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EXACT TESTS FOR THE MAIN EFFECTS'

- VARIANCE COMPONENTS IN AN UNBALANCED RANDOM TWO-WAY MODEL

A. 1. KHURI and R. C. LITTELL

Department of Statistics, University of Florida

Gainesville, Florida 32611, U.S.A.

SUMMARY

Exact tests are derived for testing hypotheses concerning the

variance components of the main effects in an unbalanced random

two-way crossed classification with interaction model.The tests

are based on four sums of squares which are distributed

independently as scalar multiples of chi-squared variates. These

sums of squares can also be used to find an exact test concerning

the interaction variance component, and to obtain simultaneous

confidence intervals on all continuous functions of the model's

variance components. A study is made concerning the power of the

-: -~proposed tests, including a comparison with other approximate

tests.

Key words: Variance components; Unbalanced random model; Two-way
crossed classification with interaction model; Hypothesis testing;

,~. Power of exact tests.
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1. Introduction

There are very few exact tests available concerning the variance

components in an unbalanced random or mixed model. This is mainly

attributed to the fact that in an unbalanced data situation, the

traditional partitioning of the total sum of squares does not in

general yield independent and chi-squared type sums of squares.

Furthermore, such partitioning is not unique as is the case with

balanced models.

Wald (1940, 1941) was the first author to introduce exact

. testing procedures for the unbalanced one-way and two-way crossed

"- classification without interaction models. A generalization of

Wald's tests was recently discussed by Seely and El-Bassiouni

(1983). See also Harville and Fenech (1985). Using two different

approaches, Spj~tvoll (1968) and Thomsen (1975) developed exact

tests concerning the variance components in an unbalanced random

two-way crossed classification with interaction model. However,

unless the interaction variance component is zero, neither ,. 0,

Spjotvoll's tests nor those of Thomsen can be used to make

inferences about the main effects' variance components. In this

paper we managed to overcome this difficulty by producing exact

* tests concerning the latter variance components which apply even

when the interaction variance component is different from zero. A

comparison of the power of the exact tests with simulated powers

of approximate ANOVA-based F tests shows that in most cases the

odes

-2-

my - *.- ..-. .. -. . o . . . . . . . .. .-



"N -_ - ... .. .. . . . r: r r. . . . -.. . . . . . . . .. .. .. .

exact tests are at least as powerful as the approximate tests.

One main disadvantage of the latter tests is that their true

critical values are unknown since they depend on variance

components other than those under consideration. Thus, in

practice the critical values of the approximate tests must be

estimated using some procedure such as Satterthwaite's

approximation. The simulation study shows that in some cases this

approximation is highly unreliable for producing the critical

values. Only in such cases were the approximate tests observed to

be more powerful than the exact tests.

2. The Development of the Exact Tests

We shall adopt the same notation as in Thomsen (1975). Consider

the unbalanced random two-way crossed classification model

Yijk = + i + B + (CS)ij + eij k ,  (2.1)

i = 1,2,...,r; j 1,2,...,s; k = 1,2,...,n where V is an

unknown constant parameter; aip Si, (a6)ij, and eijk are

independent normally distributed random variables with zero means

and variances a2, a2 , a2  and a2, respectively. Alternatively,
•-' aB' e

(2.1) can be written in matrix form as

Z U + XL + X $ + X (cB) + e, (2.2)

where v is the vector of observations of dimension n n E
i,j ij'

I is a vector of ones of dimension n., X and X are
-n. -1 2' -3

S , . . .... .-" - " - . . " "-"- . --- - " "



matrices of zeros and ones of orders n xr, n* xs, and n. xrs,

respectively. The variance-covariance matrix of denoted by

Z Xx a2 + X C2 +X X, a2  + I F2 , (2.3)

where I n is the identity matrix of order n,,x n..
0n

Let ijo be the (i,j)th sample cell mean (i 12.-r

j --1,2,...,s). From (2.1) we have

y + ci. +% 4(C3) i+ ij.' (2.4)

ij - % "

1,2,...,r; j - 1,2,..os, where e , e an .ns
ij. k i uk ijo

matrix form, (2.4) may be written as

ZU rs 1 2 +, 2.5

where B -I r01si , B 2'1 r SI, and 0is the direct product

symbol. The variance-covariance matrix of Z is

VarAa 2 + A 2  a2  + .a2

%- e

-1- -12

e - P where wis an orthogonal matrix of order rsxrs

nwhose first row is (rs) I and simultaneously diagonalizes

ors

and The vector zcan be partitioned as (z 1 ,z,..z' z ,

where z is the first element of z; z. are vectors of

* .*- .,-

dmenion fr1, (s-1, and beritten1) a spetv oTelte

-. 4-



three vectors are normally distributed with zero means and have

the following variance-covariance matrices (see Thomsen 1975,

p. 259):

