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I. INTRODUCTION

Research on microwave generation from rotating electron beams in
various conducting boundary systems has been pursued at the University of
Maryland under AFOSR sponsorship for several years, Recently, the major
emphasis of this research has been on the production of radiation from
rotating electron beams in magnetron-like conducting boundary systems.
These experimental configurations are now recognized as an entirely new
type of microwave tube, referred to in the literature as a Gyromagnetron,
High Harmonic Gyrotron, or Cusp Injected Magnetron [Cusptron). The
interest in this new device has centered around its potential to reduce the
required magnetic field in microwave tubes by an o.der of magnitude by
allowing operation at a high harmonic of the electron cyclotron frequency.

This area of research has seen substantial progress during the last
year, and a summary of theoretical and experimental research conducted
during this period is presented in Section II, Results from research on

millimeter and submillimeter waves produced by rotating electron beams in

rippled magnetic fields, partially funded by AFOSR (with additional funds

from DOE) are also summarized in-8ection II of this progress report,
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A. Experimental Research

1, Improvements to the Experimental Facilities

During the past year the experimental facilities have been enhanced by
the installation of a completely digital fast data acquisition system
- ‘ funded by a grant from AFOSR under the DOD~University Instrumentation
Program. This new system includes five channels of Tektronix 7912AD fast
digitization controlled by a DEC 11/73 computer, Additional equipment
}t . related to this project includes an Imagen laser printer and several
- graphics terminals, This facility has been installed in a separate

shielded room in our high bay area, and is currently being connected to the

e various experiments it is designed to support. 1In addition to this
facility, a 40 kv, 40 A, 5 us pulse modulator has been installed to power
the CUSPTRON experiment, and this neﬁ modulator is now fully operational.
o Additional remarks about the experimental facilities can be found 1in

Section III of this progress report.

2, High Power Microwave Experiments

et Experiments designed to use the high voltage rotating beam facility
have produced significant results during the past year. These experiments,

in which a rotating electron beam interacts with the modes of a magnetron-

type conducting boundary system, have demonstrated that efficient radiation
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can be produced using either annular sector resonator or hole and slot

resonator configurations. Using a 2 MeV, 1-2 kA, 5 ns rotating electron

beam pulse, about 300 MW have been produced at 8 GHz using a hole and slot
resonator system with ten resonators, and about 500 MW have been produced
at 15.5 GHz using a 20 slot annular sector resonator system. These results
are detailed in a paper entitled, "High Power Microwave Generation from a
Large Orbit Gyrotron with Vane and Hole and Slot Resonators," published in
the IEEE Trans. Plasma Science (special issue on high power microwave

generation) and enclosed in Appendix B.

3. Millimeter Wave Generation from Rotating Beams in Rippled

Magnetic Fields

These experiments, conducted in collaboration with Professor George
Bekefi“s group at MIT, are designed to investigate a novel kind of free
electron laser configuration. In this work, a rotating beam interacts with
an azimuthally periodic wiggler field provided by samarium cobalt magnets
located interior and exterior to the beam. Narrow band radiation at power
levels in excess of 200 kW has been oﬁserved at 90 GHz and 180 GHz in these
experiments, and the studies are detalled in a paper entitled, "Millimeter
Wave Generation from a Rotating Electron Beam in a Rippled Magnetic Field,"

published in the Physics of Fluids and enclosed in Appendix B.

4, CUSPTRON Experiments

These experiments on our low voltage table top rotating beam facility

(25-40 kV, 1-2 A, 5 ys, 100 pps) are now fully underway. Over 500 W of

microwave power at the sixth harmonic of the cyclotron frequency have been
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observed when the rotating beam interacts with a six slot vane resonator
system, and experiments designed to produce radiation at the twelfth
harmonic are currently in progress. The potential of this new device lies
in the extremely low magnetic fields required for its operation (typically
200 gauss compared to many kilogauss for comparable magnetrons or

gyrotrons),

B. Theoretical Research

The theoretical contributions to our research this past year have been
the best since the inception of our program. Not only have details of the
many calculations that have been done by our group merged into common
agreement, but our ideas as to how systems should be designed to enhance
radiation have been quantified. We believe that we can now delineate the
main factors that determine the best conditions for optimum coupling of a

rotating beam to a given wall geometry. The theoretical areas studied

were:

® The stability of a thin E layer via a Vlasov formalism was completed
and shown to agree with the single particle approach. This was used
to study the interaction of a thin rotating E layer with a vane

resonator wall structure (see Refs. 23 and 28 of Appendix A).

® It was proved that for a cusp Injected system the 27 mode of the
waveguide structure is the dominant mode of operation. Thus, the

injection radius of the beam selects the proper radial mode number of
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the "2%" harmonic, and for strong coupling the beam must be close to
the slotted wall structure. However, most of the energy is coupled

into the fundamental mode (see Ref. 28 of Appendix A).

Both resonant and nonresonant interaction is considered via the
Vlasov and fluid formalisms. For the nonresonant, long wavelength
limit, the traditional negative mass instability is recovered (see

Refs. 23, 29, and 30 of Appendix A).

The derivation of a general growth rate expression for systems
involving large orbit, thin, annular, relativistic electron beams was
completed. This growth rate formula is written in terms of
parameters which contain the required information about the waveguide
wall structure. This method extends previous results to systems
whose empty waveguide modes are hybrids. As an example of this
latter case, growth rates for coaxial systems with dielectric liners
are calculated via this formalism. The use of dielectric liners may
be very useful for low energy s&stems where 1t 1s difficult to
simultaneously have resonant interaction at a strong coupling

position of the beam (see Ref., 31 in Appendix A).

The production of high power microwave radiation from a large orbit
gyrotron in azimuthally periodic boundary systems was studied
theoretically., Linear growth rates are calculated for the 27 modes
of magnetron-like vane resonator (VR) and hole-and-slot resonator

(HASR) systems using a general growth rate formalism. This formalism

R R R
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was used to design the resonator structures for the experiments
performed in our laboratory. The radiation characteristics are in
reasonably good agreement with the theoretical predictions especially
with respect to radial mode competition problems (see Ref. 32 in

Appendix A).

The macroscopic fluid equations were used to study the effect of beam
thickness on the linear growth rates of large orbit gyrotron
configurations. Two methods were used to calculate the growth

rates, The analytic approach solves the problem to first order in
the ratio of beam thickness to the average beam radius and recovers
the zero thickness limit. The numeric approach uses complete
orthonormal systems comprised of the homogeneous wave equation
solutions to calculate the growth rates for beams with arbitrary
thicknesses. It is concluded that thick, tenuous beams in resonant
systems must be operated near the cutoff of the EM wave, The
decrease in growth rate as the wavelength decreases is attributed to
the loss of synchronism in systéms where the beam has a spread in 1its
canonical angular momentum [see Ref. 33 in Appendix A (paper in the

process of being written)].

The study of single particle motion in hollow-cylindrical waveguide
fields has been inittated. A purely linearized analytic approach can
be used for particles far from resonance and an analytic-iterative
analysis can be used for particles that are near or at resonant {f

they are trapped. These analytic results are compared to a numerical




solution of the equations of motion. The main information in which
we are interested pertains to the process of physical bunching and to
the net energy gained or lost by a representative group of particles
in the electromagnetic field. We define the magnitude of physical
bunching by the percentage of particles trapped in their azimuthal
wave period. The effect of the magnitude and slope of the electric
field is also investigated. For our set of parameters, we determine
that dy/dt is solely responsible for azimuthal bunching. This can be
seen in both the linear analytic theory and the numerical

solutions., We also observe that the tangential magnetic force causes
a spreading of the bunch in the z direction., This spreading does not
occur for kz = 0 and vzo = 0, i.e. cutoff, since in that case the
tangential magnetic force is zero. Energy loss (gain) by the
particles is seen to be related to both the percentage trapped and
the position of the bunch in the phase of the wave [see enclosed

abstract (Ref. 35 in Appendix A)].
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A general linear growth rate formula for large orbit, annular electron beams

- W. Lawson and C. D. Striffler
o Electrical Engineering Department and Laboratory for Plasma and Fusion Energy Studies. University of
Maryland, College Park, Maryland 20742
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T Microwave radiation can be produced at cyclotron harmonics as a result of the synchronous

:~ interaction between a rotating E layer and an em wave. The derivation of a general growth rate

: . expression is presented here for systems involving large orbit, thin, annular, relativistic electron
o beams. This growth rate formula is written in terms of parameters which contain the required

Y information about the waveguide wall structure. This method extends previous rc - alts to systems

that have empty waveguide modes which are hybrids. As an example of this latter case, growth
rates for coaxial systems with dielectric liners are calculated via this formalism.

AT

I. INTRODUCTION

Microwave generation at cyclotron harmonics via large
orbit, annular electron beams has received considerable at-
tention during the past few years. Numerous theoretical and
experimental efforts have resulted in a good understanding
of the radiation process.'”'? Studies have been done for
beams in various waveguide geometries with the magne-
tron's vane resonator system receiving most of the attention.

One promising device at the University of Maryland
generates a rotating beam with a magnetic cusp field.'® This
device has been used to generate power levels of 500 MW
both at the 12th and 20th harmonics of the relativistic cyclo-
tron frequency with a vane resonator system.'*'® The hollow
E layer nominally has a particle energy of 2 MeV, a current
of 1-2 kA, and a pulse length of 5-10 nsec. Other experi-

The growth rate formula is derived in Sec. I11. The geom-
etry parameters are defined and the special cases of trans-
verse electric and magnetic waves are discussed as well. In
Sec. III we recover the results of Sprangle (Ref. 1) and
Destler et al. (Ref. 2) and discuss the possible need for dielec-
tric liners. Growth rates for a coaxial system with a dielectric
liner on the outer wall are derived in Sec. IV. The special
cases for TE and TM waves are carefully discussed before
the general case is derived. Conclusions are drawn in Sec. V.

Il. THE GENERAL GROWTH RATE FORMULA

The linear growth rate problem can roughly be divided
into two parts. The first part involves calculating the per-
turbed sources in terms of the em fields at the equilibrium
radius. Because this calculation has essentially been done

:‘_ ments on cusp-injected devices are in progress at Maryland'®  before (cf. Ref. 1), we only briefly sketch the derivation here.
- and elsewhere.'” Furthermore, other injection schemes have  In this sketch we reorganize the equations to better fit the
-:_: successfully been developed.'* general analysis and emphasize the key points in the deriva-
- Several of the previous linear growth rate analyses used ~ tion.
- '_" the fields explicitly associated with the particular waveguide In the second part we close the system of equations by
T in the analysis (cf. Refs. 1 and 2). This makes it necessary to  integrating two components of Ampere’s law across the
K~ repeat most of the procedure every time the waveguide ge- beam. This produces two equations that express the jumps in
S ometry is changed. In fact, a large part of the analysis is  ¢B, and rd, £, across the beam in_terms of certain beam 1
e independent of the waveguide and should only have to be  parameters and the values of 7 d,cB, and E, at the beam
' done once. In this analysis we perform all of the geometry- radius. [t is at this point that the waveguide geometry first
! N independent work first. Some geometry parameters are then enters into the analysis. The particular boundary conditions
o defined that enable us to write a growth rate formula without at the waveguide walls determine the ratios of ¢B, and
- a priori knowledge of the waveguide wall structure. Fora  rd,E, to rd,cB, and E, at the beam radius. In fact, the
- . given system the gecometry parameters can be found by fol- geometry parameters used in the growth rate expression are
T lowing a simple procedure involving only the application of ~ composed of these ratios. These geometry parameters are
" boundary conditions that do not involve the beam {similar to generalizations of the {two) normalized wave admittances
. Ref. 11). Consequently, we have reduced this linear growth used by others in the analysis of decoupled systems (see Ref.
’ rate problem to an algebraic exercise. As an added feature 3, for example). The generalization is necessary because the
o this procedure will generate the dispersion relation for the usual wave admittances are insufficient for the hybrid case.
ORI system without the beam. The reformulation of the em ficlds in the source-free regions
. . Up to this time all the linear growth rate studics have and the incorporation of the geometry parameters are the
e been valid only for systems that have empty waveguide  main new features in this analysis.
: modes which are TE or TM. In addition to recovering pre-
oy vious results, our method works on systems that have empty
-:::- o waveguide modes which are hybrid. This enables us, for ex- A.The perturbed source terms
:'_-': EN ample, to calculate growth rates for waveguides with diclec- The type of system we consider has an electron beam
S tric liners. propagating in some cylindrical waveguide which is im-
R
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FIG. 1. The equilibrium model.

mersed in a uniform magnetic field B2 (see Fig. 1). The only
restrictions placed on the waveguide are that it must be axi-
symmetric and invariant to translations in the 2 direction.
These restrictions, along with the linearization, allow us to
assume that only one harmonic perturbation exists in the
system. That is, perturbations with different harmonic
numbers do not interact in any way.

We assume that the beam is very thin; its equilibrium
density is given by

”0(’) = nx‘s(r - rO)’

where 7, is the beam radius and n, is the surface particle
density. We also assume that the beam is sufficiently tenuous
so that the equilibrium self-fields can be neglected. Each
electron moves on a predominantly helical orbit with an un-
perturbed, normalized velocity of (0, B, , 8, ). This simple
distribution enables us to use the single particle equations in
our analysis.

The first step is to linearize and Fourier analyze the Lor-
entz force equation. We write the particle positions as

0=20,+ ;¢ + 8,

where £2, = eB,/(m, ¥,) is the electron-cyclotron frequency
and yomyc? is the electron energy. The perturbations r,, ,,
and z, are assumed to be small compared to their zeroth-
order counterparts. .

We assume that all perturbations have their dependence
on the time, ¢, and the  and z coordinates defined by
exp[ilk,z + 10 — wt)]. The amplitudes of the perturbations
are denoted 7,, 8,, and 2,. Consequently, the lincarized,
Fourier analyzed version of the total time derivative is
d /dt— — i), where

Vi=w—I10,—k,u,. (1

The quantity ¢, is 2 measure of the diffcrence between the
actual em wave in the beam-waveguide system and the
doppler-shifted cyclotron harmonic. In the following analy-
sis ¥, plays a very important role . The synchronous limit is
defined by ¥, —0. Thus we say that the beam is synchronous
with the em wave when ¢, is small compared to the other
frequencies in the analysis (, €£2,in particular). In our deri-
vation we always assume the synchronous limit and only
keep the lowest order terms in ¢,. This assumption has many
consequences. Most importantly, it enables us to obtain an
explicit growth rate formula. The other consequences will be
discussed as they appear. We will show later that the syn-
chronous assumption is a good one for tenuous beams.

r=ro+ry, z2=2z,+v, t+2,
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The linearized, Fourier-analyzed Lorentz force equa-
tion is found to be

Py = — ie/mq o2, E, + B.,cB,) + 0 1), (2a)
rob, = (— e/mo YoUi) B3,Eo +Bs, B.E.) + O, "), (2b)
Z,=(e/m, ?’u’/’f)[(l —ﬂfn)Ez - B@u“‘Er — B, B,‘,Es ] (2¢)
Equation (2) reveals that, to lowest order in ¢;, the perturbed
particle positions depend only on the field components,
which are continuous across the beam. This is convenient
because the continuous fields are well defined at the beam
radius in terms of limiting values as r—r,. When r#r,, the
vacuum equations apply and the continuous fields can be
written in terms of £, and 7 J,¢B,.

Conservation of electrons on each differential surface
element requires that, again to lowest order in ¢, (cf. Ref. 1),

iy = —in, (16, + k2)8(r — r,). (3)

From this we find the perturbed current to be (as always, to
lowest order in ¥,)

v, /€€ =0, (4a)
Vido, /e = — (rofy /)12,
X[ =i E? + 2r 3,cB,)°)8ir — r),
(4b)
K[’f‘jz. - _ (’(ﬁh)z Vi
€4C ¢ To

X[~ iﬂ.E(,’ + £2,(rd,cB, 1°)8(r — ),
(4¢c)

where @} = €’n,/(my yro€oh 2, = (k,c —wf, ), and the
superscript zeros mean that the function is evaluated at the
equilibrium radius r,. From Egs. {3) and (4) we see that, in the
synchronous limit, the source perturbations lieon the r = r,
surface. This fact will be important in the next section when
we apply the jump conditions.

B. The jump céndltlons and the geometry parameters

There are two unknowns on the rhs of Eq. {4) and there-
fore two more equations are needed to close the system. We
integrate the Fourier-analyzed 6 and z components of Amp-
ére’s law across the beam to get

e < T, (rd
¢B,|" = — f "T';’—'-. (5a)
= e (7 r T rdr
CBgl’o. = J:o_ ;T (Sb)

Substituting Eq. (4) into Eq. (5) and rewriting cB, in terms of
the axial fields gives

Wird E )Y =22 (-in,)

[1]
X[ —if2,E® + 2,(rd,cB, I’} (6a)
YileB,)i =2 -r‘— (2){ — iR ES + 2,4r 3,¢B, ).
(4]

(6b)
where v = rye’n, p,/(2mg) is Budker's parameter. Nothing

W.Lawson and C. D. Stritfler
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r‘ ) more can be done without considering the waveguide geome-

; :.‘: tdes- : . Wavegade Made
-::{‘ o When r# r, the vacuum waveguide equations apply. In ] N
[ cylindrical coordinates, the general solution is a linear com- ]
‘*::.-;_ bination of Bessel functions of the first {(J,) and second (Y)) N ]
. - kinds. We divide the ? direction into two regions: region I, : ]
l ; [‘ where r <7, and region II, where r> r,. Symbolically, we B 1
e write the axial fields in the two regions as « ]
- - - = ] Beam Made
.: E f¢: (’)E‘: + ‘.[r; (’"’ arCBz )0' r< ’U' (7) g‘ -
. = ~ . = < .
- ! f: (’)E? + ‘/‘l; (’"r a’ CBl )o' ’ > ’0' — V"“ nm
" Lashe
.'.’ and : Line
wa e ~  [fenES +fulird,cB, . r<r, @) ]
« T, . C. = ~ -
R N : ,:fb:(r)E?-{,-fb’b(r)(ra’cB‘)u. r>r. 0.0 IR R AR RS AR AR EARAE RARES RAS
T . . . . . . 0.0
RN The radial functions f % (r) are just linear combinations of J;
RN and Y,. Their coefficients are determined by boundary con- Axiad Wave Number &,
WO du.nons that do not m_volve the _bcarq Examples gf(he calcu- FIG. 2. Graphical descnption of resonant interaction.
< lations of these functions are given in the following two sec-
SRS tions.
i : To proceed with the general calculation, we define aforward wave intersection (k ¢ = Qs called the cutoff). For
= atangential intersection, there is only one resonant point and
_ B, |, . . ~ 9 that point is characterized by identical group velocities for
8o = ra,cB.P &0 Ses(ro) =S ss (ro). 3] {he waveguide and beam modes, i.e., the grazing condition.
=
rd,E, |,C; df 2 df ; l C. Properties of the growth rate formula
8o = ———— =r —r , ' _
“ E? . cB. =0 dr |, dar 1, To keep the analy: s consistent, the geometry param-

(9b)  etersmust also be evaluated to lowest order in ;. Although
D, (w.k,) is usually zeroth order in ¥;, at resonance it be-

cB, |:: comes first order. Therefore, at resonance the dispersion re-
8o = 5 = fuelro) = f s (roh (9¢)  lation becomes a cubic in ¥, instead of a quadratic. In this
152 lrachr-o paper we consider only the resonant case because the cubic
rd.E, |'Z' df : df ; g.n.)wth rate dominates the quadratic growth rate at low den-
8 = ——==1| =r —-r (9d)  sities.
i{rd,cB,)’ | E¢=0 dar |, dr |,

We emphasize that the dispersion function [Eq. (10)] is
to be the geometry parameters. We label g,, the TE param-  yajid off resonance. Only synchronism is required by the
eter, g, the TM parameter, and g, and g,, the hybrid pa- . analysis. For example, in the appropriate limit we could
rameters. Plugging Eq. (9) into Eq. (6) yields the dispersion " ghow that our growth rate agrees with Uhm's negative mass

relation growth rate in coaxial geometry.'®
Y 8us on + Bo £os) At resonance we obtain from Egs. (10} and (11) that
=2v/VoM 823 ~ (8o + 80 )20 12 — 81s 121 ] W =2 (L) Beed25 — (8o + 8 W22, — 80y 127,
(10) Yo (856 Bee + 8be 8es)' (12)
{::! ::iitr’:iatm waveguide system in the synchronous, tenuous where the prime denotes the derivative with respect to w and

the geometry parameters have been evaluated at (w® ,k {). We
note that the frequency shift ¢, depends only on v/y,, the
frequencies £2, and 42, and the geometry parameters. We

D,(w.k,) = 8os 8Bee + 8be 8e» = 0. (tn write ¥, = w, + il so that I >0 represents a growth in
We denote solutions of Eq. {11) by (w,k ¢). If, by a suitable ~ beam amplitude with time. Assuming the rhs of Eq. (12) is
o choice of system parameters, the perturbed beam frequency  real, the growth rate and frequency shift are given by

When there is no beam, v = 0, and the empty waveguide
dispersion is

K & 4 8 a4 3

-,::: - I{f,, + kv is equal to some cmpt'y w'av'eguldc frequeqcy Ir= (\[5/2”% |3, . (13a)
o *, we say that the beam perturbation is in resonance with .

