constant conditions until a steady (or quasisteady) flow is established. After

shut-down of the spin drive, the decrease of w as a function of time is recorded in order to

obtain the roll moment.

The fluid motion is governed by the Navier-Stokes equations written in the nutating coor-

dinate system:

p[- + 20 X V. + n X (fl Xr)] --- P +p7 2 V,, (la)

7V. 0. (1b)

V, is the velocity measured in the nutating frame, P,, the pressure, and r the position vector.

The body force due to gravity has been disregarded. Equations (1) are subject to the no-slip

and no-penetration conditions at the cylinder walls.

It is convenient (Herbert 1982) to split the velocity and pressure fields according to

V -- V0+V1 P -- P0+ P-, (2)

where V°,Po describe the state of pure solid body rotation, whereas Vd,Pd represent the devia-

tion from solid body rotation. The advantage of this isolated view on the deviation is obvious:

- . * 4*44 ~ *** 4. 4 * P '.-. .
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Vd and the reduced pressure Pd are responsible for the observed flight instability. A glance at

the equations shows that Vd - 0 and Pd - 0 if either one of the following conditions is

satisfied: w = 0, QT - 0, 0 = 0or/j - oo (solid fill).

The equations for Vd,Pd are written in terms of nondimensional quantities vd,pd. We use .*

a,w, and p for scaling length, time and mass. Note that this choice is ambiguous (Herbert ..-

1982) and excludes the case wo=0 which lacks practical interest. The problem then depends on

four nondimensional parameters:

X = c/a aspect ratio

0 nutation angle

r = / frequency

Re =pa 2/, Reynolds number.

The aspect ratio enters the solution only through the boundary conditions. The boundary con-

ditions on Vd are homogeneous.

In cylindrical coordinates r,o,z, the equations for the nondimensional deviation velocity

Vd = (v,,vO,vz) and pressure Pd take the form

1 a (90v a":
- )  -- + -V= ( a)r~r r& 00 4Z

D'v, - - 2(1 + r,)v6 + 2rv, (3b)
r

pd 1 v ,. 2 v,-

-r Re" r2  r2 a6

D'v, + v.10 + 2(1 + r,)v -.-2rv, = (3c)
t

l aPd I It , 2 ,,

D'v, + 2r,vk - 2rv ,  r r, D -r -(-- ,a9z Re c '(d

where

0 1 0 0 O

'r 2  1 a 1 2  a2
D" - +-T + r

2  
2 ,2" "

D r2 rr 0 .
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and

r, -cosO , r sino, r, = rcosO E = rsinO (4)

The primary effect of nutation is contained in the O-periodic force term - 2rr, 2t rcoso iII

the z-momentum equation (3d). If this term vanishes throughout, E - 0, equations (3) sup-

port a trivial solution Vd 0, Pd = 0.

The system (3) of equations is similar to the system numerically solved by Vaughn et al.

(1983; 1985), but simplified by introducing the reduced pressure pd. We also note that this sys-

tem supports certain symmetries. Let v,,v*,v, and pd be the solution at point r,O,z, then the

velocities and pressure at the corresponding point r,O + 7r,- z are v,,v,,- v. and Pd. These sym-

metries can be exploited for essential savings in computational work.

2.1 Linearized equations

For sufficiently small c 3x 0, it is obvious that the deviation velocity is of order O(f). In the

situations of practical interest, E = (12 /w)sinO turns out to be a rather small parameter. Even

a conservative estimate with £0 < 500 rpm, w> 3000 rpm, and 0< 20' provides values of

< 0.054. Consequently, it seems well justified to linearize the equations in f. This lineariza-

tion imposes no restriction on the Reynolds number.

While the continuity equation remains unaffected, linearization of the momentum equa-

tions provides . -

O9pd Iv, 2 Ovi,"-
Dv, - 2(1 + r.)vO + - -7 r r 2 (Sa)

D'v, + 2(I 1 r,)v, T=+ - -, + -- ) (5b)
r 90 Re r. r2 390

* '(9PdD'v, = z- 2rr, + (c)
OZ Re

where

a 0

D" Ot ~ o .2



Viscous Fluid Motion in a Spinning and Nutating Cylinder 5

The system (3a), (5a)-(5c) of equations is still quite difficult to solve. Any serious attempt to

satisfy all boundary conditions leads directly to a purely computational approach. Use of the

boundary-layer approximation would simplify the task but seems inappropriate in the ii.teresting

range of low Reynolds numbers.

0-
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3. The core flow

We recall that the flow in a relatively long cylinder (aspect ratio X = 4.3) at low Reynolds

number is expected to have a rather simple structure and to provide a roll moment proportional

to Re (Herbert 1982). Closer analysis of the equations suggests that this flow exhibits little

axial variation over much of the cylinder length. The effect of the end walls will be essential

only over an axial distance of 0(1) from the ends. Therefore, we have relaxed the boundary

conditions at the end walls. In this way, we seek a steady flow in a finite segment of an

infinitely long cylinder.