Var z =(Sa2 +a 2 )I +4K a2
-a a as -r-1 -1 e

Var z (8a2 + 02 ) r + K a2

- B.B -s-1 -2 e

Var z a 2  I +K a2
B a -(r-1)(s-1) -3 e'

where K and are the submatrices of PKP' which correspond

to za, z, and zas, respectively. Let u be the vector

Wu (Z , Z ). (2.6)
-a. - -as

Then,

Var u = diag(611r_ 1  2 631(rS1)(s~i)) 4 L a2  (2.7)

where 61, 62' and 63 are given by

i= sa2 + a2
CL as

62 - ra 2 + a2  (2.8)

63 - as

and , is the (rs-1)x(rs-1) submatrix of PKP' which corresponds to

- and is expressible in the form

-4 -12 -K13

L, K' K (2.9)
-12 -23

K' K K
9-13 -23 ~3

.- 5-
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12where Kl2 E(z z'), K3 = E(z z-), and K a2 - E(z z
1here ae z -a '1 e CL a -23 e -

The matrix is of rank rs-1 and is, therefore, nonsingular.

The random vectors z . z, and z are not independent.

However, they are independent of the error sum of squares,

- 2
Q -' i,y yi . (2. 10)

which can also be written as

Q ''11 Z, (2.11)

where v is the vector of observations and R is the n xn matrix

R-i - * (J /n )" (2.12)
S-n i j -nl j

In (2.12) J is the matrix of ones of order nijxnuj

-fij
(i-1,2,...,r; j-1,2,...,s) and the second term is the direct sum

of the ,4ij/n j's. It is easy to verify that R is idempotent of

rank n - rs and that

-X -R2 R3 , (2.13)

where ,X2 and X are the matrices of zeros and ones in

~2 
-3

(2.2). Hence, Q/ 2 has a chi-squared distribution with n - rs

degrees of freedom (see also Thomsen 1975, p. 260).

Since R is symmetric it can be written as

R C A C', (2.14)

where C is an orthogonal matrix and A is a diagonal matrix of

-.---

-e"q-6
- ......

"'' Y ' "'' '" - ' 5 ' 
" % ' .
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eigenvalues of R, both of order n xn . We shall assume that

n > 2rs - 1. (2.15)

This is not an unreasonable assumption and can, for example, be

satisfied if each cell contains at least two observations. In

this case and because Z is idempotent of rank n. - rs > rs - 1,

and C can be partitioned as

(2.16)

C3 [Ci: c 2 3 1'

where

v rs - I

(2.17)

"2 n.. - 2rs + 1,

0 is a zero matrix of order rsxrs, and C1 , £2' C are of orders

n.xv 1, nsoXV2 , and n..xrs, respectively. Note that

CjC i , I, i " 1,2,3,

(2.18)

c' C 0, i j.

Formula (2.14) can then be rewritten as

R"C C, + C (2.19)

From (2.11) and (2.19), the error sum of squares Q can be

partitioned as

Q -I + Q2' (2.20)

where

Q1 ss Z' C, Z (2.21)

-7-



Q2= Z C5 Z" (2.22)

The sums of squares Q1 and Q2 and the random vector u in (2.6)

are independent. Furthermore, Ql/a2 and 2/ 2 have the chi-

squared distribution with v 1 and v2 degrees of freedom, respec-

- tively.

*We now define the random vector w as

w - u + (X I L) C' Z, (2.23)
- max-v -

where L is the matrix in (2.9) and X is its largest eigenvalue.max

The matrix Xmax I - L is positive semidefinite, hence the matrix
: )

(X I - L) is well defined with eigenvalues equal to the

* square roots of the eigenvalues of X I - L. Let w bemaxv -VII
partitioned just like u in (2.6) as

-(Wv, W"? ci, (2.24)
- -(1 -8 -a8O

where the vectors w w, and w are of dimensions r-1, s-I, and

(r-1)(s-1), respectively.

Lemma I

(i) Ew Ew, Ew 0-a - a

W(ii) , and w are independent normally distributed

random vectors and have the following variance-

covariance matrices:

Var w (so 2 + 2 + X a2) I
-a n C8 max e -r-I'

Var w - (ra2 + U2 + Xax 7 I , (2.25)

Vrw (a2e +ma a2)

I,-8-

L!1
[..*-.. ,
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S..

(iw) w , and are independent of Q21 where Q2 is the

sum of squares in (2.22).

Proof. (i) From (2.12) it can be seen that R 1 - 0. Thus,

by (2.19) we can write

(C Ci + C212 ) 1 0. (2.26)

Using (2.18) in (2.26) we get C' 1 0. It follows that

E(C~z) = C i = Since in (2.6) has also a zero mean, we

conclude that the mean of a in (2.23) is zero.

