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EXACT TESTS FOR THE MAIN EFFECTS'

VARIANCE COMPONENTS IN AN UNBALANCED RANDOM TWO-WAY MODEL

A. I. KHURI and R. C. LITTELL
Department of Statistics, University of Florida

Gainesville, Florida 32611, U.S.A.
SUMMARY

Exact tests are derived for testing hypotheses concerning the
variance components of the main effects in an unbalanced random
two-way crossed classification with interaction model.The tests
are based on four sums of squares which are distributed
independently as scalar multiples of chi-squared variates. These
sums of squares can also be used to find an exact test concerning
the interaction variance component, and to obtain simultaneous
confidence intervals on all continuous functions of the model's
variance components. A study is made concerning the power of the
proposed tests, including a comparison with other approximate

tests.

Key words: Variance components; Unbalanced random model; Two-way
crossed classification with interaction model; Hypothesis testing;
Power of exact tests.
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l. Introduction

There are very few exact tests available concerning the variance
components in an unbalanced random or mixed model. This is mainly
attributed to the fact that in an unbalanced data situation, the
traditional partitioning of the total sum of squares does not in
general yield independent and chi-squared type sums of squares.
Furthermore, such partitioning is not unique as is the case with
balanced models.

Wald (1940, 194]1) was the first author to introduce exact
testing procedures for the unbalanced one-way and two-way crossed
classification without interaction models. A generalization of
Wald's tests was recently discussed by Seely and El-Bassiouni
(1983). See also Harville and Fenech (1985). Using two different
approaches, Spj¢tvoll (1968) and Thomsen (1975) developed exact l
tests concerning the variance components in an unbalanced random
two-way crossed classification with interaction model. However,
unless the interaction variance component is zero, neither

Spjétvoll's tests nor those of Thomsen can be used to make

inferences about the main effects' variance components. In this 4

paper we managed to overcome this difficulty by producing exact ! '
tests concerning the latter variance components which apply even a
A

when the interaction variance component is different from zero. A

comparison of the power of the exact tests with simulated powers

of approximate ANOVA-based F tests shows that in most cases the
odes
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exact tests are at least as powerful as the approximate tests.

One main disadvantage of the latter tests is that their true
critical values ar; unknown since they depend on variance
components other than those under consideration. Thus, in
practice the critical values of the approximate tests must be
estimated using some procedure such as Satterthwaite's
approximation. The simulation study shows that in some cases this
approximation is highly unreliable for producing the critical
values. Only in such cases were the approximate tests observed to

be more powerful than the exact tests.

2. The Development of the Exact Tests

We shall adopt the same notation as in Thomsen (1975). Consider

the unbalanced random two-way crossed classification model

yijk’u"'ai"’e +(Qe)ij + e (2-1)

j ijk’

1 =1,2,0ee,r; 31 =1,2,00.,8; k = 1’2"°"nij’ where u is an

unknown constant parameter; (QS)ij’ and €1jk are

Bj,

independent normally distributed random variables with zero means

and variances ai, cg, aia, and 02, respectively. Alternatively,

(2.1) can be written in matrix form as

L=wly +tXg* X8+ X(a8) +g, (2.2)
where y 1is the vector of observations of dimension n 2 n
.o J lj
Ln.. i{s a vector of ones of dimension n, ., 51’§2‘ and 53 are
-3-
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2 matrices of zeros and ones of orders n_ xr, n__xs, and n_ xrs,
At
ARt respectively. The variance-covariance matrix of y, denoted by
:-__:;: L, is
\A.

.‘:': = - 2 » 2 P 2 2 N
L?;} L=%X 9% 5% % * X343 %8 * En..ce’ (2.3)
oo
o where En is the identity matrix of order n _x n_ .
iia: Let yij- be the (i,j)th sample cell mean (1L = 1,2,...,r;
tﬁ} j =1,2,e04,8). From (2.1) we have

,'-’ — - -— .A
L2 Y1y u+cxi+Bj +(c.1.8)ij +eij-’ (2.4)
;it i=1,2,000,0; j =1,2,...,s, where eij- = kEI eijk/nij' In
ﬁéfi matrix form, (2.4) may be written as
'\

&5 Toulyg ¥ B+ BB+ L (a8 + 5, (2.5)
where B, = I_®1 , B, =1 O 1, and ® is the direct product
~l ~r  ~8’ 2 Ar o ~g

jﬁi symbol. The variance-covariance matrix of y 1is
s S aAg2 + A g2 + 2 2
o Var y élaa éZOB Erscas +K ae,

L4
-2 where A, = B B, A, = B_B’, and K = diag(n"1 Tt n-l)
~1  ~1~D? R2 0 ~2R2° ~ 112 "12°°° s/t
Aol -

W Let z = P y, where P is an orthogonal matrix of order rsxrs
AN ;

@, whose first row is (rs)-ﬁl;s and simultaneously diagonalizes 4,
LA
2:; and 4,. The vector z can be partitioned as (21,5;,35,5;8)‘,
jiﬁ where 2z is the first element of z; z ,z,, and 2 are vectors of
AN ~ ~a's8 ~af
!?! dimensions r-1, s-1, and (r-1)(s-1), respectively. The latter
-‘_-'.
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three vectors are normally distributed with zero means and have

the following variance-covariance matrices (see Thomsen 1975,

p. 259):
= 2 2 2
Var 2z (sca + GaB) zt-l + K1 og
= 2 2 2
Var z, (rcB + caB) I *% o