The :-independent force term in eq. (5c) can be balanced only by a purely axial deviation

velocity. It is consistent with the linearized equations to assume a solution in the form

O ,O,v, = 0 . (6)

Moreover, since v, is of order 0(f) and periodic in 0, we write

v= v.(r,¢) - 2c[f(r)cos¢ + g(r)sin¢] , (7)

where f and g are the imaginary and real parts, respectively, of the complex function

F(r) = g(r) + if(r) (8)

Substituting (6)-(8) into the linearized equations and the no-slip conditions at the cylinder wall

provides

r2 F" + r F'- (1+ iRe r2)F = -iRe r3
, (9a)

F= 0 at r = I, (9b)

F finite at r = 0 (9c)

where (9c) is necessary for a physical solution. The primes denote d dr.

3.1 Solution for Re -0 and Re -- c

0°
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For Re-0, the solution of equations (9) equations can be found in the form of series

expansions in Re,

Re Re 3

8ReR3 (7r- 129 (r -6r 5 - r7 ) + O(Res ) (10a)8 7 ( -3 9216 ':-i:

*g Re 2
. "

Re (2-r- 3r 3 + r') + o(Re ) . (0b)
192"

With higher terms included, these series converge for Re < 12.

In the limit Re--oo, one obtains

f-0, g -r as Re-o. ()

Owing to the loss of the highest derivatives, however, this solution cannot satisfy the boundary

conditions (9b) and is valid only outside thin boundary layers near the wall at r = 1.

Even without any knowledge of the solution in the intermediate range, the different char-

acter of the basic flow at low and high Reynolds numbers is evident. At low Re, the component

f in the x,z-plane 0 = 0 dominates the solution. At high Re, f is negligible except near the

wall of the cylinder while g in the y,z-plane 4 = 900 is dominating. One might well expect

that the initial linear increase of f with Re and the change in the flow structure is related to the

observed properties of the roll moment.

3.2 Solution for arbitrary values of Re

In earlier work (Herbert 1983), we have applied a spectral collocation method for numeri-

cally solving a real system of equations for f and g equivalent to eqs. (9). Series in odd Che-

byshev polynomials for the interval 0 < r < 1 provide accurate solutions at rather low trunca-

tion. This experience together with the minor effect of harmonics in the azimuthal direction at " "

small e suggests the use of spectral methods for efficiently solving the nonlinear equations (3).

Here, we derive an analytical solution for the core flow in a sufficiently long cylinder. A

particular solution of the inhomogeneous equation (9a) is F0 = r. whereas the homogeneous

part of (9a) is the equation for the modified Bessel functions II(qr) and K(qr) of the com-

* plex argument qr where q = (1 i)(Rei,2) ,' . In order to satisfy (9c), K1 (qr) cannotcontri-

bute to the solution. Finally. (q9h) provides

07
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F(r) = g + if = r - I,(qr)/I(q) . (12)

This solution is valid for arbitrary Re but may be unstable as Re exceeds some critical value.

Although expressible in simple form, the resulting flow field exhibits very interesting proper- .:, 1.

ties.

Rewriting the solution in terms of Kelvin functions of real argument is of little advantage

for the numerical evaluation. We have used a combination of ascending series and asymptotic

expansions for large arguments (Abramowitz & Stegun 1972) for evaluating F(r). With the

solution (12) at hand, it is straightforward to derive the approximations (10) from the ascend-

ing series for 11 (and to explain the convergence problem for larger Re). Complementary to

(11), the asymptotic expansion for large arguments, i.e. large Reynolds numbers provides the

boundary-layer behavior

0n

F r - r7 q(r-1) (13)

This expression agrees to within 1% with (11) provided r<l-6. The boundary layer thickness

can be obtained from the transcendental equation

6 =V27R- [4.605 - n(I 6)] ,(14)

e.g., 6 = 0.223 for Re = 1000.

3.3 The velocity field

We have chosen three different graphical representations in order to illustrate the charac-

teristic changes of the velocity distribution over the cylindrical cross section with increasing Re.

Figure 2 shows the components f (in the x,z-plane) and g (in the y,z-plane) for a wide range

of Reynolds numbers. The opposite sign of the velocity at diametral points assures zero net

flux of mass through the cross section. The curves represent cuts through the contour plots of

these functions of r and Re in figure 3 at the tick marks Re =1, 10, 100.and 1000. Up to

Re ; 5, the velocity distribution is governed by f. This component never exceeds a value of

0.4, assumes a maximum at Re 20 and retains significant size only in a shrinking

4 . .!e
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neighborhood of the wall as Re increases. The component g rapidly increases from negligible

values as Re > 5 and approaches the linear increase with r according to (11) except near the

wall at r - 1. In figure 4, the data of figure 2 are combined into contour plots of the axial

velocity v,/(2t) over the cylindrical cross section. These plots clearly show the shift of the velo-

city maximum (marked by + ) from O z0 at Re = 1 to O z90O at Re = 1000. Figure 4d also

illustrates the ramp-like velocity distribution over most of the cross section and the boundary

layers with 6 = 0.223.

