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I. INTRODUCTION

Research on microwave generation from rotating electron beams in

various conducting boundary systems has been pursued at the University of

Maryland under AFOSR sponsorship for several years. Recently, the major

emphasis of this research has been on the production of radiation from

rotating electron beams in magnetron-like conducting boundary systems.

These experimental configurations are now recognized as an entirely new

type of microwave tube, referred to in the literature as a Gyromagnetron,

High Harmonic Gyrotron, or Cusp Injected Magnetron CGusptron). The

interest in this new device has centered around its potential to reduce the

required magnetic field in microwave tubes by an o-der of magnitude by

allowing operation at a high harmonic of the electron cyclotron frequency.

This area of research has seen substantial progress during the last

year, and a summary of theoretical and experimental research conducted

during this period is presented in Section II Results from research on

millimeter and submillimeter waves produced by rotating electron beams in

rippled magnetic fields, partially funded by AFOSR (with additional funds

from DOE)'are also summarized in-Section II of this progress report.
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11. FINAL PROGRESS REPORT

For the Period December 1, 1984 to November 30, 1985

A. Experimental Research

1. Improvements to the Experimental Facilities

During the past year the experimental facilities have been enhanced by

the installation of a completely digital fast data acquisition system

funded by a grant from AFOSR under the DOD-University Instrumentation

Program. This new system includes five channels of Tektronix 7912AD fast

digitization controlled by a DEC 11/73 computer. Additional equipment

related to this project includes an Imagen laser printer and several

graphics terminals. This facility has been installed in a separate

shielded room in our high bay area, and is currently being connected to the

various experiments it is designed to support. In addition to this

facility, a 40 kV, 40 A, 5 us pulse modulator has been installed to power

the CUSPTRON experiment, and this new modulator is now fully operational.

Additional remarks about the experimental facilities can be found in
I--

Section III of this progress report.

2. High Power Microwave Experiments

Experiments designed to use the high voltage rotating beam facility

have produced significant results during the past year. These experiments,

in which a rotating electron beam interacts with the modes of a magnetron-

type conducting boundary system, have demonstrated that efficient radiation
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can be produced using either annular sector resonator or hole and slot

resonator configurations. Using a 2 MeV, 1-2 kA, 5 ns rotating electron

beam pulse, about 300 MW have been produced at 8 GHz using a hole and slot

resonator system with ten resonators, and about 500 MW have been produced

at 15.5 GHz using a 20 slot annular sector resonator system. These results
I

are detailed in a paper entitled, "High Power Microwave Generation from a

Large Orbit Gyrotron with Vane and Hole and Slot Resonators," published in

the IEEE Trans. Plasma Science (special issue on high power microwave

generation) and enclosed in Appendix B.

3. Millimeter Wave Generation from Rotating Beams in Rippled

Magnetic Fields

These experiments, conducted in collaboration with Professor George

Bekefi's group at MIT, are designed to investigate a novel kind of free

electron laser configuration. In this work, a rotating beam interacts with

an azimuthally periodic wiggler field provided by samarium cobalt magnets

located interior and exterior to the beam. Narrow band radiation at power

levels in excess of 200 kW has been observed at 90 GHz and 180 GHz in these

experiments, and the studies are detailed in a paper entitled, "Millimeter

Wave Generation from a Rotating Electron Beam in a Rippled Magnetic Field,"

published in the Physics of Fluids and enclosed in Appendix B.

4. CUSPTRON Experiments

These experiments on our low voltage table top rotating beam facility

(25-40 kV, 1-2 A, 5 us, 100 pps) are now fully underway. Over 500 W of

microwave power at the sixth harmonic of the cyclotron frequency have been
[0
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observed when the rotating beam interacts with a six slot vane resonator

system, and experiments designed to produce radiation at the twelfthH harmonic are currently in progress. The potential of this new device lies

in the extremely low magnetic fields required for its operation (typically

200 gauss compared to many kilogauss for comparable magnetrons or

gyrotrons).

B. Theoretical Research

The theoretical contributions to our research this past year have been

the best since the inception of our program. Not only have details of the

many calculations that have been done by our group merged into common

.- agreement, but our ideas as to how systems should be designed to enhance

radiation have been quantified. We believe that we can now delineate the

main factors that determine the best conditions for optimum coupling of a

rotating beam to a given wall geometry. The theoretical areas studied

were:

e The stability of a thin E layer via a Vlasov formalism was completed

and shown to agree with the single particle approach. This was used

to study the interaction of a thin rotating E layer with a vane

resonator wall structure (see Refs. 23 and 28 of Appendix A).

o It was proved that for a cusp injected system the 2w mode of the

waveguide structure is the dominant mode of operation. Thus, the

injection radius of the beam selects the proper radial mode number of

.2
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the "2w" harmonic, and for strong coupling the beam must be close to

the slotted wall structure. However, most of the energy is coupled

into the fundamental mode (see Ref. 28 of Appendix A).

* Both resonant and nonresonant interaction is considered via the

Vlasov and fluid formalisms. For the nonresonant, long wavelength

limit, the traditional negative mass instability is recovered (see

"" Refs. 23, 29, and 30 of Appendix A).

* The derivation of a general growth rate expression for systems

involving large orbit, thin, annular, relativistic electron beams was

completed. This growth rate formula is written in terms of

parameters which contain the required information about the waveguide

* wall structure. This method extends previous results to systems

whose empty waveguide modes are hybrids. As an example of this

latter case, growth rates for coaxial systems with dielectric liners

are calculated via this formalism. The use of dielectric liners mayI!
2" ". be very useful for low energy systems where it is difficult to

" simultaneously have resonant interaction at a strong coupling

position of the beam (see Ref. 31 in Appendix A).

* The production of high power microwave radiation from a large orbit

gyrotron in azimuthally periodic boundary systems was studied

theoretically. Linear growth rates are calculated for the 2n modes

of magnetron-like vane resonator (VR) and hole-and-slot resonator

(HASR) systems using a general growth rate formalism. This formalism

4-
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was used to design the resonator structures for the experiments

performed in our laboratory. The radiation characteristics are in

reasonably good agreement with the theoretical predictions especially

with respect to radial mode competition problems (see Ref. 32 in

Appendix A).

* The macroscopic fluid equations were used to study the effect of beam

thickness on the linear growth rates of large orbit gyrotron

configurations. Two methods were used to calculate the growth

rates. The analytic approach solves the problem to first order in

the ratio of beam thickness to the average beam radius and recovers

the zero thickness limit. The numeric approach uses complete

- "orthonormal systems comprised of the homogeneous wave equation

solutions to calculate the growth rates for beams with arbitrary

thicknesses. It is concluded that thick, tenuous beams in resonant

* .systems must be operated near the cutoff of the EM wave. The

decrease in growth rate as the wavelength decreases is attributed to

. 'the loss of synchronism in systems where the beam has a spread in its

- canonical angular momentum [see Ref. 33 in Appendix A (paper in the

process of being written)].

0 The study of single particle motion in hollow-cylindrical waveguide

fields has been initiated. A purely linearized analytic approach can

be used for particles far from resonance and an analytic-iterative

analysis can be used for particles that are near or at resonant if

they are trapped. These analytic results are compared to a numerical

; i"
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solution of the equations of motion. The main information in which

we are interested pertains to the process of physical bunching and to

• the net energy gained or lost by a representative group of particles

. .in the electromagnetic field. We define the magnitude of physical

bunching by the percentage of particles trapped in their azimuthal

wave period. The effect of the magnitude and slope of the electric

field is also investigated. For our set of parameters, we determine

that dy/dt is solely responsible for azimuthal bunching. This can be

seen in both the linear analytic theory and the numerical

solutions. We also observe that the tangential magnetic force causes

a spreading of the bunch in the z direction. This spreading does not

occur for k = 0 and v = 0, i.e. cutoff, since in that case the
z zo

tangential magnetic force is zero. Energy loss (gain) by the

particles is seen to be related to both the percentage trapped and

the position of the bunch in the phase of the wave [see enclosed

abstract (Ref. 35 in Appendix A)].
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A general linear growth rate formula for large orbit, annular electron beams
W. Lawson and C. D. Striffler
Electrical Engineering Department and Laboratoryfor Plasma and Fusion Energy Studies. University of
Maryland. College Park. Maryland 20742

(Received 4 February 1985; accepted 3 June 1985)

Microwave radiation can be produced at cyclotron harmonics as a result of the synchronous
interaction between a rotating E layer and an em wave. The derivation of a general growth rate
expression is presented here for systems involving large orbit, thin, annular, relativistic electron
beams. This growth rate formula is written in terms of parameters which contain the required
information about the waveguide wall structure. This method extends previou. rt alts to systems
that have empty waveguide modes which are hybrids. As an example of this latter case, growth
rates for coaxial systems with dielectric liners are calculated via this formalism.

I. INTRODUCTION The growth rate formula is derived in Sec. 11. The geom-

Microwave generation at cyclotron harmonics via large etry parameters are defined and the special cases of trans-

orbit, annular electron beams has received considerable at- verse electric and magnetic waves are discussed as well. In
tention during the past few years. Numerous theoretical and Sec. III we recover the results of Sprangle (Ref. I) and

experimental efforts have resulted in a good understanding Destler et al. (Ref. 2) and discuss the possible need for dielec-

of the radiation process. -12 Studies have been done for tric liners. Growth rates for a coaxial system with a dielectric
b i i a gm s t a liner on the outer wall are derived in Sec. IV. The specialS 'beam s in vario us w avegu id e geo m etries w ith the m ag ne- c s s f r T n M w v s a e c r f l y d s u s d b f r
tron's vane resonator system receiving most of the attention. cases for TE and TM waves are carefully discussed before

One promising device at the University of Maryland the general case is derived. Conclusions are drawn in Sec. V.
generates a rotating beam with a magnetic cusp field. 3 This
device has been used to generate power levels of 500 MW II. THE GENERAL GROWTH RATE FORMULA

both at the 12th and 20th harmonics of the relativistic cyclo- The linear growth rate problem can roughly be divided
tron frequency with a vane resonator system.14.15 The hollow into two parts. The first part involves calculating the per-
E layer nominally has a particle energy of 2 MeV, a current turbed sources in terms of the em fields at the equilibrium
of 1-2 kA, and a pulse length of 5-10 nsec. Other experi- radius. Because this calculation has essentially been done
ments on cusp-injected devices are in progress at Maryland' before (cf. Ref. 1), we only briefly sketch the derivation here.
and elsewhere. ' Furthermore, other injection schemes have In this sketch we reorganize the equations to better fit the
successfully been developed." general analysis and emphasize the key points in the deriva-

Several of the previous linear growth rate analyses used tion.
I the fields explicitly associated with the particular waveguide In the second part we close the system of equations by

in the analysis (cf. Refs. I and 2). This makes it necessary to integrating two components of Ampere's law across the
repeat most of the procedure every time the waveguide ge- beam. This produces two equations that express the jumps in
ometry is changed. In fact, a large part of the analysis is cB, and r d, E, across the beam in terms of certain beam
independent of the waveguide and should only have to be parameters and the values of rd,cB, and E, at the beam
done once. In this analysis we perform all of the geometry- radius. It is at this point that the waveguide geometry first
independent work first. Some geometry parameters are then enters into the analysis. The particular boundary conditions

"- -" defined that enable us to write a growth rate formula without at the waveguide walls determine the ratios of cB, and
a priori knowledge of the waveguide wall structure. For a rd,E, to rd,cB, and ZE, at the beam radius. In fact, the
given system the geometry parameters can be found by fol- geometry parameters used in the growth rate expression are
lowing a simple procedure involving only the application of composed of these ratios. These geometry parameters are

* boundary conditions that do not involve the beam (similar to generalizations of the (two) normalized wave admittances
* Ref. 11). Consequently, we have reduced this linear growth used by others in the analysis of decoupled systems (see Ref.

rate problem to an algebraic exercise. As an added feature 3, for example). The generalization is necessary because the
this procedure will generate the dispersion relation for the usual wave admittances are insufficient for the hybrid case.
system without the beam. The reformulation of the em fields in the source-free regions

Up to this time all the linear growth rate studies have and the incorporation of the geometry parameters are the
. , been valid only for systems that have empty waveguide main new features in this analysis.

modes which are TE or TM. In addition to recovering pre-
vious results, our method works on systems that have empty
waveguide modes which are hybrid. This enables us. for ex- A. The perturbed source terms
ample. to calculate growth rates for waveguides with dielec- The type of system we consider has an electron beam
tric liners, propagating in some cylindrical waveguide %tich is im-

2868 Phys. Fluids 26 (9). Septomber 1985 0031-9171185/092868-1001 90 0 1985 AmoeCan Institute of PhyM 2666
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The linearized, Fourier-analyzed Lorentz force equa-
n - - - -- tion is found to be

= ( -ie/mo y42gb 1 )(E +1iocB,) + 0(1), (2a)

ro, = ( - elmo yo~l)(OE 6- +OE Oo 1E) + O(0,- '), (2b)

"=(e/mou[ -/,.E 2 -fyo c[, -o )k 6 . ]. (2c)

- - -- Equation (2) reveals that, to lowest order in 0,, the perturbed
._. particle positions depend only on the field components,

which are continuous across the beam. This is convenient
FIG. I. The equilibrium model, because the continuous fields are well defined at the beam

radius in terms of limiting values as r--r o. When r6ro, the
vacuum equations apply and the continuous fields can be

mersed in a uniform magnetic field Bo (see Fig. 1). The only written in terms of k7 and r d,cB,.
. restrictions placed on the waveguide are that it must be axi- Conservation of electrons on each differential surface

symmetric and invariant to translations in the 2 direction. element requires that, again to lowest order in '1 (cf. Ref. 1),
These restrictions, along with the linearization, allow us to ,,, - in, (10, + k,2,),5(r - ro). (3)
assume that only one harmonic perturbation exists in the From this we find the perturbed current to be (as always, to
system. That is, perturbations with different harmonic lowest order in o)

numbers do not interact in any way. l

We assume that the beam is very thin; its equilibrium O"J, /Coc = 0, (4a)
density is given by P%1J 6'/ 0 C 2 -

no(r) = n,5 (r - ro), X [ k 0 +ifo(racbj)0 6(r -

where ro is the beam radius and n, is the surface particle (4b)
density. We also assume that the beam is sufficiently tenuous 2(

so that the equilibrium self-fields can be neglected. Each LT r -
electron moves on a predominantly helical orbit with an un- /
perturbed, normalized velocity of (0, ,,,,, J. This simple X [ - if o*E + 12,(rd, c, )el5(r - re).
distribution enables us to use the single particle equations in
our analysis.

I" " The first step is to linearize and Fourier analyze the Lor- where V = e2n, /(m, yoroo), l. = (k c - wfli), and the
entz force equation. We write the particle positions as superscript zeros mean that the function is evaluated at the

0=0 equilibrium radius ro. From Eqs. (3) and (4) we see that, in the
-- , 0 0 ot + 0, z = zo + v + z, synchronous limit, the source perturbations lie on the r = r,

where 2o = eBo/(m o yo) is the electron-cyclotron frequency surface. This fact will be important in the next section when
and yomec2 is the electron energy. The perturbations r, 0,, we apply the jump conditions.
and z, are assumed to be small compared to their zeroth-

V order counterparts. B. The jump conditions and the geometry parameters
We assume that all perturbations have their dependence There are two unknowns on the rhs of Eq. (4) and there-

-.- on the time, t, and the 0 and z coordinates defined by fore two more equations are needed to close the system. We
exp[i(kz + 10 - at)]. The amplitudes of the perturbations integrate the Fourier-analyzed O and z components of Amp-
are denoted l 0,, and 2,. Consequently, the linearized, ire's law across the beam to get
Fourier analyzed version of the total time derivative is
d dt- - i!l, where ch, i' =- f , ()dr 15a)

"...... -.: 0, = w - 1U20 - k, v,. ()f' J, rd

The quantity 0b1 is a measure of the difference between the CE6 i,,od (5b)
actual em wave in the beam-waveguide system and the r° 0 -0
doppler-shifted cyclotron harmonic. In the following analy- Substituting Eq. (4) into Eq. (5) and rewriting cbe in terms of
sis if, plays a very important role. The synchronous limit is the axial fields gives
defined by tb,-.O. Thus we say that the beam is synchronous
with the em wave when 0&' is small compared to the other Io
frequencies in the analysis (t' -<2, in particular). In our deri-

-.. vation we always assume the synchronous limit and only X [ -ifE ?o +f2o( r dcB,)], (6a)
keep the lowest order terms in U,,. This assumption has many
consequences. Most importantly, it enables us to obtain an 10(cB1 {,o = 2 - - i) )) + fl,(rd,c)"],
explicit growth rate formula. The other consequences will be ob)
discussed as they appear. We will show later that the syn- (db)
chronous assumption is a good one for tenuous beams. where v = r•en, pu,(2m,) is Budker's parameter. Nothing
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N. more can be done without considering the waveguide geome-

tries.
When r*r o the vacuum waveguide equations apply. In

cylindrical coordinates, the general solution is a linear com-
bination of Bessel functions of the first (J,) and second {YJ
kinds. We divide the direction into two regions: region I.