LS the empty waveguide mode (at k ¢). Resonant interaction for w, = —sgn(¥)l/\3, (13b)
"'“f'! ‘-' a simple waveguide geometry is depicted in. Fig. '2. We note  where sgn denotes the signum function.

555 that, in general, there are two resonant points, if any. The It follows from Eqs. (6) and (9) that the empty waveguide
Ot intersection corresponding to k5, (k¢ _ )is called the high-  modesare TEor TM ifg,, =0 =g_,. In this case the empty
_f'-:: _A {low-} frequency intersection point. Ifk ¢ _ <0, then the res-  dispersion relation and corresponding growth rate for a TE
! ::;-: onance s called a backward wave intersection; otherwiseitis  mode are

A
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I _ _ﬁ(.ﬂh)m (14b)
a, 2 \2¢.
‘The cosresponding expressious for a TM mode are
2. =0, (15a)
T _ £(__2""° )"’. (15b)
o, 2 \n2, g,

Notice that the TM growth rate depends on £2, , but the TE
growth rate depends on £2,. Consequently, if 2, =0, then
the TM modes are stable but the TE modes are still unstable.
‘This can be seen physically by considering a transformation
to the beam frame (moving with a velocity v, with respect to
the lab frame). For a TM mode 2, = Oimplies that E, =0
in the beam frame. Thus ¥ is second order and particles do
not lose cnergy in the linear approximation. For a TE mode,
however, E, is finite in the beam frame and ¥ remains a first-
order term. The simplest way to obtain 2, =0 is to set
o, =0=k,. In the diclectric-frec cases, £2, = 0 whenever
the grazing condition is satisfied.

Also, notice that I« n!>. This scaling law implics that
the synchronous limit is valid for sufficiently tenuous beams.
In the next section we use Eqs. (14) and (15) to quickly re-
cover the results of Sprangle and Destler et al.

1L DISCUSSION OF PREVIOUS WORK

In this and the next section it is convenient to adopt the
standard notation for the cross products of Bessel func-

tions:>

Pjab)=J\(a)Y,(b) — Yi(a),(b), (16a)
Q.la,b) =J\(a)Y(b) - Y,(a)i(b), (16b)
Riab)=J@)Y,(b) — YilaVi(b), (16¢)
S,lab)=J;(a)Y(b) — YilaV i(b). (16d)

It is simple to show from Bessel’s equation that, if a = afz)
and b = b{z), then

Pilab)=a'R, +b°Q,, (17a)
Qilab) =a's, +b'[U*/6* — WP, — (1/b)Q,), (17b)
Rilab)=a'lU*/a* — )P, —(1/alR,] +b'S;, (1Tc)
Silad) =a'W¥/a? — 10, —(V/alS,]

+5° WD — IR, —(1/0)S, ). (174)

Clever choices for arguments of these cross products sim-
plify the algebra tremendously.

Consider the case of only a smooth outer conducting
wall of radius 7, (see Fig. 3). We apply the usual boundary
conditions at 7, and growth conditions at 7 = 0 and make
the following identifications [via Eqs. (7) and (8)):

__ . Plxx,)
Je= Jixg) ’ /= Piixox,) "
," E— J":) f’ = _Q’Ei. .
® T xdid” TY T xSiixex.)
b. 741 Phys. Ruidds, Vol. 28, No. 8, Soptermber 1985

FIG. 3. Cross section of the simple cylindrical waveguide geometry.

and
fasfa=0=fu=/w,

L
for £ = (w/c)* — k2, x(r) = r€, and x, = x{r,), etc. From
Eq. (9) the TE and TM geometry parameters are found to be

2 Jilx,)

e RS k)
and '
g = _ l Jl(xw)
~ 7 J;(xolP;(x0.x,) )

As expected, the TE solutions are characterized by J {(x,)
= 0 and the TM solutions are characterized by J,(x,} =0.
The growth rates are found from Egs. (14) and (15) to be

I'e _ 8 (z_‘_'..(c_/':'_)i)m

12, 2 Yo 2w
v xoJ (o) b
[ —U/x )]0 x,)
and *
I'i _ 8 (zl(c/r,)’)"’ Jix) |
2, 2\ 7 Ne Jix) |

These results do indeed agree with Sprangle’s synchronous
case (Ref. 1).

When a smooth inner conductor of radius r, is added to
the system (see Fig. 4}, only the boundary conditions in the
region below the beam are affected. The net difference is in
the two functions f ; and f ., , which become

S < = Piixx,)/Piixo.x,)
and

[ & = Qulxx,)/x65(x00X,) ‘

for the inner conductor case. The geometry parameters be-
come

sl (xw Jl,
xlz)sl (XoeX, S (XanX )

2
B = —
4

and




'l'f‘r
o] LA N
» ‘

B T e Y T Ta
.

Region II

FIG. 4. Cross section of the coaxial waveguide geometry.

2 Pl(xw'xn’
Bee = — —

T Pi(xox, )P (x4,x,)

so that TE solutions are characterized by §,(x,.x,) = 0 and
TM solutions by P{x,.x,)=0. The TE and TM growth
rates are found from Egs. (14) and (15} to be

£T£. \/5 ( v (c/ru,)z)”’

no 2 }’0 ‘{20“)
(TJ’/Z)X“.X(Z)S, (x()vx, )SI (XO.XW)
dS,(xw,x,-VdX,.,

' B ( v (c/'w)z)"J

1/3

!) 2 Yo !).w
(77/2)-th[ (Xoyx, )Pl (xn'xu-) 13
dPl (xunxn )/dxw

where Eq. (17) is used to compute the derivatives.
These results agree with Destler (Ref. 2) except for an

amplitude factor. As pointed out by Destler er al., the dis-

crepancy comes from the method of calculating the per-
turbed charge density. There is strong evidence pointing to
the correctness of our results. First, it was already pointed
out here that our results agree with Uhm’s kinetic theory
approach in the proper limit. Furthermore, a fluid analysis
done by our group®' has recovered the dispersion relation
Eq. (10} in the infinitesimal E layer limit (at least whep g,,
=0=g,)

In both the cases with and without an inner conductor,
if resonance is possible then the resonant wavenumbers are
given by

(ck,) s =Vl B, £ 7. (17,120 = )" (18)
for y, * = 1 — B} . The condition for resonance can be writ-
ten

To ! ruBm

e < Dt ——

ro X [1+(reBe )}
At high azimuthal harmonics, the peak E, ficld is very close
to the wall. Thus in order to get reasonable growth rates, it is
necessary to make the ratio /7, as large as possible. For all

possible TE or TM solutions of either case, it is always true
that/ < x,,.Since 8, <1,ry/r, mustbevery small unless the

(19)
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beam energy is large. Consequently, we do not expect low-
energy systems to be very successful in these simple geome-
tries.

For low-energy systems something must be done to (in
essence) raise the possible values of / /x,, . This is just another
way of saying that something is needed to “slow down" the
em wave. One possibility is the slotted wall structure. This
method has received considerable attention and will not be
discussed here. Another possible method involves the inser-
tion of a dielectnic liner. This approach is studied in detail in
the next section.

V. THE DIELECTRIC LINER

Consider the system shown in Fig. 5. It is similar to the
coaxial system except that a dielectric liner of relative per-
mittivity €, occupies the space betweenr=r, andr=r.
As before, the beam radius is 7, and the inner and outer wall
radii are r, and r,, respectively. There is no fundamental
difference between this system and one without an inner con-
ductor. In fact, the results are virtually identical until the
inner radius becomes relatively large. However, the disper-
sion relation for the coaxial dielectric liner case takes on a
more symmetric form and is easier to solve numenically. For
these reasons we present the details of the calculation for the
coaxial case. Afterward, we present the results for the special
caser, =0.

The procedure for obtaining the geometry parameters is
still straightforward, but now the algebra is more complicat-
ed. Also, the results are harder to analyze. First, the modes
only decouple into TE and TM modes at isolated points.
Second, the dispersion curves are no longer simple hyperbo-
las in @ — k. space. Finally, the arguments of some of the
Bessel functions become imaginary in part of the w — &,
plane.

In Sec. IV A, we derive the geometry parameters and
the empty waveguide dispersion relation. In Sec. IV B, we
discuss in detail the special cases where the modes are either
TE or TM. We present the general result and apply it to both
a high-energy and a low-energy system in Sec. IV C.

FIG. 5. Cross section of a coasial system with a diclectnic liner.
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A. The empty waveguide dispersion relation

In anticipation of the results to come, we define

&2 =(w/c) -k}, (20a)

§3 =€lw/c) -k}, (20b)
and

¥, =l(wk, /c)e, — 1/EL. (21)
We also define five sets of cross products:

D)= Bfxx) =Dy, (22a)

P,(r) = Py{xxa)s ¢2 D,(ry), (22b)

Pyfr) = P, (x.X0), ¢3 = Pyiry), (22¢)

D, = b(x,x.), (22d)

D) = Pi(yy.) Bs=Pyra), (22¢)

for =P, Q, R, and S; for x=rf,, y=réy, and
Ya =ri€ g, etc. Finally, we define some more general cross
products:

o= xd(e,s"’\,ﬁ, - ’1\’,1’@.), (23a)

Y= X¢(§Q S/ @la ) (23b)
1.4./ = QIICP' Q/' (23c)
7 = AJ.}X:'./ — i, (23d)

for =£a/8s.

Now we must divide the » coordinate space into three
regions. We write the axial fields symbolically in these re-
gions as

[ (PEC +if 5(r 3,cB,\°, ri<r<r,

E = {fXNE2+if 5(rd,cB,, ro<r<rs,  (24)
SES +if S\Alrd,cB, 0, ry<r<r,,

and
o (NE +f5rrd,cB,P, ri<r<r,,

¢B, = {if S (NES +fis(Nrd,cB, % ro<r<ry,  (25)

IE(NES +£3,(rird,cB,),

We then systematically apply all the boundary condi-
tions that do not involve the beam in order to identify the 12
functions defined above. In addition to the usual boundary
conditions atr,, ., and r,,, there are six boundary conditions
at r,. The interesting boundary condition is

E,|; =€E,l,;

Py <r<r,.

the other five reflect the continuous nature of the remaining
field components. Two of the boundary conditions are re-
dundant. The remaining four enable the task of finding the
12 functions to be completed. The resulits are

S ()=0, fu (r)=0,
Sfaln= |(’VP|» S oslr) = Q\(r)/ xSy,
] .5
Sl = 2 rs Ps(’)' fbc()——%rzs Qi)
Q

fau= :—(3 P Pin).

P\T
fiin=—=(% 02 5 i) — P,m).

xoQ, ”
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s ) 3
3 PRS2 = - %-:;TQM.

air= —

1]

2 35 .5
sn=2X"pi, o= 250,
m 7’ T xo7l ¢

Given the field functions, the geometry parameters are
found from Eq. (9) to be

2\ 0y’ P 0
= ()L B L pm
T/ xa Q™ xo(; XoS,
2 _~ 3.’ ~ ~
ge=— (2 Ao 4 2R xR gy
LY 3773'5 P, P,
2 2 1.5.5
B =8 = — (—) (26c)
w/ XN

We note that the dielectric empty waveguide modes decou-
ple into TE and TM modes if 7~ = 0.

Two equivalent forms of the empty waveguide disper-
sion relation will be used in this section. The first comes from
applying the definition [Eq. (11)]

[fs___Q_n+(£)zﬂi] o _ R,
10 5, T/ x,Qy3 L Py P,

2 p LA PR X I P
- (3 5]+ (G 5T -
T/ xoPyn*? T/ Xol™
The numerator of this relation appears to depend on the
beam radius 7,. It should not, because 7, has no physical
significance when there is no beam and thus cannot affect the
zeros of the dispersion relation. After more algebra, the dis-

persion relation can be written so that the numerator is inde-
pendent of 7,:

Y
D,(wk,)= ——L1—— =0. )
(w/27x3 P8\’ '
Thus empty waveguide solutions are characterized by
114.5 =0. )
A typical dispersion plot is shown in Fig. 6. The cutoff
line is defined by k, = 0. The vacuum and dielectric light

200

j Vacuum Light Line

7

j Region A
150

Region B

] N\

§ Dielecteic Light Line

Frequency (GHz)
=5
o
1

-
E

j ’

oo TTrrrrryrrrrrrTr e T Ty ey

00 100 200 300 100 500
ck,/(2%) (GHz)}

FIG. 6. Typical dispersion plot for a dielectne system. Parameters: | = 7,
r, =005Sm,r, =0065m,r, =007Sm,and ¢, = 60.

W. Lawson and C. D. Stritfler 2673

.....




T T =

- 10 the TM cutoff point, only E,,cB,, and cB, are nonzero.
At a point where Qs =0,
o 1 _ — (/0
. - 8o = ‘_Z—TT‘_ .
- EN X055,
. 5 .8 — x =02 . . .
£ - Thus the resulting TE mode is characterized by
' s 1 Qulxo) =0 =04y} (28)
:; x4 This TE mode has ¢B,(r;) =0. Consequently, E,(r,) =0
'_-é 06 and so E, is continuous at r,. The growth rate is found from
- 08,10 06 Eq-(14)
- x =us, 1. x = ~ ~
o Tre _ _fi(zx e/ (/20,8 |
‘ 04—tTrTr | S ABLANL JN0 S B L ML L AR SN B BN SN B 00 ~ 2 Yo ndd dQG/dXO
-: 1.0 20 30 4.0 5.0 6.0 When P; =0,
. Relative Dielectric Constant {¢,) 8o = (2/”);;‘/?) ?’J
ec 1
: FI1G. 7. The effect of liner thickness on the cutoff frequency of the first radial and a TM mode has
T mode. Parameters: [ = 7, r, = 0.025m, ,, = 0.075 m. The measure of liner > >
h thickness is y = (r,, — 7,)/[r, —r,). : Pylxo) =0= Py y,). (29

} The TM mode is characterized by E',(rd) =0, almost as
: though there were a conducting wall at 7,. The growth rate

is given by
lines are defined by w/(ck,) = | and w/(ck,} = € '3, re- r s A
spectively. We denote the region in @ — k, space between Fw _ 3 (2_"_ (c/ro) ) {7/ EL“’P Lio el
’* the cutoff line and the vacuum light line as region A. The n, 2 \ 7 N0 dP/dx,

region between the vacuum and dielectric light lines is de- . n -
noted region B. In region A, £, and ¢ 5 are both real. In It is known*? that the zeros of P,(x,) are all real, so these
. - iy B ; TM modes can only exist in region A. Also, we can show that
region B, £ is still real but £ , is purely imaginary and &, A . ) ;
wt through @, are given in terms of modified Bessel functions. 'Q‘(xo).has no purely imaginary zeros so the T.E rqodes all lie
Fortunately, the geometry parameters are still real, so the in (li'eTg;&n A as ,we::‘ A d.ls;;:e.rswsmLplot h'g:'l'gh""g the TE
growth rate equation [Eq. (13)] is still valid for resonant an pointsis shown in Fig. 8. Let (£'s . g ) represent any

u points in region B. solution of either Eq. (28)or Eq. (29). If £ > J€, £ o, thenthe
The dielectric has two major effects on the dispersion  P3ir (£ a,§'s) corresponds to the solution of the dispersion
) curves. First, the cutoff points are lowered {in frequency). relation that has
Figure 7 shows the relative cutoff frequency for the lowest w=c[s — &LV - 1]

dispersion curve versus the relative permittivity for several

liner thicknesses. The figure reveals that the relative cutoff s ) V2

L rapidly approaches €,” '/? as the thickness increases. Second, . ck, =c[(§p —€,EA Ve, — 1]
the dispersion curves are asymptotic to the dielectric light

line. This feature is more important for linearly streaming

and

o4
0
1

A

v r

e beams (I = 0) where the beam line is always below the vacu-
R - um light line. Depression of the cutoff frequency is more 2507
,,‘_:: b important for the cases of interest in this paper (/ #0). ]

F 200

AN B. The special cases of TE and TM modes -
.- .. . = 150—
From the definition of .r‘ !/ [Eq. (23)], we see that 9; ] o TE ponts
the modes willbe TEor TM if ¥, =0, @5 =0, or P, =0. g 1/ o TM pomts

e Equation (21) reveals that there are three ways to have 3 ;o4

o ¥, =0.If¢, = 1, we are obviously back to the coaxial case & p
PG without a dielectric. The second possibility is / = 0. The the- 3

PR ory for this case has been considered elsewhere and success- 5 0'; ,

. o ful experiments have been performed by J. Walsh er al.?? at ]

o Dartmouth. 00-]

. - . . , . Tororr I T v 7 1 ] T T LA I LR A r L LS
o : The final possibility is k, = 0. At cutoff, £ = Ve, & 00 100 200 200 00 500
® and n*3 =x**y *3. The TE result is specified by g,, =0, ek /(20 (Gt

. . - . . [YAY &4 ’

. which is equivalent to y** = 0. As in the case without a :

R diclectric, only ¢B,, E,, and E, are nonzero at this cutofl g1 3 4 dispersion plot revealing the locations of the TE and TM points.
o’ . point. The TM resultis given citherby g,, = Oor x**=0.Al  Parameters:/ = 7,7, =0.020m.7, = 0.065m, 7, =0.07Sm,ande, = 40.

: 2874 Phys. Fluids, Vol. 28, No. 9, September 1985 W. Lawson and C. D. Stntfler 2874 !

e

~ N
.

R R TR
e

.. v, L e e S e . oL
PPN S PP R NP S LY P S PUPS. VP R S S -




O
SR
e te e N

't
41,0

‘.

ARAR
a_ax _a L
(AARS AT EE )

LIRS

(=
-

7] (a)
4
) 4
€ 03—
= -
e
= 4
I 02—
]
-ﬂ -
E
= 0.1
o
0.0 T T
0 10 20 30
Harmonic Number {
04—
4 (b)
" |
S 03
< J
K] 4
3 p
Iz 02
~ <
4
= -
13
= a.l ]
.
OU |’Il"""']f|lll]’|]"l'7]]
(1] 10 20 30

Harmonic Number {

FIG. 9. The linear growth rate curves for a high-energy beam in the simple
waveguide geometry: (a) the lowest TE mode, (b} the lowest TM mode. The
thin line represents the low-frequency intersection and the thick hne repre-
sents the high-frequency intersection. Parameters: n, = 10" m~?
B,, =0.935,8, =0.305,r,=006m,and r, =0.075m. .

Furthermore, if Ea represents any other solution [of
Py(y,) =0 or Qs(y,) =0, whichever is appropriate] and
&p > &g, then (£, & 5) also corresponds to a solution of the
dispersion relation.

C. The general result

The calculation of the derivative of the empty wave-
guide dispersion relation is straightforward but tedious. The
final expression is quite lengthy and is not presented here.
For our purposes it is sufficient to write

_ ("J.S)'
(m/2°x2P,S;m"
when 7' = 0. Once again the prime denotes the denivative
with respect to w.