Superposition of the deviation velocity Vd and the solid body rotation V, according to eq.

(2) leads to an azimuthally periodic velocity field V, which is steady in the nutating frame. The

paths of fluid elements are circular orbits about axes that are inclined to the z-axis. The incli-

nation depends on radius and Reynolds number.

Figure 5 compares the dimensional velocity distributions obtained from (7), (12) with

computational results for the center cross-section (z = 0) of a cylinder of aspect ratio 4.3.* The

agreement for Re -- 14.9 is considered representative for the range of lower Reynolds

numbers. We have repeated the numerical simulation of the flow at this Reynolds number with

a modified version of the Sandia code and obtained very small components Iv, I < 0.005 m/s,

Ivo I < 0.05 m/s at z = 0. These results verify our estimates and justify the use of linearized

equations. Moreover, disregarding the presence of end walls seems to have little effect in the

center portion of the cylinder. The radial distribution of V, in the range -3.5 < z <3.5 is

* nearly identical with the data shown in figure 5.

Figure 6 shows a similar comparison for Re 45.7. At this higher Reynolds number, we

find a systematic deviation between the theoretical result and nume.-ical results at different axial

positions. We attribute this deviation to a superposed cellular motion that is not yet incor-

porated into our analysis.

* The data were kindly provided by H. R. Vaughn, Sandia National Laboratories.

-n7
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4. Moments

Considered that a solid payload, or a liquid payload in pure solid-body motion, would

allow for a stable flight of a projectile, we can fully concentrate on the moments caused by the

deviation velocity V d . With Vd = (O,O,wav,) and v, given, the moments on a finite-length

section of the cylinder can be calculated. We consider a control volume R (surface S) formed

by the solid cylindrical wall and liquid surfaces at both ends. The choice of a solid wall as the

cylindrical boundary is important for capturing the roll moment. Conservation of angular

momentum requires

M f f f (xV, PdR + f f f [r'x(2 .XVd)]pdR (15)r)t R R "
I

+ff(r XVd)(Vdn)pdS+ f f (r xV,)(V n)pdS,

where n is the outer unit normal. On the left-hand side, M is the resultant torque on the con-

trol volume. Note that the shear moment vanishes at the solid side wall while the contributions

from the liquid end surfaces cancel. On the right-hand side, the first term vanishes for steady

V d . The second term originates from Coriolis forces in the nutating system. The third term

vanishes since Vd has only an axial component. The last term provides the net rate of angular

momentum flux through the control surface.

Substitution of Vd leads to the following expressions for the cartesian components of M:

M, = mt(202 asinf)(wa) m, , , - r2fdr, (16a)
0

A --- m1(202 asinO)(wa) m , -f r2 gdr , (16b)
0
0 .I'

M, m1(2f2 asinO) 2 m , = f r/dr n- m, (1 6c)
0

where m, = 2,-rpa% is the liquid mass in the cylinder. In this form, the components Al,, M,

represent the net rate of angular momentum flux through the liquid ends, whereas the roll

moment Al, is solely due to Coriolis forces. A close relation between roll moment At and yaw

• 0

..-7,
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moment M, has also been found by Murphy (1984, 1985). Note that M,, M. after division by

nw a2 clearly are of order O(c). M, however is of order O(f 2 ), and the question arises

whether (16c) will be affected by second-order terms. Analysis of higher-order approximationst

indicates, however, that (16c) is correct to within O(E 2).

A different physical interpretation of the moments can be derived using the differential 4

equation (9a), integrating by parts, applying (9b), and separating real and imaginary parts:

m = m,= f r~fdr = - (17a)
0 Re

0I
In -f r2 gdr f--- (17b)

o Re 4

In this form, the moments are directly related to the shear forces at the cylindrical sidewall,

r = 1. Since f '(1) < 0, g'(1)< 0, the roll moment M. is always positive (even for 02 < 0),

while M, is negative for 02 > 0 and changes sign with 2. For small Re, the series (10) pro-

vide the approximations

Re Re2 8)
96 Y 1536' (18)

that can be used for quick estimates up to Re <10. The linear increase of m, and Af, with Re is

consistent with the experimental data. From the analytical solution (10), we obtain

F'(1) = g'(1) + if'(1) = 2- qIo(q)/I1 (q). (19)

Substitution into (17) provides the variation of m, m1 with the Reynolds number shown in

figure 7. The coefficient m, assumes a pronounced maximum at Re =19. The occurrence of

this maximum was earlier thought to originate from hydrodynamic instability with respect to a

cellular motion. Here, we find a simple explanation in the properties of the axial velocity com-

0 ponent f in the z,z-plane and the derivative g'(1). The coefficient n, is negligible for

'Detailed results ror higher-order approximations will be published elsewhere.

,7-1............
. . . . . . . . . . . . . . . . . . . . .. . . . .