14 where r<r, and region 1I, where r> ro. Symbolically, we
write the axial fields in the two regions as M-

jr)k 0 + if ; (r)(r , cB, ), r<rt,, 7
(= {r) + if,* (r)r a, cB), r>r-,

and in.,

= [ifb, (r)E+fb rr)r< ,cB,}), <r (8)
" {ifb,(rJE +fb+(r)(r ,c), r>ro" D

The radial functionsft (r) are just linear combinations off Jn
and Y1. Their coefficients are determined by boundary con- Ax:, Wave .im,,r k.

ditions that do not involve the beam. Examples of the calcu- FIG. 2. Graphical description of resonant interaction.
lations of these functions are given in the following two sec-
tions.

To proceed with the general calculation, we define a forward wave intersection (k = 0 is called the cutoff). For
a tangential intersection, there is only one resonant point and

Ch, I I that point is characterized by identical group velocities for
gbb , - = f, (re) -f, (re), (9a) the waveguide and beam modes, i.e., the grazing condition..".(r ,cB_ )I) " -=o

r _ I, * df C. Properties of the growth rate formula- "= r, - r ,o

"'- k , =,. 0 dr dr .='oTo keep the analy: :s consistent, the geometry param-

(9b) eters must also be evaluated to lowest order in 0,. Although
D, (o,k,) is usually zeroth order in tb, at resonance it be-

C,. comes first order. Therefore, at resonance the dispersion re-
*b g= = f, be) f (r.), (9c) lation becomes a cubic in 0b, instead of a quadratic. In this

I , °  =) o fpaper we consider only the resonant case because the cubic

ra, b growth rate dominates the quadratic growth rate at low den-
go, = ._ =r- r (9d) sities.""'" g' i~rd, cB,) " °= dr ,0

i:-a""..-. ".dr."d We emphasize that the dispersion function [Eq. (10)] is

to be the geometry parameters. We label 9bb the TE param- valid off resonance. Only synchronism is required by the
eter, g,, the TM parameter, and gb, and g,b the hybrid pa- analysis. For example, in the appropriate limit we could

'. rameters. Plugging Eq. (9) into Eq. (6) yields the dispersion show that our growth rate agrees with Uhm's negative mass
relation growth rate in coaxial geometry.' 9

..- ?{gb g.+ g, g, ) At resonance we obtain from Eqs. (10) and (11) that

=2(v/yo)[ g,,2 -(g, + glb)f.f* J-2g0 fJ 9 . ]=2 (v)gt -(g +gb)IL.-g 6 12*

(10) Yo (g ,,- 9b+g, ,g.b)' (12)
for the beam waveguide system in the synchronous, tenuous.. " where the prime denotes the derivative with respect to co and

-. , - beam limit.
the geometry parameters have been evaluated at (wI',k ,). WeWhen there is no beam, s = 0, and the empty waveguide note that the frequency shirt 01 depends only on v/y, the

dispersion is
frequencies fl, and fl., and the geometry parameters. We

D,(w,k,) = gbg, +g ,g. - . (11 ) write it, = w, + iF so that r> 0 represents a growth in

* It We denote solutions of Eq. (Ii) by ({,' ,k ,). If, by a suitable beam amplitude with time. Assuming the rhs of Eq. (12) is
choice of system parameters, the perturbed beam frequency real, the growth rate and frequency shift are given by

If"2o + k v., is equal to some empty waveguide frequency r = ( 3/2)IV,, (I3a)
we, we say that the beam perturbation is in resonance with
the empty waveguide mode(at k' ). Resonant interaction for w1, = -sgn(.V')r/"/, (13b)

a simple waveguide geometry is depicted in Fig. 2. We note where sgn denotes the signum function.
. that, in general, there are two resonant points, if any. The It follows from Eqs. (6) and (9) that the empty waveguide

intersection corresponding to k (k -_is called the high- modes are TE or TM ifg,. = 0 = g,,. In this case the empty
(low-) frequency intersection point. if ,k < 0, then the res- dispersion relation and corresponding growth rate for a FE

, onance is called a backward wave intersection; otherwise it is mode are
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I tr, =. (14a)

-T.-.""- 2 \oS4(14b)

' "  The cmespondag expron for a TM mode are
-':: iC. - ., (15a)

Flu ___y (15b)

Notie that the TM growth rate depends on D., but the TE
growth rate depends an D,. Consequently, iff17 = 0, then
the TM maes are stable but the TE modes are still unstable.

This can be seen physically by considering a transformation Reo. R
to thebeam frnme (moving with a velocity v, with respectto
the lab fm). For a TM mode .0* = 0 implies thatEt =0 FIG. 3. Cram sation of the simple cylinduical wavepude geometry.
m the bem frame. Thus J is secnd order and particles do
not lose enerW in the linear approximation. For a TE mode,
howemEr,v is finite in the beam frame and ,remains a first-
- "ta .The simplest way to obtain 17 =--0 is to set and

,. = 0 = k.. In the dielct:ric-fic cases. o = 0 whenever _ +
the grazing condition is satislied. f,6-f 0=-fbe bet

Aso, notie that r. n. Thisscaling law implies that for g 2 = (wl/c) 2 - k2, x(r)= r, and x= X(ro), etc. From
the snchronous limit is valid for sufficiently tenuous beam. Eq. (9) the TE and TM geometry parameters are found to be

In the next section we use Eqs. (14) and (15) to quickly re- 2 J__x.)
*_, c .~over the suilts of Sprangle and Destler et aL ' - ; =r = 2j;( °W' (x°'.)

and

2 i,(x.)
EL DISCUSSION OF PREVIOUS WORK - -- ( "T J, (Xo)W,(x0'.)

bn this and the next section it is convenient to adopt the As expected, the TE solutions are characterized by J;(x.)
standard notation for the cross products of BEssel func- 0 and the TM solutions are characterized by JIx.) = 0.
.tio-: 1The growth rates are found from Eqs. (14) and (IS) to be

Pfahb) =J,(a)Y,(b) - YaV,(b), (16a) r__ T 3 (c/r.)% '
. Q(ab) =J,(a)Y(b)- Y,(a)J;(b), (16b) Do 2 \ ro a "

.. (ab)= J;(a),(b)- r;(4,(b). (16c) 2 x/J3(xo)

*i ' S,,(ab)=J(a) Y(b)- Y;(a)1;(b). (() x I -(nlx.)2I'"Jx.

"" ""It is simple to show from Bessel's equation that, if a (z) and
and b = b JAL then v (c/r In)2 t/3 J,(x2)1.

" ".~P=Jbl( a'R, +b'Q,. (17a) = T, no- ) I J;(x,)I

"Q";(ab] = a'S, + b'I 2/b2 
- l)P, - (l/b ), ( I) These results do indeed agree with Sprangle's synchronous

1 R;(ab)=a'lI(l/a 2 - l)P -(I/a)R,J +b'S, (lc) case(Ref. 1).
- s;(a,b) = a[(12/a 2 

- I)Q, - (la, I When a smooth inner conductor of radius r, is added to
-bI(12 /b2 

- I)R -- (l/b)]. (17d) the system (see Fig. 4), only the boundary conditions in the
+ ,..' - region below the beam are affected. The net difference is in

Clever choices for arguments of these cross products sir- the two functionsf, andf , which become
plify the algebra tremendously

Consider the case of only a smooth outer conducting P 1X)P 1 (x0.XJ

- wal of radius r,, (see Fig. 3). We apply the usual boundary and

" conditions at r, and growth conditions at r = 0 and make f, Q,(x-X)/XoS1(XoX)"/' "the following identifications [via Eqs. (7) and (8)1:
.wf.s nfor the inner conductor case. The geometry parameters be-

.- (z) - Pxx) come

A J,,( .) 2 s,(x.(x,)
.. f. .. f, X. =r , X = s,(Xo s,(X0-X.)

r, xox,, )and
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beam energy is large. Consequently, we do not expect low-
energy systems to be very successful in these simple geome-
tries.

For low-energy systems something must be done to (in
essence) raise the possible values of /Ix.,. This isjust another

- way of saying that something is needed to "slow down" the- _em wave. One possibility is the slotted wall structure. This
method has received considerable attention and will not be
discussed here. Another possible method involves the inser-

- "tion of a dielectric liner. This approach is studied in detail in-.-- -' . /the next section.
l - "L .RegionI

, ::::Region 11

IV. THE DIELECTRIC LINER
FIG. 4. Cross section of the coaxial waveguide geometry.,'": Consider the system shown in Fig. 5. It is similar to the

coaxial system except that a dielectric liner of relative per-

" "2 P (x. .x,) mittivity -, occupies the space between r = rd and r = r..
9.g. = r -- (XAs before. the beam radius is r, and the inner and outer wallso P l(xo,x, )Pa xoxrb radii are r, and r,, respectively. There is no fundamental

-"so that TE solutions are characterized by S(xx,) = 0 and difference between this system and one without an inner con-
TM solutions by P,(x.,x,) = 0. The TE and TM growth ductor. In fact, the results are virtually identical until the
rates are found from Eqs. (14) and (15) to be inner radius becomes relatively large. However, the disper-

r "  ( 2 (c/r.,)' 1/3 sion relation for the coaxial dielectric liner case takes on a
/0= 7 n more symmetric form and is easier to solve numerically. For

/these reasons we present the details of the calculation for the
(ir/2)x,,x S (xo,x,)S (xox,) ( " coaxial case. Afterward, we present the results for the special

dS(x",.",xdx., case r, = 0.

rT", 'T 2 / r 2)/3 The procedure for obtaining the geometry parameters is
'". - (2 (c/r 1still straightforward, but now the algebra is more complicat-
-2. 2 "% Yolw1 ed. Also, the results are harder to analyze. First, the modes

(i)/2) x/P, (x 0 x,)P(xxj 1/3 only decouple into TE and TM modes at isolated points.
.- P, ( x.r/2x,,x I 'Second, the dispersion curves are no longer simple hyperbo-

las in wi - k, space. Finally, the arguments of some of the

where Eq. (17) is used to compute the derivatives. Bessel functions become imaginary in part of the w, - k.
These results agree with Destler (Ref. 2) except for an plane.

, amplitude factor. As pointed out by Destler et al., the dis- In Sec. IV A, we derive the geometry parameters and
crepancy comes from the method of calculating the per- the empty waveguide dispersion relation. In Sec. IV B, we
turbed charge density. There is strong evidence pointing to discuss in detail the special cases where the modes are either
the correctness of our results. First, it was already pointed TE or TM. We present the general result and apply it to both
out here that our results agree with Uhm's kinetic theory a high-energy and a low-energy system in Sec. IV C.
approach in the proper limit. Furthermore, a fluid analysis
done by our group:' has recovered the dispersion relation
Eq. (10) in the infinitesimal E layer limit (at least when g,

" = go').

In both the cases with and without an inner conductor,
- -. if resonance is possible then the resonant wavenumbers are

given by

(ck,)± = l/Jo ± r2o [(r,1oO) - @c)2 ] 1/2 (18)

for 7,- = 1 -3. The condition for resonance can be writ-
ten

". • < t ,,,. (19)

* At high azimuthal harmonics, the peak E, field is very close
to the wall. Thus in order to get reasonable growth rates, it is
necessary to make the ratio r/r,, as large as possible. For all
possible TE or TM solutions of either case, it is always true
that I < x,. Sincefi,,,, < I. r/r, must be very small unless the FIG. 5. Cross section of a coaxial system with a dielectnc liner.
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A. The empty wavegulde dispersion relation 2 Ps 2 rs'f~ ~)P(r), f -() - s(r),

In anticipation of the results to come, we define Irxf3.s
=('/-. -~ * a) f~r= IA~.P5 (r), f ,(r) 2 Q5(' )

; - 'A =(w/c)' k,, (20a) f r) 2 :r3. 2Ar
Ps~), e ~b r)=.7. . Q,(r).

11 e, (wOC)' - k (20b) Ir ' Ir xo'7

and Given the field functions, the geometry parameters are

1P- =I(wkkc)(E, - 1)/a (21) found from Eq. (9) to be

We also define five sets of cross products: gbb= (2 -- ,

1 (r) = O1 (xx,), 4, = 41 (r0 ), (22a) 0I xQl3 xoQ 3  xOS,
g,= _ + - -" + , (26b)

-2 -(r) = 4,(xxd), 2 = 42(ro), (22b) = + X0Q3 xR

S-0 3(r) = t01 (xxo), '03 = 43(rd), (22c) \-) P3773. P3  P,

*- 04 = Ol(xdxd, (22d) gb =9, = -3" (26c)

0,(r) = 0, ( y.Y) 0, (22e) (, Xo71

for 0 Q aWe note that the dielectric empty waveguide modes decou-',for O=P, Q, R, and S; for x=r , y=r B, and pe into TE and TM modes if ?.5=O"0

yd = rd ,, etc. Finally, we define some more general cross peit EadT oe fr'=0p-rod t FTwo equivalent forms of the empty waveguide disper-
products: sion relation will be used in this section. The first comes from

.j = Xd(fP, R - PRj, (23a) applying the definition [Eq. (11)]

= X'xd ,SJ -QS,, (23b) [3 Q Q 5, +i[ ,
= . A. [, Q, (23c _;Z

V IC ',X,, (23c) , S V +/ 2 ) P. , 5 P

*~~~~I ~1~ -- ( 3- ( )2 - . 3.5 J + [ )2 1 =0.
for=4 /!',,- Xpj V Xo' O

Now we must divide the r coordinate space into three The numerator of this relation appears to depend on the
- regions. We write the axial fields symbolically in these re- beam radius ro.It should not, because ro has no physical

gions as significance when there is no beam and thus cannot affect the

f (r)Ek + if - (r)(r dcB )o, r, <r < ro, zeros of the dispersion relation. After more algebra, the dis-

f r)E, + if.+ (r)(r d, cB,, ro<r<rd, (24) persion relation can be written so that the numerator is inde-

" ."f,(r)(rach.. (24) pendent of ro:i ~ rE t f ,r)trd, cB=), rd <rer=, _14.5

and D. (w,k,)= '7 -0. " (27)
,- i (r .° -tf - ir)(rd,cBj °,  r, <r <r o,  i1)x

fe +bb )Thus empty waveguide solutions are characterized by.,. -c1 = /f (rW° +fb(r)(rd, cB °, ro.r<rd, (25) ,. =0.

-f.(r)E"° +fb (r)(rO, cB,) ° , r, < r<r.. A typical dispersion plot is shown in Fig. 6. The cutoff
SWe then systematically apply all the boundary condi- line is defined by k, = 0. The vacuum and dielectric light

tions that do not involve the beam in order to identify the 12

functions defined above. In addition to the usual boundary
conditions at r,, ro, and r., there are six boundary conditions -Vauum Ligh. Line

at r, The interesting boundary condition is

UE,l, E,Reio AReio;

the other five reflect the continuous nature of the remaining _Z
field components. Two of the boundary conditions are re-
dundant. The remaining four enable the task of finding the oo-

12 functions to be completed. The results are
. ;-' t Dielectri, Light Line

If(r)-0, f; (r)=0,
^ 5.0"

f,;(r) = P,(rIIP,, fbb(r) =Q,(r)lxO,
"" '=2 r"' 2 . r"- " f*({)=- P{) r)= b Q7. Q(r),

- , P3(r), f * (r),ff 1 3.

.f (r) = 2 r PA() - P2(t) no 1o 200 300 400 500

,P3 A
)  

ck./(2s) (Gil)

"-bb (r = -- QQr) - P2(r) FIG. 6. Typical dispersion plot for a dielectc system. Parameters. I = 7.
xoQ3  

I  77 r, =0.0SS m, r, =0.065 mr,, = O.07S m. and i, = 6.0.
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r-' :1.0- the TM cutoff point, only k 2, c8,, and cho are nonzero.
At a point where Q, = 0,

bb .
0.8"'=0"Thus 1 Q 3S2

Thus the resulting TE mode is characterized by

Q4(XO) = 0 = Q,(Y. (28)
.4 This TE mode has cB, (rd) = 0. Consequently, E, (rd) = 0

0 0.6- and so E, is continuous at rd. The growth rate is found from
Eq. (14):

1/ 0.8 I. % 1/3
.. 'r _(2 v (Clro)2 (fr/2o

1.0 2.0 30 4.0 5o ( / ) When P, ---= 0,
Relative Dielectric Constant ,) gee = (2/iT)41£,P

FIG. 7. The effect of liner thickness on the cutofffrequency of the first radial and a TM mode has
mode. Parameters: I = 7, r, = 0.025 m, r, = 0.075 m. The measure of liner O (29)
thickness is y = (r - rf )/r - rP 4(X) = 0 = P5(Y.(

The TM mode is characterized by Ez(rd) 0 0, almost as
though there were a conducting wall at rd. The growth rate

-'.' .'iis given by

lines are defined by ol(ck.) I and cl(ck,) = , 2/
, re- is( gi2vb/3 (1//2)x0 P1  I

spectively. We denote the region in w - k, space between = NF (2 v (c/i' __ "pip,

the cutoff line and the vacuum light line as region A. The 42* 2 yo fl. w dP4/dxo

region between the vacuum and dielectric light lines is de- 2f

noted region B. In region A, ,A and B are both real. In It is known2 that the zeros of P4(x,0 ) are all real, so these
TM modes can only exist in region A. Also, we can show that

region B, 4-B is still real but 'A is purely imaginary and he
through 0'4 are given in terms of modified Bessel functions. Q4(x ) has no purely imaginary zeros so the TE modes all lie

Fortunately, the geometry parameters are still real, so the region A as well. A dispersion plot highlighting the TE.- .• " and TM points is shown in Fig. 8. Let e"A, n) represent any

growth rate equation [Eq. (13)] is still valid for resonant
points in region B. solution ofeither Eq. (28) or Eq. (29). Ifs B > , , then the

The dielectric has two major effects on the dispersion pair (4' A ,4 B) corresponds to the solution of the dispersion

curves. First, the cutoff points are lowered (in frequency). relation that has

Figure 7 shows the relative cutoff frequency for the lowest C = c[(4' - "A }/(c, - 1)1 '/2
dispersion curve versus the relative permittivity for several and
liner thicknesses. The figure reveals that the relative cutoff

fmaii t rapidly approaches c7/2/2 as the thickness increases. Second, . ck, = c[' - f A)/(e,-I)]
1
I2

.