Var 2z

= a2 2
Za8 = %38 E(e-1)(s~-1) T %3 %

where 51, K,, and X are the submatrices of PKP® which correspond

2 ~3

to Ea’ EB' and EaB’ respectively. Let u be the vector
u = (25 25 20" (2.6)
Then,

r-1’ 6223—1’ 63£(r—1)(s-1))

where 61, 62, and 63 are given by

Var u = diag(6,1 + L oZ, (2.7)

§, = g02 + o2
a

1 aB
= 2 2
62 raB + caB (2.8)
= gl
63 oaB’

and L is the (rs-1)x(rs=-1) submatrix of PKP” which corresponds to

4 and i{s expressible in the form

~

(X ]
S K2 Ky
B8 % Kl o (2.9)

K13 %23 &4
.
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i 2 = - 2 = - = i .
A where K,,0% = E(z, 23), K305 = E(z, 25q)s and Kpsop = Elzg 259)
;jZ: The matrix L is of rank rs-l and is, therefore, nonsingular.

}?; The random vectors zZ, Zg and Z.g 3T not independent.

)

;:{: However, they are independent of the error sum of squares,

L

Fyom Tya ) (2.10)
T Q= ke Vi Ya30) 0 :

£ .

t;,- which can also be written as

e Q=yR Y, (2.11)
Ty

o where y 1is the vector of observations and R is the n_ xn__ matrix
s : R=L - i?j (I, /nij)' (2.12)
o - 13

Z;f{ In (2.12) inij is the matrix of ones of order ny4%0y4

B (i=1,2,¢0.,r; j=1,2,...,8) and the second term is the direct sum
s of the J /n,.'s. It is easy to verify that R is idempotent of
@) 1 13 ~

o rank n_ - rs and that

!‘ RX =RX =RX; =0, (2.13)
::&: where 51, 52, and 53 are the matrices of zeros and ones in
)

bi (2.2). Hence, Q/ag has a chi~squared distribution with n =- rs
\:‘-_ e

0 degrees of freedom (see also Thomsen 1975, p. 260).

}?& Since R is symmetric it can be written as
-7~

S )

ke R=CAC (2.14)
L]

;ii where C is an orthogonal matrix and ) is a diagonal matrix of

-f=

R T I R ST R S - e
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eigenvalues of R, both of order n_xn_ . We shall assume that
n > 2rs - 1. . (2.15)

This is not an unreasonable assumption and can, for example, be
satisfied if each cell contains at least two observations. 1In

this case and because R is idempotent of rank n ~ rs > rs - 1, §

A

and C can be partitioned as

~

A = diag(}.\, ’ L\) s 94)

(2.16)
c= [El‘ 92' .93}v
where
v = Fs -1
(2.17)

Vo = m_, -.2rs + 1,

92’ g3 are of orders

n..xul, n..xvz, and n__xrs, respectively. Note that

Q is a zero matrix of order rsxrs, and Cl’

ci¢c. =1,1=1,2,3,

~i ~i
(2.18)
9.1 gj = 9,’ 1#73.

" Formula (2.14) can then be rewritten as
. From (2.11) and (2.19), the error sum of squares Q can be
bl partitioned as
.
L',.‘ =
o) where
L
- Q; = ¢ gl g; b4 (2.21)

B L . - a4 . F l’
[]
~3
1

A .
.......
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Q=1 ¢ Gt (2.22)
The sums of squares Q, and Q,, and the random vector y in (2.6)
are independent. Furthermore, Ql/oé and Qz/cg have the chi-
squared distribution with Vi and vy degrees of freedom, respec-
tively.

We now define the random vector g as

5 ..
w=u+ O ‘1'“1_ L ¢y (2.23)

where L is the matrix in (2.9) and Apax 1s 1ts largest eigenvalue.

: The matrix xmax Ev - L is positive semidefinite, hence the matrix
:¥~ (xmaxzv - L)% is well defined with eigenvalues equal to the
= 1
. square roots of the eigenvalues of A _ . Lvl— L. Let g be
lt- partitioned just like y in (2.6) as
t:: - - » » »
»-"‘.' @ (BQ, 28’ 208) ) (2.24)

where the vectors By 28’ and Bae are of dimensions r-1, s-1, and

(r=1)(s—-1), respectively,

1

S O A
LT

)

Nt Y

Lemma |l

]
4

(i) qu = EQB = EQGB = Q.

AL
P Y

¥

are independent normally distributed

(i1) Bg> Ugy and @ g

random vectors and have the following variance-

ORI
L

covariance matrices:

ivn
o 2

K , ) 2
o v =
{f} ar w, (soa +al 4 Amaxce) I
“"-:-: . = 2 2 2
Fié var w, (ra3 * ol * Xmaxce) I (2.25)
- V ! = 2 + 2 .
e ar wog * (95 * Ao 9%) Leeoiy(s-1)
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(i11) w and w__ are independent of Q> where Q, is the

w
a’ ~3’

a8

sum of squares in (2.22).