* Th. Herbert 12

Re < 5, sharply decreases with increasing Re and reaches an asymptotic value of m,--. -1/4

as Re -- oo. Hence, for Q > 0, M. tends to reduce the pitch moment due to the solid body

rotation. We note, however, that these moments represent only the effect of viscous shear at

the cylindrical side wall. Shear at the end walls and the contribution of the pressure are

neglected.

The data base for the yaw and pitch moments is scarce. Computations by Vaughn et al.

(1985) indicate, however, that the pressure contributions to these moments are larger (and

opposite in sign) than the viscous components. Only the viscous component can be estimated

from our solution. Therefore, we concentrate in the following on a detailed comparison for the

roll moment.

In figure 8 we compare the asymptotic law (18) and the theoretical result (17) with exper-

imental data (Miller 1982) and computational results (Vaughn et al. 1985) for the roll

coefficient m, on a doubly logarithmic scale. The initial spin rate w = 4000 rpm has been used

for obtaining the nondimensional values from the experiment. For Re < 10, the experimental

data match the analytical result as well as the asymptotic law r,;: Re/96. The deviation

between theoretical and computational results is probably due to a larger axial extent of the end

effects at very low Reynolds numbers. Good agreement with the computational results is

obtained near the maximum of m,. The point at Re = 113 is close to the Reynolds number

where the numerical simulation fails to converge to a steady solution, and may not be very

accurate. The experiments find the maximum roll moment at slightly lower Reynolds numbers

than the theoretical value. In fact, this discrepancy will increase as lower spin rates w are used

for data reduction. In view of the agreement between theoretical and computational results, the

discrepancy can not arise from the approximations employed in our analysis. A first possible

source may be the effect of unsteadiness in the spin-down experiments. More likely, however,

the shift is caused by changes of temperature and viscosity during the experiments. A moderate

increase in temperature would reduce the viscosity of the working fluids (silicone oil, corn

syrup) and hence shift the maximum to higher Reynolds numbers. Miller (personal communi-

cation) observed a temperature increase by =z 2.5°C per run up to = 10'C above ambient tem-

perature after repeated runs. Vaughn et al. (1985) used these values for correcting the results.

with some improved agreement. \Ve waive such a correction but discuss the temperature

increase in more detail in the next chapter.
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As a final observation in figure 8, we note the change in tendency for the two experimen-

tal data points at Re > 103. It is likely that the internal flow becomes unsteady and ultimately -

turbulent as the Reynolds number increases. Preliminary results from flow visualization in a

small-scale experiment (Pierpont 1985) indicate that these two points are for a turbulent inter-

nal flow.

In figure 9 we recast experimental, computational and theoretical results for the dimen-

sional roll moment M, in different form. Whereas the asymptotic properties are concealed, the

linear scale for M, reveals the pronounced maximum of the roll moment for viscosities near

v = 10' cSt and more clearly indicates that theory and computation yield larger maximum

values than the despin experiments with the old test fixture (Miller 1982). More recent meas-

urements with a new test fixture at higher spin rates (Miller, personal communication) provide

larger maximum values slightly in excess of the theoretical result.

For the roll moment as a function of nutation angle and rate, Herbert (1983) derived

from Miller's data (1982, fig. 12) the empirical relation M, -- 0.00814 (2sinO) 2 Nm. The

theory provides M, in the same form but with a somewhat larger factor of 0.0111. This com-

parison for a fluid of kinematic viscosity v = 2.106 cSt is likely to be biased by temperature

effects. A notable feature of the roll moment as a function of nutation rate at different spin

rates is shown in figure 10. For these parameters in the range of the maximum r.)ll moment,

the dependence of M, on w is non-monotonic, e.g. the data for w = 9000 rpm are in between

those for w = 3000 and 6000 rpm. This puzzling behavior has been observed by Miller in

experiments with the new test fixture. From the theoretical result it is obvious that I,.

decreases (increases) with w for sufficiently small (large) viscosities to the left (right) of the

maximum in figure 9.

The interpretation of the experimental results has been hampered by the observation of

Miller (1982) that "the despin moment was not a function of the canister spin rate, provided a

sufficient spin rate is present". In contrast, the theoretical result ( 14c),( 15a),( 19) depends on

the spin rate since q - Re 1 2 and Re -- w for fixed a and v. Figure 11 shows the theoretical

results for M, as a function of the spin rate w for viscosities v 10 , 1 and 10'5 cSt on linear

scales. Note that in some range of w, M, appears indeed nearly independent of the spin rate, ..-

especially for v - 106 cSt where the maximum of M, stretches out over most of the observed

range (3000 < w < 9000 rpm) of spin rates. Figure 11 also shows different prototypes of

behavior that are distinguished by the position of the maximum roll moment along the j axis.