,, . the dispersion curves are asymptotic to the dielectric light
line. This feature is more important for linearly streaming
beams (I = 0) where the beam line is always below the vacu-

um light line. Depression of the cutoff frequency is more 25

important for the cases of interest in this paper (1 $0).
~20.0

B. The special cases of TE and TM modes

From the definition of r7'/ [Eq. (123)], we see that i50

the modes will be TE or TM if , = 0, Q, = 0, orP=.
Equation (21) reveals that there are three ways to have " too

* i', = 0. If e, = I, we are obviously back to the coaxial case

without a dielectric. The second possibility is I = 0. The the-
ory for this case has been considered elsewhere and success- s -

ful experiments have been performed by J. Walsh et al.2" at

Dartmouth. d00 .... ___....____ __'_' __....___....

The final possibility is k, = 0. At cutoff, '' , = 00 o o0 200 300 40.0 Soo

and ri' = K4'3,. .5. The TE result is specified by gb = O,./(1l ((l:)

which is equivalent to t, = 0. As in the case without a
dielectric, only cB,, E,. and E@ are nonzero at this cutoff FIG . A dispersion plot revealing the locations of the TE and TM points.

point. The TM result is given either byg,, 0ori' 0. At Parameters:I = 7,. - 0.020m. C, - 0.00m, -= 0.075 m. and r, - 4.0.
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6.

04. (a) be written in the same form, provided that the following

substitutions are made:

Pl,Q1-J(xo), R 1,S, J;(x,,),, O.3. . 0. A. A
.3

In the following, we present results both for r, 0 andI 0. ,>0.
The first example is for a high-energy beam. The param-

eters for this example are#v,' - 0.935, Yo = 5.46, r, - 0, and
ror,, = 0.8. A plot of growth rate versus harmonic number

2. is shown in Fig. 9 for the lowest two dispersion curves when
there is no liner.Without a dielectric liner there is resonant
interaction starting with 1 = 7.

0. "- 00 - .. . . . . Figure 10 shows the growth rates for the system when a
% 0 10 20 30 1 cm thick dielectric liner with a relative permittivity of 2.3 is

Harmonic Number Iplaced against the outer wall. Although nothing drastic hap-
pens, there are some noticeable differences between the two

0.4- (b) systems. For the dielectric case. there is resonant interaction
starting with 1 = 4. Also, the dielectric liner reduces the ini-

0.4- (a)

0.3

2 02

0.0)- 0.

10 20 30 00.1-

Harmonic Number I

FIG. 9. The linear growth rate curves for a high-energy beam in the simple
waveguide geometry: (a) the lowest TE mode, 1b) the lowest TM mode. The 0.0 ... ' - ,
thin line represents the low-frequency intersection and the thick line repre- 0
sents the high-frequency intersection. Parameters: n, = 10

" 
m

2  302

= 0.935, ,,, = 0.305, ro = 0.06 m, and r. = 0.075 m. Harmonic Number I

04- (b)

Furthermore, if 1 represents any other solution [of
5P(y ) = 0 or Q,(yj = 0, whichever is appropriate] and c: o3

" > " 0, then ( ^A " 13) also corresponds to a solution of the
dispersion relation.

r 02-

C. The general result
The calculation of the derivative of the empty wave-

*) guide dispersion relation is straightforward but tedious. The
final expression is quite lengthy and is not presented here. Hj
For our purposes it is sufficient to write 00-

i-- wOarriioT N , ,lir

when ,7'' = 0. Once again the prime denotes the derjsative
"with respect to . FIG. 10 t he liticar gro, th rate cures for a high-energy beam in a dielec-
wt r c ttric-Iicd 's.iseguide iia the tir,,t radial niude. bi the second raidial mode

The solution for the case of r, = 0 can be found by fol- Parameter n, - 10" m 0.,, =0.935... O 0.305. r , = 0 06 ni. , = 0 0
: lowing the same procedure outlined above. The solution can m. r 0 065 m. r,. 0 075 m. and t, = 2 3.
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8.0- desires to operate at a point in region B, the beam must be

.(a) placed very close to the dielectric wall.
The effect of the dielectric is more pronounced in our

6.0- second example. For this system, we have a low-energy beam
(yo = 1.033) with fl. = 0.23, r, /r. 0.2, and r/r. = 0.3.
By plugging these numbers into Eq. (19), we see that there
can be no resonant interaction for anylI unless rl/r. <0.231~,4.0-
(without some slow wave structure). Thus for this example
there is no resonant growth at all without a dielectric liner.

When we add a dielectric liner with a thickness of 3.0 cm
2.0- and c, = 2.3, we get resonant interaction starting with

I = 11. The resonant growth rate curve is plotted in Fig. 13.
The growth rate decreases much more rapidly with increas-

S0.0. ing I than the previous case did. Whereas we might expect
-10.0 -5.0 0.0 5.0 j0. the first example to multimode, the low-energy example is

ek./(2w) (C l) likely to operate only at the lowest harmonic. The dispersion
curves and beam line for the I = 11 case are plotted in Fig.

3o.0 14. We see that the only two intersections are both forward
(b) waves and the system is relatively close to a tangential inter-

section point. Again the dispersion curves are essentially hy-
perbolas asymptotic to the dielectric light line.

20.0

0 0.0-

(a)

0.0

10.0.5

0.0-)-40.0 - 20.0 0.0 20.0 40.0

N ek./(2z) (Gila)

FIG. 11. The dispersion curves for a high-energy beam in a dielectric-lined
*waveguide: (a) 1= 4, (b) I = 15. Parameters: ,. = 0.935, & ,= 0.305, L- 1.0- 11

ro = 0.06 m, r, = 0.0 m, r, = 0.065 m, r. = 0.075 m, and c, = 2.3. 0.0 0.o2 004 0.06 0.08
Radial Loca.L on (in)

tial harmonic for the second radial mode from I = 26 to
I= 9. Furthermore, there is a dip in the forward wave
growth rate at I = 5 for the lowest curve andl= II for the
second curve. These dips correspond to the places where the

* 0 I resonant points "cross over" the vacuum light line. For the "
dielectric-free case, the growth rates for the forward and
backward waves are comparable. However, in the dielectric
case, the forward wave growth rates are often much smaller
than the corresponding backward wave, especially when the 4,
resonant intersection is in region B.

* The dispersion curves for the fourth and twentieth har-
monies are plotted in Fig. 11; the beam lines arc also plotted.

• * -, The dispersion curves that produce resonant intersections 0.0 - '' . . . .

appear to be approximately hyperbolas asymptotic to the 0.0 0.02 004 0as om
dielectric light line.The E# fields are plotted in Fig. 12 for the Re" LOCAMSa (M)
backward wave intersection when I = 4 and for the second

U forward wave intersection when I = 20. It is typical that the FIG. 12. The empty waveguide profile for (a) the I = 4 lbakward wave
field is relatively large at the beam location when the inter- intersectsn (Jf 2.94 Gli. ,, = L98 mn. (b) the I = I forward wov us-

tesection with the sxuoid mdal node If= 17.S GilaA, = 0.014 mla Pa-
section occur-, in region A. Likewis.e, when the intersection is ranmz 0.. = 0.935,~ 0, 0.305.r P, (106 in r,= 0.0 n%. U, 0.05 mt
in region B, the bulk of the field is in the dielectric. If one r. = 0.075 i. andt, = r 3.
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' 40.002- 30.0

-Z. 20.0-

. 0.001-

::':I iito o

0.0 10.0-

:0:0 E 2..HI ,10.0ck/2JGlz0 5 10 is 20 -40.0 -20.0 0.0 20.0 40.0
Harmonic Nutmber I ck,,/(2wr) (Gliz)

FIG. 13. The linear growth rate curves for a low-energy beam in a dielectric- FIG. 14. The dispersion curves for a low-energy beam in a dielectric-lined

lined coaxial waveguide. Parameters: n.=10" _ 
-
'
, 

jSs.=0.23. coaxial waveguide. Parameters: 6,.. = 0.23, &. = 0.10. to = 0.015 m.
=0.10. ro=O.Ot5 m, =0.01 m.r,=0.02 m.r.=0.05 re, and r =0.01 m, rd =0.02m. r =0.OSm,I= ll, and, =2.3.

e, 2.3.

forts of S. Swanekamp in the preparation of the field plots.
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High-Power Microwave Generation from a Large-
Orbit Gyrotron in Vane and Hole-and-Slot Conducting

Wall Geometries
* WESLEY LAWSON, WILLIAM W. DESTLER, MEMBER. IEEE, AND CHARLES D. STRIFFLER. MEMBER,

Abstract-The production of high-power microwave radiation from a In this study. a general growth-rate formalism is applied
large-orbit gyrotron in azinmuthally periodic boundary systems is stud- to the VR configuration and to the magnetron-like hole-
ied theoretically and experimentally. Linear growth rates are calcu-
lated for the 2r modes or magnetron-like vane resonator (VR) and hole- and-slot resonator (HASR) configuration. For both cases,
and-ilot resonator (HASRI systems using a general growth-rate for- the properties of the dispersion and growth-rate curves are
malism. The experiment involves the interaction of a 2.3-MNcV, 1-2-kA, considered in detail. Designs for a 20-slot VR structure
5-ns rotating electron layer with two different periodic structures, and a 10-slot HASR structure are analyzed according to
About 500 MW is produced in Ku band with a 20-slot VR system and the linear theory. Experimental results for the two designs
about 300 .MW is produced in X band with a 10-slot IIASR system. The
relative merits of both types of systems are discussed, are then presented and discussed.

The theoretical formalism is discussed in Sections I-B
I. INTRODUCTION and I-C and the experimental apparatus is described in

A. General Discussion Section I-D. In Section II, the VR structure is presented.AG eliuiThe HASR structure is the subject of Section III and con-I N RECENT YEARS, there has been considerable the- clusions are drawn in Section IV.
oretical and experimental work performed on the sub-

ject of microwave generation at high cyclotron harmonics B. Theoretical Formalism in Axisymnmetric Systems
- -.from large-orbit gyrotrons. These devices would be ex-_ £renwly desirable in high-power high-frequency appliced, In this paper, linear growth rates are calculated for thetions because of the reduced magnetic-field requirements azimuthally periodic structures via a general growth-rate

inherent in high-harmonic operation. Recent theoretical formula that was derived previously by the authors [121." studies [1[21 with smooth wall geometries indicate that The general formalism is valid for a special class of cvlin-
multimoding would occur in high-energy systems because drical waveguide systems. The systems have thin. ten-
of the slow variation of growth rate with harmonic number uous, large-orbit, annular electron beams. Furthermore,of te . slow varitioneogrwta te w 1 h onicnered z the systems are axisymmetric and invariant under trans-* p 1. Subsequent theoretical studies [31-[7] considered azi- -ain nteZ ieto.Frssesta aif h bvmuthally periodic structures in attempts to favorably se- lations in the direction. For systems that satisfy the above
lect a particular harmonic. These studies concentrated on assumptions. an explicit formula gives the linear growth
the magnetron-like vane resonator (VR) structure rates of the EM waves. In Section I-C, it is shown that the

Microwave radiation at cyclotron harmonics from a ro- axisymmetric growth-rate formula can be applied directly
" tating E layer has been observed [8 (and subsequently to azimuthally periodic systems in an appropriate limit.

gI analyzed [9]) in the Astron machine. More recently, this The type of system considered by the general formalism
S . radiation process has been the subject of several experi- has an electron beam propagating in some cylindrical

"- " mental studies on the University of Marland's high-en- waveguide immersed in a uniorn magnetic held B.1 seee01. [11 Witl, Fig. I). The beam is assumed to be cold; all electrons. ergy Rotating Beam Facility (RBF) I11, [11 Wih .erg I!,mave predominately on helical orbits about the s~stern
- smooth cylindrical conducting boundary, broad-band ra- mov

diation was observed in X band (8-12 GHz) at power levels axis. The beam is also assumed to be very thin. its equi-
S" of -200 kW per mode. With a 12-vane system and a cy- librium density is given by

clotron frequency of -0.77 Gliz, single-mode operation n0 (r) = rt,1 (r - ro) (I)
at - 9.6 G!lz was achieved at power levels more than three
orders of magnitude above the smooth wall results, where r0 is the equilibrium beatu radius and n, is the sur-

face particle density. Ftitthermtore. the beam is assumed
.M.intcript rcceiscd M.arch 2). 1995. rcli.,ed July 1I. IP19 Till, ,,ork to be sullicientlv tenuous so that the Lic selt-lidlds are ne-

js, 'uproricl in pirt by the Air Iorcc ()IhKc 'it Sicntil Rccairch td in glected. Each electron has an initiallV unperturbed (nor-
p ai. , ii c I -' iicr,,y it MaIrvl. J iv-iiipuIcr S Icpntc cricr malized) velocity of 0. i,,,, a.). This simple distribution'" r~k ,il r. t ;Ifc with ght. , lcrici.l |Il1211iiccrlt. l)cp~ifllii'ni .ind l.,iht-

"rirs Ir iIl.isni. im Iuiin ILncrgy Stutic,. Utiocrsii it \.Ir Col,. d . t.llt slc. the t se oh the sl gle-parlcl e eqtl iotn in the ani l-I.. .-. h:.c l'.irk. NII) 2(1742. ysi..
lc l Kik %It)
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certain beam parameters and the values of (racB:) ° and

Although the beam generally couples the axial fields to-
a 

0
gether, the synchronous resonant growth rates for homo-
geneous TE modes depend only on cA, and its derivative.
The empty waveguide solutions and corresponding growth
rates for homogeneous TE modes are given by

4- - c4-

"-*" "b" cA.(ro ) - cB:(roD 0.'." " gb - . .. .0 (4a)" " . .. (r3, cB:)°  'E =o

Fig. I. The equilibrium model.
] • ,and

The linear growth-rate problem is divided into two parts. rTE %_ f I 2vfyo1/3

The first part involves the calculation of the perturbed o 2 a I (4b)
sources in terms of the EM fields via the equations of mo-

- " tion and charge conservation. The linearized and Fourier- for r =Im (w). Equation (4) is applied to VR systems in
analyzed (exp [i(kzz + 10 - wt)] dependence) equations Section II and to HASR systems in Section I1.
are solved for the perturbed current to lowest order in the
parameter l = w - 100 - ck,0,o: C. Extension of the Growth-Rate Formula to
pre'' l"k Azimuthallv Periodic Structures

= 0 (2a) The systems considered in this paper are assumed to be
invariant under translations in the £ direction. Conse-

o2-' quently, the general EM wave solution can be written as
= _ 2 0- ifl, . a sum over the azimuthal harmonic numbers I. In the axi-

S''C YOcsymmetric analysis. all the boundary conditions are sat-

+ f2o(racB.)0] 6(r - r0) (2b) isfied with only one harmonic perturbation and the ampli-
tudes of all the other harmonic perturbations are set to

(, 2 o [_ifno zero. Without azimuthal symmetry, the harmonic pertur-

"- \-yo/ r0  bations are coupled together. Nonetheless, (2) is valid for
+6 each 1, provided that E0 and (ra,cfi) are interpreted to
-. + flo(raci:)0 i 5(r - r0) (2c) be the coefficients corresponding to the ith harmonic of

where y0 m0 c2 is the equilibrium particle energy, flp = eBol the fields.
(mo 0y), fQ. = k.c - w 0o, Y = ne 2 ro po/(21no) is Budker's The synchronous condition implies that the actual EM
parameter, and the superscript zeros indicate that the fields wave frequency is near one of the beam frequencies. Be-
are to be evaluated at the equilibrium radius ro. cause each beam mode is separated by 11o, only one of the

The parameter 0tisa measure of the difference between 01's will be small (if 1 << !U, then .- n 10) f o
- the frequencies of the actual EM wave and the beam per- corresponds to the synchronous beam mode, then as

turbation (wo l0o + ck43.0 ). The synchronous limit is Oto - 0, J" becomes much larger than all the other per-
* -:, defined by 0- 0. Thus a beam is said to be synchronous turbed current harmonics. Consequently, the synchronous
" *.' *~ with an EM wave when 01t is small compared to the other assumption implies that only one harmonic in the beam is

frequencies in the analysis (ik1 << flo in particular). A excited. Thus (rar.),and (cB.),, will be subjected tojump
F -- beam is said to be resonant if w0 is equal to the frequency conditions at ro, but all the other field harmonics will be

sively the synchronous resonant case. still only two boundary conditions that involve the beam.
In the second pan of the analysis, the i direction is di- Hence, the boundary conditions away from the beam can

vided into two regions: Region I, where r < ro, and Re- be used to find the field profiles in terms of two unknowns.
gion I, where r > r0 . In those regions, 1 0 and the In other words, the linear growth-rate formula can be ap-
axial fields are written as a linear combination of Bessel plied directly to the periodic case without any additional
functions (the homogeneous wave equation solutions): assumptions.