'1. (ii) It is obvious that w in (2.23) is normally distributed. We

now claim that Z is independent of C'. To show this we note that

*. the vector Z in (2.5); which can be written as Z , where

D = 1 1' /nij; is independent of Q and hence of Q, (see 2.20 and
-nj ij-. i ,j Ilj

2.21). Consequently,

D Z C1C -, O (2.27)

- - 1 1
where I is the variance-covariance matrix of Z given in (2.3) (see

Searle 1971, p. 59). From (2.18) and (2.27) we conclude that

D Z C 0. (2.28)

Hence, Cov(,zC1 ) = Z = -. Since u is a subvector of

z = P v, then u is independent of CjZ as was claimed.

The variance-covariance matrix of w in (2.23) can then be

written as

Var w = Var u + (X I- LP I - 0. (2.29)
max-v max-v

But from (2.13) and (2.19) we have

-9-
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(CC, + CC)X=O i= 1,2,3. (2.30>

-1-1 -2-2 -i -

Using (2.18), equalities (2.30) yield

Cj X = 0, i = 1,2,3. (2.31)

It follows that

c z 01 = C7 C1 a
2  I C2. (2.32)e1 V e

From (2.7), (2.29), and (2.32) we then obtain

Var w = diag( 1 ,2Is_1 + La2 + (X I - 2

1 r-1'2-s-1'3-(r-1)(s-1) - e max-v1  e9

that is,

Var w diag((6 + X a2)1 (6 + X a2 )I

1 max e -r-I' 2 max e -s-I

(S3+ Xax 2 )I (2.33)

From (2.33) we conclude that w, w a , and w are independent and

have the variance-covariance matrices described in (2.25).

(iii) Q2 is independent of p (since Q is) and is also independent

of CjY since C C2 = 0, which follows from (2.18) and (2.31)

after noting the formula for in (2.3). Thus, Q2 is independent

of W.

From lemmal we conclude that the sums of squares,

Sam W-aa = 68 S88' and Q2are distributed

independently, and

S /(sa 2 + a2  + X a2 ) -x 2
C a B maxe r-

* S /(ra2 + a2  + X a2) -x
B"B as max e s-I

-10-4.

4 ,. - -
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S /(a 2  + X a2) X2
as as max a (r-1)(s-1)

Q2

where v2 is given in (2.17). A test statistic for testing the

Shypothesis H0 : a2 = 0 vs. H :a2 * 0 is, therefore, F = MS /MS s'

where MSa = S a/(r-1) and MSa = S as/ (r-1)(s-1). Under H0 this
t," - B

statistic has the F distribution with r-I and (r-1)(s-1) degrees

' . of freedom. The hypothesis H0 can be rejected at the a-level of

significance if F > Fa,r-l,(r-l)(s-l), the upper al00% point of

the corresponding F distribution. Similarly, to test the
hypothesis H a2  0 vs. a2 $ 0, we use the statistic

0 a a

F=MSa/MSa8 , where MS8 - Ss/(s-l). Furthermore, the statistic

-P /(v2Xmax)(MSS /Q2 ) can be used to test the hypothesis H0 :a
2 -025 max5, as 0

vs. H :a2  * 0. We do not, however, recommend using this test

-' since it has fewer denominator degrees of freedom than the exact

* test for a2  given by Thomsen (1975).

We note that if the data set is balanced, then =

diag(n 1 ,...,nr) / Isn, where n is the number of observations
rs rs

per cell. Hence, PKP~ I /n and L _' / n, where vIis given in

(2.17). Consequently, Xmax I/n and the vectors and in

(2.23) become identical. Furthermore, the sums of squares nSa,

nS8 , and nS.6 reduce to the balanced ANOVA sums of squares

associated with the main and interaction effects, respectively.

rThe following lemma is useful for the power study in Section

V%" 5 and is proved in the Appendix:

* -..- o



Lemma2

The largest eigenvalue, X of the matrix in (2.9) satisfies
%max'

the double inequality

n -- ax TT -- (2.34)-,"- ~S , n i ~ max n ( 1

(1 i j ijj n
where n is the smallest cell frequency.

We note that the lower bound in (2.34) is the reciprocal of the

harmonic mean of the cell frequencies.

3. A Numerical Example

Layton (1985) studied variation in fusiform rust in Southern pine

tree plantations. Trees with female parents from different

families were evaluated in several test locations. We extract

data from five families and four test locations, and disregard the

male parents (which were from a different set of families) for

purpose of illustration. The number of plots in each family x

test combination ranged from one to four. Proportions of

-: symptomatic trees in each plot are recorded in the following

4.