0u
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Experimental data for similar conditions are shown in figure 12 and verify the theoretically

predicted behavior. Moreover, these data suggest major simplifications in the experimental pro-

cedures. Whereas the experimental data in figure 9 were obtained by using numerous working

fluids of different viscosities, a more complete set of data can be generated by carefully moni-

taring the spin-down for a few runs with fluids in the range of low, medium, and high viscosi-

* ties as in figure 12.

.2
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5. Temperature effect

The comparison of theoretical and computational results with experimental data seems to

be biased by the effect of increasing temperature on the viscosity of the working fluid. These

effects appear more pronounced at high viscosities and high spin rates. For an estimate of the

rate of change of the average temperature T, we consider a control volume R (surface S) %

formed by liquid surfaces along the cylinder's side and end walls. The material properties are

assumed to be constant and heat transfer through the surface is disregarded. Balancing the rate

of change of energy with the work done on the control volume, we obtain after some

simplifications

dT
m1 c,-7 = f frV dS, (20)

S

where c, is the specific heat, r the vector of tangential stresses, and Vj the velocity measured

in an inertial frame. Since Vd is independent of z, the contributions from the cylinder ends

cancel. The only contribution is due to the shear stress

9(wav,)
r - k r, =2pQ asin0 [f'(1)cosd + g'(1)sin¢] (21)

in the axial direction. The relevant axial component of the velocity (f] + w) X r of some point

on the surface S is given by - 1 asingsino. Integration over the cylindrical surface yields

dT
m c - -(2f2 asinO) 2 irac g'(1) . (22)

After substituting for ml and introducing the Reynolds number, this result can be written as

dT W '
-T W(20 asinO) 2 (- () (23)

dt 2 c, R e

Comparison with eq. (15a) shows that the rate of change of temperature can be directly

expressed in terms of the roll moment,

dT -w (2wsn02m ,(4
dt--c" (2f asinO)m = 2m, c,

This result immediately shows that the temperature rise per run cannot be specified as a single

number, nor should a uniform correction be applied to the experimental data. Moreover, the

temperature changes increase with the spin rate, and consequently are quite different for the

experiments with the old (Miller 1982) and the new test fixture. Using the maximum value

m. 0.0854, we obtain for the 1982 experiments (a = 60.3 mm, w = 4000 rpm, Ql = 500

S"...'.,.......-.. ..--.....--. ~~~~~~............................. ....... . _..--:;.- .:-...?--:....
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rpm, 0 20) with corn syrup (c, = 2350 J/kg0 C)) a temperature rise of

dT/dt = 0.036°C/s. Using silicone oil (c, ; 1600 J/kg0 C)) in the new test fixture (a = 55.4

mm, W = 104 rpm, 0 = 600 rpm, 0 = 200) leads to a temperature increase of

dT/dt = 0.158 C/s.

A single run consists of three phases (Miller, personal communication). The spin-up

period of ; 30 s is followed by a sudden start of the nutational motion and a period of ; 30 s

in order to reach steady conditions. Finally, the shutdown of the spin drive is followed by a

spin-down period of - 15 s. The second period at nearly steady conditions and maximum spin

rate appears most relevant to the modification of the viscosity. During this period, the

kinematic viscosity of corn syrup changes according to v = I0' e
- 1' l , where v0 is the nomi-

nal kinematic viscosity at the beginning of the run. At the start of the third phase, the average

temperature may have increased by AT 1.07'C, while the viscosity dropped to V - 0.88Vo.

Measurements by Miller indicated that the temperature in the cylinder after repeated runs sta-

bilized at AT ; 1O'C above ambient temperature. At this level, the viscosity would be

reduced to v , 0.3v . . This effect would fully account for the systematic deviation between

experimental and theoretical data in figure 9. In the more recent experiments at higher spin

and nutation rates, the average temperature may have increased by as much as AT = 4.75°C

over a period of 30 seconds. The value of 2.5°C measured in the new fixture is well within the

estimated range. The temperature effect on the kinematic viscosity of silicone oils, however, is

relatively small. With v = 0e- ° '°14A r , we obtain after 30 seconds wl 0.94w0 , and

w 0.87wo with AT = 10C after repeated runs.

0 o'

0I
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8. Concluding remarks

We have developed a simple model of the viscous fluid motion in a spinning and nutating

cylinder. The disregard of the end walls has some obvious consequences: the turning flow near

the ends and the associated contributions of pressure and shear stresses to the moments cannot

be obtained from this model. Nevertheless, we gather understanding as well as quantitative

information. The velocity field of the core flow agrees well with computational results for low

Reynolds numbers. The analytical result is an evident example for the formation of boundary

layers. The core flow can be utilized as a basic flow in studies of hydrodynamic instability with

respect to cellular motions. The parametric excitation of such cells by the azimuthally periodic

deviation has been discussed by Herbert (1984). The core flow also represents the lowest-order

approximation to the solution of the nonlinear equations (3) and can be extended by higher-

order terms in f.

* The roll moment agrees well with measured and computed values, and can also be found

at Reynolds numbers too large for successful numerical simulations. The roll moment ori-

ginates from Coriolis forces. While the direct calculation of the yaw moment suffers from

neglecting the pressure contribution, the yaw moment can be found from the roll moment

using the relations given by Murphy (1984, 1985). The pitch moment remains an open issue.