The solution is still found by dividing the space in the
-" "x(r) AJ( r) + BY( r) (3) waveguide into appropriate regions and applying all of the

for 2 = (wlc)2 _ kd and E = E., cB). The boundary boundary equations away from the beam. One of the
conditions that do not involve the beam are applied in or- boundaries is at the inner radius of the slotted %%all. The

1 der to find the solutions in the two regions in terms of the exact solution involves matching the ENI fields just above
unknowns . and (ra, cl)". The system of equations is and below this boundary at every atimuthal location. The
closed by integrating two components of Amnperc's law first simplifying assumption is that the sloits only contain

, - across the beam. Two equations are producd that express the I = ( harmonic. This means that the EM fields remainthc jumps in c/: and ra, '. across the beam in terts of constant across a given slot opening and they cannot all

*. . .. . . .. . . .. . .ju.. ...s in c*) an..g cos h emi erso o
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*.A-",TON, OUTER length of -3 m) in a smooth cylindrical waveguide. A-NDI PLAT IRON PL.ATE CNUTN ONAYL

cylindrical horn at the end of the drift tube provides the
"." "ACRYLC transition to free space. The transition from the smooth

" "wall radius to the final horn radius of -0.15 m occurs in
CATOOE STE,, ___-_r -0.50 m. Measurements of the radiated power at this

point indicate that it is unpolarized and almost uniformly

I1 VCUUMdistributed over the solid angle subtended by the output
/ D ISPERSVE LIE horn. The absence of any mode pattern is attributed par-
/0 C ,LSr, c,,tially to the resolution limit of the receiving horn and par-

Thegel Ci atially to mode conversion both at the periodic wall-smooth
Fig. 2. The general experimental configuration. wall boundary and in the output horn. An open-endedzlJ~l :waveguide (WR90) placed >5 free-space wavelengths

be matched exactly. Instead. one of the fields (cB-) is from the transmitting horn is used as the receiving horn
matched on the average across the opening. This tech- in the X-band measurements. A rectangular horn with a
nique corresponds to the impedance matching technique 2.3 X 10 - 3 m2 cross-sectional area placed >10 free-space
used in early magnetron research [131. This assumption wavelengths from the transmitting horn is used in the Ku-
enables the empty waveguide dispersion relation to be band measurements.

written in a reasonably simple form. The dispersion rela- The portion of thc radiated power picked up by the re-

. tion can in principle be found without this assumption, but r a
deeri ceiving antenna is transmitted down a long rectangularthe exact solution requires the calculation of the determi-waveguide ( 35 ). The waveguide provides both signal

nant of an infinitely large matrix. It has been shown that dispersion and attenuation. At the end of this dispersive
the approximate results are close to the exact results in line, the signal is further attenuated by a directional cou-

cases similar to those considered in this paper 1141. pier and a variable attenuator. The final power level is
In general, there can be a uniform phase shift between measured by a calibrated crystal detector which is con-

each pair of neighboring slots, provided that the total phase nected to an oscilloscope through a 50-f0 load.
shift around the structure is a multiple of 21. This analysis The total output power is estimated by calculating the
considers only the 2w mode (i.e., all resonators are in fraction of power intercepted by the receiving horn and
phase), because we believe that it is the predominant mode correcting for the attenuation suffered by the signal along
in our geometry. Our belief is based on an initial condition its path to the detector (101. As in all high-power micro-

" calculation [151 which shows that the 2wx mode is favored wave measurements of this type, total peak power is dif-
in systems where the beam is symmetrically injected into ficult to measure to an accuracy of better than 3 dB. The
the resonator. For the 2r mode, it can be shown that the spectrum is determined by measuring the arrival time of
EM fields only contain multiples ofi, where it is the num- the signal and using standard dispersive line theory. Un-
ber of resonators in the system. The synchronous har- certainties in the frequency and power measurements due
monic is assumed to be jo = nl. to the uncertainty in the measurement of the arrival time

Finally. it turns out that the empty waveguide modes for Can also be easily found from dispersive line theory.
the slotted wall systems still decouple into TE and TM
modes. Only resonant interactions with magnetron-TE I. TiE VANE-RESONATOR CONFIGURATION

.' , .. modes are considered in this paper.
A. heory

D. Experimental Apparatus The VR system is shown in Fig. 3. The beam radius is
. A brief description of the experimental apparatus is of- ro, the inner wall radius of the magnctron structure is r,,,

fered here, a more detailed description can be found in the outer wall radius is r,, and the number of slots is n.
[101. The RBF is shown schematically in Fig. 2. The beam The angle of the slot opening is 10 and the angle of one
is produced at the knifc-edged cathode of a field-emission period is 0,. The region defined by r < r,, is denoted by
diode. The rotating E layer is generated by passing the the interaction region. The region defined by r,,. < r < r,
linearly streaming annular beam through a balanced mag- is called the slot region.

* netic cusp 1161. The cusp is maintained by two sets of Using the fact that cB. is hounded as r - 0 and that
pancake coils on opposite sides of an iron plate. The only the th aimuthal component of Al. is discontinuous
downstream manetic field is essentially uniform in the at r1 , it can be seen that

region 0.15 to z 1.0 in from the cusp center. In this uni-
form region. magnetic-field mnCasurements are accurate to ca. 0w""thin I p~c No illy. the clectron heam has a 0.06- ".

"-1 m radiu%. an energy of -2.3 McV, a current of 1-2 kA, 1*"
and a pot-cusp pulse duration of -5 ns. : J,, (r)

... The signal is gencrated by the interaction of the rotating + (r5,'/)j L 'J" e'' (5a)
beam with the manetron-like structure and travels
through the remainder of the downstream region (total when 0 5 r < r,. and

g °'

r.. . - - - -- - .. , . - -. .- -.- - . . .. - - -. . . . .... . .- ' . . "-... . '- -'..'.', -- ' ' .
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cB.= (ra, c8) e'Is

.. ~" 6Sc-. xo)JFQ~. ..) 14m
(rarcB.), (5b)~x~ j'7+ (r8,cB.) o .Q.(x. x..) ] ei (b _=

Lxo S, (x0 , x,.)_

when r0 < r < r., and

_________,_

. =" .So(.., x,)J

0, AxO :_ O p '5 O r

(5c) Fig. 3. Cross section of the 20-slot VR structure.

whenr,, < r !5 r, whereO = 0  P . 0  :p n -
1, t = I(W/C)

2 
- k'2

E w
1c, x = rt, etc.. and the superscript Equation (4) implies that the magnetron-TE empty wave-

. refers to r2. The standard notation for the cross prod- guide modes are given by D(Q) = 0 and that the resonant
ucts of Bessel functions has been adopted here 1 17]: growth rate for these modes is given by

P. (a. b) = J.(a) Y.(b) - I.(a) .4(b) (6a) r 13 2v/yo \AO) rsin (n,O/2) 2

Q,,(a. b) = J.(a) .(b) - Y.(a) J,'(b) (6b) o 2 .x oaO() n-AO/2 J
R.(a. b) = J,,(a) Y.(b) - Y.(a) J.(b) (6c) or)1,3

S,,(a, b) = J,(a) In(b) - Y.(a) J" (b). (6d) L/,-(x,)
The continuity of E£ at r. requires that The results for the non 2r modes arc quite similar. If

AO/0,, I = 0 the phase shift between two adjacent resonators is as-
sumed to be exp [iloO,] for 0 < 10 < n, then the correct

S (r3,cB.) n11 empty waveguide dispersion relation is found by substi-
(rcB) nil sin (IA0/2) e-i e2 , lln an integer tuting 1o + qn for qn wherever it appears in (9b). If the

synchronous harmonic is 10. then the correct growth rate
0, else. I is found by substituting 10 for n everywhere in (10). Non

(7) 2r mode growth rates for VR systems have been com-
puted elsewhere 151. Those results typically indicate that

Matching the average value of cBl across the slot opening the growth rates are comparable to the growth rates of 2r
results in a relationship between (rrcB.) and modes.
The geometry factor gbb can then be found from (4) to be

h (8D())

D( ) ,, (xL)S,,. ] ( ), L sin, 1/2 )

where the slot term is given by
B. Desigr

D,(1 ) = (9a) The parameters for the experimental VR structure areSot.n = 20. r,,. = 0,0652 m. r, = 0.070 iii. and .O/O, = 0.535.

and the interaction region term is given by Plots of D, (t) and D,(Q) for these parameters are shown
in Fig. 4. Solutions of the empty waveguide equation occur

s J,,(.,,) .sin (qnV 7 /2) whenever the 1), and D, curves intersect and are indicated
(0) -J,, .1012 (9b) in the ligure by circles. The radial mode with which %,e

expect predominant beam interaction is also indicated in

and the figure. The poles of 1), are given by the teros of
for q = (0. 1,'. .}, and the poles of D, are given

D() = D,() - D,(t). (9c) by the ieros ofS0(,,.,.r,). When r, - r. << r,. D, "aries

:~~~~~~~~~~~~..:..-.... ...-..-:... ... ..,:...-... . ... .. ...-::.........-.. ...-
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P -C- - case is located at r/r, = 1.0. The numbers in parentheses
next to each radial mode number n, indicate the limiting

smooth wall mode as r, -- r.. For example, the seventh
"' /magnetron-TE radial mode approaches the first smooth

wall radial mode of 1 = 20 when r, - r.. As predicted,
all of the cutoff frequencies are decreasing functions of the

-- ° slot depth.
, ,g, ;,,,. The EM wave in the slot can be naively pictured as a

TEM wave traveling down a shorted waveguide. The X/4
line indicates the time it would take a TEM mode to travel
up and down the slot twice, assuming that it was traveling
at the speed of light. The corresponding expression for the

-10 L . i .... ifrequency isf = cl[4(r, - r)1. The X/4 label comes from
12 14 16 18 the fact that a quarter-wavelength standing wave is ap-

Cutoff Frequency GIlz) proximately set up in the slot at these frequencies. For a

Fig. 4. The contributions of the slot and interaction regions to the disper- VR system, the actual a/4 frequencies are given by the
'' . sion function of the VR system. The circles indicate empty waveguide V ytm h culX4feunisaegvnb h

solutions. Parameters: n = 20. r,= 0.0652 m. r,= 0.070 m, AO/0, = first zero of R, (x,., x,). The frequency of the naive esti-
0.535. mate is usually close to (but smaller than) the actual re-

suit. The X/2 line roughly corresponds to the frequencies
A/4 %/ 2 where Ed is zero at the slot entrance. The actual frequen-

cies are given by the first zero of S0 (x,,, x,) (the first pole
of D,). At these frequencies, the standing wave in the slot
is a half-wavelength. A X/2 point always has poor coupling

n 9o.91 to the slot and should be avoided. At higher values of
rr, (not plotted), good coupling can be achievcd at fre-

Z 8 (1 81 quencies corresponding to the 3X/4 slot mode.
The lowest azimuthal components of the Pe field for the

desired operating point are plotted in Fig.6. For the inter-
* .i. 7 (2,, , action region. the 1 = 0 contribution is plotted in Fig. 6(a)o and the 1 = 20 contribution is plotted in Fig. 6(b). The

" (-1. 71 total /o field in the slot is plotted in both figures and is

10.. 12 1I- normalized to unity at the slot entrance. For this case
.. Rati,o futeto In.er Slot Radi ./,. (rj/r, = 1.074), the operating frequency is below the X/4

Fig. 5. The dependence of the cutoff frequency on the slot depth. Param- frequency and the standing wavelength is slightly less than
eters: n = 20, r. = 0.0652, and 10/O, = 0.535. X/4.

The bulk of the I = 20 field component is near r,.. Be-

rapidly compared to D, because the poles of D, are far cause resonant interaction occurs at I = 20. it is necessary
more frequent than the poles of D, to place the beam near that wall. Furthermore. a study

Because D, is strictly decreasing and D, is strictly in- considering the initial condition problem on the RBF [151

creasing (on each domain where the functions are defined) concluded that the beam should be placed at a maximum
of the 1 = 0 component of En Our 0.06-cm beam radius

.. I = ID Q) I + IDQ) 1. well satisfies both criteria. In fact, the best experimental
results for the VR system occur when the downstream

". - We do not want to be near any of the poles of D, because magnetic field is made a few percent larger than the diode
Soc D'(t)-" 3 . This generally means that we must have magnetic field. The effect of this unbalanced cusp is to

' .-i ID, I small at the desired operating point. decrease the average beam radius [181, placing the beam

Fig. 4 can be used to determine the effect of adjust- in an even more f'.vorable location.
ments in the parameters on the cutoff frequencies of the The magnetron-TE dispersion relation in w - ck: space
various modes and the values of D'(Q) at those points. For is a hyperbola given by w2 = W, 52 + c k:, where wut is the
example. increasing r, does not affect D,. but will cause cutoff frequency of the mode tinder consideration (see Fig.
D, to decrease more rapidly, resulting in lower cutoff fre- 5 for w,, ) . Resonances occur at axial wavenutmibers where
quencics. Furthermore. the mode trapped between 16 and ,.(k) = w,(k.). In general there are two values of k. for
16.5 GIlz will have a low growth rate for all values of r,. resonances, these are denoted as a low-frequency reso-

The effect of slot depth on the cutoff frequency is firther nance (sometimes a backward traveling wave) and a high-
demonstrated in Fig. 5. The sixth through the ninth radial frequency resonance (alwas a forward traveling avae.
modes are plotted for n = 20. r,, = 0.0652 it. and .O/O, When these two roots converge into one, this resonance i%
= 0.535. The cutot" frcqtuencies of thee modes are in the denoted as the erazine tondition. A given beant iode in-
regime of beain-wavcguide resonance. The smooth wall teracts with any radial mode that has

. .. . . . . . .

. -. .-.. .
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(a) Fig. 7. The linear growth rates for the 20-slot VR system. Beam parame-
-. "ters: n, = I0" m -

'
, 

13., = O,951. /3, = 0.250. r, = 0.06 m. The VR
'.,1.0- /parameters are given in Fig. 4. The growth rate at -15.2 GHz is tor the

grazing condition with the n, = 7 mode. The other low (-) and high
(+) resonant mode interactions are: w-(n, = 4) - 12.2 GHz: -(?I, =

5) - 12.6 GHz; w_(n, = 6) - 13.3 GHz; w.(n, = 6) - 17 GHzand
ta ,(n, = 5) - 17.7 G1z.

C. Etperiment
Previous experimental studies of high-power microwave

, generation from rotating electron beams in macnetron-like
boundary systems have included configurations with a)
outer VR boundaries only [ill, b) coaxial systems with
resonators on the outer Wall, c) coaxial systems with res-

0.0-'"1 onators on the inner wall [51. and d) coaxial systems with
0.00 0.01 0.02 0.03 004 00s 0.06 0.07 resonators on both walls (in phase and 180" out of phase)

Radial Location (in) [5]. Previous attempts to produce microwaves at or around
(b) the twentieth harmonic of the electron cyclotron frequency

have shown that the slot depth and the radial position of
Fig. 6. The VR empty waveguide E. field at the center of the slot opening: the beam relative to the resonators are of critical impor-

(a) the I = 0 component and (b) the I = n component. The 20 slot VR tance in maximizing microwave output. Maximum micro-
parameters: n = 20. n, = 7. r = 0.0652. r, = 0.070 tn, and Ail, =.

E 0.535. See (7). wave power observed at the twentieth harmonic using in-
ner wall resonators is about 40 MW.