Proof. (i) From (2.12) it can be seen that E Ln = Q. Thus,

LR 4

by (2.19) we can write

(€167 + 89 1o = & (2.26)

Using (2.18) in (2.26) we get QI Ln
E(SIX) =Cl 1, w=0. Since y in (2.6) has also a zero mean, we

conclude that the mean of w in (2.23) is zero.

= g. It follows that

(ii) It is obvious that w in (2.23) is normally distributed. We
now claim that g is independent of Qiz. To show this we note that
the vector z'in (2.5); which can be written as z'= 22, where
D=2¢ L; /nij; is independent of Q and hence of Q (see 2.20 and

i,j 1j
2.21). Consequently,

RIS -0 (2.27)

where I is the varlance-covariance matrix of y given in (2.3) (see

Searle 1971, p. 59). From (2.18) and (2.27) we conclude that

DIC =0. (2.28)

~

Hence, Cov(z,x'gl) =DIC 0. Since y is a subvector of

~1

z =P z, then y is independent of giz as was claimed.

~

The variance-covariance matrix of w in (2.23) can then be

written as

1 1
v = - 2 i - ¢
ar @ ar y + (Xmaxzvl E) QIZCI(XmaXLvI L)*. (2.29)

But from (2.13) and (2.19) we have

ALt e CEIEN =
N . N L

B . .
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TN W AL WL P SR W R T TP Yo P




R T T o oy P T T W W LW > Y= e ey

‘ 2) X.= 1 = 1,2,3. 2.30
(€67 * S8 X= 0, 1=1,2,3 ( )

Using (2.18), equalities (2.30) yield

gI Ei =0, i=1,2,3. (2.31)
It follows that
. = - 2 = 2 .
gl z gl gl gl % Lvloe' (2.32)

From (2.7), (2.29), and (2.32) we then obtain

= 2 - 2
- Var g diag(61'~I'r:—1’62'1:-s-1’63'5(:'-1)(5—1)) * Lot (Amaxlv1 L)oe'
¢
- that is,
= 2 2
var @ diag[(51+ Amaxae)}-r—l’ (62+ Amaxoe)ss-l’
' 2
(63+ xmaxae)z(r-l)(s-l))' (2.33)

From (2.33) we conclude that 8 EB' and 208 are independent and
have the variance-covariance matrices described in (2.25).
(1ii) Q2 is independent of y (since Q is) and is also independent
of g;z since SI z 22 = 0, which follows from (2.18) and (2.31)
S after noting the formula for § in (2.3). Thus, Q, is independent
of w.

From lemmal we conclude that the sums of squares,
~ S Yaly» Sg ™ Wggs Sig = Wiaw o, and Q, are distributed

independently, and

2 4 42 & 2y o 2
Sa/(saa oaB xmaxce) xr—l

2 2 2Y N 2
SB/(rOB * °ae * Xmaxae) Xs-1

~-10-
. e e L m = e e e N et e e el - . - .
. . AN A O N e e e " et g - :
LIt -_'-4' . .,_‘.'. L LR e e e e e e EPTAPE S Tt B -." - '\- - \"-.' e e e
o et e T T e Lt e e e, L I L R S L R R A T A A
. X S S 2 o . . LIRS IR S T Y LS - R
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2 2Y ~N y2
Sas/(°ae * Xmaxoe) x(r-l)(s--l)
2 & 2
Q /e ~ X%
2
where v, is given in (2.17). A test statistic for testing the

.2: gl ' = !
hypothesis Hy:of = 0 vs. Ha.ca # 0 is, therefore, F Msu/MSaB’

where MSG = Sa/(r-l) and MSG = Sae/ (r=1)(s=1). Under HO this

8
statistic has the F distribution with r~1 and (r-1)(s-1) degrees

of freedom. The hypothesis HO can be rejected at the a-level of
significance 1f F 2-Fa,r-1,(r-l)(s-l)’ the upper al00%Z point of
the corresponding F distribution. Similarly, to test the

hypothesis Ho:og =0 vs. Ha:°§ # 0, we use the statistic

F=MSB/MSQB, where MSB = SB/(s—I). Furthermore, the startistic

= k h . 2 =
F (vzl )(MSGBIQZ) can be used to test the hypothesis Hy oaB 0

max

vS. Ha:dg8 # 0. We do not, however, recommend using this test

since it has fewer denominator degrees of freedom than the exact
test for GiB given by Thomsen (1975).