The estimates for the change in average temperature need further verification once more

detailed data become available.

The simple form and scaling relations of our results provide guidance for sorting and

evaluating the experimental data base. The results also suggest various improvements in the

experimental procedures. First, the changes in temperature and viscosity should be carefully

monitored. With the effective viscosity known, a closer agreement between theory and obser-

vation is to be expected. Second, the yet neglected variation of the roll moment with the spin

rate is considered relevant and in fact provides the roll moment in some range of Reynolds

numbers. Instead of producing the data for figure 9 by using numerous viscosities at fixed spin

rate, very similar data can be generated by varying the spin rate for a few fluids.

0:.-
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FIGURE CAPTIONS

Figure 1. Definition sketch

Figure 2. Components f and g of the axial velocity v,/(2e) for various Reynolds numbers:

5, Re - 1; 0 , 10; _, 102; -, 10 3.

Figure 3. Contour lines of the components f and g of the axial velocity v,/(2E) as a func-

tion of radius r and Reynolds number Re. Intervals are 0.05; the zero level is

given by the heavy line.

Figure 4. Contour lines of equal axial velocity, vz/(2f) const., for (a) Re 1; (b) 10;

(c) 102; (d) 103 . Intervals are 0.01, 0.1, 0.2, 0.2, respectively. The zero level is

given by the heavy line, the velocity maximum is marked by -.

Figure 5. Radial distribution of the dimensional velocity V at z = 0 for Re = 14.9. The

symbols show the numerical solution to the Navier-Stokes equations (Vaughn

1983, personal communication). Parameters: a = 60,3 am, c a = 4.3,

* 200, 3000 rpm, 2 500 rpm, p 1400 kg,'m 3.

Figure 6. Radial distribution of the dimensional velocity V at z - 0 for Re = 45.7. The

symbols show the numerical solution to the Navier-Stokes equations (Vaughn

1983, personal communication). Parameters: a = 60.3 mm, c/a = 4.3,

0 = 200, = 3000 rpm, 2 - 500 rpm, p = 1400 kg/rm.

Figure 7. The nondimensional coefficients mn,?n in eq. (17) vs. the Reynolds number Re.

Figure 8. Comparison of the theoretical result for im. with: X . experimental data (iller

1982) 0 , computational results (Vaughn et al. 1985). The straight line shows the

asymptotic law 7n. Re ,96.
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Figure 9. Comparison of the theoretical result for the roll moment Af, at w = 3000 rpm vs.

kinematic viscosity v with: X, experimental data (Miller 1982) for

w = 2000- 4000 rpm; 0, computational results (Vaughn et al. 1985) for ".
9 p..-

w = 3000 rpm. Parameters: a 6 30.3 mm, c/a 4.29, 0 = 200, Q - 500 -

rpm. p = 1000 kg/M 3. '

Figure 10. Theoretical results for the roll moment 1', vs. nutation rate £2 for different spin

rates: A, w = 3000; 0, 6000; ', 9000 rpm. Parameters: a = 50.4 mm,

c/a = 4.5, 0 - 00, v 105 cSt, p - 1000 kg/ M3.

Figure 11. Theoretical results for the roll moment M, vs. spin rate w for different kinematic

viscosities: ' , z, = 103; 0 , i04 , A , I0 cSt. Parameters: a = 50.4 mm,

c/a = 4.5, 0 200, Q £2 625 rpm, p = 1400 kg/m 3 .

Figure 12. Experimental results for the roll moment M, vs. spin rate w for different

kinematic viscosities: 0' , V = 103; 0 , 104, a , 106 cSt. Parameters: a = 50.4

mm, c/a 4.5, 0 =200, £2 600 rpm, p 1 1400 kg/M 3 .
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Abstract

In the framework of a feasibility study, we have designed a small model test fixture for visualization
of the flow in a spinning and nutating cylinder. We describe the apparatus and the visualization tech- a -

nique, and report some results. As the Reynolds number increases, we observe an axially almost uniform
flow that turns at the ends, the development of two elongated cells in the plane of the spin and nutation
axis, the formation of additional laminar cells, and ultimately unsteady and turbulent flow with a super-
posed large-scale cellular motion.

1. Introduction

It is well-known that spin-stabilized shells carrying liquid payloads can suffer dynamical instability.
For cylindrical cavities and low viscosity of the liquid, the instability due to basically inviscid inertial
waves is rather well understood'. The instability of certain shells like the XM761, however, is dis-
tinguished in character by the rapid loss in spin rate. Experiments2 and subsequent field tests3 establish

* that this flight instability is most pronounced for liquid fills of very high viscosity.