The best n = 20 VR results to date were obtained using
1.0 -."(l1.) an outer wall resonator system with r,, = 0.0652 m, r,=

1-t I,( 0.070 m, and A/, = 0.535. The resonators are placed 14
cm back from the iron plate so that they will not scrape

In high-energy machines, the resonant frequencies are off the beam during its initial expansion. A typical result
usually very sensitive to small changes in the beam energy for the VR experiment is shown in Fig. 8. Approximately
and the applied magnetic field. This is especially true for 500 MW of power is observed at a frequency of 15.5 GIL
the highest radial mode that satisfies (11). Unfortunately. Power levels at other frequencies arc typically down by a
the highest resonant radial mode is usually the desired factor of 15 dB. For this case, the diode magnetic field is
mode for operation. The design procedures are further set to 1450 G and the downstream field is set to 1500 G.
complicated by the uncertainty in the RBF beam energy. The average field of 1475 G is very close to the cutotf hield

A plot of growth rate versusf, = ,/27r at the resonant of 1525 G (see 1161). Consequently, the axial velocity is
. points is shown in Fig. 7 for nominal beam parameters: n, relatively low and the beam density is high. This result

1..0'= m", , = 0.951. , = 0.250. and r, = 0.06. The represents about a 15-percent conversion eticiency of
beam energy is adjusted slightly so that equality in (11) is beam power to RF power.

nearly achieved tor the hihc,,t radial mode (the so-called The error bars in l:i,. 8 do not reflect the uncertainty
1 - grazing condition 1121). The growth rate for the desired in the power level due to possible systematic error in the

mode is reasonably large at - 15.2 Glz. Thus the theo- general measurement scheme (e.g.. error in the estimation
retical considerations seem f:vorable for this configur;tion of the fraction oh power intercepted by the receiving horn).

% anti microwave radiation from a single radial mode ap- In Section I-D) w estimated that error to he -3 riB. In-
pears likely, stead, the error bars incorporate only the uncertlaintes

"'!_
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Fig. 8. Radiated microwave spectrum from the 20-slot VR system. Diode Fg .Cosscino h 0so ARsrcue
magnetic field: 1450 G. Downstream field: 1500 G. Approximate beam
parameters are given in Fig. 7. The error bars incorporate only the un- III. THE HOLE-AND-SLOT CONFIGURATION
certainties in the measurements of the arrival time and the detector volt-A
age. They do not reflect possible systematic errors in the power inca- Th77eory
surement scheme. The HASR system is shown in Fig. 9. It is assumed that

% the HASR system consists of a VR system with a hole

in the measurements of the arrival time and the detector adda h n fec ae h etnua ltcs
voltage. In this way, relative comparisons between the is similar and is not considered here. The hole radius is ri,
results of the various wall configurations can reasonably and the angle of the hole opening is AO = 2 sin- [sin
be made. Unfortunately, the large net error estimate (±3.5 (02 3 rJ
dB) leaves the uncertainty in the efficiency to be (more An additional assumption has to be made for the HASR
than) a factor of two. system. Let r and 0 denote the cylindrical coordinates

The diagnostics for the experiment leave several ques- whose origin is at the center axis, and let r* and 0* denote
tions unan .swered. For example, at these high harmonics, the cylindrical coordinates whose origin is at the center of
the mode spacing is quite small and the uncertainty in the a (hole) resonator. At the opening of the hole. the arc de-
beamn energy makes it impossible for us to identify the cx- fined by Irl r, is assumed to coincide with the arc de-
act mode from the frequency measurements. Thus iti fined by Ir*I rh. This assumption will be good only for

* -. .- ossbletha th mahin is ctullyopeatig i a oderelatively thin slots. Mathematically, the restriction is that
near the synchronous 2 7r mode. The experimental results .<r/r.Tiasuponimiiethcluaio

are consistent with the 2~r mode theory, but they do not of the boundary conditions at the hole opening, because
.. confirm it. i& fields in the resonator are easily expressed in terms of

In spite of the uncertainties, several conclusions can be the Wr, 0*) coordinate system.
drawn from this and previous experiments on the RBF. The field in the slot is now
First, a properly designed periodic structure can excite Q( - Q(. ,

- ' - radiation at a singlec frequency with power levels thrce or- CA. (rarciz) Xs(% J+ (raB) X.
drofmagnitude above those from a smooth wall contig-

uration. Also, the output from this 20-slot VR experiment(la
is comparable in power to the best 12-slot VR experiments
previously performed on the RBF. This result indicates and the field in Ihec hole resonator is
that the outlook for operating at extremely high cyclotron
harmonics is promnising (althouieh initial 30-slot VR ex- - J,,( ) .
periments had severe multimoding problems and achieved XA400(~ i ) ' e 1b

powe le% L

* m
~

="" ' \\

results [191). Finally, it should be pointed out that in pre- whcre .r* = r~t. r1, rhj, and the field in the interaction
vious studies with periodic structure% on the inner wall region is still gisen by (5a) and (5b).
[41. radiation in the frequency range consistent with the The requirement that

r rnoe remained at smtoth wall poier levels (were not AR

enhanced) in systems that radiated effectively in she fre- (r i od
quncy ranee consistent with the 2r ode. This tact lends (r-ll 2 2IR
some support ito the initia condition calculation. becatuot-.
[th cusp Injects the rot.tin hea syr lmetrically detento he a T r (o
region with the periodic structures. b

. . . .... . . . ..) afact- - - - - - --o.



-. LAWSON el al.. MICROWAVE GENERATION FROM LARGE ORBIT GYROTRON 451

comes from matching g and the average cA. field at r =D
r,. At this point, the solution can be found by following D'

the steps for the VR solution, because there is only one
remaining unknown in the slot and all the boundary con-
ditions at r, remain to be applied.

The dispersion relation can be split into three parts. The
slot term and the interaction term are still given by (9a) .0
and (9b). The hole resonator term is given by

'" () ) xSx.S 0(x., x')
2|

X R 0( x, r) + x S(r 5, X ) -10 T. 1 . ,

J'(Xh) sin (mAt/2)2) . (14) Fig. 10. The contributions of the resonator and interaction regions to the

.J,(h) L mAtI2 Jdispersion function of the HASR system. The circles indicate empty
waveguide solutions. Parameters: n = 10, r- = 0.068 m. r, = 0.070 m.

The equations for the geometry factor (8) and the growth r, = 0.012 m. .10, = 0.147.

rate (10) are valid for the HASR system after the substi-
tution est radial mode competitor may not be as complete with

VR systems. The added flexibility in the choice of r,, is
.D() = Dh() + D(,,) - D,(). (15) another advantage of HASR systems.

It is often more convenient to plot the entire resonator term In Fig. 11, the total Et, field profile of the fifth radial
" " D,() = D() + Dh( ). From (9a) and (14), it is easy to mode is plotted as a function of r. The field along the line0 show that

"' -: ' -:i P0 (x, x.) + (At/21r) Q0(x,, x,) Z J,,,(.rh)iJ'(.r,,) [sin (mA,!/2)/,nt,-.2l
O ( )  0, _,(16)

Ro(x, x5) + (A/2r) S0(., x5) Z J,(x)/J,,(xh) [sin (ml'/2)/hna1/2l 2
Mi= -0.

- B. Design
- The parameters for the HASR system are n = 10, r. = passing through the center of the slot is shown in Fig.

* - 0.068 m, r, = 0.0703 m, rh = 0.012 m, and AO/0, = 0.147. 11(a). The L, field midway between slots is plotted in Fig.
- The dispersion functions D, and D, are plotted in Fig. 10. 11(b). The beam is located in a reasonably favorable po-

Recall that solutions are given by the intersections of the sition of the field profile. At small radii, the I = 0 term
two curves. In the figure, these points are indicated by dominates and the field is essentially independent of azi-
circles. The system is designed to operate in the fifth ra- muthal angle. However. near r,,.. the I = n term is quite
dial mode. The cutoff frequency for that mode is 7.63 GHi. strong and the E, field is essentially n periodic. Compared
The poles and the zeros of Dr can be found from (16). to the VR example, the relative contribution of the I = 0

The analogy of TEM X/4, X/2. etc. modes is more ab- term is greatly reduced. This is partly due to the smaller
stract for the HASR resonators, but still can be applied, value of .0/0, and partly due to the lower radial mode
The X/2 point, for example, corresponds to the first pole number. The 1q field in the hole is quite large, though the
of D, (16). In the experimental design, the X/2 point is at hole volume is relatively small.
-7 GHz and the desired operating point is between that In the experiment, the best results occurred at magnetic
and the 3X/4 point. The proximity of the X/2 point to the fields between 1300 and 1325 G. The growth rates are
mode at 7.13 Glz results in a large value of jD'()j and shown in Fig. 12 for the nominal parameters J0,, = 0.854.
consequently a small value of growth rate (see (10)). lHow- W., = 0.487. and r, = 0.06 in. The growth rates for the
ever. D, decreases sufliciently rapidly so that the desired fifth radial miode (at -8.1 and -9.7 Gliz) are approxi-
.- ".- mode has a favorable growth rate. Thus careful placement mately six times larger than the growth rates of the fouth

*'.' " of the first pole of D, can virtually eliminate competition radial mode (at - 7.2 and -10.6 Giz). indicating that

*from the radial itiode nearest the desiredi operating Point, single-miode operation should be feasible.
The 20-slot VR case previously discussed was designed

"' for the X/4 mode. had slowly varying growth rates, and C. E.lyerinlent
should not be compared with this IIASR example. How- The II.\SR svstem is inserted into the RB and held in
ever. the same idea can be applied to the VR stcims op- place - 15 cm from the iron plate. An adapter brought the
crating between the A/2 and 3X/4 points. In general. 1), wall radius down frorn the RIIF'\ 7.5 cm io the If..\ S; s

"""" . varies more rapidly than 1), ind so the nulling of the near- 6.8 cm. The overall length of the ItASR structure is ap-a. n 6 T

P : 61 -7,1., 7 :e-- ,
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(a) Fig. 13. Radiated microwave spectrum from the 10-slot HASR system
2 Magnetic field: 1300 G. Approximate beam parameters are given in Fig.

12. The error bars incorporate only the uncertainties in the measurements
of the arrival time and the detector voltage. They do not reflect possible
systematic errors in the power measurement scheme.

- is tapered at the output end so that the large amount of

" .field energy in the hole can easily be collected. The 24"
taper brings the inner radius out to a smooth wall radius

.6 (r. > r, + 2rh). A 10-cm-radius smooth wall tube brings
the microwave radiation from the end of the HASR system
to a cylindrical cone at the end of the vacuum chamber.

The best results for this experiment are shown in Fig.
-2- -13. Approximately 260 MW of power is observed at a fre-

000 002 0.04 006 008 0.10 quency of 9.2 GHz in a balanced field of 1300 G. Power
Radi,1 Lcat,on W levels at other frequencies are typically down by more than

(b) 10 dB. Single-mode operation is consistently achieved at
Fig II. The HASR empty waveguide E field: (a) at the slot center and (b)

mtdayv between tsso slot centers. The 1)-slot HASR parameters: n = power levels exceeding 200 MW. By comparing Figs. 12
,-. " 10. n. = 5. r. 0.06S m. r, = 0.070 m. r, = 0.012 m. and .1010, = and 13, it appears these conditions represent the forward-

0.147. wave resonance with the n, = 5 waveguide mode.
-It is unfortunate that the sharp resonance at 1300 G oc-

0 ~-curred so far below the cutoff field (1525 G). The beam
density at this point is only one-half of the density at the

020- 20-slot VR resonance point (because -3., at 1300 G is nearly
,. twice the value of 0.., at 1475 G). This reduction in n, prob-

0 is- ably accounts (at least partiallv) for the reduced power lev-
els in the 10-slot HASR device.

-- 0-- vThe error bars on the frequency measurement result
from the uncertainty in the arrival-time measurement.

* -Again, the power-level error bars reflect only the uncer-
S05- taintics in the arrival time and the detector voltage.

IV. SUMNIMARY
0 I , ' I I I ' ' I , i - T ' I I

SS 9 t 1 12 In this paper. we have shown that the results of a general
Perturbed D3.m Fri ,o n(nil. &.../(2,) Gi tl axisymmetric linear growth-rate formalism are applicable

Fig 12 The linear growth rates for the 10-slot 11ASR sstcm. licam pa- to azinitithally periodic systems in the synchronous limit.
rimetcrs n, = 10" m :, , = 0h54. J = 

04,17. and r., = 000 m. ie tscd the crowth-rate formula to calculate the proper-
The iIASR piraincters aire given in I:ig 10. The mode idcrntlic..tlion s.
.- ".- ar c w.4fln 4) - 72 G;li. , l. 51 - 8 I Gil, ., - 5) - 7 ties of taenetron-like VR and I l,\SR structures. W e found
Gil/. aiid ,,., 4) - 106 Gilt. that the lIASR ,ysteni theoretically has an advantage over

S "the VR system in that its parameters can he more readily
proximately 60 cm. Short rods with 20" tapers are in- adjusted to suppr-s radial mode colnpetition. Untoriu-

,." ""i serned in thle holes at thle input side of thle st ructu re to pro- nalt cly an add It ona.l assutp nlpton in the !lA.SR anals sis

,,d. ' vide a continuous transition Irom the smooth wall conlig- forccd a restricton on the nia iUltiin allowable si.e for the

uration to the periodic configuration. The IHASR structure relative slot opening (AL/tJ,). This is undesirable he-

.-
• 9 ; , V ni . ' ," ," . . o . . . ' - . - _ . . - . . • . . .. , . .. . . - '- " . . - . . . . - ' -" -"•• . . , , • -. ..
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Experimental study of millimeter wave radiation from a rotating electron
beam in a rippled magnetic field
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The generation of millimeter wave radiation from the interaction of a rotating electron beam (2
MeV, I kA, 5 nsec) with an azimuthally periodic wiggler magnetic field has been studied
experimentally. Calculations of the effects of the wiggler magnetic field on the single particle
electron orbits are presented, together with experimental measurements of the effects of the
wiggler field on the electron beam. Narrow-band radiation at power levels in excess of 200 kW has
been observed at 88 and 175 GHz for wiggler fields with 6.28 and 3.14 cm periods, respectively.
The radiation frequency spectra for various experimental configurations are presented, and
results are compared with theoretical expectations.

S .:" I. INTRODUCTION the cusp effectively converts the axial beam velocity into ro-

In recent years many theoretical and experimental tational velocity downstream of the cusp transition region. If
studies have been reported of linear free-electron lasers the cusp is symmetric, the downstream beam performs sim-

(FE L's) in which short-wavelength radiation is produced by ple axis encircling cyclotron orbits with a gyroradius equal
-~ the interaction of an electron beam with a spatially periodic to the radius of the beam on the upstream side of the cusp."

wiggler magnetic field. -'n Recently, a novel circular geome- To the axial magnetic field about which the beam elec-

. try FEL has been explored both theoretically and experi- trons rotate is added an azimuthally periodic wiggler field,

mentally in a collaborative effort by researchers at the Mas- which is primarily radial near the center of the gap, and thus

sachusetts Institute of Technology and the University of transverse to the electron beam flow. The wiggler field is

Maryland..... 6 In this concept, a rotating, relativistic elec- produced by samarium cobalt magnets placed behind two

tron beam interacts with an azimuthally periodic wiggler concentric metal cylinders in such a way that the beam sees

field produced by samarium cobalt magnets placed interior only smooth conducting boundaries. The proximity of the

and exterior to the beam. The potential advantages of such conducting walls to the beam also serves to suppress the
systems include a longer effective interaction region, a more negative mass instability, which has been used to produce

compact geometrical configuration, and internal feedback radiation at microwave frequencies in previous studies.'-

resulting from the recirculation of the electromagnetic wave. In this paper, we present the first detailed measure-
" This last feature may mean that the device can operate as an ments of the operational characteristics of this new circular
r~ oscillator rather than an amplifier, as in the case of linear FEL configuration.

FEL's. wiggler field on the rotating electron beam are presented, as

In the experiments to date, two principal methods have are radiation spectra obtained for a number of wiggler con-

been used to generate the rotating electron beam. The first figurations. Section II of this paper contains a discussion of

experiments employed a diode configuration similar to those theoretical considerations, and the experiments are present-

used in relativistic magnetrons, t..,4 Here the electrons per- ed in Sec. Ill. Conclusions are drawn in Sec. IV.