The solution for the case of , = 0 can be found by fol-
lowing the same procedure outlined above. The solution can

(8o Bee + Bre Bes) = {30)

2875 Phys. Fluids, Vol 28, No 9, September 1985

be written in the same form, provided that the following
substitutions are made:

PO —iixo) RS\ —Jix,),
P4,Q4—0J, (xq), R4-Q4_’J;(-‘.:’-

In the following, we present results both for r, =0 and
r;>0.

The first example is for a high-energy beam. The param-
eters for this example are 8, = 0.935,y, = 5.46,r, =0, and
ry/r,, = 0.8. A plot of growth rate versus harmonic number
is shown in Fig. 9 for the lowest two dispersion curves when
there is no liner.Without a dielectric liner there is resonant
interaction starting with / = 7.

Figure 10 shows the growth rates for the system when a
1 cm thick dielectric liner with a relative permittivity of 2.3 is
placed against the outer wall. Although nothing drastic hap-
pens, there are some noticeable differences between the two
systems. For the dielectric case, there is resonant interaction
starting with / = 4. Also, the dielectric liner reduces the ini-

0.4 a)

Normalized Growth Rate T'/1,
=3
~
1

0 10

Harmonic Number {

0.4 — (b)

Normalized Growth Rate T'/f1,
)
~
1

rrrTT T 1

oo5 : LLLLHJH,

Q (Y 20

Harmome Namber !

FIG. 10. The lincar growth rate curves for a high-cnergy beam in a dielec-
tnc-lined waveguide 1a) the tirst radial mode, (b the second radial mode
Parameters'n, = 10m .8, =0935,4, =0305r,=006m,7, =00
m,r, =0065m, 7, =00?Sm,ande, =2.).
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P
r:. ' ‘ 30 desires to operate at a point in region B, the beam must be
! ] (a) placed very close to the dielectric wall.
o . The effect of the dielectric is more pronounced in our
SR 6.0 \/ second example. For this system, we have a low-energy beam
RO (o= 1.033) with 85, =0.23,7,/r, =0.2, and ro/r, =0.3.
S = 1 By plugging these numbers into Eq. (19), we see that there
= % can be no resonant interaction for any / unless ro/r_ <0.231
" H 407 (without some slow wave structure). Thus for this example
g ] there is no resonant growth at all without a dielectric liner.
e When we add a dielectric liner with a thickness of 3.0cm
; 207 and €, =2.3, we get resonant interaction starting with
- I = 11. The resonant growth rate curve is plotted in Fig. 13.
- 1 The growth rate decreases much more rapidly with increas-
- L 00— ing / than the previous case did. Whereas we might expect
Ve -100 -5.0 0.0 5.0 100 the first example to multimode, the low-energy example is
: o ’ ch/(2%) (GHz) likely to operate only at the lowest harmonic. The dispersion
R * curves and beam line for the / = 11 case are plotted in Fig.
AR 300 14. We see that the only two intersections are both forward
k- 3 ) waves and the system is relatively close to a tangential inter-
. I section point. Again the dispersion curves are essentially hy-
B ] perbolas asymptotic to the dielectric light line.
o = 200
o E ] 00
. - .ot a _:
N . , 5 - b
" T i
o < 100 T
o ] 32 ’
S h >
oo T ] g -
s b ;: -05 A
,"._.". : 5
. -~ 00 IS AR AR AR RARARRARARRAARE RAARE RARAE RA/ “w N
’ ,_’ -400 - 200 0.0 200 400 4
N ck,/(27) (GHz) -
':::‘~ :‘- FIG. t1. The dispersion curves for a high-energy beam in a dielectric-lined 7
e waveguide: (a) /=4, (b} /= 15. Parameters: B, =0.93S, 8, =0.305, -10 .'..I”nl....[..nlnv.l.n'lunlv
_:_-_: r,=006m,r, =00m, 7, =0.065m,r, =0075m,and ¢, =2.3. 00 0.08
' Radial Location (m)
- 10
tial harmonic for the second radial mode from /=26 to | )
- 1 =9. Furthermore, there is a dip in the forward wave
- growth rate at / = 5 for the lowest curve and / = 11 for the T
second curve. These dips correspond to the places where the 5 .
— resonant points “cross over” the vacuum light line. For the 2 _
- dielectric-free case, the growth rates for the forward and 3
backward waves are comparable. However, in the dielectric g 03 1
case, the forward wave growth rates are often much smaller < n
' than the corresponding backward wave, especially when the = 4
= resonant intersection is in region B. i
The dispersion curves for the fourth and twentieth har-
. monics are plotted in Fig. 11; the beam lines are also plotted. 1
.;,;' The dispersion curves that produce resonant intersections L e e s A AR AR RS R AAS AAAARRRRRS RARAS &)
) appear to be approximately hyperbolas asymptotic to the 00 0m 004 008 oo
dielectric light line. The E,, ficlds are plotted in Fig. 12 for the Radial Locatson (m)

backward wave intersection when / = 4 and for the second

forward wave intersection when / = 20. It is typical that the
field is relatively large at the beam location when the inter-
section occurs in region A, Likewise, when the intersection is
in region B, the bulk of the field is in the dielectric. If one

2076 Phys. Fhuds, Vol. 28, No. 9, September 1985

FIG. 12. The empty waveguide E, profile for: (a) the / = 4 backward wave
intersection (£ = 2.94 GHe, &, =298 m}, (b) the / = I3 forward wave in-
tersection with the second radial mode | £ = 17.8 GHz, 4, = 0014 m). -
rameters: f, =0.935,0, =0305,7, =006m,7, =00m,7, =0065m,
e =003 m ande, =2.).
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FIG. 13. The linear growth rate curves for a low-energy beam in a dielectric-
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B, =010, 7,=0.015 m, r, =001 m, r, =0.02 m, r, =0.05 m, and
€, =23,

V. SUMMARY

We have developed a powerful procedure for calculat-
ing the linear growth rates of a particular class of beam-
waveguide systems. The method easily recovers previous re-
sults and can also handle systems with hybrid empty
waveguide modes. Using this method we have derived many
properties of waveguide systems with dielectric liners. We
have demonstrated the usefulness of such liners in low-ener-
gy systems.

Some of the effects neglected by our idealized, zero
thickness beam analysis should be pointed out. In high har-
monic systems with finite thickness beams, betatron oscilla-
tions and frequency (£2,) spread may reduce the growth rates
considerably. Also, dielectric losses were neglected in our
analysis. The stabilization of the negative mass instability by
lossy dielectrics has been examined previously by Briggs and
Neil.?* These nonideal effects should be carefully estimated
before any particular dielectric, large orbit device is con-
structed.

This general procedure can be applied to many more
systems than the ones described in this paper. Although the
model assumed azimuthal symmetry, the method can actu-
ally accommodate systems with periodic boundary condi-
tions in the @ direction. For example, the method can be
applied to the popular vane-type resonator system.** This
type of application will be discussed in detail in a future
paper.
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High-Power Microwave Generation from a Large-
Orbit Gyrotron in Vane and Hole-and-Slot Conducting
Wall Geometries

WESLEY LAWSON, WILLIAM W. DESTLER, Memser. 1EEe, AND CHARLES D. STRIFFLER, MEMBER,
IEEE

Abstract—The production of high-power microwave radiation from a
large-orbit gyrotron in azimuthally periodic boundary systems is stud-
ied theoretically and experimentally. Linear growth rates are calcu-
lated for the 2 x modes of magnetron-like vane resonator (VR) and hole-
and-slot resonator (HASR) systems using a general growth-rate for-
malism. The experiment involves the interaction of a 2.3-MeV, 1-2-kA,
5-ns rotating electron layer with two different periodic structures.
About 500 MW is produced in Ku band with a 20-slot VR system and
about 300 MW is produced in X band with a 10-slot HASR system. The
relative merits of both types of systems are discussed.

I. INTRODUCTION
A. General Discussion

N RECENT YEARS, there has been considerable the-

oretical and experimental work performed on the sub-
ject of microwave generation at high cyclotron harmonics
from large-orbit gyrotrons. These devices would be ex-
tremely desirable in high-power high-frequency applica-
tions because of the reduced magnetic-field requirements
inherent in high-harmonic operation. Recent theoretical
studies [1], [2] with smooth wall geometries indicate that
multimoding would occur in high-energy systems because
of the slow variation of growth rate with harmonic number
1. Subsequent theoretical studies [3]-[7] considered azi-
muthally periodic structures in attempts to favorably se-
lect a particular harmonic. These studies concentrated on
the magnetron-like vane resonator (VR) structure.

Microwave radiation at cyclotron harmonics from a ro-
tating £ layer has been observed [$] (and subsequently
analyzed [9]) in the Astron machine. More recently, this
radiation process has been the subject of several experi-
mental studies on the University of Maryland's high-en-
ercy Rotating Beam Facility (RBF) [10], [11]. With 4
smooth cylindrical conducting boundary, broad-band ra-
diation was observed in X band (8-12 GHz) at power levels
of ~200 kW per mode. With a 12-vane system and a cy-
clotron frequency of ~0.77 GHe, single-mode operation
at = 9.6 GHez was achieved at power levels more than three
orders of magnitude above the smooth wall results.

Manusenpt recerved March 29, 1988, revised July ¥, 1985 This work
was supported in part by the Air Farce Othee of Saentine Rescarch and in
part by the Umiversity of Manyhand Computer Saience Center

The aunhors are with the Blectnical Encineernimy Depatment and Laba.
tatory for Plasma and Fusion Bnerey Stadies, University of Marsbind, Col.
leee Park, MDD 20742,

In this study. a general growth-rate formalism is applied
to the VR configuration and to the magnetron-like hole-
and-slot resonator (HASR) contiguration. For both cases,
the properties of the dispersion and growth-rate curves are
considered in detail. Designs for a 20-slot VR structure
and a 10-slot HASR structure are analyzed according to
the linear theory. Experimental results for the two designs
are then presented and discussed.

The theoretical formalism is discussed in Sections I-B
and I-C and the experimental apparatus is described in
Section I-D. In Scction 11, the VR structure is presented.
The HASR structure is the subject of Section I and con-
clusions are drawn in Section 1V.

B. Theoretical Formalism in Axisymmetric Systems

In this paper, lincar growth rates are calculated for the
azimuthally periodic structures via a gencral growth-rate
formula that was derived previously by the authors {12].
The gencral formalism is valid for a special class of cylin-
drical waveguide systems. The systems have thin. ten-
uous, large-orbit, annular clectron beams. Furthermore,
the systems are axisymmetric and invariant under trans-
fations in the £ direction. For systems that satisty the above
assumptions, an explicit formula gives the lincar growth
rates of the EM waves. In Scction I-C, it is shown that the
axisymmetric growth-rate formula can be applied directly
to azimuthally periodic systems in an appropriate limit.

The type of system considered by the general formalism
has an clectron beam propagating in some cylindrical
waveguide immersed in a uniform magnetic ficld B, (see
Fig. 1). The beam is assumed to be cold: all electrons
move predominately on helical orbits about the svstem
axis. The beam is also assumed to be very thin; its equi-
librium density is given by

no(ry = nd(r - ry)

n
where ry is the equilibrium beam radius and n, is the sur-
face particle densty. Furthermore, the beam is assumed
to be sutliciently tenuous so that the de seit-ticlds are ne-
glected. Each electron has an initially unperturbed (nor-
malized) velocity of (0. B, B-). This simple distribution
cnables the use of the single-particle equations in the anal-
ysis.

0093-3813/85/1200-0444501.00 D 1985 IEEE

ksl aod Gl el Sol Sad Sl A




P
.

o Y

-

.
3 e Y
P

-~ -
~

’ ("h"_'. o5 a 1 |

DAV AT
. .
DR e

g
[
[
PRy

)

MR N
A
. oyt 4

R

G,
}a

]

.."1 I.

e 2 Y

' 2.
S

s

.r‘-‘x‘n
. .

-

P S o
Al Pl
:'l'l'.:'_:' N

sl' -

g

c e
s
e s

LAWSON et al.:

Fig. 1. The equilibrium model.

The linear growth-rate problem is divided into two parts.
The first part involves the calculation of the perturbed
sources in terms of the EM fields via the equations of mo-
tion and charge conservation. The linearized and Fourier-
analyzed (exp [i(k.z + [0 — wr)] dependence) equations
are solved for the perturbed current to lowest order in the

parameter ¥ = w — 12y — ¢k, B,;
l]r|
=0 (2a)
€C
2,
i/ (2—) (- i®, £
€C Yo
+ Qy(rd,cB)°) 8(r — ry) (2b)
2
ﬁ_ﬂ_ = - (2>_[_,Q EO
€C Yo
+ Q4(rd,cB)°] 8(r — ry) (2c)

where yomqc® is the equilibrium pamcle energy, Qo = eBy/
(myvy), Q. = k¢ — wBy,, v = nge 2 romo/(2my) is Budker's
parameter, and the superscript zeros indicate that the fu.lds
are to be evaluated at the equilibrium radius ry,.

The parameter y, is a measure of the difference between
the frequencies of the actual EM wave and the beam per-
turbation (wy = IRy + ck.B,). The synchronous limit is
defined by ¢, — 0. Thus a beam is said to be synchronous
with an EM wave when {; is small compared to the other
frequencies in the analysis (Y, << Q in particular). A
beam is said to be resonant if w, is equal to the frequency
of an empty waveguide mode. This paper considers exclu-
sively the synchronous resonant case.

In the second part of the analysis, the 7 direction is di-
vided into two regions: Region I, where r < rg, and Re-
gion II, where r > ry. In those regions, J = O and the
axial ficlds are written as a lincar combination of Bessel
functions (the homogeneous wave equation solutions):

x(r) = AJi(§r) + BY,(§r) 3

for £ = (w/c)? - k2 and x = {E.. ¢B.}. The boundary
conditions that do not involve the beam ace applied in or-
der to find the solutions in the two regions in terms of the
unknowns E? and (rd,¢ B.)". The system of cquations is
closed by integrating two components of Ampere’s law
across the beam. Two cquations are produced that express

the jumps in c¢B, and rd, E, across the beam in terms of

MICROWAVE GENERATION FROM LARGE-ORBIT GYROTRON us

cErt(z)\m beam parameters and the values of (rd, cB) and
(E)

Although the beam generally couples the axial fields to-
gether, the synchronous resonant growth rates for homo-
geneous TE modes depend only on ¢ 8. and its derivative.
The empty waveguide solutions and corrcspondmo growth
rates for homogeneous TE modes are given by

po = 5 "33}338 = g o
and
Pre _ Y3 | 200 | @)
Q 2 Q9,860
for I' = Im (w). Equation (4) is applied to VR systems in

Section II and to HASR systems in Section IIl.

C. Extension of the Growth-Rate Formula 1o
Azimuthally Periodic Structures

The systems considered in this paper are assumed to be
invariant under translations in the Z direction. Conse-
quently, the general EM wave solution can be written as
a sum over the azimuthal harmonic numbers /. In the axi-
symmetric analysis, all the boundary conditions are sat-
isfied with only one harmonic perturbation and the ampli-
tudes of all the other harmonic perturbations are set to
zero. Without azimuthal symmetry, the harmonic penur-
bations are coupled together. Nonetheless, (2) is valid for
each I, provided that £2 and (rd,c B,)° are interpreted to
be the coeflicients corresponding to the {th harmonic of
the fields.

The synchronous condition implics that the actual EM
wave frequency is near onc of the beam frequencies. Be-
cause each beam mode is separated by ;. only one of the
¥r's will be small (if ¢, << Qy, then ¢y, ~ 1Q). I by
corresponds to the synchronous beam mode, then as
v, — 0, ],u becomes much larger than all the other per-
turbed current harmonics. Consequently, the synchronous
assumption implics that only one harmonic in the beam is
excited. Thus (ra,E:),', and (c B.),, will be subjected to jump
conditions at ry, but all the other ticld harmonics will be
continuous across the beam. This implics that there are
still only two boundary conditions that involve the beam.
Hence, the boundary conditions away trom the beam can
be used to find the field profiles in terms of two unknowns.
In other words. the lincar growth-rate formula can be ap-
plied directly to the periodic case without any additional
assumptions.

The solution is still found by dividing the space in the
waveguide into appropriate regions and applying all ot the
boundary cquations away from the beam. Once of the
boundarics is at the inner radius of the slotted wall. The
exact solution involves matching the EM ficlds just above
and below this boundary at every azimuthal location. The
first simplifying assumption is that the slots only contain
the [ = 0 harmonic. This means that the EM ticlds remain
constant across a given slot opening and they cannot all
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Fig. 2. The general experimental configuration.

be matched exactly. Instead. one of the fields (c§:) is
matched on the average across the opening. This tech-
nique corresponds to the impedance matching technique
used in early magnetron research [13]. This assumption
enables the empty waveguide dispersion relation to be
written in a reasonably simple form. The dispersion rela-
tion can in principle be found without this assumption, but
the exact solution requires the calculation of the determi-
nant of an infinitely large matrix. It has been shown that
the approximate results are close to the exact results in
cases similar to those considered in this paper [14].

In general, there can be a uniform phase shift between
each pair of neighboring slots, provided that the total phase
shift around the structure is a multiple of 2x. This analysis
considers only the 2= mode (i.e., all resonators are in
phase), because we believe that it is the predominant mode
in our geometry. Our belief is based on an initial condition
calculation [15] which shows that the 27 mode is favored
in systems wherc the beam is symmetrically injected into
the resonator. For the 27 mode, it can be shown that the
EM ficlds only contain multiples of n, where # is the num-
ber of resonators in the system. The synchronous har-
monic is assumed to be Iy = n.

Finally. it turns out that the empty waveguide modcs for
the slotted wall systems still decouple into TE and TM
modes. Only resonant interactions with magnetron-TE
modes are considered in this paper.

D. Experimental Apparatus

A bricf description of the experimental apparatus is of-
fered here: a more detailed description can be found in
[10]. The RBF is shown schematically in Fig. 2. The beam
is produced at the knite-edged cathode of a field-emission
diodc. The rotating E layer is gencrated by passing the
lincarly streaming annular beam through a balanced mag-
nctic cusp [16]. The cusp is maintained by two scts of
pancake coils on opposite sides of an iron plate. The
downstream magnetic ficld is essentially uniform in the
region 0.15 to = 1.0 m from the cusp center. In this uni-
form region, magnactic-ficld mcasurements are accurate to
within | percent. Nominally, the electron beam has a 0.06-
m radius, an energy of ~2.3 MceV, a current of 1-2 KA,
and a post-cusp pulse duration ot ~ 5 ns,

The signal is gencrated by the interaction of the rotating
beam with the magnctron-like structure and  travels
through the remainder of the downstream region (total

- 'f","‘../.'.f:l_ '...'_..._.. '...'_‘. {W LR ‘-..
'» " v i o

P,.'_-.A‘—IJA_ALJ)JJ

1IEEE TRANSACTIONS ON PLASMA SCIENCE. VOL. PS-13,

NO. 6. DECEMBFR 1985

length of ~3 m) in a smooth cylindrical waveguide. A
cylindrical horn at the end of the drift tube provides the
transition to free space. The transition from the smooth
wall radius to the final horn radius of ~0.15 m occurs in
~0.50 m. Measurcments of the radiated power at this
point indicate that it is unpolarized and almost uniformly
distributed over the solid angle subtended by the output
horn. The absence of any mode pattern is attributed par-
tially to the resolution limit of the receiving horn and par-
tially 1o mode conversion both at the periodic wall-smooth
wall boundary and in the output horn. An open-ended
waveguide (WR90) placed >35 free-space wavelengths
from the transmitting horn is used as the receiving horn
in the X-band measurements. A rectangular horn with a
2.3 x 107® m? cross-sectional area placed >10 free-space
wavelengths from the transmitting horn is used in the Ku-
band measurements.