,:::.::table :

412
lI- Il

".* -12-

a

[4 ..-... . . . .. . .



Family number

288 352 19 141 60

.804 .734 .967 .917 .850

34 .967 .817 .930

.970 .833 .889

.304

.867 .407 .896 .952 .486

35 .667 .511 .717 .467

.793 .274

.458 .428

Test number

.409 .411 .919 .408 .275

40 .569 .646 .669 .435 .256

.715 .310 .669 .500

.487 .450

.587 .304 .928 .367 .525

41 .538 .428 .855

.961 .655

.300 .800

We analyze variation due to family and test according to the model

in (2.1), where Yijk - arcsin-square root of the kth observed

proportion in family i and test j. The exact test will be used to

test, for example, the null hypothesis H a2  0 regarding the
0 a

family variance component.

The first step is to obtain the matrix P. This can be done

using the algorithm given by Graybill (1983, p. 406).

Alternatively, P may be constructed with rows 2 through 20 given

-13-
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by sets of normalized orthogonal contrasts for a effect, S effect

and a8 effect for balanced data. Computation of other components

of o in (2.23) are straightforward. For the present example, we

* obtain MS /MSCI = 0.1543/0.0415 3.718, which has an observed

significance level of 0.034.

4. Simultaneous Confidence Intervals on the Variance Components

One of the interesting consequences of Lemmal is that simultaneous

confidence intervals on all continuous functions of a
2 , a 2a 2

• aB as,

and a2 can be as easily obtained as in a balanced datae

situation. To see this, let us denote the expected values of MSa,

MS8 , MSa, and Q2/v2 by Ta, Ts' Te ' and Te, respectively.

Then

T.L =s02 +a2 +~m a2, (4.1)
CL CO ma e'

TB " ra2 + a2  + 7 a2 (4.2)
• -'8 a max e (

T -a 2  +X ,2 (4.3)as mx e'

-a 2. (4.4)

" Individual (1-a)100% confidence intervals on Ta, To, T,, and Te

are, respectively

Ca - { : S/X2",r- • Ta  SIXf.- / 2 r-i}

2  2F
CS - ITS: 8 / z2,s-1 ' T S lXa/2,s-11

2 2•
wV." T as : Sas/ /2, (r-l)(s-l) 4 = T Br s/ I-a/,,(r-l) (s-l)1

Ce IT Q2/X 2 2  4 TFe Q 2/X_ where X2 ,m denotese e 2 a2, v2 2 1 /,v2C

the upper alO0% point of the chi-squared distribution with m

-14-
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degrees of freedom. Since S., Ss, S.6, and Q2are independently

- distributed, the Cartesian product, C Ca X C X C Ce

--- represents an exact rectangular confidence region on T (T= Ia

ra ,r )' with a confidence coefficient equal to 1-a- (1-a) 4.

Let us now suppose that y = f(a2  a2 , a2  a2 ) is a

continious function of the variance components. This function can

be expressed as y = g (r , ro, r 8 , r ), where g is obtained from

f by substituting the variance components by r4a, rs, re using

- equations (4.1) - (4.4). By the method described in Khuri (1981)

for balanced data, the interval

B JY MegT y 4 a g (~

is a confidence interval on f with a confidence coefficient

greater than or equal to 1 - a . Furthermore, if g belongs to a

family G of continuous functions of ra, r, TaB, Te, then

£(I [ B g Vg e G] > 1 - a*.

Thus, for gcG, the intervals B are conservative simultaneous
g

confidence intervals on the values of all continuous functions of

the variance components for model (2.1).

5. The Power of the Exact Tests

Power values for each of the exact tests described in Section 2

can be easily computed using the F distribution. We shall only

consider the power of the test concerning a2. A similar power

study can be made regarding the test for a2

Let ? denote the power of the test for a2. Then

-15-
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SP[ ) F I HI, (5.1)

MS C a, r-1, (r-1)(s-l) a

where H a2 0. Under Hat
aa

MS 
2  + X 02

CL CB max e
saz + al + X o4 MS r-1, (r-I)(s-I)C. aS max e a$

Hence, (5.1) can be rewritten as

1

- P[Fr-Il(r-l)(s-l) I I + s F a,r-1,(r-1)(s-1)1 ' (5.2)

.. where

, - a2 /(a 2  + X a2 ).
(I, cg max e

From (5.2) it can be seen that T is a function of the level of

significance, a, X which depends on the design used, and the

2 *-2 2 rvariance ratios a/e, la a/a through 8. The latter variance

ratio is considered a nuisance parameter. Since T' is a monotone

increasing function of 8, it follows that is

i) a monotone increasing function of a/ a e for a fixed value

of a2 /a2 and a fixed design.aBO e

ii) a monotone decreasing function of the nuisance parameter
2 /22
T$/ e for a fixed value of a2/ae and a fixed design.

iii)a monotone decreasing function of Xmax for fixed ratios of

the variance components. Consequently, if n.., the total

of the cell frequencies, is fixed, then by Lemma2 higher

power values are expected for smaller values of d, where d

is

-16-
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d
d=(1) rs "n

n i,j ij
For a balaned data set, d 0 and maximum power is achieved. We

can, therefore, regard the quantity n(
1 )d; which belongs to the

interval [0,I), as a measure of imbalance. Small values of this

measure are associated with designs that are nearly balanced. For

a more general discussion concerning measures of imbalance for

unbalanced models, the interested reader is referred to Khuri

(1986).