!1 form EXD drifts around the aximuth in the presence of a
radial electric field and an axial magnetic field. Addition of
an aximuthally periodic magnetic field then results in a cir-
cular FEL. Although initial experimental results from this H. THEORETICAL DISCUSSION
configuration are encouraging, one potential drawback of

• r' this configuration is the considerable electron velocity shear A. Electron motion In the axial and wiggler magnetic
I fields

inherent to cross field electron flow in magnetron-like de-

vices. The general configuration used for these studies is de-
Recently we published a preliminary study of a second tailed in Fig. I. Downstream of the cusp transition, the elec-

configuration that effectively circumvents this velocity shear tron orbits have axial (v,,) and azimuthal (v,2 ) velocity com-
" : problem." This experiment involves the generation of an ponents given in terms of the upstream axial velocity (v,i I by

essentially monoenergetic rotating electron beam by passing 2 2 7 /2
*I [ a hollow, nonrotating electron beam through a narrow mag- v, 1 = V, + i' 2 = 0, + C' ,

netic cusp. In this manner, the Y, XD, force at the center of
where r, is the cathode radius and 12, 1 = eB,/m,1 y is the

"Permanent address: Intitute of Electronci. Academia Sinica , nliing, relativistic electron-cyclotron frequency in the downstream
People's Republic ofChina. axial magnetic field. Thus, as the magnetic field is raised
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T Outer that near the center of the gap, the field is primarily radialInterctio Conducting
Interacon Bond and that the undulatory vo XB, force is the + z direction,

4 .. 'analogous to the transverse motion of electrons in a linear
FEL.

t -- Because of the complicated nature of the combined axi-
al and wiggler fields, a single particle computer simulation
program has been used to check that the particle orbits are as

r "..- desired. Figure 2 shows calculated particle orbits with and
without the wiggler fields, results that show clearly that the

,.ndu-t• electron orbits are almost unperturbed in the r-O plane, and
the ut,dulation is primarily axial, as desired. While Fig. 2
shows typical electron orbits for an electron with an initial

k radial position of precisely 6 cm (the cathode radius), elec-
trons launched at other radial positions within the radial

Emedded width of the beam do not show significantly different behav-"' "'Permanent

Magnets ior. We have performed these calculations for each of the
several wiggler field configurations investigated experimen-
tally, and in no case are the electron orbits unsatisfactory.

• Embedded

Permanent Magnets B. Excitation of TM waves by the rotating electron beam

Anode Plate Iron Plate In a previous theoretical paper by two of the authors (Y.
./ /_Yin and G. Bekefi),'" the radiative process has been identi-
.-' . fled as the coupling ofa "synchronous mode," 2 ° upshifted in

Oil frequency by the wiggler periodicity N:
"Vacuum =(I + N)

Cathode Stem
------ to one or more of the TM waves supported by the coaxial

conducting boundary system. The radiation frequency is
Detector given by

N.IT2, k ov o/ Doeinstream Coi , = NB, , v'

Diode Cols Wave Guide - / I -

FIG. 1. General experimental configuration.

toward a cutoff value, given by

B,~ =v., m~y/re,
the axial velocity is reduced and electron orbits become fair-
ly tight helices. Beyond the cusp the electrons move in the
presence of the combined axial and wiggler magnetic fields,
which can be approximated (subject to the condition that
V.B = VXB = 0 in the region between two conducting
boundaries of radii r, and r, by the expression (o)

"B =---ros(,O I

O- - - sinN'O

*:.:. .-. +J( tI- i2V

* :- Here F, 0, and are unit vectors in the radial, azimuthal, and
axial directions, respectively, N = ir(r, + r, /I, is the num-

- ber of spatial periods around the azimuth, 1,, is the linear
, periodicity specified midway in the gap, and B, is the am-

plitude of the radial component of the field at a distance

,. ... -. (t' * ), 1/.,12N FIG. 2 Calculated particle orhit in the r-O and r.z plants for an electron
injected ith v, = 0.2k., v = 0.9€" into the Interaction %pace with (a)

.-' .- where the azimuthal component vanishes. It is easily seen B, = 1.4 kG.,., = 0, and (hi R, 1.4 kG. B,,. = 1.3 kG.
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TABLE 1 Computed parameters for an electron nng of radius 6 000 cm about a factor of 4 higher than those given in the table. The
rotating in a coaxial waveguide of radii r, - .50) cm. r, 5.348 cm. last column of Table I lists the estimated saturation effi-
cy;, !. he . =O.7kG;J. llOAcmnd the sthuradiationrequen- ciency 77caused by phase trapping of electrons in the poten-
cy; w, the tenporal growth rate; and i the saturated efficiency. tial wells of the ponderomotive potential.

N 10 m I W12i- , × 10 Ir
(cml 1GHz) irad

I ) Ill. EXPERIMENTS

6 6.28 I 29 26.8 1.02 19
6 6.28 1 117 94.7 0.21 0.6 A. Apparatus

1 34 I 74"08 4The general experimental configuration is shown in... 12 3.14 1 7 14.6 0.48 14

12 3.14 1 281 225.6 0.014 0.15 Fig. I. A hollow, nonrotating electron beam is field emitted

12 314 2 56 2.3 .15 .83 from a 6 cm radius, knife-edge cathode located 7.5 cm up-
12 3.14 2 56 52.3 0.15 0.83 stream of a brass anode plate. A 5 mm wide aperture slit in
12 3.14 2 232 1879 0.031 0.05 the anode plate allows a fraction of the electron beam cur-

rent to pass through the anode plane into the cusp transition
region. The cusp magnetic fields are produced by two inde-

where k, = 
2 1r/l, w,( (,m) is the cutoff frequency for the pendently controllable solenoids, and a soft iron plate is used

TM,, mode, land mare the azimuthal and radial wavenum- to narrow the axial extent of the cusp transition region. The

bers, respectively, and measured FWHM of the radial component of the magnetic
field at the center of the cusp is 4 mm. The v, XB, force acts

Vpd = (l,m )(r/l) to convert axial electron velocity upstream of the cusp tran-

is the azimuthal phase velocity of the rf perturbation. It is sition region into azimuthal velocity downstream, with re-
S .- interesting to compare this result to the dispersion relation sulting downstream beam parameters of 2 MeV, I kA, and 5

for a conventional linear free-electron laser:

.:a - [ (v./c)l ' '

where vo is now the axial electron velocity.
In the limit where the gap between the two coaxial con-

ducting boundaries is small compared to their mean radius,
V the cutoff frequency of the TMN,, mode may be approximat- ,J~Ei.

ed by the expression / .t3.14 c

c (l,ml= [mnrc/r,(g- 1)](1 +al)11 2,
/-

where g = re/r, anda = 2
M[ r g1 -. - C

The resultant predicted radiation frequencies for actual ex-
perimental parameters discussed in the next section are sum-
marized in Table I. For the specified parameters these are
the only unstable interactions predicted by the theory. Be-
cause these predicted radiation frequencies are quite sensi-
tive to the values chosen for the applied magnetic field and
the electron energy, the values indicated in Table I must be
treated as estimates. One important conclusion, however, is
that high-frequency radiation is predicted for very low val- 1.0
ucs of the radial mode number m, an important result be- .
cause the electron beam radial width fabout 5 mm) is a siza-

* ble fraction of the gap between the two coaxial conductors 2
1- 0(13 mm). A comparison between these predicted values and o

experimental measurements will be made in Sec. IV. The 4
growth rate of the instability w, was calculated for the caseof 6.28 cni
an azimuthal current density J, = 1. 1 A cm in order to .10
satisfy the assumption ofa tenuous electron ring, and is also a __

indicated in Table I. In the actual experiments, the azi- 0 60 20 80 240 300
muthal current density is estimated to be -60 A cm 2. In ANGULAR DISPLACEMENT (DEGREES)

the so-called "single particle, high-gain strong pump" re-'.- gim: te istailiy gnwt rae i prporionl t J:/ FIG, 3. Arringmen! tit bar raaoieis itopi, Itall probe measurement of lhe
gim , wiggler field at a radial p)sitin r 5 92 cm. as a function of azimuthal
which Implies that the experimental growth rates would be angle (9o5toml
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1400 21MV

1200 I 0,(-5ons

E T

-. . 200 V (C)

U 8000

600 1 20
A - Without Ripple Field T 20 0 mV (d)

0 - With Ripple Field \ FIG. 5. Oscilloscope waveforms of(a) diode voltage, (b) axial current col-

400 1 i letted by a 2.24 mm2 collector located in the center of the interaction region.
1300 1350 1400 1450 1500 (c) microwave signal in T band (91-170 GHz} with wiggler magnets, and (d)

Magnetic Field (Gauss) microwave signal in T band without wiggler magnets.

FIG. 4. Peak current exiting the interaction region versus applied cusp axial
magnetic field. Results with and without the wiggler magnets are shown.W'_' . .G amplitude and 1o = 6.28 cm causes a drop in the beam

current of only about 30%. These results confirm that the
nsec. Because the cusp reflects all electrons with energies less wiggler field does not have a disastrous effect on the electron
than a threshold value given by orbits, a result consistent with the single particle orbit calcu-

r Eh = [(moc')2 + (cerB)2 ] 1/2 _ moC
2
, lations. In fact, it is likely that the wiggler field acts to re-

- move electrons with badly off-centered orbits from the
the total energy spread in the downstream rotating beam is beam.

* in the range 1%-3%. The velocity spread caused by local Another indication of the nature of the beam current
temperature in the beam has been estimated to be about pulse shape has been obtained by placing a small-area axial
0.2%. current collector midway between the conducting cylinders

The downstream beam rotates between two concentric at the axial center of the wiggler field region. A typical cur-
stainless steel cylinders of radii 5.40 and 6.51 cm, respective- rent pulse waveform is shown in Fig..5 and shows dramati-
ly. Single turn Rogowski coils can be located at the upstream cally the shortening of the downstream electron beam cur-
and/or downstream ends of the interaction region to mca- rent pulse duration caused by the reflection of all low-energy
sure the axial current entering or leaving the wiggler region electrons at the cusp transition region. This independent
with or without the wiggler magnets in place. The samarium measurement of the beam current in the wiggler region also
cobalt magnets used to provide the wiggler field are placed shows that even a relatively strong wiggler field does not
behind the cylinders and held in place by grooved aluminum disastrously disrupt the rotating electron beam.
holders. Typical arrangements of the magnets to achieve
various periodicities are shown in Fig. 3. The axial length of C. Radiation measurements
the wiggler field is about 20 cm, and the wiggler strength has
been varied in the experiments by simply removing some of Initial measurements of the radiation produced by the. ., r."interaction of the rotating electron beam with the wiggler
the magnets from the 6.28 cm wiggler configuration shown
in the figure. field involved inserting a small horn antenna into the region

The radiation generated in the experiments is measured
with a small horn antenna located immediately downstream
of the interaction region. The radiated power spectra for var- 150 r 1 1
ious configurations has been measured using a sensitive grat- - x 6.28 cm wiggler

> X
ing spectrometer, with gratings available in the range 70- E
200 GHz. The frequency resolution of the spectrometer is 100
typically 4f/f= 0.02, and the insertion loss is in the range 3- S
5 dB. 0 XX

550

B. Electron beam measurements
Measurement of the axial electron beam current exiting X Xx

the interaction region with and without the wiggler magnets 80 (00 120
in place has been made using a single turn Rogowski coil
located immediately downstream of the wiggler region. The
results, shown in Fig. 4, indicate that a wiggler field of 1300 FIG 6. Radiated ptower spectrum for 0,. = 1 0)G. ,, = 6.28 cm.

i 85 19165
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. 6.28 cm wiggler > 80 6.28 cm wiggler
EBo

x
.200 1( X

II 0
0 - ,40xoo'

U x -
0 80 0002

80 100 12080 100 120 f (GHz)

f (GHz) FIG. 9. Radiated power spectrum for B, = 450 G. = 6.28 cm. with in-
F0 ncr magnets and inner conducting boundary removed.

|- FIG. 7. Radiated power spectrum for Bo, = 800 G, 10 = 6.28 cm.

Detailed measurements of the radiation spectra have

immediately downstream of the interaction region and been obtained for a variety of wiggler configurations using

bringing the signal out through a length of Ka-band (22-40 the grating spectrometer described previously. These config-
GHz) waveguide. The radiation was then guided through urations include (a) the 1300 G, 6.28 cm period wiggler first

various waveguide filters into calibrated attenuators and de- studies (Fig. 3, bottom magnet array), (b) an 800 G, 6.28 cm

tectors. The receiving horn was oriented in such a way as to wiggler (same array, every other magnet removed), (c) a 1000
pick up TM waves in the coaxial conducting boundary sys- G, 3.14 cm wiggler (middle magnet array), and (d) a 450 G,
tem. In these initial experiments, a wiggler field amplitude of 6.28 cm wiggler in which the inner magnets and the inner
1300 G and a wiggler period of 6.28 cm were used exclusive- conducting boundary were removed entirely. Plots of detec-
ly. Typical signals obtained in T band (91-170 GHz) with tor output versus frequency are shown for these configura-

and without the wiggler magnets in place are shown in Fig. 5, tions in Figs. 6-9, respectively.
-- Several features of these spectra are worthy of mention.

and show dramatically that high-frequency radiation is only
observed when the wiggler field is present. Because of the First, the radiation observed in all cases is very narrow band,obs rve wh n t e w g l rfedi"r s n .B c u e o h approaching the resolving pow er of the spectrom eter. Sec-
difficulty in efficiently coupling radiation out of the system,
we have only been able to estimate the total radiated power ond, the center frequency for the 3.14 cm wiggler (175 GHz)
as being in excess of 200 kW. Therefore, a reliable measure- is almost exactly double that observed for the 6.28 cm

ment of the electronic efficiency of the experiment is current- wiggler (88 GHz), and both frequencies are in close agree-
ly unavailable. These results have been reported previous- ment with the predictions of theory summarized in Table 1.

•ly.'5  This last result may be just a chance occurrence, as the pre-
In these measurements, the horn has been located in dictions of the theory are quite sensitive to the values chosen

various configurations, and the radiated power has been ob- for the electron beam energy and the applied magnetic field.

served to be greatest in the direction of the electron orbits, as Although the detector used for these measurements has

r expected if the radiation is scattered in the forward direction a sensitivity that does riot vary substantially over a frequencyrneo10Gzosothdeetrsensitivitythadoesritarsbsat ally

as in a linear FEL. If the horn is moved to detect radiation in range of 10 0Hz or so, the detector sensitivity does fall
the opposite direction, the observed radiation is down by steadily as the frequency of the detected signal is increased.

more than 10 dB. Waveguide cutoff filters were used to ob- As a result of this trend and the fact that we do not have a
tain a rough idea of the frequency content of the radiation. calibration source at 175 GHz, even a comparative estimate

From these measurements it was determined that most of of the power radiated at this frequency is not possible. If we

the radiated power was within N band (74-140 GHz). extrapolate our calibration of the detector response versus
frequency from our data in the range 26-135 GHz, where we
do have calibration sources, then the radiated power at 175

.-:, GHz appears to be roughly comparable to that at 88 GHz.

. - _14 cm wiggler
>' 10 o-IV. CONCLUSIONS,.. . -.

The experimental studies indicate that the production
* of millimeter wave radiation by the interaction of a rotating

0 electron beam with an azimuthally periodic wiggler field has
5 -been achieved in a manner consistent with theoretical expec-

tations. The agreement between the measured radiation fre-
quencies and predicted values given in Table I is excellent.

0. but further work will be need in order to determine if radi-

i4% 0 160 L. _L_._ation is also produced at the other frequencies indicated.
f180 Z Although the efficiency of conversion of electron beam ener-
.(H)gy to radiation is currently low (less than I%), it is not at all

• " FIG. 8 Radiated pi)wer peclrum for,,. 1000, I, = 3.14 cm. clear how efficiently the radiation is currently being coupled
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Abstract

The macroscopic fluid equations are used to study the effect of beam

* thickness on the linear growth rates of a large orbit gyrotron. The chosen

- equilibrium models a rotating annular electron beam produced by a magnetic

cusp. Two methods are used to calculate the growth rates. The analytic

- approach solves the problem to first order in the ratio of beam thickness

to average beam radius and recovers the zero thickness limit. The numeric

approach uses complete orthonormal systems comprised of the homogeneous

wave equation solutions to calculate the growth rates for beams with

arbitrary thicknesses. It is concluded that thick, tenuous beams in

resonant systems must be operated near the cutoff of the electromagnetic

wave. The decrease in growth rate as the wavelength decreases is

- "attributed to the loss of synchronism in systems where the beam has a

- "spread in its canonical angular momentum.
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I. INTRODUCTION

Microwave generation at cyclotron harmonics from large orbit gyrotrons

has been studied extensively in recent years. The reduced magnetic fieldI,
requirements inherent in high harmonic operation make such devices good

candidates for high power, high frequency applications. Considerable work

has been done on the linear growth rate problem for the large orbit

gyrotron configuration. Growth rates have been calculated from single

particle, - 6 fluid, 7 ' 8 and Vlasov 9  formalisms in a variety of waveguide

geometries. Most of these analyses assume that the rotating electron

layers have zero radial thickness. In this paper, the macroscopic fluid

equations are used to study the effect of beam thickness on the linear

growth rates.

A recent experiment1 2 has suggested that an efficient way to produce a

moderate energy rotating beam is to pass a linearly streaming beam from a

thermionic diode through a magnetic cusp. 13  (Other viable injection

schemes include gyro-resonant rf acceleration 14 and tilted Pierce-type

guns.15) The equilibrium selected for this study models the cusp-injected

configuration. Although the two previous fluid models cited (Refs. 7 and

*' 8) allow for finite thickness beams, they never consider the case where the

beam thickness, axial velocity, and axial electromagnetic wavelength are

simultaneously finite. This situation is inherent in thermionic cusp-

injected systems and leads to one of the main results of this paper. In

Section 11, the fluid equilibrium is presented and the perturbed density

*and velocity terms are calculated. An analytic solution is described in

a ... . . .. . ..,
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Section III. The problem is solved to first order in the ratio of the beam

' thickness to the average beam radius. The result is shown to be in

- agreement with the single particle result in the appropriate limit. A

" numeric solution, valid for arbitrary beam thickness, is the subject of

Section IV. The results of this study are summarized in Section V.