The portion of the radiated power picked up by the re-
ceiving antenna is transmitted down a long rectangular
waveguide (~ 35 m). The waveguide provides both signal
dispersion and attenuation. At the end of this dispersive
line, the signal is further attenuated by a directional cou-
pler and a variable attenuator. The final power level is
measured by a calibrated crystal detector which is con-
nected to an oscilloscope through a 50-Q load.

The total output power is estimated by calculating the
fraction of power intercepted by the receiving horn and
correcting for the attenuation suffered by the signal along
its path to the detector (10]. As in all high-power micro-
wave measurements of this type, total peak power is dif-
ficult to measure to an accuracy of better than 3 dB. The
spectrum is determined by measuring the arrival time of
the signal and using standard dispersive line theory. Un-
certaintics in the frcquency and power measurcments due

to the uncertainty in the measurement of the arrival time

¢an also be easily found from dispersive line theory.

II. Tie VANE-RESONATOR CONFIGURATION
A. Theory

The VR system is shown in Fig. 3. The beam radius is
ro. the inner wall radius of the magnetron structure is r,,
the outer wall radius is r,, and the number of slots is n.
The angle of the slot opening is A6 and the angle of one
period is 8,. The region defined by r < r is denoted by
the intcraction region. The region defined by r,. < r < 1y
is called the slot region.

Using the fact that ¢8. is bounded as r = 0 and that
only the nth azimuthal component of ¢ 8. is discontinuous
at ry, it can be seen that .

[ Ji() ],.m
Wl (e

o
CB-: = , Z (ra,('li_.)f
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+ (rd, B! [ J.(0 (5a)

¢ tath
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o«
- "l(""
cB. = X (rd,cB) , 1o
l=- xuJi (x,)

l#n

+ (rd,cB), [x*QS" ((‘; x():o)] e

5 O.(x. x,) } ;

+ B | =i b

(ra,‘ ‘)n Losn(-‘o, -tw) € (5 )
whenry < r < r,, and
(rd,cB)* [M] 6, < A9
~ - stt)(-rwv XS)
cB. =

0, AG =6, <9,
(5¢)

whenr, <r =r,where8, =60 -pd,, 0 <p=<n-—
I, £ = [(w/) = k)", x = rg, etc.. and the superscript
+ refers to r;. The standard notation for the cross prod-
ucts of Bessel functions has been adopted here {17]:

P.(a. b) = J,(a) Y,(b) - Y,(a) J,(b) (62)

Q.(a, by = J,(a) Y,(b) — Y,(a) J,(D) (6b)

R.(a, b) = Jiia) Y,(b) — Yo (a) J, (D) (6¢)

S.(a, b) = Ji(a) Y () — Ya(a) J,(b). (6d)
The continuity of £, at r,, requires that

A6/6,,

a, B)_ /i —iA82
~——-§:a : B‘)” = n?lsin (1A0/2) 7492

=0
I/n an integer

0, else.

Matching the average value of B, across the slot opcning
results in a relationship between (rd,¢B.) " and (+3,¢B.),.
The geometry factor g, can then be found from (4) to be

Fig. 3. Cross section of the 20-siot VR structure.

Equation (4) implies that the magnetron-TE empty wave-
guide modes are given by D(£) = 0 and that the resonant
growth rate for these modes is given by

r 3 < i, ><A_0> Csin onlz)J’
0~ 2 \.0,0.00)/ \3,) | " naon

. xoJ 7 (xp) "
[J;(m H ’ (10

The results for the non 27 modes are quite similar. If
the phase shift between two adjacent resonators is as-
sumed to be exp [i/y0,] for 0 < [, < n, then the correct
empty waveguide dispersion relation is found by substi-
tuting Iy + gn for gn wherever it appears in (9b). If the
synchronous harmonic is /. then the correct growth rate

*..is found by substituting {; for n everywhere in (10). Non

%)

27 mode growth rates for VR systems have been com-
puted elsewhere [5]. Those results typically indicate that
the growth rates are comparable to the growth rates of 27
modes.

D(¢)
ghh = sJ,( ) S ( ) AG
-"(-! n 'rﬂ " -‘-ﬂ' X
D + |\ —
(E) [ Jl’l('rn') ] <0!)
where the slot term is given by
Qn(.\'“ . .l")
D(§) = L %
( ) So(."“. X') ( d)
and the interaction region term is given by
A0\ & 100 [in (qu_wz)l’
D) =(=) X ot
(5 (0,> gr-m t(x,) qnig /2 Ob)
and
D(&) = D,(§) = D(%). (9¢)
G e

t)

E‘_:’ [J,'.(-\’u) r {sin (n.m/Z)J2
X Ln(x0) na6/2

B. Design

The parameters for the experimental VR structure are
n =20 r,=00652m, r, =0.070 m, and 20/0, = 0.535.
Plots of D, (&) and D (&) for these parameters are shown
in Fig. 4. Solutions of the empty waveguide equation oceur
whenever the D, and D, curves intersect and are indicated
in the figure by circles. The radial mode with which we
expect predominant beam interaction is also indicated in
the tigure. The poles of D, are given by the zeros of /0, (x,)
for ¢ = {0. 1.- -}, and the poles of D, are given
by the zeros of Sy(x,., x,). Whenr, = r, << r,, D, varics
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Fig. 5. The dependence of the cutoff frequency on the slot depth. Param-
eters: n = 20, r, = 0.0652, and 30/, = 0.535.

rapidly compared to D, because the poles of D, are far
more frequent than the poles of D,.

Because D, is strictly decreasing and D, is strictly in-
creasing (on cach domain where the functions are dcfined)

|D'(¥)| = |D;(&)] + |D;(&)].

We do not want to be near any of the poles of D, because
T « D’(¢)~">. This generally means that we must have
| D, ] small at the desired operating point.

Fig. 4 can be uscd to determine the effect of adjust-
ments in the paramcters on the cutoff frequencies of the
various modes and the values of D' (&) at those points. For
example, increasing r, does not affect D, but will cause
D, to decrease more rapidly. resulting in lower cutoft fre-
quencics. Furthermore, the mode trapped between 16 and
16.5 GHz will have a fow growth rate tor all values ot r,.

The ettect of slot depth on the cutott frequency is turther
demonstrated in Fig. S, The sixth through the minth radial
modes are plotted for n = 20, r, = 0.0652 m. and 10/0,
= ().535. The cutoff frequencies of these modes are in the
regime of beam-waveguide resonance. The smooth wall
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case is located at r,/r,, = 1.0. The numbers in parentheses
next to each radial mode number n, indicate the limiting
smooth wall mode as r, = r,. For example, the seventh
magnetron-TE radial mode approaches the first smooth
wall radial mode of [ = 20 when r, — r,. As predicted,
all of the cutoff frequencies are decreasing functions of the
slot depth.

The EM wave in the slot can be naively pictured as a
TEM wave traveling down a shorted waveguide. The \/4
line indicates the time it would take a TEM mode to travel
up and down the slot twice, assuming that it was traveling
at the speed of light. The corresponding expression for the
frequency is f = ¢/[4 (r; — r,)]. The N/4 labet comes from
the fact that a quarter-wavelength standing wave is ap-
proximately set up in the slot at these frequencies. For a
VR system, the actual M4 frequencies are given by the
first zero of R, (x,., x,). The frequency of the naive esti-
mate is usually close to (but smaller than) the actual re-
sult. The A/2 line roughly corresponds to the frequencies
where £ is zero at the slot entrance. The actual frequen-
cies are given by the first zero of 5 (x,., X,) (the first pole
of D;). At these frequencies, the standing wave in the slot
is a half-wavelength. A N/2 point always has poor coupling
to the slot and should be avoided. At higher values of
r/r,, (not plotted), good coupling can be achicved at fre-
quencics corresponding to the 3A /4 slot mode.

The lowest azimuthal components of the £, field for the
desired operating point are plotted in Fig.6. For the inter-
action region, the [ = O contribution is plotted in Fig. 6(a)
and the ! = 20 contribution is plotted in Fig. 6(b). The
total £, field in the slot is plotted in both figures and is
normalized to unity at the slot entrance. For this case
(r,/r, = 1.074), the operating frequency is below the A4
frequency and the standing wavelength is slightly less than

‘N4

* ‘The bulk of the { = 20 field component is near r,.. Be-
causc resonant interaction occurs at [ = 20, it is necessary
to place the beam near that wall. Furthermore, a study
considering the initial condition problem on the RBF [15]
concluded that the beam should be placed at a maximum
of the I = 0 component of E;. Our 0.06-cm beam radius
well satisties both criteria. In fact, the best experimental
results for the VR system occur when the downstream
magnetic field is made a few percent larger than the diode
magnetic ficld. The effect of this unbalanced cusp is to
decreasc the average beam radius [18], placing the beam
in an even more tavorable location.

The magnetron-TE dispersion relation in w — ck. space
is a hyperbola given by w; = Wi + k3, where wey is the
cutoff frequency of the mode under consideration (sce Fig.
§ for w.,,). Resonances occur at axaal wavenumbers where
w, (k) = wye(k). In general there are two values ot 4. for
resonances; these are denoted as a low-frequency reso-
nance (sometimes a backward traveling waved) and a high-
frequency resonance (always a forward traveling wave).
When these two roots converge into one, this resonance s
denoted as the grazing condition. A given beam mode in-
teracts with any radial mode that has

R S PN
PO ", T ey Y P e

T T T e P L Ve P H T AT AW T




DRl A Tl B}

ol vy

2

E, (Arbitrary Units)
o
o S

/\
_ VARV

[t B L L L N U SRS B B B

0.00 001 0.02 0.03 0.04

TTTT Y

0.05 0.06 0.07

Radial Location (m)

(a)
1.0
4
) 4
z
= -
s os
<
< —
"y +
—~
4
0.0 LS BN e 0 S B S S B S UL S 00 U 0 S
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Radial Location (m)
(b)

Fig. 6. The VR empty waveguide £, ficld at the center of the slot opening:
(a) the I = 0 component and (b) the [ = n component. The 20 slot VR
parameters: n = 20,1, = 7, r, = 0.0652, r, = 0.070 m, and A0/9, =.
0.535. See (7).

1Q
Do S (1)

(1 -8y

In high-energy machines, the resonant frequencies are
usually very sensitive to small changes in the beam energy
and the appliecd magnetic field. This is especially true for
the highest radial mode that satisties (11). Unfortunately,
the highest resonant radial mode is usually the desired
modc for operation. The design procedures are further
complicated by the uncertainty in the RBEF beam energy.

A plot of growth rate versus f, = w,/2x at the resonant
points is shown in Fig. 7 for nominal beam parameters: n,
= 10" m™, B, = 0951, 3, = 0.250. and r, = 0.06. The
beam energy is adjusted slightly so that equality in (11) is
ncarly achieved tor the highest radial mode (the so-called
grazing condition [12]). The growth rate for the desired
mode is reasonably large at ~15.2 GHz. Thus the theo-
retical considerations seem favorable for this contiguration
and microwave radiation from a single radial mode ap-
pears likely,
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Fig. 7. The lincar growth rates for the 20-slot VR system. Beam parame-
ters: n, = 10" m™%, 3, = 0951, 3. = 0.250, r, = 0.06 m. The VR
parameters are given in Fig. 4. The growth rate at ~15.2 GHz s for the
grazing condition with the n, = 7 mode. The other low (—) and high
(+) resonant mode interactions are: w (a1, = 4) ~ 122 GHz: w .(n, =
5) ~ 126 GHz: w_(n, = 6) ~ 13.3 GHz; w.(n, = 6) ~ 17 GHz; and
w,.(n, =95) ~ 17.7 GHz.

C. Experiment

Previous experimental studies of high-power microwave
generation from rotating clectron beams in magnetron-like
boundary systems have included configurations with a)
outer VR boundaries only [11], b) coaxial systems with
resonators on the outer wall, ¢) coaxial systems with res-
onators on the inner wall [5], and d) coaxial systems with
resonators on both walls (in phase and 180° out of phase)
{S]. Previous attempts to produce microwaves at or around
the twenticth harmonic of the electron cyclotron frequency
have shown that the slot depth and the radial position of
the beam relative to the resonators are of critical impor-
tance in maximizing microwave output. Maximum micro-

- wave power observed at the twenticth harmonic using in-

ner wall resonators is about 40 MW,

The best 1 = 20 VR results to date were obtained using
an outer wall resonator system with r, = 00652 m, r, =
0.070 m, and A0/0, = 0.535. The resonators are placed 14
cm back from the iron plate so that they will not scrape
off the beam during its initial expansion. A typical result
for the VR experiment is shown in Fig. 8. Approximately
500 MW of power is observed at a frequency of 15.5 GHe.
Power levels at other frequencies are typically down by a
factor of 15 dB. For this case, the diode magnetic ficld is
sct to 1450 G and the downstream ficld is set to 1500 G.
The average ficld of 1475 G is very close to the cutoft field
of 1525 G (sce [16]). Consequently, the axial velocity is
relatively low and the beam density is high. This result
represents about a 15-percent conversion etliciency of
beam power to RF power.

The error bars in Fig. 8 do not reflect the uncenainty
in the power level duc to possible systematic error an the
general measuremient scheme (e.g., error in the estimation
of the fraction ol power intercepted by the receiving horn),
In Scction 1-D, we estimated that error to be £3 dB. In-
stead, the cerror hars incorporate only the uncertantics
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Fig. 8. Radiated microwave spectrum from the 20-siot VR system. Diode
magnetic ficld: 1450 G. Downstream field: 1500 G. Approximate beam
parameters are given in Fig. 7. The error bars incorporate only the un-
certainties in the measurements of the arnval time and the detector volt-
age. They do not reflect possible systematic errors in the power mea-
surement scheme.

in the measurements of the arrival time and the detector
voltage. In this way, relative comparisons between the
results of the various wall configurations can rcasonably
be made. Unfortunately, the large net error estimate (+3.5
dB) leaves the uncertainty in the cfficiency to be (more
than) a factor of two.

The diagnostics for the experiment leave several ques-
tions unanswered. For example, at these high harmonics,
the mode spacing is quite small and the uncertainty in the
beam encrgy makes it impossible for us to identify the ex-
act mode from the frequency measurcments. Thus it is
possible that the machine is actually operating in a mode
near the synchronous 27 mode. The experimental results
are consistent with the 27 mode theory, but they do not
confirm it.

In spite of the uncentaintics, several conclusions can be
drawn from this and previous experiments on the RBF.
First, a properly designed pertodic structurc can excite
radiation at a single frequency with power levels three or-
ders of magnitude above thosc from a smooth wall config-
uration. Also, the output from this 20-slot VR cxperiment
is comparable in power to the best 12-slot VR experiments
previously performed on the RBF. This result indicates
that the outlook for operating at extremely high cyclotron
harmonics is prowising {although initial 30-slot VR ex-
periments had severe multimoding problems and achieved
power levels at best a factor of 10 higher than smooth wall
results [19]). Finally, it should he pointed out that in pre-
vious studics with periodic structures on the inner wall
{4]. radiavion in the frequency range consistent with the
7 mode remained at smooth wall power levels (were not
enhanced) in systems that radiated cffectively in the fre-
quency range consistent with the 2 mode. This fact lends
some support to the imitial condition calculation, because
the cusp angects the rotating beam symmetrically into the
repion with the periodic structures,
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Fig. 9. Cross section of the 10-slot HASR structure.

III. THE HoLE-AND-SLOT CONFIGURATION
A. Theory

The HASR system is shown in Fig. 9. It is assumed that
the HASR system consists of a VR system with a hole
added at the end of each vane. The rectangular slot case
is similar and is not considered here. The hole radius is r,
and the angle of the hole opening is Ay = 2 sin™' [sin
(A0/2) r,/ry].

An additional assumption has to be made for the HASR
system. Let r and § denote the cylindrical coordinates
whose origin is at the center axis, and let r* and 8* denote
the cylindrical coordinates whose origin is at the center of
a (hole) resonator. At the opening of the hole, the arc de-
fined by |r| = r, is assumed to coincide with the arc de-
fined by |r*| = r,. This assumption will be good only for
relatively thin slots. Mathematically. the restriction is that
A0 << r,/r,. This assumption simplifics the calculation
of the boundary conditions at the hole opening, because
the ficlds in the resonator are easily expressed in terms of
the (r*, 8*) coordinate system.

The field in the slot is now

Ou(x. X))
-t,S()(.r, v Y )

(12a)

B. = (rd,cB)"*
¢B. = (ro«B.) x, Sy, X)

+ (3,8

and the field in the hole resonator is

B, = X

m= -

- LM .
(’.a' ‘B):'__'____ KL 4
T i)

where x* = r*t, x, = r,E, and the ficld in the interaction
region 1s still given by (Sa) and (5b).
The requirement that

(12b)

(rO,(‘l}.) : LA Ay
= )tl W)+t S\ v K
(rd, ey 2 {(' (. %) 2n (he £
o

~ 1. [\m (AL
me-o (1)) miy/2
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comes from matching £, and the average cB. ficld at r =
ry. At this point, the solution can be found by following
the steps for the VR solution, because there is only onc
remaining unknown in the slot and all the boundary con-
ditions at r,, remain to be applied.

The dispersion relation can be split into three parts. The
slot term and the interaction term are still given by (9a)
and (9b). The hole resonator term is given by

Dh—l(s) = (g)zxnx:su(xw’ Is)

4 Soltus X) 2

2r m=-m

X {Ro(.rw, x) +

AT l:sin (mAWZ)D 14

Jr(xs) mAy/2

The equations for the geometry factor (8) and the growth

rate (10) are valid for the HASR system after the substi-
tution

D(§) = Du(§) + Dy(§) — D(&). (15

It is often more convenient to plot the entire resonator term
D,(%) = D(£) + Dy(£). From (9a) and (14), it is easy to
show that
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Fig. 10. The contributions of the resonator and interaction regions to the
dispersion function of the HASR system. The circles indicate empty
waveguide solutions. Parameters: n = 10, r, = 0.068 m, r, = 0.070 m,
ry, = 0012 m, a0/6, = 0.147.

est radial mode competitor may not be as complete with
VR systems. The added flexibility in the choice of r, is
another advantage of HASR systems.

In Fig. 11, the total £, field profile of the fifth radial
mode is plotted as a function of r. The field along the line

- 4
Po(x,, x) + (AY27) Quten X)) 5 L)) [sin (nAY/2)imAY2)?

D) =

B. Design

The parameters for the HASR systemaren = 10, r, =
0.068 m, r; = 0.0703 m, r, = 0.012 m, and A6/6, = 0.147.
The dispersion functions D, and D, are plotted in Fig. 10.
Recall that solutions are given by the intersections of the
two curves. In the figure, these points are indicated by
circles. The system is designed to operate in the fifth ra-
dial mode. The cutoff frequency for that mode is 7.63 GHz.
The poles and the zeros of D, can be found from (16).

The analogy of TEM A4, N/2, etc. modes is more ab-
stract for the HASR resonators, but still can be applied.
The N2 point, for example, corresponds to the first pole
of D, (16). In the experimental design, the A/2 point is at
~7 GHz and the desired operating point is between that
and the 3N/4 point. The proximity of the N/2 point to the
mode at 7.13 GHz results in a large value of |D'(¢)] and
conscquently a small value of growth rate (see (10)). How-
ever. D, decreases sutliciently rapidly so that the desired
mode has a favorable growth rate. Thus carctul placement
of the first pole of D, can virtually climinate competition
from the radial mode nearest the desired operating point.

The 20-slot VR case previously discussed was designed
for the N4 mode, had slowly varying growth rates, and
should not be compared with this HASR example. How-
ever. the same idea can be applicd to the VR systems op-
crating between the A2 and INA points. In general, D,
varies more rapidly than 2, and so the nulling ol the near-

RO(xwv X:) + (A¢/2W) SU(XW' xs) _Z "m('rh)/']l’u(xh) [Sin ('"Ab'//z)/'"A\///zl:

(16)

passing through the center of the slot is shown in Fig.
11(a). The £, ficld midway between slots is plotted in Fig.
1(b). The beam is located in a reasonably favorable po-
sition of the field profile. At small radii, the / = 0 term
dominates and the field is essentially independent of azi-
muthal angle. However, near r,, the ! = n term is quite
strong and the E, field is essentially n periodic. Compared
to the VR cxample, the relative contribution of the [ = 0
term is greatly reduced. This s partly due to the smaller
value of A8/0, and partly duc to the lower radial mode
number. The £, ficld in the hole is quite large, though the
hole volume is relatively small.