6. A Power Comparison With Other Approximate Tests

In this section, we compare the power of the exact test statistic,

" MS /MS,8 , given by formula (5.1) with powers of tests that are

most commonly used in practice, namely, the ANOVA-based

approximate F tests.

There are several analyses of variance, each using a

different method of computing sums of squares. Two of these

methods, expressed in "reduction in SS" notation, are:

Source of Degrees of Type I Type II
Variation Freedom SS SS

A r-1 R(abi R( a 11,)

B s-1 R( B , a) R($1,a)
" A*B (r-1)(s-1) R(aBSI U'a, 3) R(as P SB)

Residual n.. - rs Q Q

See Searle (1971, Section 6.3) for a description of the

"reduction" notation. The terminology, "Type I and "Type II", is

1..7

.- . .'- --.- "- -* - - . - .

" "" %i ,','.' '-."... . .. -.. ,.................
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consistent with that of the SAS (1982) System of statistical

software. An approximate F test statistic for H0 : a C 0 based on

the Type i SS (i - I, i - II) has the form F(i) - MS (i)/MS a(i).

The numerator, MS.(i), is the Type i mean square for a. The

denominator, MS*8(i), is

MSe(i) - 2 + k (i) a + k2(i)
MS e I as 2 8

where ki(i) and k2(i) are the coefficients in the expected mean

square

E[MSa (i)] - a2 + k(i) a2 + k2(i) aC + k3(i) a
2

C&e I a a 3 C

and a2, 2 and a2  are, respectively, the analysis of variance"'" e CL re

e' a2' 2
estimators of ae, aa8, and , based upon Q, R(aOliia8)9

and R(Olp,a). (Note: k2 (ii) - 0).

Powers of the approximate test statistics F(I) and F(II) were

estimated via computer simulation. The simulation study required

two steps; the first to estimate critical values of F(I) and F(II)

* under HO: a2 - 0; the second to estimate the power for a2 > 0.

All simulations were conducted using PROC MATRIX of the SAS

(1982) System. The SAS functions RANNOR and RANGAM were used to

generate pseudo-random normal and chi-squared variates,

respectively. Powers were estimated for 25 combinations of values

- of the variance components and six nij patterns, making 150 cases

in all. Without loss of generality, ae 1.0 was used in all

V. combinations. Values of aa$ and as8 constituted a "response

surface design" containing a 2x2 factorial and an interior point,

-18-
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namely, (0.2,0.2), (0.2,5.0), (5.0,0.2), (5.0,5.0) and

(1.0,1.0). For each of these five combinations, five values of

aa 0.2, 0.5, 1.0, 2.0 and 5.0 were considered to produce the 25

*combinations of a as a,, anda.

"2- '

The six n..j patterns contained three "near balance" patterns

(NB) and three "highly unbalanced" patterns (HU), each containing

5x5, 5x10 and 10x5 arrays. The six patterns, with rows

representing levels of factor A and columns representing levels of

factor B, are:

NB HU
(near balance) (highly unbalanced)

5 5 5 5 6 9 2 9 1 2
r-5 4 4 6 4 5 10 1 2 9 10

6 4 4 44 1 8 1 2 2
s-5 4 6 5 5 6 9 10 1 9 3

6 5 4 5 6 8 3 2 10 1

5 5 5 5 6 9 2 9 1 2
4 4 6 4 5 10 1 2 9 10
64444 1 8 1 2 2

r-10 4 6 5 5 6 9 10 1 9 3
6 5 4 5 6 8 3 2 10 1

s55 5 5 5 6 9 2 9 1 2
*"," 4 4 6 4 5 10 1 2 9 10

6 4 4 44 1 8 1 2 2
4 6 5 5 6 9 10 1 9 3
6 5 4 5 6 8 3 2 i0 1

5 5 5 5 6 5 5 5 5 6 9 2 9 1 2 9 2 9 1 2
r-5 4 4 6 4 5 4 4 6 4 5 10 1 2 9 10 10 1 2 9 10

6 4 4 6 4 6 4 464 1 8 1 2 2 1 8 1 2 2
s-10 4 6 5 5 6 4 6 5 5 6 9 10 1 9 3 9 10 1 9 3

6 5 4 5 6 6 5 4 5 6 8 3 2 10 1 8 3 2 10 1

-19-
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The distributions of F(I) and F(II) depend on the true values

of Ci and even under the null hypothesis HO: a2 0.