A°

I

* . - "

.'a

°. °



4
-

- II. THE FLUID MODEL

A. The Equilibrium Distribution

The beam equilibrium is shown in Fig. 1. It is assumed that the

equilibrium results from the passage of a thick, linearly streaming beam

through a perfect magnetic cusp (of magnitude B ). The beam originates on

a cathode that has a thickness of 2Ar and an average radius of r . The

electron beam is assumed to be monoenergetic and the self-fields are

neglected. Thus, after the cusp, all electrons move on helical orbits

* - about the same gyration axis. The value of each electron's post-cusp axial

velocity is a function of the injection radius. Any electrons above a

certain critical radius will have insufficient energy and will be

. reflected. That maximum radius is given by r = (Y2 - 1)I/2(m c/eB )
max 0 0 0

2

For this idealized situation, the equilibrium electron velocities are

only a function of r:

v (r) - 0 (1a)
r
0

v(r) = rSo (Ib)
6 0

0

r; - [c (I y- r (Ic)

where 0 = (eBo)/(moYo) and y are independent of r. Because vr = 0, the

beam will be in equtlibrium tor any density profile which is only a

04

. . .. ° .°o,.o ".°o. . . . . .. •
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function of r. In this paper, two different density functions are

considered. The first is a piecewise cubic model and is given by

n IZI 4 P

n(r) n [3( - IzI)2 2(- -  )3]IzI < (2)

0 Iz1 > I

where z = (r - r )/Ar. The parameter p is adjustable: 0 4 p 4 1. A
0

typical density profile and density profile derivative are shown in

Fig. 2. The parameter n is a measure of the volume density of
0

particles. The surface density of particles is given by

r +Ar

n = f n (r)dr
'',S f

r -Ar

For the piecewise cubic model, the relationship between the surface and

volume densities is given by

n = no( + p)Ar . (3)

When p = 1, the distribution function becomes the usual constant density

- .profile:

% •

'-p

4." - .- **-.' .."- . "~ .- * ..... " . ' , - . ,* - ". -. .- . " " .- '" . - . . .' "4-
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(r) 0 Ir - r01 < Ar

•n n(r) =(4)

0 else

L and

n = no(2Ar) • (5)

The piecewise cubic model is used in both the analytic and the numeric

problems.

The second density function, used only in the numeric solution, is

given by:

p-2 - 2)] IzI
n exp[- z/ Z

no(r) (6)
0

0 else

A *

where z can be adjusted to achieve a desired profile (0 < z < -). It can

be shown that n (r) is infinitely differentiable and all of its derivatives

are continuous everywhere. The extrema of n'(r) can be found by calculus
0

to be

^2 ) + [ 2 2 1/2 1/2
' z~ ( z + 31(7)

' 3"
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Notice that z* + as z *0. In fact, this distribution approaches the

constant distribution as + . 0. It is more practical, however, to use the

first distribution when approximating the uniform case.

For the second distribution, the surface and volume densities are

related by

z -2

n .nAr[z'e (1/2)U(3/2,2,z (8)

s4 0

16
where U(v,p,x) is a degenerate hypergeometric function, and r(x) is the

^2 ^2) ^2 AGamma Function. It can be shown that z U(3/2,2 ,z )+ r(3/2) as z+0
A ° 2

which means that n + n (2Ar) as z + 0. Profiles of n (r) and n'(r) are
5 0 0 0

shown in Fig. 3 for z=0.125, z=1.0, and z=2.0. The curves are

+1
normalized so that f n (z)dz =2. The curves support the claim that the

-1 0

*.."constant density profile is approached as z e 0.

The natural definition of the beam thickness for the numerical routine

Sis z 1F , because the density distributions are identically zero

when Iz- > 1. However, as suggested by Fig. 3, this definition may not be

appropriate when comparing results for different parameters. Three

appropriate measures of the effective beam thickness are: (1) n /(2Arn )
5 0

(2) the location of the (negative) peak of n' and (3) the Full Width Half

* Maximum (FWIL'). For the piecewise cubic model, these measures have the

common value z (1 + p)/2. For the smooth model, all three measures are

different. The first is given by Eq. (8), the second by Eq. (7), and the

third by

, .- log 2 2 ,112

G z + log 2
e..

. . . . . . . . . . . . . . . . ..2"',' ,: which means that ns * no(2Ar a 0. ....... n~) ndn(r_ r
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In this paper, we use the first measure to denote the effective thickness

of the E layer.

B. The Perturbed Fluid Equations

The fluid momentum equation is

3t(yv) + <V,V>(yv) v--( + ) (9)
t m

0

where <.,.> denotes the usual inner product. This equation can be

linearized about the equilibrium specified in Eq. (1) and Fourier analyzed

" 'to yield

SmYD 2 {1*[- ir + 0o (- ic Z ) -
8 z - icB 0 )] + go + az CBr)}

(10a)

=.e b
iv0iv )E + cB - 0 BE]+-°v (10b)
i.-m e [(1 - 02 0 a z Cr 0 z 0z r I

iv '"-0 - 0 cz + (1 - 0 2 (10

-. i e)E e J - v (lOc)
Smoo 0 z r z z r

2 2 2
for D, = 4 - Q and 4,(r) = w - - k v (r).

The fluid continuity equation

- n + <V,nv> 0 (11)

S;. .

.. . . . .



can also be linearized and Fourier analyzed to yield

r(in1 ) = ,t'{ar(rnoVr ) + no[(iv ) + kzr(iVz )]} . (12)

I I

In the derivation of the above results, all variables were written as

Xx-,t) X 0 (r) + X (r) expti(k z + wt)]

and IXl(r)l << iXo(r)J was assumed. Equations (10) and (12) express the

* perturbed velocity and density in terms of the equilibrium quantities and

the electromagnetic (EM) fields. These equations are the starting points

for both the analytic and numeric solutions. The differences in the two

solutions arise from the procedures used to close these equations.

" - - -' ."

--..,. S .--...-

S...." ..
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III. THE ANALYTIC SOLUTION

A. Th,- Thin Beam Approximation

The assumption that yields the analytic solution is that the beam

thickness is small compared to the average beam radius. That is, the thin

beam must satisfy:

x - r<< . (13)
0 r

0

* UThe fluid equations are expanded about the equilibrium radius in the

coordinate x, defined by the transformation x = r/r - 1. Throughout the
0

course of this analysis, many quantities will be linearized in x, resulting

0 in additional constraints on the size of x.. Unfortunately, it turns out

that the solutions will be valid for reasonable values of x only in a few
0

special cases. Nonetheless, this method yields a good deal of information

about the linear growth rate problem as will be demonstrated in the

remainder of the section.

Two critical limitations in the expansion parameter come from the

linearization of vz (r). To first order in x,
0

v (r) = v i - x( /vz )21 Vz (1 - xT) (14)
0 0 0 0 0

where v and v are the azimuthal and axial velocities at the center
0 0A 2

radius r0 , respectively, and T = /V) The worst case for this
06 z

' . .0 0 .,-2
expansion Is at 1xi= x0 9 resulting in the criteria x << (v/v 2

00



Because large orbit gyrotrons are normally designed to extract azimuthal

energy, it is desirable to have v /va as small as possible, causing a

further restriction on the allowed size of x0 .

The zero thickness linear growth rate solution that we compare our

results to assumes a resonance condition, for which the frequencies of the

beam mode and an empty waveguide mode coincide. It also requires a

. synchronous condition: the frequency of the actual electromagnetic mode is

assumed to be near the frequency of the beam mode. The analysis in this

section deals only with the synchronous case and the empty waveguide mode

does not enter into the picture directly. Still, the resonant limit will

b r be recovered for the proper axial wave numbers (kz).

The concept of synchronism is somewhat ambiguous for the thin beam

model, because the phase velocity of the beam perturbation is in general a

function of radius:

( (r) = Xj + k v (r) . (15)
0 0 z z O

t0

For simplicity in the analysis, it is assumed that the synchronous layer

" corresponds to r ro. This assumption does not affect the analysis in any

way, it simply serves as a reference point when comparing this method to

" others. For (r) = w - o(r), the linear expansion is

Av 6
0

* £(r) =X + Akro Q -- =  + XT S1 (16)
• V

z
0

A A A

where = w - woCro) and T ; k r v /vz . Thus, the synchronous limit Is
- 0 zoo 

* A0 0

defined by + 0. The expansion of requires that

".M.A

-p °

i °. ° . °° " " .% . . " .. . . " • .o' . .•' .-. ' .- ° '. ° . .° ° ° - . . . •. " . .. - ..- °" ,• "° . •-""r° " .- ". "

,""" . -'.. -' . - .,. .. . . . ,-2- .P ._ , , .;' "" " '" < " ' '"-., .- i., *..,..-.. ..- "..--. -". . . . .",' .,_ -. ".".* ' _ ---. -. - . -. '.'." _ _ ,.' -"._.
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x << (V /V )(k ) It was noted previously that v /v is0:. z 6 Y. 0" z
0 0 0 0

designed to be small. Furthermore, it is known that ip << 2 for tenuous

beams.5 Although the method considered in this section is valid for

somewhat higher beam densities, /So will be small in general and the
£ 0

available range for x will be diminished further. Taking k < r- l will
0 Z 0

lessen the severity of this restriction. Indeed, at cutoff there is no

- restriction at all. When kZ = 0, the beam frequency is independent of r

and the electromagnetic wave can be synchronized with the entire beam.

In the following analysis, other expansions in x are performed.

However, the linear coefficients of those expansions are not inherently

, large and the restrictions imposed by them are not calculated. Still, it

will be demonstrated later that the solution is very sensitive to small

changes in certain terms. Thus, the error Introduced by one of these

""accurate" expansions can change the answer dramatically. The

uncertainties discussed above make it difficult to predict the maximum beam

thickness that yields reliable growth rates. Nonetheless, the method is

accurate In the zero thickness limit and should be able to predict the

initial growth rate trends as x0 increases from zero.

B. Method of Solution
-I

The solution is achieved by integrating several components of

Maxwell's equations from r° - Ar to r0 + Ar. The resulting equations

express the "jump" in the EM fields across the beam in terms of integrals

of the source terms and the EM fields in the beam region. In order to

perform the Integrals, the EM fields must be evaluated to first order

* in xo In the region lxi x0 . This is done in Section 1. The source

I , " , " ."". ""..' , '. '''''. .''. " . " . - . .- --* ." . . " " ' " ' " .* ' " " ' ' '
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integrals are evaluated in Section 2. In Section 3, the formal solution is

given. Properties of the solution are discussed in Section II.C.

1. The Field Expansions

Outside the beam region, the homogeneous wave equations are valid and
I.

- *. the axial fields can be written

S E 0 r r

zz

i2.-

E. ((ly
. w -

. .z P£(YY) E+ r+ r r
..'"'.P ( ,y ) z w

.• and

r J y)

(7 e)y _) arc r

. .)cB r t (17b)
"..r+Q 2 (y,yw ) ( ~z+

+ I + +
y- -( a r c! Z)Sr (yr,<w w

for

" = r * Ar, E = E (r ( C ) ( 2 (/c2 k
o z z + r z r zr.

y = r , y = y(r ), and where P - S are cross products of Bessel

functions: 17

-. e.

€'h. ."
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SP 2X(a,b) = JL(a)Y9X(b) - YX(a)J2X(b) (18a)

QX (a,b) = I (a)Y'(b) - Y (a)Jj(b) (18b)

R,(ab) = Jj(a)Y,(b) - Y(a)J,(b) (18c)

S X(ab) =Jj(a)Y(b) Yja)Jj(b) (18d)

When lxi > x, = 0, so t and c can be found from Maxwell's Equations

a * given Eq. (17).

In the region lxi < x0 the fields are expanded about the values of

the fields at the edges of the beam (r+). The plecewlse cubic beam density

profile is used so that the values of the fields and their derivatives are

continuous at the beam edges. Thus, the limiting values of the homogeneous

- fields can be used in the expansions. Let X represent any EM field

component. For the fields to be accurate to first order in x, it Is

necessary to approximate X by a cubic:

X~ (r) [)L 0 
-r d )A]. + Z[.! - Ar (dX)o] (19)

+ z:2[A: (X, + ,3[A , (dX)o -
I..0 -" - a

where X = (X ± × )/2, X± = (r ), etc. By considering Taylor series

i,-" • . expansions about r±, It can be seen that x - Xce = (x ) n

%. . . . . .
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I zj 1. Furthermore, Eq. (19) Insures that dX/dr is continuous on the

p same interval.

2. The Source Integrals

To lowest order in x the jump in the perturbed density across the

beam Is (see Eq. 12)

r +Ar r +Ar
le 0 2o e 0

f (n )dr = -(- f n (1 + x)v dr
r-Ar 1 j E oA r I

r +dr

0 0 0

0 r 0-Ar *X 1

kinr r+Ar

'V 0 r Ar '~£ 1
£ 0

Because =-en o - n o

I r 0 Ar - e fr 0+Ar n d 0le r 0+Ar r)d
- f J dr I (-) 0 ie)

E r0-A C0 r 0-Ar c 1 £o r 0-Ar 1

(20b)

and
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r +Ar v r + rr- o z Tl2o
S f (ri )dr 0( +  )(e) 0 T(] +ej( dr

o -r C y 1 o ro-Ar

r+Ar
-o 1 (,e) f o[l -X( o + T )] dr

":" - (-i".o
C T 0 r -ar1

v r +Ar"z 0"Z k zro 0 e 0 N
- - (-- f[ - x(-- 2- + T - 1)]vz dr

c 0 r -Ar
.%" 0

-'-r r o+A r

2.. ' 2.

r -Ar no(0 + X)Vz dr (20c)

again to lowest order in x . Therefore, evaluation of the source integrals
r +Ar

requires the evaluation of Integrals of the form f n0(1 + Fx)v dr where
r -Ar

F is some constant. o

From the above comment and Eq. (10), it can be seen that all the

source integrals can be expressed in ter's of integrals of the form
r +Ar

0
-. n (1 + Fx) X dr where X again denotes a field component. The cubic
r -Ar 0

' -, 0approximation for X can be used to show that

r o+Ar
J- no(r)(1 + Fx)x(r)dr

r -Ar
0

ox

n10 fx X 3 + ij (4)A
-Tp( + a (Tr-

2x 3+ [I + (I - )(31 + 19p - 5p2  3p )]Fx' }  (21)

5 3-

I

4....
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to first order in xo .  Even though the continuity of dno/dr was required in

5 ithe derivation of Eq. (19), the source integrals are continuous functions

of p [their dependence is given by Eq. (21)]. In the remainder of this

paper, p is set to one for convenience and only the constant distribution

of Eq. (4) is considered.

In Appendix A, Eqs. (10) and (21) are used to find standard integrals

. - of the perturbed fluid velocity in terms of the equilibrium beam quantities

and the fields (and their derivatives) at the beam edges. Thus, from

Eqs. (20) and (A.1), the integrals of the perturbed sources across the beam

* are known in terms of the electromagnetic fields at the beam edges.

3. The Jump Conditions and The Formal Solution

Six of the eight components of Maxwell's equations contain derivatives

t of the electromagnetic fields with respect to r and can be integrated

across the beam. The results to first order in xo are:

z. r cr
-o -o r- 1 le

r +Ar

-icB + x (-ic1+ e0  + f rJdr 0 (22b)
0o c z r Tr- c z0 0 r -Ar

0

*. ur -r rAr

-1 c rA x+ + k r 0 ) 1 dr 0 (22c)

-'z "0 o a r T- - r

"* o rrr 1+

0. r -Ar I
0

4.7
* .. * ..-.

.%

, 7- ,
. . . .. . . . . . . . . . . . . .



, . . . .u 1. -a V 1 w V

18

ct + x c'A - (-ic%o) k kr (-ic'to)] =0 (22d)

+ x.['to+ iE0) + o (-ic%0 )] =0 (22e)
a o6r c z, I •

wr

+ x [k r (_i,.) _ o (-icB)] =0. (22f)
z o zo r c

Out of the six jump conditions, three contain source terms and three do

not. The three sourceless equations are linearly dependent as are the

three equations with sources. It can be shown that

- -) x Eq. (22a) + (kz r ) x Eq. (22b) - £ x Eq. (22c) Z 0

) Eq. (22d) + (k r x Eq. (22e) - x x Eq. (22f) 0
c zo

The four equations (22b), (22c), (22e), and (22f) form a linearly

independent set even if 1 = 0 = k z . Consequently, they are the ones used

in the analysis.

Because E and cB are given In terms of EzI cBzt and their

derivatives when xi > X0 , Eq. (17) reveals that there are only four

unknowns. Consequently, there are the same number of equations as unknowns

and the system of equations Is well defined. To simplify the x= 0 limit,

the four unknowns are chosen to be:

Kw .