In the experiment, the best results occurred at magnetic
ficlds between 1300 and 1325 G. The growth rates are
shown in Fig. 12 for the nominal parameters 34, = 0.854,
B., = 0487, and r, = 0.06 m. The growth rates for the
fifth radial mode (at ~8.1 and ~9.7 GHz) are approxi-
mately six times larger than the growth rates of the fourth
radial mode (a4t ~7.2 and ~10.6 GH2), indicating that
single-mode operation should be feasible,

C. Experiment

The HASR systemy is inserted into the RBF and held in
place =15 cm trom the iron plate. An adapter brought the
wall radins down from the RBF's 7.5 ¢m o the HASR S
6.8 ¢, The overall length of the HASR structure iy ap-
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Fig. 1. The HASR cmpty waveguide E, field: (a) at the slot center and (b)
midway between two slot centers. The 10-slot HASR parameters: n
10,7, =5, r, =0068m,r, = 0070 m, r, = 0012 m, and A6/9,
0.147.
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Fig. 12, The hincar growth rates for the 10-slot HASR system. Beam pa-
rameters 7, = 10 m Bo, = 0854, J = 0487, and r, = Q06 m.
The HASR paramcters are given an Fip 100 The mode identilications
are woin, =4) ~ 12GH,. w (1, =5) ~B1GHz w,(n, = 5) ~ 97
GHz. and w, (n, =4) ~ 106 G2,

proximately 60 cm. Short rods with 20° tapers are in-
serted in the holes at the input side of the structure to pro-
vide a continuous transition from the smooth wall contig-
uration to the periodic contiguration. The HASR structure

. \.‘

g

Output Power (MW)
*~
2
VTS IR A ISR

o

AN B R S SuL AN B B T T T T T

8 9 10 u 12
Frequency (GHaz) ,

-~

Fig. 13. Radiated microwave spectrum from the 10-siot HASR system
Magnetic field: 1300 G. Approximate beam parameters are given 1n Fig.
12. The error bars incorporate only the uncertainties 1n the measurements
of the arrival ime and the detector voltage. They do not retlect possible
systematic errors 1n the power measurement scheme.

is tapered at the output end so that the large amount of
field energy in the hole can easily be collected. The 24°
taper brings the inner radius out to a smooth wall radius
(r, > rs + 2r,). A 10-cm-radius smooth wall tube brings
the microwave radiation from the ¢nd of the HASR system
to a cylindrical cone at the end of the vacuum chamber.

The best results for this experiment are shown in Fig.
13. Approximately 260 MW of power is observed at a fre-
quency of 9.2 GHz in a balanced tield of 1300 G. Power
levels at other frequencies are typically down by more than
10 dB. Single-mode operation is consistently achieved at
power levels exceeding 200 MW. By comparing Figs. 12
and 13, it appears these conditions represent the forward-
wave resonance with the n, = 5 waveguide mode.

-It is unfortunate that the sharp resonance at 1300 G oc-
curred so far below the cutoff field (1525 G). The beam
density at this point is only one-half of the density at the
20-slot VR resonance point (because 3., at 1300 G is nearly
twice the valuc of 3., at 1475 G). This reduction in n, prob-
ably accounts (at least partially) for the reduced power lev-
els in the 10-slot HASR device.

The error bars on the frequency measurement result
from the uncertainty in the arrival-time measurement.
Again, the power-level error bars reflect only the uncer-
taintics in the arrival time and the detector voltage.

IV. Susatary

In this paper, we have shown that the results of a general
axisymmetric lincar growth-rate formalism are applicable
to azimuthally periodic systems in the synchronous hinut.
We used the growth-rate formula to calculate the proper-
tics of magnetron-like VR and HASR structures. We found
that the HASR system theoretically has an advantage over
the VR system in that its parameters can be more readily
adjusted to suppress radial mode compettion. Untortu-
nately, an additional assumption in the HASR anabyas
forced a restriction on the maxunum allowable size for the
relative slot opening (367¢,). This 1y undesirable be-
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cause of the resultant reduction
(T o (A8/6,)"%).

Experiments with a 20-slot VR system and a 10-slot
HASR system successtully produced high-power micro-
waves at power levels comparable to previous 12-slot VR
systems. The radiation in each case was determined to be
at a single frequency (corresponding to a single mode) to
within the accuracy of the dispersive line measurements.
Both systems had relatively stable operation at frequencies
consistent with synchronous 27 modes, although the modes
were not positively identified as such. The results indicate
that both of these configurations may be well suited to
high-power generation in the centimeter and millimeter
regime.

We have successfully demonstrated that more than one
type of configuration can be used to promote single-mode
operation in high-power large-orbit gyrotrons. However,
much work remains to be done on these configurations be-
fore optimal designs can be built. Alternate schemes for
periodic structures can be tested with the linear theory via
(4). Nonlinear theories and particle simulations need to
address questions of efficiency. Other experiments should
be performed to determine the actual operating mode, test
the initial condition calculation [15], and evaluate the suit-
ability of various resonator configurations.

in slot coupling
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Experimental study of millimeter wave radiation from a rotating electron

beam in a rippled magnetic field

W. W. Destler, F. M. Aghamir, and D. A. Boyd
University of Maryland, College Park, Maryland 20742

G. Bekefi, R. E. Shefer,and Y. Z. Yin®

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received 18 October 1984; accepted 10 March 1985)

The generation of millimeter wave radiation from the interaction of a rotating electron beam (2
MeV, 1 kA, 5 nsec) with an azimuthally periodic wiggler magnetic field has been studied
experimentally. Calculations of the effects of the wiggler magnetic field on the single particle
electron orbits are presented, together with experimental measurements of the effects of the
wiggler field on the electron beam. Narrow-band radiation at power levels in excess of 200k W has
been observed at 88 and 175 GHz for wiggler fields with 6.28 and 3.14 cm periods, respectively.
The radiation frequency spectra for various experimental configurations are presented, and

results are compared with theoretical expectations.

1. INTRODUCTION

In recent years many theoretical and experimental
studies have been reported of linear free-electron lasers
(FEL’s} in which short-wavelength radiation is produced by
the interaction of an electron beam with a spatially periodic
wiggler magnetic field.'~'° Recently, a novel circular geome-
try FEL has been explored both theoretically and experi-
mentally in a collaborative effort by researchers at the Mas-
sachusetts Institute of Technology and the University of
Maryland.''~'® In this concept, a rotating, relativistic elec-
tron beam interacts with an azimuthally periodic wiggler
field produced by samarium cobalt magnets placed interior
and exterior to the beam. The potential advantages of such
systems include a longer effective interaction region, a more
compact geometrical configuration, and internal feedback
resulting from the recirculation of the electromagnetic wave.
This last feature may mean that the device can operate as an
oscillator rather than an amplifier, as in the case of linear
FEL's.

In the experiments to date, two principal methods have
been used to generate the rotating electron beam. The first
experiments employed a diode configuration similar to those
used in relativistic magnetrons.'"'* Here the electrons per-
form EX B drifts around the aximuth in the presence of a
radial electric field and an axial magnetic field. Addition of
an aximuthally periodic magnetic field then results in a cir-
cular FEL. Although initial experimental results from this
configuration are encouraging, one potential drawback of
this configuration is the considerable electron velocity shear
inherent to cross field electron flow in magnetron-like de-
vices.

Recently we published a preliminary study of a second
configuration that effectively circumvents this velocity shear
problem.'® This experiment involves the generation of an
essentially monoenergetic rotating clectron beam by passing
a hollow, nonrotating clectron beam through a narrow mag-
netic cusp. In this manner, the v, X B, force at the center of

-

*Permanent address: [nstitute of Electronics, Acadermia Sinica, Beijing.

People’s Republic of China.
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the cusp effectively converts the axial beam velocity into ro-
tational velocity downstream of the cusp transition region. If
the cusp is symmetric, the downstream beam performs sim-
ple axis encircling cyclotron orbits with a gyroradius equal
to the radius of the beam on the upstream side of the cusp.’’

To the axial magnetic field about which the beam elec-
trons rotate is added an azimuthally periodic wiggler field,
which is primarily radial near the center of the gap, and thus
transverse to the electron beam flow. The wiggler field is
produced by samarium cobalt magnets placed behind two
concentric metal cylinders in such a way that the beam sees
only smooth conducting boundaries. The proximity of the
conducting walls to the beam also serves to suppress the
negative mass instability, which has been used to produce
radiation at microwave frequencies in previous studies.'*'*

In this paper, we present the first detailed measure-
ments of the operational characteristics of this new circular
FEL configuration. Measurements of the effect of the
wiggler field on the rotating electron beam are presented, as
are radiation spectra obtained for a number of wiggler con-
figurations. Section II of this paper contains a discussion of
theoretical considerations, and the experiments are present-
ed in Sec. III. Conclusions are drawn in Sec. IV.

II. THEORETICAL DISCUSSION
A. Electron motion in the axial and wiggler magnetic
fields

The general configuration used for these studies is de-
tailed in Fig. 1. Downstream of the cusp transition, the elec-
tron orbits have axial (v,; } and azimuthal (v, , ) velocity com-
ponents given in terms of the upstream axial velocity (v,, ) by

2 __ 2 2 2 2 2

U =Un + Uy =y +r 02,
where #. is the cathode radius and 2, = eB,/m,y is the
relativistic clectron-cyclotron frequency in the downstream

axial magnetic ficld. Thus, as the magnetic field is raised
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FIG. 1. General experimental configuration.

toward a cutoff value, given by
th =Un mo)’/’ce-

the axial velocity is reduced and electron orbits become fair-
ly tight helices. Beyond the cusp the electrons move in the
presence of the combined axial and wiggler magnetic fields,
which can be approximated (subject to the condition that
V:B=VXB =0 in the region between two conducting
boundaries of radii r, and r,} by the expression

v - N o+
n:;fg—”cos(lvm[(L)v ‘+(’—‘) ]

ry r

NN B N
X(-’ﬁ) — 6 —sin(NO )[(L)
r, 2 r

r N+ r N -2y
_ (_) ](Q) +38,.
r r

i

Here 7, @ and 2 are unit vectors in the radial, azimuthal, and
axial directions, respectively, V = n{r, + r,)/1, is the num-
ber of spatial periods around the azimuth, /, is the linear
periodicity specified midway in the gap, and B,,, is the am-
plitude of the radial component of the field at a distance

N o= 1,8 ¢ 1y 17128
) )

r=(r, ', !

where the azimuthal component vanishes. It is easily seen

1963 Phys Fluds, Voi. 28, No 6, June 1985

that near the center of the gap, the field is primanly radial
and that the undulatory v, X B, force is the + z direction,
analogous to the transverse motion of electrons in a linear
FEL.

Because of the complicated nature of the combined axi-
al and wiggler fields, a single particle computer simulation
program has been used to check that the particle orbits are as
desired. Figure 2 shows calculated particle orbits with and
without the wiggler fields, results that show clearly that the
electron orbits are almost unperturbed in the r-6 plane, and
the uidulation is primarily axial, as desired. While Fig. 2
shows typical electron orbits for an electron with an initial
radial position of precisely 6 cm (the cathode radius), elec-
trons launched at other radial positions within the radial
width of the beam do not show significantly different behav-
ior. We have performed these calculations for each of the
several wiggler field configurations investigated experimen-
tally, and in no case are the electron orbits unsatisfactory.

B. Excitation of TM waves by the rotating electron beam

Ina previous theoretical paper by two of the authors Y.
Yin and G. Bekefi),'” the radiative process has been identi-
fied as the coupling of a ““synchronous mode,"*® upshifted in
frequency by the wiggler periodicity N:

w=(1+N)2,
to one or more of the TM waves supported by the coaxial

conducting boundary system. The radiation frequency is

given by
N2, k. v,

CTTT0 Jotm] 1= (0,/0)

{a)

(b)

FI1G. 2. Calculated particie orbits in the r-8 and r-2 planes for an clectron
injected with v, = 0.20¢, ve = 0.96c 1nto the nteraction space with {a)
B, =14kG. B,, =0,and (b1 8, = 1.4k, B, = 1.IKG.
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TABLE I Computed parameters for an electron ning of radus 6.000 cm
rotating 1n a coaxial waveguide of radn #, = 6.509 ¢m, r, = 5.398 ¢m.
B, =0968, 8, =0.75kG.J, = 1.LOA cm ~*, wis the radiation frequen-
cy; w, the temporal growth rate; and 1 the saturated efficiency.

N ly m { w/lr w x10°° n
{cm) {GHz) {rad

sec ') (%)
6 6.28 t 29 26.8 1.02 19
6 6.28 1 17 947 0.21 0.6
12 314 1 7 14.6 0.48 14
12 314 1 28] 225.6 0.014 0.15
12 3.14 2 56 52.3 0.15 0.83
12 314 2 232 187.9 0.031 0.0

where &k, = 2r/1,, w (l.m) is the cutoff frequency for the
TM,,, mode, /and m are the azimuthal and radial wavenum-
bers, respectively, and

Vo = w {l,mi(r/1)

is the azimuthal phase velocity of the rf perturbation. It is
interesting to compare this result to the dispersion relation
for a conventional linear free-electron laser:

kw Vg

. 0= ——,
[1 = (vy/c))
. where v, is now the axial electron velocity.
In the limit where the gap between the two coaxial con-
ducting boundaries is small compared to their mean radius,
D the cutoff frequency of the TM,,, mode may be approximat-
ed by the expression

- w lm)= [mrc/r (g - njn +aly)”?,
where g = ro/r, and

el
mmr\g+ 1

) The resultant predicted radiation frequencies for actual ex-

perimental parameters discussed in the next section are sum-

- marized in Table I. For the specified parameters these are

- the only unstable interactions predicted by the theory. Be-

cause these predicted radiation frequencies are quite sensi-

— tive to the values chosen for the applied magnetic field and

- the electron energy, the values indicated in Table I must be

- treated as estimates. One important conclusion, however, is

that high-frequency radiation is predicted for very low val-

N ucs of the radial mode number m, an important result be-

. cause the electron beam radial width (about 5 mm) is a siza-

ble fraction of the gap between the two coaxial conductors

{13 mm). A comparison between these predicted values and

experimental measurcments will be made in Sec. 1V, The

growth rate of the instability w, was calculated for the case of

an azimuthal current density J,, = 1.1 Acm ¥ in order to

satisfy the assumption of a tenuous electron ring, and is also

indicated in Table L. In the actual experiments, the azi-

muthal current density is estimated to be ~60 A cm 2. In

the so-called “single particle, high-gain strong pump™ re-

173
"o

which implies that the experimental growth rates would be
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about a factor of 4 higher than those given in the table. The
last column of Table I lists the estimated saturation effi-
ciency 7 caused by phase trapping of electrons in the poten-
tial wells of the ponderomotive potential.

ll. EXPERIMENTS

A. Apparatus

The general experimental configuration is shown in
Fig. 1. A hollow, nonrotating electron beam is field emitted
from a 6 cm radius, knife-edge cathode located 7.5 cm up-
stream of a brass anode plate. A § mm wide aperture slit in
the anode plate allows a fraction of the electron beam cur-
rent to pass through the anode plane into the cusp transition
region. The cusp magnetic fields are produced by two inde-
pendently controllable solenoids, and a soft iron plate is used
to narrow the axial extent of the cusp transition region. The
measured FWHM of the radial component of the magnetic
field at the center of the cusp is 4 mm. The v, X B, force acts
to convert axial electron velocity upstream of the cusp tran-
sition region into azimuthal velocity downstream, with re-
sulting downstream beam parameters of 2 MeV, 1 kA, and §

o
T

[o]

628 cm.

RADIAL MAGNETIC FIELD (»G)

—
300

10
L_L<__A
o]

60 120 180

P -
240
ANGULAR DISPLACEMENT {DEGREES)

FIG. ). Arrangment of bar magacts {top), Hall probe measuremnent of the
wiggler ficld at a radial position » = $92 ¢m, as a functivn of azzmuthal
angle (bottom)
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FIG. 4. Peak current exiting the interaction region versus applied cusp axial
magnetic field. Results with and without the wiggler magnets are shown.

nsec. Because the cusp reflects all electrons with energies less
than a threshold value given by

E,, = [(moc? + (cer.B)]" ~ moc?,

the total energy spread in the downstream rotating beam is
in the range 19%-~3%. The velocity spread caused by local
temperature in the beam has been estimated to be about
0.2%.

The downstream beam rotates between two concentric
stainless steel cylinders of radii 5.40 and 6.5) cm, respective-
ly. Single turn Rogowski coils can be located at the upstream
and/or downstream ends of the interaction region to mea-
sure the axial current entering or leaving the wiggler region
with or without the wiggler magnets in place. The samarium
cobalt magnets used to provide the wiggler field are placed
behind the cylinders and held in place by grooved aluminum
holders. Typical arrangements of the magnets to achieve
various periodicities are shown in Fig. 3. The axial length of
the wiggler field is about 20 cm, and the wiggler strength has
been varied in the experiments by simply removing some of
the magnets from the 6.28 cm wiggler configuration shown
in the figure.

The radiation generated in the experiments is mcasured
with a small horn antenna located immediately downstream
of the interaction region. The radiated power spectra for var-
jous configurations has been measured using a sensitive grat-
ing spectrometer,’’ with gratings available in the range 70~
200 GHz. The frequency resolution of the spectrometer is
typically Af /f = 0.02, and theinsertion loss is in the range 3-
5dB.

B. Electron beam measurements

Measurement of the axial clectron beam current exiting
the interaction region with and without the wiggler magnets
in place has been made using a single turn Rogowski! coil
located immediately downstream of the wiggler region. The
results, shown in Fig. 4, indicate that a wiggler field of 1300
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{c) microwave signal in T band (91-170 GHz) with wiggler magnets, and (d}
microwave signal in T band without wiggler magnets.

G amplitude and /, = 6.28 cm causes a drop in the beam
current of only about 30%. These results confirm that the
wiggler field does not have a disastrous effect on the electron
orbits, a result consistent with the single particle orbit calcu-
lations. In fact, it is likely that the wiggler field acts to re-
move electrons with badly off-centered orbits from the
beam.

Another indication of the nature of the beam current
pulse shape has been obtained by placing a small-area axial
current collector midway between the conducting cylinders
at the axial center of the wiggler field region. A typical cur-
rent pulse waveform is shown in Fig. 5 and shows dramati-
cally the shortening of the downstream electron beam cur-
rent pulse duration caused by the reflection of all low-energy
electrons at the cusp transition region. This independent
measurement of the beam current in the wiggler region also
shows that even-a relatively strong wiggler field does not
disastrously disrupt the rotating electron beam.