Therefore, it was necessary to estimate the critical values of

F(1) and F(II) for all values of a and as, and all n patterns

involved in the power study. This was done as follows: For each

of the five combinations of a and a, and each of the six nij

patterns (thirty cases in all), 1000 sets of cell means Yij.

and Q values were generated according to the model

-Yij+. = + 8. + (as)i j + eij., where Sj, (8)ij, and eij. are

independently distributed as normal variates with zero means and

2, 
2  a /n respectively, Q/a2 has the chi-

squared distribution with n..- rs degrees of freedom, and, without

loss of generality, u - 0. (Note the absence of a in the model,

corresponding to a2 0). For each set of Ylj. and Q values, F(I)

and F(II) were calculated, and the 95% sample quantiles of F(1)

and F(II) were recorded from the 1000 sets. This process was

repeated ten times, and the mean and standard deviation of the ten

F(I) and F(II) quantiles were computed to estimate the upper 5%

critical values for F(M) and F(II). These are reported in Tables

*-. 6.1 and 6.2.

S The estimated critical values in Tables 6.1 and 6.2

demonstrate the degree of dependence of the null distributions of

F(I) and F(II) upon the nuisance parameters, a.S and as. The most

-. 0
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serious disturbance of the distributions is for small values of

Y aos (-0.2), especially in "highly unbalanced" cases (Table 6.2).

In practice, the true critical values of F(1) and F(II) would

not be available because aas and a, are not known. Instead, the

calulated values of F(I) and F(II) would typically be referred to

an F distribution with denominator degrees of freedom given by a

Satterthwaite-type approximation such as illustrated by Milliken

and Johnson (1984, Section 20.1.2). Actual Rejection

probabilities (type 1 error rates) corresponding to a nominal

a - .05 for F(I) and F(II) using these approximate degrees of

freedom were estimated in the simulation study. These are also

reported in Tables 6.1 and 6.2. The results show that the

Satterthwaite-type approximate procedures produce true type 1

error rates that are far less than the nominal .05 for some cases,

particularly those with small values of aie in the highly

unbalanced situation.

Estimation of power for the statistics F(I) and F(II)

followed a process similar to that used to estimate the critical

values. For each of the 25 selected combinations of a a and a

and each of the six nij patterns, 2000 sets of cell means ij. and

Q values were generated according to model (2.4) with p taken

equal to zero. The statistics F(I) and F(II) were calculated for

each set of Yij. and Q values. The proportion of times, out of

the 2000, that F(1) and F(II) exceeded the estimated critical

IC
-21-
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values in Tables 6.1 and 6.2 was computed. These proportions are

estimates of the powers of F(I) and F(II) for testing H.: a; 0,

and are recorded in Tables 6.3 and 6.4. Powers of the exact test

statistic MS /MS are also reported in the latter tables. These

results show that, with a few exceptions, the power of the exact

test is better or essentially as good as the power of either of

,. the approximate procedures. The exceptions are for small values

of a (0.2 and 0.5) and small values of a (0.2).

It must be remembered that the approximate tests whose powers

are shown in Tables 6.3 and 6.4 could not be computed in practice

because their critical values depend on the unknown ca and a,.

The dependence is most severe for small values of aasB. These are

the same values of a for which the power of the exact test was

inferior to the approximate tests. Therefore, the power of the

exact test appears to be generally as good or better than powers

of the approximate tests except in cases for which valid critical

values of the approximate tests are most unreliable.
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APPENDIX

Proof of Lemma.2

Consider the orthogonal matrix P whose first row is (rs) -s

and simultaneously diagonalizes A, -,B' A2 -B22' where B and B
Aj B A 2 -221 -2

are the matrices in (2.5). Let P be the submatrix of P obtained

by deleting the first row. It is easy to verify that

UPI - 'r-'(A.1)
pop + -11 - I (A.2)

-1-1 ra -rs -rs

Now, Xmax is the largest eigenvalue of L P PKP' that is, X -

emax(PjKP7 ). If n'-" is the smallest cell frequency, then the

matrix (1/n 1)P 1 KP is positive semidefinite. Using

(A.1) we get

-24-
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e (P Kr') 4 e (P PI) -(A. 3)
n n

It is also true that Xma is greater than or equal to the sum of

the eigenvalues of P KP' divided by rs-1 (this is the average

eigenvalue of P KP' ). Thus,

e (P KP) > r-1 tr(P KP'). (A.4)max I (s-1) 1-1

But,

tr(P KP ) tr(P'P )