We note that if the data set is balanced, then K =

-1

-1
diag(nu,...,nrs

) = Ers/n’ where n is the number of observations
per cell. Hence, PKP’ = Lrs/n and L = Ev /n, where v, is given in
1

(2.17). Consequently, A = 1/n and the vectors g and y in

max

(2.23) become identical. Furthermore, the sums of squares nS,,
nSB, and nsaB reduce to the balanced ANOVA sums of squares

associated with the main and interaction effects, respectively,

iii The following lemma is useful for the power study in Section |
Ei: 5 and 1is proved in the Appendix:
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:f}
4
0l Lemma2
T
A The largest eigenvalue, kmax’ of the matrix } in (2.9) satisfies
o the double inequality
‘ |
Ly -1— < x < -, (2.34) |
rs ax ()
A (1) i,] iJ n
Sy where n is the smallest cell frequency.
L We note that the lower bound in (2.34) is the reciprocal of the
L
t}ﬁ harmonic mean of the cell frequencies.
Pl
b 3. A Mumerical Example
';F Layton (1985) studied variation in fusiform rust in Southern pine
j' tree plantations. Trees with female parents from different
if; families were evaluated in several test locations. We extract
{ data from five families and fOur test locations, and disregard the
)
::{ male parents (which were from a different set of families) for
;;j purpose of illustration. The number of plots in each family x
CS test combination ranged from one to four. Proportioms of
:?_ symptomatic trees in each plot are recorded in the following
:;i table:
o
-
o
3, ,\'.‘
bl
b
XN
h......
= -
e
Y
o
-12-
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Family number

238 352 19 141 60
.804 734 .967 .917 .850
34 .967 .817 .930
.970 .833 .889
.304

.867 <407 .896 .952 .486

35 .667 . 511 717 467
.793 274
.458 .428

Test number
409 41l .919 408 275

40 -569 . 646 .669 «435 «256
o715 .310 +669 . 500
. 487 <450

. 587 «304 .928 .367 «525

41 .538 .428 +855
.961 +655
.300 .800

We analyze variation due to family and test according to the model

kth observed

in (2.1), where Vi = arcsin-square root of the
proportion in family i and test j. The exact test will be used to
test, for example, the null hypothesis HO: ci = J regarding the
family variance component.

The first step is to obtain the matrix P. This can be done

using the algorithm given by Graybill (1983, p. 406).

e Alternatively, P may be constructed with rows 2 through 20 given

s
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by sets of normalized orthogonal contrasts for a effect, 8 effect
and a8 effect for balanced data. Computation of other components
of w in (2.23) are straightforward. For the present example, we
obtain MSQ/MSQB = 0.1543/0.0415 = 3,718, which has an observed
significance level of 0.034.

4. Simultaneous Confidence Intervals on the Variance Components

One of the interesting consequences of Lemmal is that simultaneous

confidence intervals on all continuous functions of oi, 02,0

2
8’ aB’

and 02 can be as easily obtained as in a balanced data

situaction. To see this, let us denote the expected values of MSG,

MSg, MSGB’ and Qz/v2 by 1,, Tar Tags and L respectively.

Then

= 2 2 2

Ty sa3 + 034 + Amax o%s (4.1)
= 2 2 2 y

Tg rof + ol + Aax Tas (4.2)
a g2 2

Ta8 * 9ag + Amax o2, (4.3)

T, = ag. (4.4)

Individual (l1-a)100% confidence intervals on Tar Tgr Toage and Ta

are, respectively

F 1 . 2 2
Cq {Ta' Sa/xa/z,r-l < Ta < sa/xl-a/Z,r-l}

= . 2 2
Cq {rB. SB/XG/Z,s-I <t € SB/xl-a/Z,s-l}

L 4

- . 2 2
Cag = (Tap * Sea/X2/2. (z=1)(s=1) ¢ Tag Sag/XT=a/2, (r=1)(s-1)!

- . 2 2 2
Co {re : Qz/x a/2,v2 < To < QZ/X1°G/2,v2}’ where Xa,m denotes

Sy

the upper al00% point of the chi-squared distribution with m

48
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degrees of freedom. Since S, SB' Sus’ and Q2 are independently
distributed, the Cartesian product, C = Ca X CB x CaB x Ce,
represents an exact rectangular confidence region on T = (TG’TB’
%*
raB,re)‘ with a confidence coefficient equal to l-a = (1-a)4.
Let us now suppose that y = f(ci, cé, oée, og ) is a
continious function of the variance components. This function can

be expressed as vy = g (ra, T, ), where g is obtained from

Tgs Tog?
f by substituting the variance components by Ty Tgs Tagr Te using
equations (4.1) - (4.4). By the method described in Khuri (1981)
for balanced data, the interval

g
is a confidence interval on ¥ with a confidence coefficient

B -{v:?égg(;)swgasgg(p}

greater than or equal to ]l - Q*. Furthermore, if g belongs to a
family G of continuous functions of Tar T Tags Ta» then
%*
P[IeBg,VgeG]>1—a.
Thus, for geG, the intervals Bg are conservative simultaneous
confidence intervals on the values of all continuous functions of

the variance components for model (2.1).

5. The Power of the Exact Tests

Power values for each of the exact tests described in Section 2

?};: can be easily computed using the F distribution. We shall only
%E;; consider the power of the test concerning og. A similar power
Woe.