C. Radiation measurements

Initial measurements of the radiation produced by the
interaction of the rotating electron beam with the wiggler
field involved inserting a small horn antenna into the region

50— T

T
x\ 6.28 cm wiggler
X

1001 / 1
x
x

SO

Detector Output {mv)

80 100 120
f (GHez)

FIG. 6. Radiated power spectrum for B, = 1300 G, [, = 6.28 cm.
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Detailed measurements of the radiation spectra have

immediately downstream of the interaction region and been obtained for a variety of wiggler configurations using

R bringing the signal out through a length of Ka-band (22-40  the grating spectrometer described previously. These config-

2> GHz) waveguide. The radiation was then guided through  Urations include (a) the 1300 G, 6.28 cm period wiggler first

various waveguide filters into calibrated attenuators and de- studies (Fig. 3, bottom magnet array), (b} an 800 G, 6.28 cm

© tectors. The receiving horn was oriented in such a way as to wiggler (same array, every other magnet removed), (c)a 1000

-~ pick up TM waves in the coaxial conducting boundary sys- G, 3.14 cm wiggler (middle magnet array), and (d) 2 450 G,

tem. In these initial experiments, a wiggler field amplitudeof ~ 6-28 ¢m wiggler in which the inner magnets and the inner

- 1300G and a wiggler period of 6.28 cm were used exclusive-  conducting boundary were removed entirely. Plots of detec-

.~ ly. Typical signals obtained in T band (91-170 GHz) with  'OF output versus frequency are shown for these configura-
! tions in Figs. 6-9, respectively.

and without the wiggler magnetsin place are shown in Fig. 5,

and show dramatically that high-frequency radiation is only Fi Se;‘rerald t?ea.tures:f theze'spelcl:tra are worthy ofme:no;.
. observed when the wiggler field is present. Because of the 1rst, the radiation observed in all cases is very narrow band,
‘ approaching the resolving power of the spectrometer. Sec-

difficulty in efficiently coupling radiation out of the system, .
we have only been able to estimate the total radiated power ~ Ond: the center frequency for the 3.14 cm wiggler (175 GHz)
is almost exactly double that observed for the 6.28 cm

as being in excess of 200 kW. Therefore, a reliable measure- . ) :
wiggler (88 GHz), and both frequencies are in close agree-

u ment of the electronic efficiency of the experiment is current- . = A
- ment with the predictions of theory summarized in Table I.

ly unavailable. These results have been reported previous- . .
ly."s This last result may be just a chance occurrence, as the pre-

- In these measurements. the horn has been located in dictions of the theory are quite sensitive to the values chosen
various configurations, and the radiated power has been ob- for the electron beam energy and the applied magnetic field.
served to be greatest in the direction of the electron orbits, as . .t?l.th.ough the detgctor used for the.se measurements has
' expected if the radiation is scattered in the forward direction asensitivity that does riot vary substantially overa frequency
oy asin alinear FEL. If the horn is moved to detect radiation in rAnge' of 10 GHz or so, the detector SCIIISllIVl.ly‘ does fall
the opposite direction, the observed radiation is down by steadily as the frgquency of the detected signal is increased.

more than 10 dB. Waveguide cutoff filters were used to ob- As a result of this trend and the fact that we do not have a
calibration source at 175 GHz, even a comparative estimate

tain a rough idea of the frequency content of the radiation. 8 g : ‘
From these measurements it was determined that most of  ©f the power radiated at this frequency is not possible. If we

the radiated power was within N band (74-140 GHz). extrapolate our calibratipn of the detector response versus
_ frequency from our data in the range 26-135 GHz, where we

do have calibration sources, then the radiated power at 175
GHz appears to be roughly comparable to that at 88 GHz.
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s z o+ . V. CONCLUSIONS

'." ; The experimental studies indicate that the production

= s of millimeter wave radiation by the interaction of a rotating

- o 3 electron beam with an azimuthally periodic wiggler field has
'_‘: 5 5+ 4 been achicved in a manner consistent with theoretical expec-
25 8 tations. The agreement between the measured radiation fre-
;::. 8 quencies and predicted values given in Table I is excellent,

."' ’ but further work will be need in order to determine if radi-
= . SO N ¥ H ation is also produced at the other frequencies indicated.
D 160 . l?GOH ) €00 ' Although the efficiency of conversion of clectron beam encr-
R ) z gy to radiation is currently low (less than 17%), it is not at all

B
o

FIG. 8 Radiated power spectrum for B, = 1000 G, /, = 314 cm. clear how cfficiently the radiation is currently being coupled
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out of the system. [n addition, no attempts have been made
to minimize wall losses or to optimize the experimental con-
figuration for maximum radiated power. For example, it
may be possible to design a system that will be unstable at
only one frequency, in contrast to the several unstable fre-
quencies predicted for the present configuration.

We note that in order to achieve frequencies similar to
those reported above, the gyrotron®? would require magnetic
fields more that an order of magnitude higher. Comparing
@; and 7 of Table I with those of a gyrotron operating with
similar parameters, one finds that the gyrotron has some-
what lower growth rates w,, but higher efficiencies 7.

Future studies of this novel source of coherent radiation
will include attempts to generate submillimeter radiation by
reducing the wiggler period and experiments using lower
energy and lower current electron beams with longer pulse
durations.
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Abstract

- . The macroscopic fluid equations are used to study the effect of beam

thickness on the linear growth rates of a large orbit gyrotron. The chosen

o . equilibrium models a rotating annular electron beam produced by a magnetic
: cusp. Two methods are used to calculate the growth rates. The analytic

f:{ . approach solves the problem to first order in the ratio of beam thickness

S to average beam radius and recovers the zero thickness limit. The numeric

ST approach uses complete orthonormal systems comprised of the homogeneous
AT

ST wave equation solutions to calculate the growth rates for beams with
o arbitrary thicknesses. It is concluded that thick, tenuous beams in
TR

'}] - tesonant systems must be operated near the cutoff of the electromagnetic
o

S . wave. The decrease in growth rate as the wavelength decreases is

o e

ACSEEAS ,
Y. attributed to the loss of synchronism in systems where the beam has a
o

Sr S spread in its canonical angular momentum.
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o~ I. INTRODUCTION
i
S
ol Microwave generation at cyclotron harmonics from large orbit gyrotrons
(? has been studied extensively in recent years. The reduced magnetic field
:}_ . requirements inherent in high harmonic operation make such devices good
-:? - candidates for high power, high frequency applications. Considerable work
~T, ';\
{ ' ) has been done on the linear growth rate problem for the large orbit
i: B gyrotron configuration. Growth rates have been calculated from single
particle,l'6 fluid,7’8 and Vlasovg'_11 formalisms in a variety of waveguide
}i . geometries. Most of these analyses assume that the rotating electron
3: layers have zero radial thickness. In this paper, the macroscopic fluid
yfj' . equations are used to study the effect of beam thickness on the linear
o !s growth rates.
-li, A recent experiment12 has suggested that an efficient way to produce a
ﬂ% moderate energy rotating beam is to pass a linearly streaming beam from a
" L thermionic diode through a magnetic ;usp.13 (Other viable injection
; schemes include gyro-resonant rf accelerationla and tilted Plerce-type
if? T guns.ls) The equilibrium selected for this study models the cusp-injected J
; configuration. Although the two previous fluid models cited (Refs. 7 and
. 2 8) allow for finite thickness beams, they never consider the case where the
:;} . beam thickness, axial velocity, and axial electromagnetic wavelength are
';; . slmultaneously finite. This situation is inherent in thermionic cusp-
S injected systems and leads to one of the main results of this paper. In
.;; Section 1I, the fluld equilibrium is presented and the perturbed deﬂsity
ai " and velocity terms are calculated. An analytic solution is described in
.




Adhat Bam e ik s it Jaarl Bagh Jhade shuth ingh Janitindl ke St iaalis Sl EaSchal AR R

s 3
.:: : Section III. The problem is solved to first order in the ratio of the beam
':::“ [’i thickness to the average beam radius. The result is shown to be in
F : agreement with the single particle result in the appropriate limit. A

" nuperic solution, valid for arbitrary beam thickness, is the subject of

; Section IV. The results of this study are summarized in Section V.
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II. THE FLUID MODEL

A, The Equilibriux Distribution

The beam equilibrium is shown in Fig. 1. It is assumed that the
equilibrium results from the passage of a thick, linearly streaming beam
through a perfect magretic cusp (of magnitude Bo). The beam originates on
a cathode that has a thickness of 2Ar and an average radius of r_. The
electron beam is assumed to be monoenergetic and the self-fields are
neglected. Thus, after the cusp, all electrons move on helical orbits
about the same gyration axis. The value of each electron’s post-cusp axial

velocity is a function of the injection radius. Any electrons above a

certain critical radius will have insufficient energy and will be

1/2

reflected. That maximum radius is given by L

L= Ga - DY cre )

2
where Y, © is the equilibrium energy (see Ref. 13).

For this idealized situation, the equilibrium electron velocities are

only a function of r:

{ =
vr (r) 0 (la)
o
ve (r) = rQo (1b)
o
2 -2 2.241/2
vzo(r, = [cf(1 - Yo ) - Qo] / (le)
where Qo = (eBo)/(moYO) and Y, are independent of r. Because v, = 0, the
o

beam will be in equilibrium tor any density profile which is only a

o, - . N e . S
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- function of r. In this paper, two different density functions are

considered. The first is a plecewise cubic model and is given by

r'; |z| € p

- °

¥ 1 - 2 1 - 3
5 _(r) =< n(aEly? - = lely?y e (2)

0 lz) > 1

where 2z = (r - ro)/Ar. The parameter p is adjustable: 0< p < 1. A
typical density profile and density profile derivative are shown in
Fig. 2. The parameter ;o is a measure of the volume density of
particles. The surface density of particles is given by

b r_+Ar

n, = / n_(r)dr .
r -Ar

For the plecewise cubic model, the relationship between the surface and

'\ ep——

volume densities 1is given by
n, = no(l + p)ar . (3)

When p = 1, the distribution function becomes the usual coustant deansity

profile:

. - “. " . “ . . .
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) r -tr | <Ar
n (o) o
- n (r) = (4)
o
i 0 else
!f and
n, = no(ZAr) . (5)

The piecewise cubic model is used in both the analytic and the numeric
problems.
The second density function, used only in the numeric solution, is

given by:

:loexp[— ;2/(1 - 22)] lz| < 1
- n (r) = (6)
(o]

0 g - else

-

{f where z can be adjusted to achieve a desired profile (0 < z { ®»). It can
:% be shown that no(r) is infinitely differentiable and all of its derivatives
L
- are continuous everywhere. The extrema of né(r) can be found by calculus
v to be
.

) - -2 1/2 1/2
o ] =*{(l-zz)+[(l-z)2+3]/1/ =
- m# 3 ! )
i .
".
<.
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Notice that zm* + % 1as z + 0, In fact, this distribution approaches the

>

constant distribution as z » Q. It is more practical, however, to use the
first distribution when approximating the uniform case.
For the second distribution, the surface and volume densities are

related by

-

n ar[z2e™ I(1/2)U(3/2,2,22)] (8)

ns = noAr[

where U(v,u,x) is a degenerate hypergeometric function,16
Gamma Function. It can be shown that zZU(3/2,2,zz) > I‘(3/2)_1 as 22 + 0

and I'(x) is the

which means that n, *+ ;o(ZAr) as ;2 + 0, Profiles of no(r) and n;(r) are
shown in Fig. 3 for ;. = 0,125, ; = 1.0, and ; = 2.0. The curves are
normalized so that [Tl no(z)dz = 2, The curves suppdrt the claim that the
constant density profile is approached as ; + 0.

The natural definition of the beam thickness for the numerical routine
is z = 1, because the density distributions are identically zero
when |z} > l. However, as suggested by Fig. 3, this definition may not be
appropriate when comparing resuits for different parameters. Three
appropriate measures of the effective beam thickness are: (1) ns/(ZArgo),
(2) the location of the (negative) peak of né, and (3) the Full Width Half
Maximum (FWHM). For the piecewise cubic model, these measures have the
common value z = (1 + p)/2. For the smooth model, all three measures are
different., The first is given by Eq. (8), the second by Eq. (7), and the
third by

log,2 172

zZ = |m———ou— .

2
z" + logGZ
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In this paper, we use the first measure to denote the effective thickness

of the E layer.

B. The Perturbed Fluid Equations

The fluid momentum equation is

2, (yV) + @, v = - = (E+V < B) (9
o

where <+,*> denotes the usual inner product. This equation can be

linearized about the equilibrium specified in Eq. (l) and Fourier analyzed

to yield
~ =_-—e_ - ~ - ~ - _.~ ~ ~
v, 5 {w (- 1E_+ 8, (- icB)) -8, ( icBy)] +a (E, +8, B}
1 moYoDQ 0o o o
(10a)
iv =___e__[(1-32 YE. +8 ¢B -8 8 E]+&)-‘\7 (10b)
91 moYowz 00 0 z, T eo z, 2 wz T,
iv =—=—[-8 8 E -8, cB +(1-32)'F:]-82f&’-§7 (10c)
2 moYowl eo %o 8 eo r %0 Z wl Bzo o
2 2 2
for Dy =¥, - Qo and wz(r) = w 290 kzvzo(r).
The fluid continuity equation
> -+
Btn + <V,nv> =0 (l1)
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can also be linearized and Fourier analyzed to yield

~ -1 ~ ~ ~
r(in;) =¥, {3r(“‘o"r1) + no[z(ivel) + kzr(ivzl)]} . (12)

In the derivation of the above results, all variables were written as
x(;,t) = xo(r) + ;l(r) exp[i(kzz + 26 - wt)]

and ];l(r)l << |xo(r)| was assumed. Equations (10) and (12) express the
perturbed velocity and density in terms of the equilibrium quantities and
the electromagnetic (EM) fields. These equations are the starting polats
for both the analytic and numeric solutions. The differences in the two

solutions arise from the procedures used to close these equations.
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P. g III. THE ANALYTIC SOLUTION
r'.
A. Th. Thin Beam Approximation
( The assumption that yields the analytic solution is that the beam
thickness Is small compared to the average beam radius. That is, the thin
beam must satisfy:
_ Ar
X, = —5— K1. (13)
o
¢ The fluid equations are expanded about the equilibrium radius in the
coordinate x, defined by the transformation x = r/ro - 1. Throughout the
course of this analysis, many quantities will be linearized In x, resulting
ﬂ In additional constraints on the size of X, Unfortunately, it turns out
that the solutions will be valid for reasonable values of L only In a few
” special cases. Nonetheless, this method yields a good deal of information
l about the linear growth rate problem as will be demonstrated in the
) remainder of the section.
Two critical limitations In the expansion parameter come from the
linearization of v, (r). To first order in x,
. . o
'-: - _ - - 2, _ - _
o v, (r) =v, (1 x(v, /vz 4] v, (1 - x1) (14)
= o o o "o o)
®
.- - where A and v, are the azimuthal and axial velocitles at the center
S o o a -
: radfus ro, respectlvely, and 1 = (ve /vz )2. The worst case for this
A o “o
. ™ -* - - 2
= t .
'. expansion Is at [x]| X s resulting in the criteria x <« (vzolveo)
o i
e
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Because large orbit gyrotrons are normally designed to extract azimuthal
energy, it is desirable to have v, /Ve as small as possible, causing a

o o
further restriction on the allowed size of x .

()

The zero thickness linear growth rate solution that we compare our
results to assumes a resonance condition, for which the frequencies of the
beam mode and an empty waveguide mode coincide. It also requires a
synchronous condition: the frequency of the actual electromagnetic mode is
assumed to be near the frequency of the beam mode. The analysis in this
section deals only with the synchronous case and the empty waveguide mode
does not enter Into the picture directly. Still, the resonant limit will
be recovered for the proper axial wave numbers (kz).

The concept of synchronism is somewhat ambiguous for the thin beam

model, because the phase velocity of the beam perturbation is in general a

function of radius:

wo(r) = 290 + kzvz (r) . (15)
o

For simplicity in the analysis, 1t is assumed that the synchronous layer

corresponds to r = r . This assumptlion does not affect the analysis in any

way, it simply serves as a reference point when comparing this method to

others. For (r) = w - w (r), the linear expansion is
wl o}
. Yo .
wz(r) =y, *xkra ;—— = ¥, +XTR (16)

¥4
o

-
'

h
where ¢,

w-w(r )and T =k r v /G + Thus, the synchronous limit is
o o z 0 eo zo
defined by ;2 + 0. The expanslion of wl requires that
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ok .

(R T

-~ ~ A' -1 . -~ ~
X << (vzolveo)(vl/ﬂo)(kzro) . It was noted previously that vzo/veo is
designed to be small. Furthermore, it is known that @2 << Qo for tenuous

4.
. -

beans.> Although the method considered in this section is valid for
ff somewhat higher beam densities, WE/QO will be small in general and the

available range for X, will be diminished further. Taking kz < r;1 will

AN " lessen the severity of this restriction. Indeed, at cutoff there is no
?&: o restriction at all., When kz = 0, the beam frequency is independent of r

and the electromagnetic wave can be synchronized with the entire beam.

In the following analysis, other expansions in x are performed.

B
4 # d ()
sl S e A
. 2,
'

However, the linear coefficients of those expansions are not inherently

plale
el

‘i - large and the restrictions imposed by them are not calculated. Still, It
;:ﬁ - will be demonstrated later that the solution Is very sensitive to small
f{ changes in certain terms. Thus, the error Introduced by one of these

4
T

A
o

"accurate" expansions can change the answer dramatically. The

= °

uncertainties discussed above make it difficult to predict the maximum beam

F thickness that yields reliable growth rates. Nonetheless, the method ls

) ' accurate in the zero thickness limit and should be able to predict the
s h
oy initial growth rate trends as Xq Increases from zero.
Y
,:.\ .
T
H B. Method of Solution
[N . H
[}2 if The solution is achieved by integrating several components of
o i Maxwell’s equations from r, - AT to r  + Ar. The resulting equations
3 .
; express the "jump" In the EM flelds across the beam In terms of Integrals
:: }: of the source terms and the EM fields In the beam region. In order to
S o .
:{ perform the Lntegrals, the EM flelds must be evaluated to first order
& ) In x, In the reglon [x| < x . This ls done In Section 1. The source
1
=3
L4
Ko
gk -
:r7
he¥ ] "
N e A

L ) R
R » . Cm
R A e A T SRR R R
DA S T TR . vt I e T i - S RN R Y
DRI Y BINRY N NP P P PP U PSP TP SR SR ol JR LR Sy U kY Y 00 WO A S R, V. VY PR,
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integrals are evaluated 1n Section 2. In Section 3, the formal solution is

given. Properties of the solution are discussed in Section II.C.

1. The Field Expansions

Outside the beam region, the homogeneous wave equations are valid and

the axial fields can be written

I, (y)
———— E 0<r<r
J (v ) e -
E = (17a)
z P, (y,y.)
L)
-W-T‘)— EZ l‘+ < r < rw
L+ w
and
f r_J,(y) .
;:3;(;:; (3rCBz) 0< r<r_
cB = (17b)
“ r,Q,(y,y,)
——%&%————Jiy (arc§ )+ r, < r« r,
e e 2
for
_ ~t 5 F ~ 2 _ 2 _ 2
r, =1, + Ar, Ez = Ez(r*), (Bchz) (Bchz) r*’ 3 [(w/c) kz]’
o y =1, vy = y(r ), and where P, — § are cross products of Bessel
e * + £ ) A
- 17

functions:

& 7 PN

_l‘

LA,
-

. ‘:' .' .‘.’.A

" LI .
> " v. l.' l.' .
W h ML

5 N
o s,

KA

£
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'] P,(a,b) = J, (a)Y,(b) - Y (a)J (b) (18a)
Q (a,b) = J,(a)Y  (b) - ¥ (a)J; (D) (18b)

R (a,b) = J (a)Y (b) - ¥/ (a)J, (b) (18¢c)

. §,(a,b) = Jy(a)y;(b) - Y (a)J (b)) (18d)

When |x| > X ¥ =0, so EL and cﬁl can be found from Maxwell’s Equations

" glven Eq. (17).