Theoretical analysis of a simple model of the internal flow 4 has provided some insight into the phy.si-
cal mechanisms of this instability, and rough information on flow velocity and despin moment. l'or
sufficiently low Reynolds numbers, more detailed results for the velocity field have been obtained using
computational methods for steady flows".s . The flow phenomena at higher Reynolds numbers, however, are
outside the scope of these methods, and it is not even clear whether the steady approach is justified.

Previous experiments at CRDC and BRL were carried out under full-scale conditions. These studies
concentrated largely on global properties such as the moments exerted by the internal fluid motion. The
yet most successful study of the field properties is Miller's observation of the void in a partially filled
cylinder 7 . This study shows an axisymmetric void at low Reynolds numbers, a characteristic wavy distor-
tion of the void at medium Reynolds numbers and an irregular (probably unsteady) liquid-air interface at
high Reynolds number. Computational studies6 indicate a cellular structure of the flow at a Reynolds
number Re " 45, where Re = ,a2 /, is formed with the spin rate w, the cylinder radius a and the
kinematic viscosity v. However, there is yet no link between numerical results and void observations. An
attempt to trace buoyant beads with a movie camera was very limited in revealing details of the velo-
city field. The limitations are due to distortion of the tracer path in the multi-media optical path involv-
ing curved surfaces, and to inevitable minute density differences in combination with high accelerations.

* Miller s used photochromic dye excited by a high-power pulsed laser in order to generate and record velo-
city profiles. Lighting problems in recording the pictures by a high-speed movie camera forced a reduc-
tion of the time scale, i.e. operation of the test fixture at lower spin rate, nutation rate, and kinematic

B-•



viscosity. Qualitative pictures of the small azimuthal velocity have been obtained. The efforts to provide
more detailed data have been discontinued, however, due to continuing lighting problems, and the adverse
off-design conditions at further reduced time scales.

In earlier worko, we have proposed a drastic reduction of length and time scales for experimental
studies, exploiting the principles of dynamical similarity. Following these considerations, we have designed
and built a low-cost test fixture for flow visualization. In our qualitative approach, the length scale is
reduced to 1/5, the time scale to 1/10, thus reducing moments by more than five orders of magnitude and
velocities to 1/50. In spite of improvising and compromising in the interest of saving time and money, we
have observed a wealth of phenomena from laminar, dominantly unidirectional flow through various
stages of cellular motions to turbulent motions with a superposed cellular structure.

0 In the following we describe the principles underlying the design, the test fixture, the visualization "

technique, and some of our observations.

2. Dimnensional Analysis

Evaluation of the experimental attempts to visualize the fluid flow clearly reveals the extreme full-
* scale conditions as evil. However, conclusive experiments can be conducted by exploiting the principles of

dynamical similarity and appropriate scaling laws"'. Between the three reference quantities, radius a
spin rate w, and density p for length, time, and mass, respectively, the density of different fluids offers lit-
tle variability. However, length scale and time scale can be easily changed. For dynamical similarity, the
following dimensionless quantities must be kept fixed:

*X = c /a aspect ratio
a nutation angle
r i = 0l /W frequency
Re = pw a 2/l Reynolds number

The nutation angle must remain the same in a scaled setup. Radius a and half-length c of the cylinder
* must be scaled by the same factor in order to keep the aspect ratio fixed. A second factor can be applied

to both spin rate w and nutation rate 12, in order to preserve the frequency. K~eeping Re fixed requires
changing the kinematic viscosity v. = up/p by the same factor as w a 2. Since the desired tendency is
toward smaller radii and spin rates, we require less viscous fluids than those used in the full-scale experi-
ments. Such fluids are easy to find.

It is obvious that the main thrust of an experiment may require specific optimum conditions. Flow
visualization requires low velocities, i.e. low values of wa. Measurements of moments require optimum
values of w a5. Minimizing the rate of change of temperature requires a minimum oW wa .* A good seti~p

for flow visualization, therefore, may produce moments in a hardly measurable range.

3. The Test Fixture

* The goal of our efforts was to show that a low-cost device (a-. $500) can be designed for flow visuali-
zation. Details had to be kept simple. Accuracy and convenience had to compromise. Various prelim-
inary concepts have been condensed into the design of a small apparatus that was built and explored as a
senior student project1 0 . The result of these efforts is shown in figure 1. A one-inch inner diameter
cylinder of aspect ratio X = 4.3 is used. The cylinder is cut from a pyrex glass tube with the inner diam-
eter accurate within 1/5000 inch, but with varying wall thickness that affects the optical quality. The

* cylinder is filled with mixtures of water and glycerin. The mixing ratio is used to vary viscosity. On top,
the cylinder is closed with a screwed-in plastic plug. A center hole allows access to the interior, especially
for removing air bubbles. The hole can be closed using a toothpick.

The cylinder is glued to a drive plug and axis machined from a single piece of aluminum. The one-
sided support allows easy (optical) access to the cylinder and permits using cylinders of different length. r
One-sided support is affordable due to the moments being approximately five orders of magnitude smaller

* than in the full-scale experiments. The axis is twice supported by ball bearings. The cylinder and shaft
are driven via timing belts over ekchangcable sets of' pulleys by a <24V d.c. motor with sufficient tonrqtir'

in the range of 500 - 5000 rpm. Motor and cylinder support are mounted to an aluminum frame that can



be inclined to the vertical axis by approximately 5, 10, 15 and 20' using different support holcs and
struts. .