= errLrs -~ rs- (using A.2)
-s rs r

tr(K) -K

=tr(K) 1' K

rs a 1(A.5)
i j i s Isj i j

From (A.4) and (A.5) we conclude that

i7,j i
The proof of Lemma2 follows from inequalities (A.3) and (A.6).
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Table 6.1
Estimated 95% quantiles of F(t) and F(II), and estimated type I

:error rates for F(t) and F(II) using Satterthwaite's approximate
degrees of freedom for a nominal a - .05 for "near balance" cases

Design a a8  95% Quantiles Type I Error Rates

F(I) F(II) F(I) F(rI)

0.2 0.2 3.01 3.01 0.048 0.047
0.2 5.0 2.32 3.07 0.005 0.051

5x5 1.0 1.0 2.90 2.92 0.046 0.045
5.0 0.2 2.98 2.97 0.048 0.048
5.0 5.0 2.94 2.94 0.049 0.047

0.2 0.2 2.18 2.18 0.053 0.052
0.2 5.0 2.04 2.16 0.004 0.089

.Ox5 1.0 1.0 2.17 2.20 0.054 0.055
5.0 0.2 2.16 2.15 0.051 0.052
5.0 5.0 2.15 2.17 0.051 0.051

0.2 0.2 2.67 2.68 0.052 0.053
0.2 5.0 2.52 2.66 0.029 0.051

5x1O 1.0 1.0 2.59 2.61 0.048 0.049
5.0 0.2 2.63 2.63 0.050 0.050
5.0 5.0 2.58 2.63 0.049 0.049
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Table 6.2
Estimated 95% quanciles of F(I) and F(II), and estimated type 1
error rates for F(I) and F(II) using Satterthwaite's approximate

.. degrees of freedom for a nominal a - .05, for "highly unbalanced"
cases

Design af U 95% Quantiles Type 1 Error Rates

0.2 0.2 4.45 4.76 0.003 0.002
0.2 5.0 2.11 4.64 0.000 0.002

5x5 1.0 1.0 2.81 3.26 0.037 0.049
5.0 0.2 3.00 3.00 0.054 0.049
5.0 5.0 2.76 3.08 0.037 0.053

0.2 0.2 2.61 2.67 0.019 0.018
0.2 5.0 2.03 2.70 0.000 0.017

10x5 1.0 1.0 2.12 2.23 0.035 0.050
5.0 0.2 2.20 2.21 0.057 0.056
5.0 5.0 2.10 2.16 0.036 0.052

0.2 0.2 2.97 3.04 0.035 0.036
0.2 5.0 2.58 3.15 0.009 0.041

5x10 1.0 1.0 2.57 2.70 0.046 0.051
5.0 0.2 2.67 2.70 0.055 0.055
5.0 5.0 2.54 2.65 0.046 0.052

'1

L%

.4.0



Table 6.3
Estimated powers of F(I) and F(II) and

exact powers (E) of MS /MS for "near balance" cases.

Design aas aB C

0.2 0.5 1.0 2.0 5.0
1 0.200 0.740 0.965 0.997 1.000

- 5x5 0.2 0.2 II 0.200 0.739 0.964 0.997 1.000
E 0.196 0.720 0.960 0.996 0.999

I 0.124 0.479 0.841 0.980 0.999
5x5 0.2 5.0 II 0.209 0.737 0.959 0.997 0.999

E 0.196 0.720 0.960 0.996 0.999

1 0.082 0.266 0.688 0.952 0.9985x5 1.0 1.0 II 0.090 0.269 0.696 0.953 0.997
E 0.076 0.252 0.673 0.948 0.998

I 0.053 0.060 0.084 0.211 0.733
5x5 5.0 0.2 II 0.053 0.062 0.085 0.215 0.736

E 0.051 0.057 0.082 0.203 0.732

I 0.063 0.059 0.085 0.196 0.727
5x5 5.0 5.0 II 0.066 0.063 0.097 0.207 0.732

E 0.051 0.057 0.082 0.203 0.732

I 0.329 0.962 1.000 1.000 1.000
10x5 0.2 0.2 II 0.331 0.962 1.000 1.000 1.000

E 0.317 0.943 0.999 1.000 1.000

I 0.154 0.649 0.999 0.999 1.000
1Ox5 0.2 5.0 II 0.351 0.952 0.998 1.000 1.000

E 0.317 0.943 0.999 1.000 1.000

I 0.088 0.415 0.909 0.997 1.000
1ox5 1.0 1.0 II 0.080 0.405 0.910 0.997 1.000

E 0.091 0.410 0.914 0.998 1.000

I 0.049 0.053 0.110 0.312 0.946
1ox5 5.0 0.2 II 0.050 0.058 0.110 0.317 0.947

E 0.051 0.060 0.101 0.322 0.945

1 0.050 0.058 0.104 0.317 0.924
10x5 5.0 5.0 II 0.051 0.062 0.106 0.323 0.927

E 0.051 0.060 0.101 0.322 0.945
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Table 6.3 (continued)
Design a as a