-~ In the region |x| < Xy the fields are expanded about the values of
the fields at the edges of the beam (r+). The piecewise cublc beam density

bz profile is used so that the values of the fields and thelr derivatives are
continuous at the beam edges. Thus, the limiting values of the homogeneous
fields can be used in the expansions. Let y represent any EM field

. component. For the fields to be accurate to first order in X it 1s

\ .

necessary to approximate y by a cubic:

- [.0 _ Ar ,dx,A 3 .4 Ar o
_ x (1) =[x = 55 (GO°] + 2[5 x (4 °] (19)
.. + ZZLAI' ( ) J 3[Al‘ ( ) A]
)
where x = (x+ + x )/2, X, = x(rt), etc. By consldering Taylor series
expanslons about rt, Lt can be seen that |x - xc| = O(Xg) when
e e R R IR R NN e e e e -j
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- |z| < 1. Furthermore, Eq. (19) Insures that dx/dr is continuous on the
" same interval.,

2. The Source Integrals
; To lowest order in X9 the jump in the perturbed density across the
; beam is (see Eq. 12)
T Lo r HAr R ™, | r +or _

= (rn )dr = — (=) | n (1 + x)v_dr
. € 1 2 e o r
- 0o r -Ar ¥ o r -Ar 1
. o £ o
. Lo r°+Ar TQO N
! + =-(E—) / no(l -x -T_.)ve dr

wz o r -Ar wz 1
kr_ r tir T,
D + —‘A—‘ (——) f no[l + X(l - -:——)]VZ dr . (203)
: ¥ r -Ar 14 1
L L
> >
: Because J - enyv, - env.,
. ro+Ar~ U te ro+Ar N Qo e r°+Ar N
— Jq dr = - = (=) | Ve dr -~ — (=) | (rnl)dr
€o¢ r -ar 1 €o r ~-ar ° 1 ¢ €o r -Ar
o o o

' (20b)

and

- X o et . L - - - S -
R ., . - e VAN B .., . - S T, - '- -
J -__J PRSP .“‘... Py AAJ S PP P A I T T AR U I T S L P WL L SE PR TN T T Y T Py et
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. ro+Ar R vzo ,mo . . ro+Ar R
n — (rJz )dr = — (TZ. + (=) [ no(l + x)vr dr
. €o¢ t -ar 1 ¥ ¥ o r -Ar 1
o L L o
) vzo L ie 1'°+A1' TQo ~
‘:;- ‘1’2 ° ro-Ar \yl 1
v r +Ar
z k. r o ™
__Ofo(_l_e_> / n[l-x(—.£+'r-l)]v dr
c € o z
¥ o r -Ar ¥ 1
X £ o 2
L.
if - r rtar
g -2 & n (1 + x)v, dr (20c)
A o r _-Ar 1
F - o
L: . again to lowest order in Xge Therefore, evaluation of the source Integrals
P r _+Ar .
y ! requires the evaluation of integrals of the form / ° no(l + Fx)vldr where
r _-Ar
F 1s some constant. o
:,',: - From the above comment and Eq. (10), it can be seen that all the
' source Integrals can be expressed In terrs of Integrals of the form
: r +Ar "
N / n (1 + Fx)x dr where x again denotes a field ccmponent. The cublc
r -Ar
" ™~ [
‘_: ‘\ approximation for y can be used to show that
s
e - ro+Ar
:.'-f . J no(r)(l + Fx)x(r)dr
r -Ar
L ]
C x d
< - o_ o 1 - . Xy O
’ ns{X T [1 +T0' (1-p) (3 + ”“)]ro (-&-)
:_- 2x .
+ =2 [1+ 2 (1= )31 + 19 - 5p7 = 3R’ (21)

5
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to first order In X, Even though the continuity of dno/dr was required in
the derivation of Eq. (19), the source integrals are continuous functions
of p [thelr dependence is glven by Eq. (21)]. 1In the remainder of this
paper, p is set to one for convenience and only the constant distribution
of Eq. (4) is considered.

In Appendix A, Eqs. (10) and (21) are used to find standard integrals
of the perturbed fluid velocity In terms of the equilibrium beam quantities
and the fields (and their derivatives) at the beam edges. Thus, from
Eqs. (20) and (A.1), the integrals of the perturbed sources across the beam

are known in terms of the electromagnetic fields at the beam edges.

3. The Jump Conditlons and The Formal Solution

Six of the eight components of Maxwell’s equations contaln derivatives
of the electromagnetic fields with respect to r and can be integrated

across the beam. The results to first order In X, are:

ro+Ar
=4 .0 ~0 ~0 1 e ~ -
I+ x (<iE_ + 28, + kr B - — — / (rn )dr =0 (22a)
0 0 r_=Ar
o
~A ~0 wro ~0 ~0 1 i ro+Ar ~
-LCBe + xo(-che+ —C—- EZ - ECBr) + Tr_ -E——E- f t‘Jz dt = 0 (22b)
o o r _-Ar 1
o
wro o o 1 1 fo+Ar
~L1cB, - x (—— Eg + k r cB) - 5 — / J, dr =0 (22¢)
o r -Ar 1
o
.~~‘-,"- \-Jv A R TR e ORI . S -ty ‘\.M
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cﬁg + xo[cﬁg - 2(-1c§g) - kzro(—lcﬁz)] =0 (224)

— wr
~ ~0 o o . SO0\ _
Eg +x [BY + (= 1ED) + 2 ¢ 18] = 0 (22e)

EA ~0 mro ~0
s T X[k, T (FIED) - — (-1eB))] = 0 . (22£)

Out of the six jump conditions, three contain source terms and three do
not. The three sourceless equations are lilnearly dependent as are the

three equations with sources, It can be shown that

(ul'o

n
o

- - (

!) c

wr

( C°) x Eq. (22d) + (k,r ) x Eq. (22e) - & x Eq. (22f)

) x Eq. (22a) + (kzro) x Eq. (22b) - £ x Eq. (22¢)

n
o
.

. The four equations (22b), (22¢), (22e), and (22f) form a linearly
Independent set even if § = 0 = kz. Consequently, they are the ones used
in the analysis.

E{ Because EL and CBL are given in terms of Ez’ cgz, and their
derivatives when |x| > Xg» Eq. (17) reveals that there are only four
unknowns. Consequently, there are the same number of equations as unknowns

and the system of equations is well defined. To simplify the X, = 0 limit,

the four unknowns are chosen to be:

Y%
Y1)

A
; 3

P

e s .

. '."‘( U I I U S PO . U TR SO SR RTINS R "H-“‘..".-' S
- - - ~ R A IR t. . LY Lt e Y «* . R A . -t . b '.. . a ™ - - .~ 7 g . .
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u, = (B, /0)° (23a)
u, = (B /0" (23b)
uy = - 1(3,cB )° (23c)
u, = - i3, B8 . (23d)
Defining the normalized wave admittances
of = (ra B )/ (R ) (24a)
and
of = (-1cB )/ (~1ra_cB )* (24b)
and using Eqs. (17) and (24) It follows that
ay = (YR (7,7 ) 1/B (5,,7,) o = ly_3;(y /3,50
(25)
oy = Q, (7,7 )/19,5,(v,,3,)] ap= 3, (y /1y 35y

The thin beam geometry parameters are defined to be (in the usual

notation):

) -._._’._.... ._._... N ._...'_' . L R S '.‘.‘. . A S
e "n,_ “ R A - e et ettt et L A - e e ) N '.‘u'

AR .
e a a e e T a a N

AN
...q.‘\

- j

o B <o - ‘.‘\‘>.-~
R T AP ] . ST S L et e « . \‘ -
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= % (“: +a)
-:;_:: ‘ (26)
X . Gg = %-(a+ -a)) aa = é-(a: - a;) .

yR oy J(y) I () YRy I(y)
R LA R R L
P 1Yo ng(yo)P P Yo
> ,
J. (y) y.R y Jo(y )
A L7w 2 2 1 2 o £ 70,2
a, = - [————r]+x{2 -y, - {(—= +[TT_T] }}
€ nJE(yO)P ° o I P 20
27
D p J, (y.) - J.(y.) a J (y )
ay = 3 [+ 2l +x 26 -y D+ A0
yos Yo "2 Yo ° nyoJi(yo)S yOS MPSTARSY

Jo(y..) ' a J (y,)

a FASAY 1,2 2 0.2 290’ 2

ap = [——=1 +x {1 -5 " -y )(—" + [ 1%}
b ny 3, (y,)S ° z ° v RHEN }

for P = Pz(y0’yw)’ etc.

Maxwell’s equations can be used to find all the fields to first order

o in X, In terms of up — Y. For example, the average flelds (xo) are

...... . . ~ - C e e e
= . et oL e . - - N - . PR e
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o _ w - 2
l c’Br = (& ) kzu3)/€ (28a)
o _ (_ w 2
Ee = ( lkzu1 + T u3)/£ (28b)
L o
- Ez = rou +Xrou (28c)

. . A 2
-1%2 = [k (a® QU t a ) = (agu3 + abua)]/ﬁ (284d)
1B = [¥ (%, + aPu,) - 2k_(alu, + olu,)]/c> (28
| RS T z %3t %yl e)
;&~
-iC%: = ro(ag + xoaﬁ)u3 + ro(ag + xoag)ua (28f)

The difference fields (xA) can be found from the average fields in Eq. (28)

by interchanging uy and u, and by interchanging ug and u,

(e.g. Eg = rou2 + xoroul). The field derivatives'(dx/dr)A can also be

., e

found in terms of up— u, directly from Maxwell’s Equations.
ji At this point the solution ls complete, however, the expressions are

too cumbersome to assemble into one equation. Instead, the equations are

-y

-i: built-up as follows. The geometry parameters are given in terms of the
- system conflguration, the wave numbers g and kz, and the unknown

o

‘frequency w [Eq. (27)]. The EM flelds are given In terms of up— v, vlia

the geometry parameters [Eq. (28)]. The sources integrals can be found In

terms of Uy —u, via the EM fields [Eqs. (20) and (A.1)]. Finally; the

1 q--. ’ 4-. '.- '.ﬂ‘ C v -ﬂ- . S
FRNSPEF JJA_JJ.AJM‘J(; e mdi
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jump conditions can be found (once again in terms of u— uA) from the EM

fields and the source integrals [Eq. (22)].

c. Properties of the Solution:

When X, = 0, two of the jump conditions yield Eﬁ =0 = u, [Eq. (22f)]
and Eg =0 = u, [Eq. (22e)]. The remaining two equations then can be
solved to find &2 and the ratio “1/u3' To lowest order in @2, the
equations yield the disperson relation
A
e

“2 A AV - o802y -
wzubae + ;;-(a abQ*) =0 . (29)

With the ald of Eq. (27), we can show that this expression agrees with the
single particle result.>

The fluid method has expanded the single particle result in three
dimenslons: (1) axlial wave number kz, (2) beam density n,, and (3) beam
thickness Ar. Below, the properties of the growth rate solutions are
examined as a function of these thrge variables.

Figure 4(a) demonstrates the eéfect of beam density on the growfh
rate ' for a zero thickness beam at a resconant point (@2 = W, + ir). The
parameters for this case are ¢ = 7, n, = 1 (first radlal mode), r, = 0.06 nm,

-

r, = 0.0865 m, By = 0.85, ézo = 0.5, and k_ = 0 (r, Ls adjusted for
[o]
5

cutoff). Because [ =« n;/3 in the tenuous limit,

]

the plots are normalized
by n;/3. Thus, the "tenuous'" limit is valld for the densities where the

curves are relatively flat. Consequently, the tenuous limit typlically

demands that ng < 1012 m-2 In order for the lowest term In wz to be

dominant.

'S . . . -

kY -.--A- . ‘-I . -'--~'- - -'» ‘-
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Self-fields introduce another kind of tenuous limit, outside of which
the space-charge effects contribute significantly to the equilibrium and
(perhaps) the growth rates. Because the self-fields have been neglected by
this analysis, there is an unknown upper limit on the allowable beam
density and the high density results may not be wvalid.

Figure 4(b) shows I' for the system parameters of Fig. 4(a) midway
between resonant points (kz = 66.11 m_l). For this non-resonant
case, [ « n;/z in the tenuous regime and the plots are normalized
appropriately. The tenuous limit again appears to be valid out
to n_ ~ 1012 572,

Figure 5(a) shows a plot of growth rate as a function of kz for a zero
thickness beam. The parameters are g = 11, r, = 0.06 m, r, = 0.10 m,

B = 0.85, Bz = 0.5, and n, = 108 ™2, The corresponding beam line and

e0 o

empty waveguide curves are plotted In Fig. 5(b). The beam line intercepts
the lowest three empty waveguide modes. The squares in Fig. 5(a) Indlcate
the growth rates for the six resonant points and the one non-resonant point
midway between the resonances as calculated by the single particle

formula, The fluid result iIs indicated by the line. The growth rafes drop
abruptly to zero at synchronous points below the empty waveguide curves.
Above the dispersion curves, the growth rates drop off rapidly to small but
finite values. At synchronous polnts sufficiently above the lowest two

waveguide modes, the growth rates again become zero, resulting In five

'frequency bands of Instability.

As previously claimed, the fluld model agrees with the single particle

model as ng + 0, both on and off resonance. It ls Interesting to note that

the thin beam model’s solution Is Independent of p at X, = 0. Hence, the
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{;: R particular shape of the density function is not important as X, * 0. This
n‘ is readlly seen by setting x, = 0 in Eq. (21) and recalling that the source

integrals can all be written in terms of that equation. The growth rate

does depend on the surface density ng and the EM flelds at r,, as though

the fluid momentum equation was simply evaluated at the equilibrium radius.

Figure 6 shows Yy 3s a function of beam thickness for a system whose
parameters are § = 7, n, = 1, r, = 0.06 m, r, = 0.09 m, Beo = 0.85,

108 m-z. Except for the wall radius, the

i Ezo = 0.5, k, = 0, and n_
’ parameters of Figs, 4(a) and Fig. 6 are the same. The wall radius is

larger in the latter case so that the system is not resonant at kz = 0.

¥ Cutoff is chosen so that the entire beam is synchronous with the EM wave.
Two curves are plotted in the figure. One curve corresponds to the
solution when the geometry parameters (a: - ag) are given by Egs. (25) and

is (26) (exact) and the other curve corresponds to the solution when the
geometry parameters are given by Eq. (27) (linear expansion). 1In this

-l example, the restriction due to the geometry parameters is LI 0.02.

! Unfortunately, the restrlctlon.imposed by thé geometry parameters is

even more severe at resonance polnts. This can be seen by examining

Eq. (27). Conslder the solution near a TE resonant point. When X, * 0, 4

a® + 0 as wl + 0. Thus, the llinear term becomes the domlnant term for

b
extremely small values of Xy The solution Is very sensitive to changes

A

- in ay

and the exact and linear solutlions diverge rapidly as X, Increases.
In fact, the thin beam model is only useful in determining the effect
of beam thickness In growth rates for off resonance, cutoff points,

The kz = 0 restrictlon Is due to the synchronous approximation glven in

5; Eq. (16). For this special case, @l typically varfes less than 1% over the

e AT ST a T e te T et et e T T et e .
‘" ERSC I R R TN AP I I S IR SRS P - -

S gTe L L S e,
PO RPN P R Wy Ry G R W R AT P T . VY. 0, .




allowed range of X, There are at least two ways to get more informatlon
- ,, about the effect of beam thickness on growth rates. The first possibility
Is to solve the equations to higher order in X, The procedure for dolng
this is straightward, but the amount of algebraic work increases

b tremendously. For example, in order to expand the fields to second order

in x they would have to be expanded to fifth order in z. The second

o)

“- - order equilibrium density function would also be more complicated, at least

until p = 1 could be justified. The second approach Is a numerical one and

j} . 1s the subject of Section IV.
=
‘?i
‘:; v D. Solution of the Coaxial Case
;ﬁ P The only computational difference between the cases of cylindrical
o
o ‘ waveguldes with and without inner conductors is in the calculation
v:':‘ - - -
- is of a, and ay- The axial flelds between the Inner conductor and the beam
‘7} can be written
t-:‘. ~ PQ(Y!Y‘[) ~ o
g E = E : (30a)
e | 2 PRIy 2 .
;: and
Y . . r Q (y,y,)
SR B 3 cB 30b
—ﬁs o,y (e’ (30b)
s
. - where r; < r < r_, and so
¢
'-:.'_ .
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2
]

[y_RQ(y_,yi)I/PE(y_.yi) (31a)

and

Q (y_»y )/ Iy S (y_»y Il (31b)

The new average and difference geometry parameters can be calculated for
the inner conductor case and the remalnder of the algorithm does not

change. The linear expansions are

R y R P. YR yR
1 Y 1
0 =2 (2L + 20 4 x (et + 2D
Pl P2 ﬂPle Pl P2
P y R y R
2 1.2 2
o = () +x f2f -y - S 2D D)
nP_ P P P
12 1 2
(32)
Q Q -5 Q Q
1, Q@ Q,
PG G S I I S S Y7 L S VAL S S\
b 2 S S ° v2s.s ° S S
Y0°1 Y52 T6°172 Y021 Y52
s Q, Q
o = (20 +x {1 - 2 - D[+ (7))
"Y65152 Y031 Y652

-

for Pl = Pl(y+,}’w), Pz = Pz(Y_,Yi). and P3 = PE(Yw,YL), etc. [

Flgure 7 demonstrates the effect of axial wavelength on Yl for a

coaxial system with g = 7, n, = 1, r, = 0.075 m, r; = 0.0626 m, r, = 0.10 m,

g = 0.9, éz = 0.4, and n_ = 10!! m~2. Flgure 7(a) shows the effect

l.)O o)
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of kz on w.. Between resonance polints, W, is close to zero as
predicted.S At resonance, w, = T'/Y3. Outside the unstable region, we
increases rapidly, Indicating that the solution Is tracking the empty

waveguide mode. Figure 7(b) shows the effect of kz on I'. The coaxial

results are quite similar to the simple empty waveguide results.
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s 0
e

- Iv. THE NUMERIC SOLUTION

The analytic model has the a priori restriction that Ar <K .. Thus,

’ the analytic model is valid from Ar = 0 to some small value which is at

most a few percent of the average beam radius. In contrast, the numeric

model 1is not defined for Ar = 0. The thickness can be made arbitrarily
- small, but the computational cost increases tremendously with decreasing

thickness. Furthermore, there is no a priori limit on the maximum beam
- thickness, though each particular problem is limited by the cusp field
cutoff. Thus, the domain of the analytic model extends from the zero
thickness limit out to some small maximum value and the numeric model’s
validity ranges from some practical minimum out to the cusp cutoff layer.
In principle, the ranges of the two models overlap and a complete growth
N rate versus thickness picture can be drawn. Unfortunately, in most cases

the thin beam limit is too small for the thick beam model to be applied
. there. ’

The numeric approach involves solving the inhomogenecus wave equation
for Ez and C§z' In both simple and coaxial waveguides (among others), Ez
can be written as a linear combination of the homogeneous transverse
magnetic (TM) solutions and éiz can be written as a linear combination of
the homogeneous transverse electric (TE) solutions. With the ald of these
_} homogeneous solutions, the inhomogeneous wave equation problem is reduced

to an exercise in finding the zeros of the determinant of an infinite

matrix. The numerical method solves various finite approximations of this
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matrix and compares the answers to determine whether or not the truncated

solutions appear to be converging, The apparent limit is assumed to be the
correct answer. The formal solution of the inhomogeneous problem is
derived in Section A. Typical results are discussed in Section B, In

Section C, the solution for the coaxial case is presented and results are

given.

A, The Formal Solution

The perturbed velocity is still given by Eq. (10) but the perturbed
density [Eq. (12)] has to be found in terms of the EM fields with the help

of Maxwell’s Equations:

8
dn, c ]

) 1en1 cD ., o . o
dr R 2 "z 8 ) €EC
. 4

2
32 9o 274
+ 5 G T8, -k (-87)]
E L o o o
%
Y, wz/Yg Beo
+ Bzo(—c - -'P—c% Iz x5 + x9) (33)
o

N
~

2, 2 2 2
where mp(t) = e no(r)/(eomoYo), El = Dl - wp/Yo. and
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where Bzm {s the mth zero of Jl and % Is the nth zero of Ji.

functlons satisfy the orthonormal conditlons:

Ty

é ulml(r)ulnl(r)rdr =6

mn

These

T T — sy Bt B Bl e "ol r.rv'v_?.v.v.-.‘,'.~~_'~ T b S Soas A e A A el St i) 1
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Xy = = 1B Xz = B Xy = E,
(34)
X4 = cﬁr Xg = - icﬁe Xg =~ icﬁz
The perturbed currents can then be found as before:
Jrl en
I = o= - () v, (35a)
o o 1
iJel leno .
% = = - * -
J — By N ( - )ve (35b)
o o 1
1le ieno -
J* = = -8 Nt - ( Y v . (35¢)
z € ¢ z € C z
o o 1
For fixed £ and 1 < m < », we define the functions
_ V2
uzml(r) TT IR ) Jl(elmr/rw) (36a)
w L in
and
V2 % m 1
u2m3(r) = — R Jl(umr/rw) (36b)
L £ im

(37a)




T T o T T P T e

b
Bt
" 31

and

ll r
W
é Uy 30y g (ddr = 8 (37b)

¥ 1 <m n¢ =, wvhere 6mn Is the Kronecker delta function. Furthermore, it

|
. can be shown that for
.‘_" r
O w
Em = é x3(r)u2m1(r)rdr (38a)
and
;.
Tw
- B = é x6(r)ulm3(r)rdr , (38b)
h the expressions
L -]
x3 = L Epu,pi(r) (39a)
m=1
v and
'::- o
- m=1
. are valid, if.e. the sums converge at every point I{n the [nterval [O.rw].
" X [ ] o
w This fact ls true because {uzml}m—l and {u2m3}m_l are complete In the
approprlate spaces and because X3 and xg are assumed to have the requlired
degree of ''smoothness.'
¢ We defl k %= (c, k., k. K )T b
i e deflne the unknown vector 1 %2 %3 %4 y

» k" .h:*~ ."-¢ n
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k (r) = Ez(r) = mzl NG (40a)
k,(r) = ra E (r) = mzl E u, (D) (40b)
ky(r) = - 1c§z(r) = mzl B u, o (1) (40c)
k,(r) = = 1r3 cB (r) = m§1 By, 4 (1) (40d)

(u£m2 = raru“‘l and Yomd = tar“lmB)' With these complete orthonormal

systems (CONS), the numeric problem can be reformulated as a problem of
. [
finding allowable values of w’s and the corresponding sequences {Em,Bm} .