The horizontal support plate is machined to leave the center position free for access and is screwved
to a commercial record player (Garrard model 775). The plate can be offset in order to align the liquid's

* center of mass with the nutation axis. The record player provides nutation rates of 33, 45, and 78 rpm.
The hollow axis is utilized to provide power to the spin motor. A nail with a smooth top and a brush fixed
to the turntable proved sufficient for transmitting a single voltage to the motor. The remaining corn-
ponents of the experiment are: a Heathkit regulated power supply for the spin motor, a strobelight for
controlled pulsed lighting, and suitable flow tracers. The strobelight (General Radio Strobotac) with adju-
stable frequency is used for lighting as well as for measuring the spin rate of the cylinder.

4. Visualization

As flow tracers we use Afflair 100 Silver Pearl, kindly donated by EM Chemicals, Hawthorne, NY.
The material consists of very fine and shiny plastic platelets commercially used for cosmetic purposes.
Although their specific weight is different from that of the fluid, the low accelerations in the scale model
permit practically buoyant behavior of the platelets over considerable time.

At the slow time scale of the experiment, the fluid motion can be visually inspected while running
the apparatus. At high viscosities, the apparatus can also be suddenly stopped, with the flow tracers
"frozen" in the resting fluid. The platelets align with surfaces of constant shear. Therefore, by manually
rotating the cylinder forth and back, the three-dimensional structure of the field can be inspected. This
crude observation is very helpful in developing the visualization technique. A detailed, account of the

* technique (appropriate particle density, pitfalls such as the history of particle distribution and alignment)
has been given elsewhere'0 .

Visualization of the frozen pattern can be essentially improved by using a light sheet passingr
through the spin axis. Sheet lighting enhances the clarity of the flow pattern by showing only the
reflecting particles in a cut through the fluid. It reduces the undesirable reflections from the cylindrical
surfaces and also enables photographic recording of the flow structure while the apparatus is in operation.

* A continuous light sheet is produced by a Spectra Physics model 120 (15 mW) helium-neon laser and a-
cylinder lens. In order to avoid the need for accurately firing the camera (35 mm Pentax with 50 mm
lens) at a certain time, a cylindrical card board screen with a vertical slot and a 90. offset opening is fixed
to the circumference of the turntable. The shutter is manually opened and closed after the laser sheet of
light flashed 3 to 5 times through the slot.

* 5. Results

Some photographs taken with the apparatus in motion are shown in Figures 2-7. The figures show
the flow pattern in the plane spanned by spin axis and nutation axis for 9 = 21.3 0I - 78 rpm and
different Reynolds numbers. Figure 2 shows that at Reynolds numbers as low as Re =20 a cellular pat-
tern develops with a pronounced symmetry about the axis as well as the midplane of the cylinder. At the

* present time it is unclear whether this pattern reflects the instantaneous velocity field. Symmetry argu-
ments support viewing this pattern as originating from a nonlinear streaming term. As Re increases to
Re -40 (Figure 3), the pattern and its symmetry become more pronounced. At Re = 50 (Figure 4),
additional cells develop near the cylinder's midplane. Simultaneously, the symmetry with respect to the
cylinder axis is broken. A characteristic wavy distortion of the pattern near the axis develops that is
more clearly shown in Figure 5 at Re = 105. While the cells disappeared, virtually axisymmetric bub-

* bles occur at. the end plates. At Re = 140 (Figure 6) these bubbles still persist. The bright, wavy line
near the axis has broken into segments that are very much aligned like the void in Miller's observations.
This pattern occurs only in the plane of spip axis and nutation axis and is therefore considered to
represent the instantaneous velocity field. From the wealth of increasingly complex phenomena, Figure 7
finally shows a visualization at high Re = 8000. The random distribution of the particles in the interior
most likely indicates turbulent flow. Nevertheless, the faint line near the axis resembles the characteristic

* centerline distortion of Figure 6, indicating a superposed large scale structure. The presence of such a
large scale motion is also supported by the regular bands of particles deposited at the cylinder wall.
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Specification of accurate Reynolds numbers suffers from some uncertainty in monitoring and measur-
ing the wide range of viscosities for the hygroscopic water-glycerin mixtures exposed to uncontrolled ther-
mal conditions. To within this uncertainty, however, the figures clearly reveal the cellular structure of the
flow and the changes of the structure as the Reynolds number increases. Perhaps the most striking result
of this visual study of the flow structure is the manifold of pattern at higher Reynolds numbers. A sys-
tematic analysis of these patterns has not been conducted. Although we found numerous opportunities for ,'-
improvements, the feasibility of flow visualization with relatively simple means by proper scaling has been
clearly demonstrated.
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