0.2 0.5 1.0 2.0 5.0

I 0.416 0.920 0.991 0.999 1.000
5xLO 0.2 0.2 II 0.410 0.920 0.991 0.999 1.000

E 0.398 0.907 0.991 0.999 1.000

I 0.182 0.630 0.930 0.995 0.999
5X10 0.2 5.0 II 0.428 0.923 0.992 1.000 1.000

E 0.398 0.907 0.991 0.999 1.000

I 0.119 0.485 0.887 0.988 0.998
5x1O 1.0 1.0 II 0.117 0.492 0.895 0.988 0.998

E 0.117 0.493 0.884 0.988 0.999

I 0.057 0.062 0.125 0.392 0.912
5x1O 5.0 0.2 II 0.055 0.061 0.128 0.392 0.912

E 0.052 0.067 0.133 0.409 0.912

I 0.057 0.074 0.136 0.415 0.919
5x10 5.0 5.0 II .0.055 0.075 0.136 0.418 0.924

E 0.052 0.067 0.133 0.409 0.912
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Table 6.4
Estimated powers of F(t) and F(II) and

exact powers (E) of MS /MS for "highly unbalanced cases.

Design a a a 8  aa

0.2 0.5 1.0 2.0 5.0

1 0.142 0.529 0.895 0'.980 0.990
5x5 0.2 0.2 11 0.126 0.498 0.873 0.976 0.987

E 0.101 0.413 0.837 0.981 0.999

1 0.063 0.127 0.296 0.602 0.927
5x5 0.2 5.0 11 0.132 0.518 0.881 0.975 0.987

E 0.101 0.413 0.837 0.981 0.999

1 0.067 0.179 0.511 0.685 0.995
5x5 1.0 1.0 11 0.059 0.178 0.520 0.901 0.998

E 0.069 0.198 0.578 0.919 0.996

1 0.040 0.054 0.070 0.154 0.606
5x5 5.0 0.2 11 -0.036 0.062 0.077 0.154 0.609

E 0.051 0.057 0.082 0.201 0.727

1 0.059 0.055 0.065 0.136 0.551
5x5 5.0 5.0 11 0.051 0.044 0.065 0.150 0.609

E 0.051 0.057 0.082 0.201 0.727

1 0.218 0.853 0.997 1.000 1.000
10x5 0.2 0.2 11 0.231 0.854 0.996 1.000 1.000

E 0.136 0.667 0.983 0.999 1.000

1 0.063 0.144 0.363 0.713 0.989
10x5 0.2 5.0 11 0.227 0.861 0.998 1.000 1.000

E 0.136 0.667 0.983 0.999 1.000

I 0.078 0.261 0.736 0.991 1.000
10x5 1.0 1.0 11 0.081 0.294 0.794 0.996 1.000

E 0.079 0.314 0.844 0.996 1.000

I 0.052 0.056 0.088 0.216 0.854
10x5 5.0 0.2 11 0.051 0.054 0.085 0.214 0.852

E 0.051 0.060 0.100 0.317 0.943

1 0.046 0.081 0.080 0.182 0.792
10x5 5.0 5.0 11 0.052 0.070 0.091 0.220 0.852

K .51 0.060 0.100 0.317 0.943
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Table 6.4 (continued)
Design a8 a ca

0.2 0.5 1.0 2.0 5.0

1 0.330 0.865 0.983 0.999 1.000
5x0 0.2 0.2 II 0.311 0.860 0.985 0.999 1.000

E 0.190 0.711 0.958 0.996 0.999

I 0.061 0.107 0.292 0.668 0.966
5xIO 0.2 5.0 II 0.289 0.856 0.984 0.999 1.000

E 0.190 0.711 0.958 0.996 0.999

I 0.087 0.311 0.754 0.967 0.999
5x1O 1.0 1.0 II 0.095 0.373 0.801 0.975 0.999

E 0.099 0.406 0.833 0.981 0.999

1 0.050 0.053 0.095 0.303 0.814
5x10 5.0 0.2 I 0.057 0.059 0.099 0.309 0.815

E 0.052 0.067 0.131 0.405 0.910

I 0.046 0.056 0.089 0.227 0.773
5x10 5.0 5.0 II 0.051 0.060 0.107 0.275 0.834

E 0.052 0.067 0.131 0.405 0.910
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