%ESE study can be made regarding the test for °§'

Eiﬁi Let ¥ denote the power of the test for cg. Then

L
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MS
o = “ 5.1)
. ¥ P[MS ? Fa, r~1, (r=1)(s-1) | Ha]’ (
5 af
N i
where Ha P oy # 0. Under Ha,
MS 02 + A 0l
a ag max e ~ F
v Z ) - - -1)"
sas + 0% * A ax e MsaB r-1, (r-1)(s=1)
Hence, (5.1) can be rewritten as
1
Y= P[F_) (em1y(sm1) 2 T8 Faye-l,(eo1)(s=1)i0 (302

where

= g2/(q2 2y,
o aa/(caB * xmax ce)

From (5.2) it can be seen that ¥ is a function of the level of

significance, a, A , which depends on the design used, and the

max
variance ratios og/og, 638/03 through 8. The latter variance
ratio 1s considered a nuisance parameter. Since ¥ is a monotone
increasing function of 8, it follows that ¥ is
i) a monotone increasing function of og/og for a fixed value
of cge/og and a fixed design.

ii) a monotone decreasing function of the nuisance parameter

2

°§3/°§ for a fixed value of ci/ce

and a fixed design.
iii)a monotone decreasing function of Amax for fixed ratios of
the variance components. Consequently, if n.., the total

of the cell frequencies, is fixed, then by Lemma2 higher

power values are expected for smaller values of d, where d

y
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For a balaned data set, d = 0 and maximum power is achieved. We
can, therefore, regard the quantity n(l)d; which belongs to the
interval (0,l), as a measure of imbalance. Small values of this
measure are associated with designs that are nearly balanced. For
a more general discussion concerning measures of imbalance for
unbalanced models, the interested reader is referred to Khuri
(1986).

f. A Power Comparison With Other Approximate Tests

In this section, we compare the power of the exact test statistic,

MSa/MS given by formula (5.1) with powers of tests that are

a8’
most commonly used in practice, namely, the ANOVA~based
approximate F tests.

There are several analyses of variance, each using a

different method of computing sums of squares. Two of these

methods, expressed in "reduction in SS" notation, are:

Source of Degrees of Type 1 Type II
Variation Freedom SS Ss
A r-1 R(a’u) R(a‘u,S)
B s-1 R(Bfu,a) R(8|u,a)
A*B (r=1)(s-1)  R(a8|u,a,8) R(aB|u,a,8)
Residual Nee = IS Q Q

See Searle (1971, Section 6.3) for a description of the

“reduction” notation. The terminology, "Type I" and "Type II", is

-17~
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% consistent with that of the SAS (1982) System of statistical

;- software. An approximate F test statistic for Hj: ci = 0 based on
:3 the Type 1 SS (i = I, i = II) has the form F(i) = MSa(i)/MSZB(i).
:i: The numerator, Msa(i), is the Type 1 mean square for a. The

Egg denominator, Mszs(i), is

LR * -~ - ~

MS,g(1) = 02 + k (1) o2, + k, (1) oF,

?jf where kl(i) and kz(i) are the coefficients in the expected mean

ig square

.- E(MS,(1)] = 0 + & (1) o2, + k, (1) o2 + ky(1) o2

E? and 82, ;gﬁ’ and ;g are, respectively, the analysis of variance
725 estimators of cg, 038, and og, based upon Q, R(aﬁ'u,a,s),

:). and R(B'u,a). (Note: kz(If) = 0).

.%j Powers of the approximate test statistics F(I) and F(II) were
ig estimated via computer simulation. The simulation study required
(-f two steps; the first to estimate critical values of F(I) and F(II)
;S under Hy: og = 0; the second to estimate the power for og > 0.

E? All simulations were conducted using PROC MATRIX of the SAS

iji (1982) System. The SAS functions RANNOR and RANGAM were used to
-EE generate pseudo-random normal and chi-squared variates,
fé; respectively. Powers were estimated for 25 combinations of values
;; of the variance components and six nij patterns, making 150 cases
Ez in all. Without loss of generality, 0, = 1.0 was used in all 1
.g combinations. Values of 0,5 and og constituted a “"response |
@

surface design” containing a 2x2 factorial and an interior point,
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namely, (0.2,0.2), (0.2,5.0), (5.0,0.2), (5.0,5.0) and
(1.0,1.0). For each of these five combinations, five values of
o 0.2, 0.5, 1.0, 2.0 and 5.0 were considered to produce the 25
combinations of 98 98 and Oy

The six nij patterns contained three "near balance” patterns
(NB) and three "highly unbalanced” patterns (HU), each containing
5x5, 5x10 and 10x5 arrays. The six patterns, with rows
representing levels of factor A and columns representing levels of

factor B, are:

NB HU
(near balance) (highly unbalanced)
5 55 5 6 29 2 9 1 2
r=5 4 4 6 4 5 10 1 2 9 10
6 4 4 4 4 1 8 1 2 2
s=5 4 6 5 5 6 9 10 1 9 3
6 5 4 5 6 8 3 2 10 1
5 5 5 5 6 9 2 9 1 2
4 4 6 4 5 10 1 2 9 10
6 4 4 4 4 1 8 1 2 2
r=10 4 6 5 5 6 9 10 1 9 3
6 5 4 5 6 8 3 2 10 1
s=5 5 5 5 5 6 9 2 9 1 2
4 4 6 4 5 10 1 2 9 10
6 4 4 4 4 1 8 1 2 2
4 6 5 5 6 9 10 1 9 3
L ® 6 5 4 5 6 8 3 2 10 1
WO 5555655556 9 2 9 1 2 9 2 9 1 2
o r=5 44645466645 10 1 2 91010 1 2 910
iﬁi 6 446464464 1 8 1 2 2 1 8 1 2 2
A s=10 4655646556 910 1 9 3 910 1 9 3
~ﬂ; 6545665456 8 3 210 1 8 3 210 1
33
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The distributions of F(I) and F(II) depend on the true values
of %8 and dg, even under the null hypothesis Hy: og = 0.
Therefore, it was necessary to estimate the critical values of
F(I) and F(II) for all values of 948 and Igs and all nij patterns
involved in the power study. This was done as follows: For each
of the five combinations of %28 and 9 and each of the six Dyj
patterns (chi;ty cases in all), 1000 sets of cell means ;ij.
and Q values were generated according to the model

ij.