1
To do thls, the perturbed sources must be written In terms of ¥. The

sources are already known in terms of X; — X from Eqs. (33) through (35)

6
and can be written symbolically as

6 6
A S | : A i
J =) 3x : J* 2 ) 3 x
r 1=1 r*i . z 1=1 z™1
(41)
6 6
A S | A i
3] dgx N 2 ) onx .
8 o 0 (=] i

From Maxwell’s equations it can be shown that
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2. _ _ W o 1 K w
Exp = o e Ity (ke - gy (42a)
2 - [] J* 1 (_ k w )
Exp = - dg e (C ke + 2k, (42b)
2 kg 4+l -k
§7xg = KI5 + 5 (T Ak = kok,) (42e)
875 = — kI3 + 5 (T xy = K, 2kq) o (42d)
With the help of Eq. (41), X} — Xg can be ellminated from Eq. (42):
x0T = R (43a)
for
i 5 4 ]
2 1w . 2w .
I ot ik, I ¢ 3k,
Q= (43b)
1w, .5 ' 2, 2w _ .4
Jo ¢ * dg* 87+ 35 T Jgk,
- .
and
: _’_'.'_::"_r_,‘".-'_;f,:;;;-j.;'_ e e e T e e A, e T e S e e

. <. LR I P SR AR 4 - . . e Y .
e T AT R AP I e N sl Tt e e
A - - »




— —
s .4
eide? +a(- B, ¢ it Y ride? + a(- sk, + b8
1 S5 w 5w
jrkz + Sy 3g k + Je c
rR = . (43c)
ri%2% -2l L+ 37k ri®2 - el L4 52
c r z 0 0 ¢ Je
2 w .4 2 w
jr T Jrkz je c Jekz

Plugging Eq. (43) into Eq. (42) gives X] — Xg {n terms of k (notlce
that Xg = <) and Xg = x3). Afterward, J; and N* can be found from
Eq. (41). The net result Is that the perturbed sources are known in terms

of X and can be symbolically written

4 i 4 f
J: =L JrKi J: - z JzKi
i=1 i=1
(44)
4 4
\ i i
J = ) Jo«, : N* = ] N« .
6 =1 o1 . i=1 L
The inhomogeneous wave equations for Ez and cﬁz are
2 2
d 123 L 2 __w _
Suv I3 T I R S Sl - M (45a)
ar r
"and
2 2
0 13 L -1 * L . .
(a * T :7 + € 2y Ky = =3, (2J8) + 2 T8 L (45b)
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RO Multiplying Eq. (45a) by ruznl(r), Eq. (45b) by ru£n3(r), and Integrating

2
-

both from 0 to T, ylelds:

%) 2 Yl

T, .
sty PSR
-‘:'! ‘:

SRS 2 _ 2,2 _ % =

N E (6" = Byn/T) = L ESy yon1 b L BuSoncy,om (462)
n_-: - m=] m=1

=

NEN for
"-':'
N

S o

" ) = - w

. SZn-l,Zm—l - { -A ruBnl(r){[c Jz(r) + kzN (r)] uZml(r)

- ‘ o r

ROUIEY

- W {2 2

S + [3 3,(0) + & N()] u, (D)} dr (46b)
&

o . and

L - ‘ r_+AT

DV ° 3 3

- . - - w

W D S2n-1,2m ~ { o ruy (O T 300 + 1N (0] ()
.- o
N~ 4 4

S W
s T + [E J,(r) + kN (r)] uzma(r)} dr , {46¢)
f:" . and

SO 2 2,2 S o

!ﬁ ) Bn(g - 0Zn/rw) = 2 EmSZn,2m—l M z BmSZn,Zm (46d)
RS m=1 m=1

for

0 r +AT

R ! 2
e:ff Q SZn,Zm-l = { -Ar {u2n3(r)2[Jr(r)u£ml(r) + Jr(r)ulmz(r)]

e ° i
cer o - 1 2

C uln[’(r)[Je(r)ulml(r) + Ja(r)ulmz(r)]} dr (46¢)
o=

:r_:,

7 |
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8 1 s
[ e

7 lt and

-, ro+Ar
- S = | {u (r)E[J3(r)u (r) + Ja(r)u (r))
- 2n,2m T -Ar £n3 r Lm3 r Lmé
o
- " .
‘. .' _ 3
| (O[30, o (r) + Ig(edu, ()]} dr . (46£)
; Lo
5 By defining
L . 2 2 L2 2
e D = diag(g (B, /t ) ¢ (o, /t )%
o
TS
- 2 _ 2 .2 _ 2
vess £ (Bzm/tw) s & (azm/rw) S (47)
g-' b; it follows from Egqs. (46) and (47) that the elgenvalues are given by:
e det(D - S)(w) = O . (48)

If w {s a solution of Eq. (48), the fields are glven by the vector

T
o _ X = (), By wees B By i) (49)
{:i .. that satisfies S(w)X = D(w)A.
® The solutlion of the linear growth rate problem can In theory be found

by locating the solutlions of Eq. (48). Everything that Is needed to find

;ﬂf the matrix S has been derived in this section. When N = 0, s is

iﬁ ) fdentlcally zero and the solutlons correspond to the empty waveguide modes,
’
P
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J%ﬂ *: as they must, When Ro # 0, the solutlon can only be found approximately by

numerical techniques.

~d

Solutions are found as follows. The D and S matrices are truncated
after a finite number of rows and columns. The integrals In the S matrix
- are approximated by Simpson’s extended rule. The determinant of the matrix
e T is found by Gaussian elimination with full pivoting. The zeros of the
o determinant are found by recursive linear extrapolation starting with the
{ - single particle results. Although the thick beam model Is formally wvalid
without any restrictions (except for self-field conslderations), it is

':: _ computationally practical only to look for solutions near the tenuous,

ié i, resonant limit.

o0

;i& - B. Properties of the Solution

1 o ,‘ Numerical solutions of I' as a function of beam thickness are shown in
o Fig. 8 for a system with 2 = 7, n_ = 1 (TE), r_ = 0.06 m, r, = 0.0865 m,
: By =0.85, 8 =0.5, 0 =108n7% K =0, and z = 2.0, the equillbrium
o . defzned in Eq. ?6). For these parameters, the cusp cutoff limits the beam
':zi - thickness to X, < 0.16. The solutions are plotted for several different
:;gi 5? finlte approximations of the D and S matrices in order to demonstrate

'éé convergence problems. As the beam thickness decreases, the growth rate

e solution for a fixed number of elgenvectors starts to decrease. The
solutlon eventually begins to Increase and ultimately heads toward infinity
.u ' 'as the beam thickness approaches zero. The tendency of the growth rates to
- eventually Increase as the beam thlckness decrcases Is a result of the
truncation of the D and S matrices and is not a property of the exact

‘i ] solution., As the number of elgenvectors used lncreases so does the reglon

cae,

o,
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of convergence. When 50 eigenvectors are used, the result appears to have
converged all the way down to Xy~ 0.06. When X, 2 0.13, 20 eigenvectors
are sufficient to get an accurate answer. More eigenvectors are needed for
convergence as the beam thickness decreases because the density
distribution becomes more and more like a delta function distribution.
Thus, it Is the truncation of the Infinite matrices that puts a practical
limit on the allowed values of X, in the thick beam model. In the
remainder of the figures in this section, the curves are plotted for a
fixed number of elgenvectors (< 50), and regions where the solutlons have
not converged are indicated by dashed lines.

In Fig. 9, TI' is plotted as a function of the effective beam thickness
for three different beam profiles. The beam parameters are still those of
Fig. 8; the other two curves correspond to z = 1 and p = 0.95. The
effective thickness for the three models as defined by Eqs. (3) and (8)
are: 0.383 x, for z = 2.0, 0.603 x_ for z = 1.0, and 0.975 x_
for p = 0.95. The growth rate 1s In reasonably good agreement for the
various models. Unfortunately, convergence problems make It impossible to
determine if the solutlons converge to the same polnt as X, * 0 (as |
predicted by the thin beam model). Because an effectlve thlckness 1s used,
the differences between the curves are attributed malnly to the shapes of
the denslty profiles. The curves predict less than a 1% shift In T over
the whole range of beam thicknesses.

The three models (single partlicle, analytic, and numerlc) are compared
in Fig. 10 for the parameters of Flg. 8. (except that the p = 0,95 curve is
shown), The effectlve thickness Ils used for the numerlec model. Thé

allowed range of x_ for the analytle model Is not well defined because the

o)
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solution is at a resonant point. Nonetheless, there Is excellent agreement
of the two models for T.

The agreement of the two fluid models should not be taken for
granted. Although the models start with the same baslc equations, the
approaches taken are quite different. For example, the thin beam model is
essentlially an expansion about the zero thickness disperslon relation
[Eq. (29)] while the numeric model is an expansion about an empty waveguide
solutlon (the matrix D). The two methods should only be expected to agree
perfectly when the analytic models’ Taylor series expansion is carrled out
to all orders and the numeric models’ D and S matrices are solved exactly.
In Fig. 11, the growth rate Is plotted as a function of beam thickness
for two systems with different wall radii. The common parameters are g = 7,

~

n, =1, r, = 0.06m By =0.85, 8 =0.5 n_ =108n"2, and z = 2.0.
[o] (o]

The axlal wave numbers are adjusted so that both solutlons correspond to

resonance polnts. The first curve has kz = 0 and r, = 0.0865 m, and the

second curve has kz = 1.165 m~! and r, = 0.0860 m. For the first time a

solutlon has been plotted for a syé;em having kz”;z , and X, all nonzero
o

simultaneously. Consequently, this is the first result for a system whose

E layer Ls only approximately in synchronism with the EM wave (for the

first time Yy s a function of r). The finite kz growth rate is a rapidly
decreasling function of beam thickness. For example, the flnite kz growth
rate [s roughly one half of the zero thickness growth rate (indicated by
the square) at a relative thickness of 7.5%.

Because the two cases In Flg, 11 are very simlilar physically (the wall
radlus changes by less than 0.6%), the difference ln the curves lIs

attributed malnly to the loss of complete synchronlsm. Thls quasl-

e A e an ol PR R, N R S A S o -'j_'.L",-..;L‘A_'~‘\‘- R WA T




synchronous effect can be scaled to higher densities as follows.

An

estimate of the relatlive deviation from synchronism at the outer beam edge

Is [from Eq. (15)]

sz

—_ = sz kz/Wz s (50a)
Wl o

so in the tenuous limlt5

Ay
L 1

—_ (kz/ns/3) . (50b)
¢2

Thus, for every three orders of magnitude increase in beam density, the

growth rate curve will be simllar for a one order magnitude decrease In

axial wavelength.

6 -2

For a beam density of n, = 10" m

be found for Az ~ 25 m. Likewlise, for ng

is ~ 1.16 m.

- 105 -2 . =
Fig. 11 for n = 10" m © (diamonds) and n = 10
wave numbers are scaled accordingly.

scaling law.

=1

It should be noted that the X,

= 0.04 polnt for ng

The axial wavelength for the finite k, case Is ~ 5.4 m.

, the same relative decrease in I should

» the appropriate Az

Normalized growth rates at isolated points are indicated in

10‘m—2

(circles). The axlal

The results support thls simple

had not completely converged after 50 eigenvectors and the actual result lIs

(probably) closer to the curve than indicated.

C. Solution of the Coaxial Case

The only difference between the solutlons of the coaxlal case and the

si=ple empty wavegulde case ls In the CONS used. The two CONS for the

chaxial case are glven by
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Y2 P (8, v,8, )/t
4 (0 = 2z gmz o 72 (51a)
[C2/m8, D% - y{R (B, v .8, )]
and
) V2 Qﬁ(aﬂmy,azm)/rw
u r) =
Lm3 2 2 2 2 2,2 1/2
{("“zm) (1 - (“%m) ] - Iy - (2/a£m) ]Qz(amyi,am)}
(51b)

for fixed ¢ and 1 < m < =, and for y = r/rw and y, = rl/rw‘ Now “lm(BZm)

is the mth

zero of Sz(almyi’azm)lpl(BZmyi’Bzm)]’ Equations (37) and (38)
are valid for the functions defined In Eq. (51) provided that the lower
integration limit Is set to ry [Kz and K, are still given by Eq. (40)].

Growth rates for coaxial cases with finite axial wave numbers are

shown In Fig. 12. The parameters are £ =7, n_ = 1, r, = 0.0626 m,

r

~ _ -~ _ - -1
tO = 0.07509 m, r, = 0.1 m, Beo = 0.9, BZO = 0.4, kz =0.3m °,
and n, = 108 m-z. The curves are d;awn for z=1.0 and z = 2.0. The
curves are plotted as a function of the relative beam thickness and
the kz =0 (r, = 0.07500 m) growth rate Is shown as a reference. The two

finlte kz growth rates are in good agreement with each other. As usual,

the curves drop off rapldly as the beam thickness Increases.

..........
;
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V. CONCLUSIONS

In summary, we have carried out a linear fluid analysis that Is

applicable to cusp-injected beams with finite radial thickness. Two

\ {

- a approaches were taken. In the analytic approach, we expanded the fluid
::; . equatlons in the ratio At/r° and recovered the single particle, tenuous

{ beam result, Futhermore, we noted that the analytic result was valid off
L.

ot i resonance and at somewhat larger beam densities (than the single particle
:ﬁi 4 result)., The latter extension was useful in helping to quantify the limits
»?f ;_ of the tenuous regime. Unfortunately, we discovered that the analytic

P .

result has only limited usefulness In the analysis of thlck beam
conflgurations.

In the numeric approach, we solved the Inhomogeneous wave equations
via expansions In the homogeneous solutions., Because of computational
i:} f: limitations, results were only displayed for resonant systems with tenuous
beams. We demonstrated that resonant systems with thick, tenuous beams
cannot be operated far from cutoff without a substantlial reductlon In the
S linear growth rate. We attributed the reduced growth rates to the loss of

- synchronism inherent In systems that have a spread in canonlcal angular

{ 4

) momentun (manifested by a flnite Av, in our model).

:?~ In our analyses we focused on two particular conducting wall

‘ ‘geometries: clrcular and coaxial wavegulde systems. Extending the

f; -~ analyses to other wavegulde geometries ls stralghtforward. 1In the analytic
-‘_\ .
'QR N model, only the geometry parameters (normallzed wave admittances) need to
3 S
‘i‘ }: be adjusted. For the numerlc model, results can be obtalned Lf the
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complete, orthonormal systems consisting of the relevant homogeneous
solutions are known. Other physical systems can be modeled by choosing the
appropriate equilibrium and following the general procedures outlined in

this paper.
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APPENDIX A

Integrals of the Perturbed Fluid Velocity

Equations (10) and (21) are used many times to obtain the following

results:

- r +Ar
o P~
— (Lt Fx) v dr
eo r -Ar wn 1
=2,
- g > {wl[ 1ED + Be (-icB2) - 3 (-icB)] + o (B + s cB2)
A8 %o %o
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3 L o'r 8 o z z o 0

o o
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Figure Captions

< FIG. 1. The fluid equilibrium.

ol FIG. 2. The plecewise cubic equilibrium density profile: (a) no(z) and
(b) n’(z) for p = 0 (O), 0.5 (V), and 0.95 (A). For each
curve, n_ = 2Ar.

"~ - FIG. 3. The smooth equilibrium density profile: (a) no(z) and (b) né(z)
. for ; = 0.125 (A), 1.0 (v), and 2.0 GO). For each curve,

n, = 24r.

FIG. 4. The dependence of the growth rate I' on beam density: (a) at

resonance (kz = 0) and (b) off resonance (kz = 66.11 m-l). The

common parameters are £ = 7, r, = 0.06 m, rw = 0.0865 m,
D Be = 0,85, Bz = 0.5, and X, = 0.

RS o o

N !ﬁ FIG. 5. The dependence of the growth rate ' on axial wave number: (a) T

along a beam line and (b) the corresponding dispersion curves.

Parameters: £ = 11, nr = 1-3, ns = lO8 m-z, ro = 0,06 m,

l r, = 0.10 m, Beo = 0.85, ?zo = 0.5, and x, = 0. Single particle
5 results are indicated by [J.

FIG. 6. The dependence of the growth rate I' on beam thickness.

8 =2
Parameters: £ = 7, n, = 1, n, = 10" m 7, r, = 0.06 m,

r, = 0.09 m, Beo = 0.85, Bzo = 0.5, and kz = 0., Linear
> expansion V, exact solution A.

.
L@

. FIG. 7. The dependence of wz on the axial wave number for a coaxial

system: (a) w and (b) ', Parameters: g =7, n_ = 1,

- n, = 10!l a2, r = 0.075m, r, = 0.0626, r_ = 0.10 n, Qe“ = 0.9,
a [0}
- B, = 0.4, and x_ = 0.
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FIG. 8. The convergence of the truncated solutions for ': 20 (a), 30 (¥v),

‘l 40 (0), and 50 (O) elgenvectors. Parameters: £ = 7, n_ = 1,
r_ = 0.06 m, r_ = 0.0865 m, Beo = 0.85, B’o = 0.5, n_ = 108 n2
k, =0, and z = 2.0.
. FIG. 9. The effect of the density profile on '« The common parameters
o are £ = 7, n.= 1, n, = 108 m-2’ r, = 0.06 m, r, = 0.0865 m,
- ée = 0.85, éz = 0.5, and kz = 0. Models: [ single particle,
T o o
Qp=0.95, 48 2z =1.0, and V z = 2,0,
FIG. 10. Comparison of the three methods of solution for '« The common
parameters are those of Fig. 9. Models: [0 single particle,
e O analytic, and ¢ numeric: p = 0.95.
e FIG. 1l1. The effect of axial wavelength on the growth rate ' Common
” - -
) parameters: £ =7, n_ =1, r = 0.06 m, Beo = 0.85, Bzo = 0.5,
iﬁ and z = 2.0. Models: O single particle: 4 n_ = 108 n2,
- - o - 108 -2 _
r, = 0.0865 m, and kz =0:V ns 10" m =, rw = 0.0860 m,
and k_ = 1.16 w150 n_ = 10° 072, ¢ < 0.0864 m,
- ~-1. : _ 10 -2
!, and kz = 0.251 m andO.;nS =10"m “, r, = 0.0843 m,
and k_ = 5.41 n ',
FIG. 12. The effect of axial wavelength on the growth rate of a coaxfal
system. Common parameters: ¢ =7, n. =1, 0 = 108 m_z,
- ' .
s r,=0.075m r, =0.063m r, =0.10 m, Beo = 0.9,
- and 8, = 0.4. Models: 0 single particle, k, =0,

o ~ ~
A kz =0.3m ! and z = 1.0, and ¥ kz = 0.3 m ! and z = 2.0.
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