independently distributed as normal variates with zero means and

yij. = U + Bj + (aB)ij + eij , where Bj’ (aS)ij, and e, are

variances og, °§B’ and °§/“1j' respectively, Q/c§ has the chi-
squared distribution with n..-~ rs degrees of freedom, and, without
loss of generality, u = 0. (Note the absence of a; in the model,
corresponding to og = 0). For each set of iij. and Q values, F(I)
and F(II) were calculated, and the 95% sample quantiles of F(I)
and F(II) were recorded from the 1000 sets. This process was
repeated ten times, and the mean and standard deviation of the ten
F(I) and F(II) quantiles were computed to estimate the upper 5%
critical values for F(I) and F(II). These are reported in Tables
6.1 and 6.2.

The estimated critical values in Tables 6.1 and 6.2
demonstrate the degree of dependence of the null distributions of

F(I) and F(II) upon the nuisance parameters, 9,8 and dg. The most
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serious disturbance of the distributions is for small values of
9.8 (=0.2), especially in "highly unbalanced” cases (Table 6.2).

In practice, the true critical values of F(I) and F(II) would
not be available because 948 and dg are not known. Instead, the
calulated values of F(I) and F(II) would typically be referred to
an F distribution with denominator degrees of freedom given by a
Satterthwaite-type approximation such as illustrated by Milliken
and Johnson (1984, Section 20.1.2). Actual Rejection
probabilities (type 1 error rates) corresponding to a nominal
@ = ,05 for F(I) and F(II) using these approximate degrees of
freedom were estimated in the simulation study. These are also
reported in Tables 6.1 and 6.2. The results show that the
Satterthwaite-type approximate procedures produce true type 1
error rates that are far less than the nominal .05 for some cases,
particularly those with small values of %48 in the highly
unbalanced situation.

Estimation of power for the statistics F(I) and F(II)
followed a process similar to that used to estimate the critical
values. For each of the 25 selected combinations of 048 %3 and Oy
and each of the six n;j patterns, 2000 sets of cell means yij. and
Q values were generated according to model (2.4) with uy taken
equal to zero. The statistics F(I) and F(II) were calculated for
each set of §1j. and Q values. The proportion of times, out of

the 2000, that F(I) and F(II) exceeded the estimated critical
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values in Tables 6.1 and 6.2 was computed. These proportions are
estimates of the powers of F(I) and F(II) for testing Ho: cg =0,
and are recorded in Tables 6.3 and 6.4. Powers of the exact test
statistic Msa/MSaB are also reported in the latter tables. These
results show that, with a few exceptions, the power of the exact
test is better or essentially as good as the power of either of
the approximate procedures. The exceptions are for small values
of g, (0.2 and 0.5) and small values of 948 (0.2).

It must be remembered that the approximate tests whose powers
are shown in Tables 6.3 and 6.4 could not be computed in practice
because their critical values depend on the unknown %a8 and Oge
The dependence is most severe for small values of oaB' These are
the same values of %q8 for which the power of the exact test was
inferior to the approximate tests. Therefore, the power of the
exact test appears to be generally as good or better than powers
of the approximate tests except in cases for which valid critical
values of the approximate tests are most unreliable.
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N APPENDIX

.~ Proof of Lemma2
: Consider the orthogonal matrix P whose first row is (ts)-%}.;s

: and simultaneously diagonalizes él = glgi, 52 = EZEE’ where El and ~B-2
‘ are the matrices in (2.5). Let P, be the submatrix of P obtained
.'.: by deleting the first row. It is easy to verify that
oy
3 51311' Ir:s-l’ (a.1)
B B2, * 5 des ™ Loae ar2)
: Now, xmax 1s the largest eigenvalue of L = 315’—5’ that is, )‘max =
,"-' emax(gl'gz ). If a{1) 15 the smallest cell frequency, then the
:';: matrix (l/n(l))glgi - B KP] 1s positive semidefinite. Using

,: (A.1) we get

5315
~24-
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e (P RPI) ¢ —— e (P P7) = (a.3)
max ~1-1 n(l) max ~1~1 (l)
It is also true that Amax is greater than or equal to the sum of
the eigenvalues of P P,kP PI divided by rs-1 (this is the average
eigenvalue of 31521 Y. Thus,
. -
(P1-1) > IETITe) tr(glggl). (A.4)
But,
tr(glggl ) = tr(2121§ )
1
=er{(I . - 5 . K] (using A.2)
1 -
er(R) - o5 er(l 17 K)
= tr(k) - —l 12 Kl
S ~rs~~rs
= -—1-— - ..i —1— . (A.S)
rs n, .,
1, "3 i,j 1]
From (A.4) and (A.5) we conclude that
*nax 21881 > 55 s Ej -:; (a.6)
’
The proof of Lemma2 follows from inequalities (A.3) and (A.6).
-
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Table 6.1
Estimated 95% quantiles of F(I) and F(II), and estimated type 1
error rates for F(I) and F(II) using Satterthwaite's approximate
degrees of freedom for a nominal a = .05 for "near balance" cases

Design 948 9 95% Quantiles Type 1 Error Rates
- - F(1) F(II) F(I) F(I1I)
0.2 0.2 3.01 3.01 0.048 0.047
0.2 5.0 2.32 3.07 0.005 0.051
5x5 1.0 1.0 2.90 2.92 0.046 0.045
5.0 0.2 2.98 2.97 0.048 0.048
5.0 5.0 2.94 2.94 0.049 0.047
0.2 0.2 2.18 2.18 0.053 0.052
0.2 5.0 2.04 2.16 0.004 0.089
10x5 1.0 1.0 2.17 2.20 0.054 0.055
5.0 0.2 2.16 2.15 0.051 0.052
5.0 5.0 2.15 2.17 0.051 0.051
0.2 0.2 2.67 2.68 0.052 0.053
0.2 5.0 ~ 2.52 2.66 0.029 0.051
5x10 1.0 1.0 2.59 2.61 0.048 0.049
5.0 0.2 2.63 2.63 0.050 0.050
5.0 5.0 2.58 2.63 0.049 0.049
|
~26=
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Table 6.2
Estimated 952 quantiles of F(I) and F(II), and estimated type 1
error rates for F(I) and F(II) using Satterthwaite's approximate
degrees of freedom for a nominal a = .05, for "highly unbalanced”

cases

Design %8 9g 95Z Quantiles Type 1 Error Rates

F(I) F(11) F(I) F(II)

0.2 0.2 4,45 4.76 0.003 0.002

0.2 5.0 2.11 4.64 0.000 0.002

5x5 1.0 1.0 2.81 3.26 0.037 0.049

5.0 0.2 3.00 3.00 0.054 0.049

5.0 5.0 2.76 3.08 0.037 0.053

0.2 0.2 2.61 2.67 0.019 0.018

0.2 5.0 2.03 2,70 0.000 0.017

10x%5 1.0 1.0 2.12 2.23 0.035 0.050

5.0 0.2 2.20 2.21 0.057 0.056

5.0 5.0 2.10 2.16 0.036 0.052

0.2 0.2 2.97 3.04 0.035 0.036

0.2 5.0 2.58 3.15 0.009 0.041

5x10 1.0 1.0 2.57 2.70 0.046 0.051

5.0 0.2 2.67 2.70 0.055 0.055

5.0 5.0 2.54 2.65 0.046 0.052
2
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Table 6.3
Estimated powers of F(I) and F(II) and
exact powers (E) of MSQ/MSas for "near balance” cases.

Design %48 o 94
0.2 0.5 1.0 2.0 5.0
I 0.200 0.740 0.965 0.997 1.000
5x5 0.2 0.2 II 0.200 0.739 0.964 0.997 1.000
E 0.196 0.720 0.960 0.996 0.999

I 0.126 0.479 0.841 0.980 0.999
5%5 0.2 5.0 IT 0.209 0.737 0.959 0.997 0.999
E 0.196 0.720 0.960 0.996 0.999

I 0.082 0.266 0.688 0.952 0.998
5x35 1.0 1.0 II 0.090 0.269 0.696 0.953 0.997
E 0.076 0.252 0.673 0.948 0.998

I 0.053 0.060 0.084 0.211 0.733
5x5 5.0 0.2 II  0.053 0.062 0.085 0.215 0.736
E 0.051 0.057 0.082 0.203 0.732

I 0.063 0.059 0.085 0.196 0.727
5x%5 5.0 5.0 IT 0.066 0.063 0.097 0.207 0.732
E 0.051 0.057 0.082 0.203 0.732

I 0.329 0.962 1.000 1.000 1.000
10x5 0.2 0.2 IT  0.331 0.962 1.000 1.000 1.000
E 0.317 0.943 0.999 1.000 1.000

1 0.154 0.649 0.999 0.999 1.000
10x5 0.2 5.0 II  0.351 0.952 0.998 1.000 1.000
E 0,317 0.943 0.999 1.000 1.000

I 0.088 0.415 0.909 0.997 1.000
10x5 1.0 1.0 IT 0.080 0.405 0.910 0.997 1.000
E 0.091 0.410 0.914 0.998 1.000

I 0.049 0.053 0.110 0.312 0.946
10x5 5.0 0.2 IT 0.050 0.058 0.110 0.317 0.947
E 0.051 0.060 0.101 0.322 0.945

I 0.050 0.058 0.104 0.317 0.924
10x5 5.0 5.0 IT 0.051 0.062 0.106 0.323 0.927
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Table 6.3 (continued)

Design 9.8 9 oy
0.2 0.5 1.0 2.0 5.0
I 0.416 0.920 0.991 0.999 1.000
5x10 0.2 0.2 II  0.410 0.920 0.991 0.999 1.000
E 0.398  0.907 0.991 0.999 1.000

I 0.182 0.630 0.930 0.995 0.999
5x10 0.2 5.0 II  0.428 0.923 0.992 1.000 1.000
E 0.398 0.907 0.991 0.999 1.000

1 0.119 0.485 0.887 0.988 0.998
5x10 1.0 1.0 II  0.117 0.492 0.895 0.988 0.998
E 0.117 0.493 0.884 0.988 0.999

I 0.057 0.062 0.125 0.392 0.912
5x10 5.0 0.2 II 0.055 0.061 0.128 0.392 0.912
E 0.052 0.067 0.133 0.409 0.912

I 0.057 0.074 0.136 0.415 0.919
5x10 5.0 5.0 II .0.055 0.075 0.136 0.418 0.924
E 0.052 0.067 0.133 0.409 0.912
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Table 6.4
Estimated powers of F(I) and F(II) and
exact powers (E) of MSQ/MSQB for "highly unbalanced”™ cases.

Design %48 08 %%
0.2 0.5 1.0 2.0 5.0

I 0.142 0.529 0.895 03980 0.990

5x5 0.2 0.2 1T 0.126 0.498 0.873 0.976 0.987

E 0.10F1 0.413 0.837 0.981 0.999

I 0.063 0.127 0.296 0.602 0.927
5%5 0.2 5.0 IT 0.132 0.518 0.881 0.975 0.987
E 0.101 0.413 0.837 0.981 0.999

I 0.067 0.179 0.511 0.685 0.995
5%3 1.0 1.0 IT 0.059 0.178 0.520 0.901 0.998
E 0.069 0.198 0.578 0.919 0.996

I 0.040 0.054 0.070 0.154 0.606
5%5 5.0 0.2 II 0.036 0.062 0.077 0.154 0.609
E 0.051 0.057 0.082 0.201 0.727

I 0.059 0.055 0.065 0.136 0.551
5%5 5.0 5.0 II  0.051 0.044 0.065 0.150 0.609
E 0.051 0.057 0.082 0.201 0.727

b I 0.218 0.853 0.997 1.000 1.000
o 10x5 0.2 0.2 IT  0.231 0.854 0.996 1.000 1.000
E 0.136 0.667 0.983 0.999 1.000

o I 0.063 0.144 0.363 0.713 0.989
e 10x5 0.2 5.0 II  0.227 0.861 0.998 1.000 1.000
" E  0.136 0.667 0,983 0.999 1.000

R

I 0.078 0.261 0.736 0.991 1.000
10x%5 1.0 1.0 II  0.081 0.294 0.794 0.996 1.000
0.079 0.314 0.844 0.996 1.000

"
LW N

(2]

I 0.052 0.056 0.088 0.216 0.854
10%5 5.0 0.2 II  0.051 0.054 0.085 0.214 0.852
E 0.051 0.060 0.100 0.317 0.943

A, Dol

I 0.046 0.081 0.080 0.182 0.792

; 10x5 5.0 5.0 II 0.052 0.070 0.091 0,220 0.852
F{i E 0.051 0.060 0.100 0.317 0.943
t:%
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Table 6.4 (continued)
Design %8 9g o

0,2 0.5 1.0 2.0 5.0

I 0.330 0.865 0.983 0.999 1.000
5x10 0.2 0.2 II  0.311 0.860 0.985 0.999 1.000
E 0.190 0.711 0.958 0.996 0.999

I 0.061 0.107 0.292 0.668 0.966
5x10 0.2 5.0 ITI  0.289 0.856 0.984 0.999 1.000
' E 0.190 0.711 0.958 0.996 0.999

I 0.087 0.311 0.754 0.967 0.999
5x10 1.0 1.0 II 0.095 0.373 0.801 0.975 0.999
E 0.099 0.406 0.833 0.981 0.999

I 0.050 0.053 0.095 0.303 0.814
5x10 5.0 0.2 II 0.057 0.059 0.099 0.309 0.815
E 0.052 0.067 0.131 0.405 0.910

I 0.046 0.056 0.089 0.227 0.773
5x10 5.0 5.0 II 0.051 0.060 0.107 0.275 0.834
E 0.052 0.067 0.131 0.405 0.910

O

- -
L4
~

]
."
]

A

I &e
i.\:l‘l'

3 2
PRI

Y
‘&"v .’l

"y

-
o

TN

\\l .

JANN
. .

ol

a -31-

" o

S

f’:"--"'f'('-‘a'-" R R R T T N N A S ) N Ry -

‘ ‘L-. A N A N O R L .'-_,,\ R ,,;"..,‘- T T T T T R N IR R )

&e NN SN SR NIPTS I RIN T W SR R e e I T R I T S e P A P
LA B Ny Yol ) D-Ro s Rl B I IR AP AT Nt “‘.A:".P“'.' I T '"..x_'.f:""“".r,"J‘!‘:~*’:F\:n~'.ﬁ-' S -"-.‘--“-.h"a .:\.."' ) “f




|

e Rl S A A Lad Sl A A i h LA B B A A R A S A 3

4