O .
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u t 1 'zlr)° (23a)

S2  z z/r) A  (23b)

u3 - - z(3 c) (23c)

u4 = - IrC% z)A • (23d)

Defining the normalized wave admittances

(rarz)/( (24a)

and

b (- i )±/(-ira cB ) (24b)
bz r z

and using Eqs. (17) and (24) it follows that

a = [y+Rz(y+,yw)]IPz(y+,y w ) a e = [yJ(y) J(y)

(25)

:-:-:" .:a b =Q(y+,yw)/[y+Sx(y+,yw)] a = J(Y/[_(_)

Q ~ b J(y)/[y-J'(y )

S -The thin beam geometry parameters are defined to be (in the usual

notation):

• .•

S
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oa0 + -0 1 +
a ae -- -e- (  +ab

(26)
A 1... .. ( +e  A 1 ( + c b)

ae I e ab Ot a b

These expressions can be expanded in xo to reveal their limiting behavior:

0e  y 02 [p + J(yo) ] X j(yowpy 0 R ji~Yo)
S R ( + 2 YR + }

I [ + Xo{ - Y {( ; )2 Noi(o ) 2

e " 1 0 0 WJ£(y ) X P P 0
jyy R £ J, 2

a X w ?2 2 1 (o 2 +
e + x.I Y T , 

1~J-(o)
£0

(27)

0 A (y) -J(y) 2 2J(y)
b 2 ab  i-- + + 0r 2 yo1(£2 - y + yoji(yo)

0S 0 0

b J(y) + x 1 (£2 2 0) + J£(yo) ]2

a.. b +x Yo s--,,
7 1YJi(Yo)S y 0S 0 X

. --. for P= P (yo,Yw), etc.

Maxwell's equations can be used to find all the fields to first order

in x0 In terms of ul - u 4 . For example, the average fields (X) are

a.'" . * .* -

- *

,.:<.-...-. ,....:...,........,... ...-....... .. :, -...... ,...........- ........-.... ..- -.. .. .. :.
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L'"CI. Ua~ - k u- u-kz 2 (28a)
r c 1 z 3

.-.-- 'to ". =(£ku 1 + U- u3/2 (28b)I

o= rou + xorU 2  (28c)

z 0 1 0 0 2

r z e 1 e2 C b 3 '

C eI e 2 z b 3 4~,

-icAr = [kz(aou + Au2 ) - cb(au3 + u4) (28f)

oob 4

The difference fields (xA ) can be found from the average fields in Eq. (28)

by interchanging u1 and u2 and by interchanging u3 and u4

(e.g. tA = roU 2 + x r u ). The field derivatives-(dx/dr) A can also bez o 0

found in terms of uI - u4 directly from Maxwell's Equations.

At this point the solution is complete, however, the expressions are

too cumbersome to assemble into one equation. Instead, the equations are

built-up as follows. The geometry parameters are given in terms of the

system configuration, the wave numbers £ and kz, and the unknown

frequency w [Eq. (27)). The EM fields are given in terms of u 1- u4 via

the geometry parameters [Eq. (28)1. The sources Integrals can be found In

terms of u 1 -u 4 via the EM fields [Eqs. (20) and (A.1)]. Finally, the

I-u4

- . . . . . . . . . . . . . . . .
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jump conditions can be found (once again in terms of u - u4) from the EM

fields and the source integrals [Eq. (22)].

C. Properties of the Solution:

When x = 0, two of the jump conditions yield A 0 = u2 [Eq. (22f)]
0 z

and = 0 = u4 [Eq. (22e)]. The remaining two equations then can be

solved to find and the ratio u1/U3 . To lowest order in 4, the

equations yield the disperson relation

aae +L (a Q ab)2 =0 (29)

With the aid of Eq. (27), we can show that this expression agrees with the

single particle result. 5

The fluid method has expanded the single particle result in three

dimensions: (1) axial wave number kz, (2) beam density ns, and (3) beam

thickness Ar. Below, the properties of the growth rate solutions are

examined as a function of these three variables.

Figure 4(a) demonstrates the effect if beam density on the growth

rate r for a zero thickness beam at a resonant point ( W r + in). The

parameters for this case are X = 7, nr = 1 (first radial mode), r° = 0.06 m,

rw = 0.0865 m, 0 = 0.85, O = 0.5, and kz = 0 (rw is adjusted for
0 0

cutoff). Because r a n I/ 3 in the tenuous limit, 5 the plots are normalized

by n / 3S. Thus, the "tenuous" limit is valid for the densities where the

curves are relatively flat. Consequently, the tenuous limit typically

demands that n I0l2 m -2 in order for the lowest term in to be

dominant.

- . . .-
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Self-fields introduce another kind of tenuous limit, outside of which

the space-charge effects contribute significantly to the equilibrium and

S.) (perhaps) the growth rates. Because the self-fields have been neglected by

this analysis, there Is an unknown upper limit on the allowable beam

density and the high density results may not be valid.

Figure 4(b) shows r for the system parameters of Fig. 4(a) midway

between resonant points (kz = 66.11 m
- ). For this non-resonant

case, r c nl/ 2 in the tenuous regime and the plots are normalizeds

appropriately. The tenuous limit again appears to be valid out

to n - 1012 m
- 2

S

Figure 5(a) shows a plot of growth rate as a function of kz for a zero

thickness beam. The parameters are j = 11, r = 0.06 m, rw = 0.10 m,
0.5, • A 8 W

=0.5, and n = 10" m 2  The corresponding beam line and
0 0

empty waveguide curves are plotted in Fig. 5(b). The beam line intercepts

the lowest three empty waveguide modes. The squares in Fig. 5(a) indicate

the growth rates for the six resonant points and the one non-resonant point

midway between the resonances as calculated by the single particle

formula. The fluid result is indicated by the line. The growth rates drop

abruptly to zero at synchronous points below the empty waveguide curves.

Above the dispersion curves, the growth rates drop off rapidly to small but

finite values. At synchronous points sufficiently above the lowest two

waveguide modes, the growth rates again become zero, resulting in five

frequency bands of instability.

As previously claimed, the fluid model agrees with the single particle

model as ns + 0, both on and off resonance. It Is Interesting to note that

the thin beam model's solution is independent of p at x = 0. Hence, the

A..

- I - .o -
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particular shape of the density function is not important as x + 0. This

is readily seen by setting x = 0 in Eq. (21) and recalling that the source

integrals can all be written in terms of that equation. The growth rate

does depend on the surface density ns and the EM fields at ro, as though

the fluid momentum equation was simply evaluated at the equilibrium radius.

Figure 6 shows as a function of beam thickness for a system whose

parameters are X 7, n 1, ro 0.06 m, r = 0.09 m, ae 0.85,

= 0.5, k z = 0, and n = 108 m 2 . Except for the wall radius, the
0parameters of Figs. 4(a) and Fig. 6 are the same. The wall radius is

larger in the latter case so that the system is not resonant at k = 0.

* , Cutoff is chosen so that the entire beam is synchronous with the EM wave.

Two curves are plotted in the figure. One curve corresponds to the

solution when the geometry parameters (a - ct) are given by Eqs. (25) ande b

(26) (exact) and the other curve corresponds to the solution when the

geometry parameters are given by Eq. (27) (linear expansion). In this

example, the restriction due to the geometry parameters is x0  0.02.

Unfortunately, the restriction imposed by the geometry parameters is

even more severe at resonance points. This can be seen by examining

Eq. (27). Consider the solution near a TE resonant point. When x + 0,

a 0 as + 0. Thus, the linear term becomes the dominant term for

extremely small values of xo . The solution is very sensitive to changes

In a b and the exact and linear solutions diverge rapidly as x° Increases.b 0•

In fact, the thin beam model is only useful in determining the effect

of beam thickness in growth rates for off resonance, cutoff points.

The kz = 0 restriction is due to the synchronous approximation given In

• " Eq. (16). For this special case, i£ typically varies less than 1% over the

• 9.

gN-t
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allowed range of xO. There are at least two ways to get more information

about the effect of beam thickness on growth rates. The first possibility

is to solve the equations to higher order in xo . The procedure for doing

this is straightward, but the amount of algebraic work increases

tremendously. For example, in order to expand the fields to second order

In xo, they would have to be expanded to fifth order in z. The second

order equilibrium density function would also be more complicated, at least

until p = 1 could be justified. The second approach is a numerical one and

is the subject of Section IV.

D. Solution of the Coaxial Case

The only computational difference between the cases of cylindrical

waveguides with and without inner conductors is in the calculation

of ae and The axial fields between the inner conductor and the beam

.can be written

: :P£ ( Y' Yi )

zP" E E (30a)I z P£y,y 1 ) z

and

r Q (y,y)
c%"z £ (a CR (30b)
z S(- r z

" where ri r < r_, and so

S

- -. * *
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= [y-R, (Y-,yi )/P (Y-'y 1 ) (31a)

and

'"" <b = QX(Y-,Yi)/ [y - S (y-,Yi)] (31b)

The new average and difference geometry parameters can be calculated for

the inner conductor case and the remainder of the algorithm does not

change. The linear expansions are

- 1 Yo R y o R 2  P 3  y R yoR 2... C +e=2 + X + x ( , ) ( , +
e 0(

P1  2 12 P1  2

R yR R
a = _ ( ) + 22 _ [ + (4 )-}
e 0o 0 2Pr .P" 1 p 2  P I P 2

(32)

o0 __ Q1 Q2( 3  2 2 Q1 Q.~ -' (- + + xo.,o+,+, (+ M yo +
b 2j 0 2A 0

yS ySry S y
o YoS1 0 2 2 0S1  YoS 2

SA 3 + 1 2 2 [Q1- 2 Q2"b =  2^1 Yo0 YoS

o 12 o1 o2

for P1 = P= (Y+tYw )  P2 = P (Y-,Yi and P3 = PI(Yw ty), etc.

Figure 7 demonstrates the effect of axial wavelength on for a

4 coaxial system with Z = 7, nr = 1, ro = 0.075 m, r, = 0.0626 m, rw 0.10 m,

0.9, o = 0.4, and n = l0 11 m -2 " Figure 7(a) shows the effect
0 z .

0 0

%N-
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of k on wr. Between resonance points, wr is close to zero as
z rr

predicted. At resonance, w rf/,3. Outside the unstable region, wr

increases rapidly, indicating that the solution is tracking the empty

waveguide mode. Figure 7(b) shows the effect of k on r. The coaxial

results are quite similar to the simple empty waveguide results.

q" o

- --. A
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IV. THE NUMERIC SOLUTION

The analytic model has the a priori restriction that Ar << ro. Thus,

the analytic model is valid from Ar - 0 to some small value which is at

most a few percent of the average beam radius. In contrast, the numeric

model is not defined for Ar= 0. The thickness can be made arbitrarily

small, but the computational cost increases tremendously with decreasing

thickness. Furthermore, there is no a priori limit on the maximum beam

thickness, though each particular problem is limited by the cusp field

cutoff. Thus, the domain of the analytic model extends from the zero

thickness limit out to some small maximum value and the numeric model's

validity ranges from some practical minimum out to the cusp cutoff layer.

In principle, the ranges of the two models overlap and a complete growth

rate versus thickness picture can be drawn. Unfortunately, in most cases

the thin beam limit is too small for the thick beam model to be applied

7 .there.

The numeric approach involves solving the inhomogeneous wave equation

for E and cB . In both simple and coaxial waveguides (among others), E
z z Z

can be written as a linear combination of the homogeneous transverse

magnetic (TM) solutions and cB can be written as a linear combination of

the homogeneous transverse electric (TE) solutions. With the aid of these

homogeneous solutions, the inhomogeneous wave equation problem is reduced

to an exercise in finding the zeros of the determinant of an infinite

matrix. The numerical method solves various finite approximations of this

'r

S. .
o

1*1 . . .
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matrix and compares the answers to determine whether or not the truncated

solutions appear to be converging. The apparent limit is assumed to be the

correct answer. The formal solution of the inhomogeneous problem is

--'- -. derived in Section A. Typical results are discussed in Section B. In

" Section C, the solution for the coaxial case is presented and results are

given.

A. The Formal Solution

The perturbed velocity is still given by Eq. (10) but the perturbed

density [Eq. (12)] has to be found in terms of the EM fields with the help

of Maxwell's Equations:

ien CDo 0 r

N* - 2 dr 2no - kz -- )
0 o 0E E z o 0

2 0  06

+0 + 0
;.~~~ !: _ _ o z X4 +a- x5 "6)

2

-.... + k 0{}I+ **-.*{(*.*)[7% Bz - k( (- 8)j

E 2 o z z 0

2 2 8

+ z  + (33)

. 0z
0

*e 2 2 2 2 2
where w 2(r) = e no(r)/(cmoY) E2 D 2 W /Y and

p 0 p0

'6

4, ..- ', ....
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S- r X2 E X z

(34)

= cB x5 -C 0  6 -c .X4. r 5X cz

The perturbed currents can then be found as before:

r en
1* 0-r . oc -)o Vr (35a)

len
0J -0 N* v (35b)

C c = --- C-0 0 0

V ~Z "i zen
J* N* 0) (35c)

z c z Cc z
o 0 0 1

v For fixed Z and 1 m 4 -, we define the functions

u (r) = Vj J( IZmr/r) (36a)

and

Sim3 (r) = J (a Imr/rW ) (36b),..w12 2 JE(atm)

. where Is the mth zero of J and a is the mth zero of J'. These

functions satisfy the orthonormal conditions:

r

f Uml(r)U (r)rdr = 6 (37a)
I'' 0 l'f

,....., .,.5. .** .. ... - . . , .. -.. ... ..... . ., .. *,,. ... , * .... ... -: :. ,.. .,. . - .. ... ,. .... ,' , . -. .. .: .

)u~nl ,n
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and

f u 3(r)u (r)rdr 6 (37b)Rm3 0n mn

V 1 4 m, n < -, where 6m is the Kronecker delta function. Furthermore, it

can be shown that for

Em f  X3(r)u ml(r)rdr (38a)

and

£rI r w

B = f X6(r)u Cr)rdr (38b)m 0 X m

the expressions

, E U ml(r) (39a)
" m=1 M

and

vm

X6= Bmuzm3(r) (39b)+ . ,m= 1

, .. are valid, i.e. the sums converge at every point In the Interval fO,rw].

This fact is true because {Umil} and ju 3 } are complete in the
m-1 m=1

" appropriate spaces and because X3 and X6 are assumed to have the required

degree of "smoothness."

We define the unknown vector K = (I K 2 13 by

* -, .. - ,. .. . .. . . ..-... . -- ." .,• .-...... :.. .-.. .. . .. +--.. . .. ,. .... ".m.-" " . . ". ". "q ' "" -'



-

32

1m=

| °ao

I-=

r= r r c (r) E u (r) (40b)

K. 3 2(r) = c r z z (r )  B m. uEm3m(r) (40b)

m=l
m"D

K 4 () ir r trirz (r) B mu;4(r) (40d)

M=l

SUXm 2 ffi r ruimI and Ujm4 fr3ru~m3). With these complete orthonormal

systems (CONS), the numeric problem can be reformulated as a problem of
Go

finding allowable values of w's and the corresponding sequences {EmB -

To do this, the perturbed sources must be written in terms of b. The

sources are already known in terms of X- X6 from Eqs. (33) through (35)

and can be written symbolically as

•* 6 1I r ir Jxi z--~ x
i~l i=l

(41)

6 1 6 1
.J N* n X,

" From Maxwell's equations it can be shown that

1-

*. . . . . . . . . . . . . . . . . . . . . . . .
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S- J* + (k IC 2 - K3 ) (42a)

2 _ 1 w +1

* - + k tic + - Kkz (42b)

2 X kzJ* +' (W ZK kz 4) (42c)

2 k2=5 - k J* + d= zr r ( 2 - z (42d)

With the help of Eq. (41), XI X6 can be eliminated from Eq. (42):

(j* j*)T = K(r)R(r) (r )  (43a)

r - 2+0R+r)+(rk

for

25 .2 w 4

(43b)
I1a 5 2 .2 w_ 4
- + jk +2 2k".-~ J + Jkz + 30 z

and

4

I,
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T

3 2 2 4 w 3 22 4w
rj r2 +L(- jrkz + jr -c) rj 6 + (- j )kz + a)

1 I .+j5 w j lk+ 5w

rkz r c z c

rR = (43c)

L r r62 1 W + j kz  rJ C2 _£(j 1W + .okz

r r c r z Cjz

2 w 4 2 w .4
r r z C 8oz

Plugging Eq. (43) into Eq. (42) gives XI  X6 in terms of + (notice

that =, and = 3 ). Afterward, J* and N* can be found from

Eq. (41). The net result is that the perturbed sources are known in terms

of K and can be symbolically written

r* 'J K. J K.

(44)
4 4

The inhomogeneous wave equations for and c'Az are

4M2 2
jr 2 I a+ K J3* k N* (45a)

2''.. r r 2 z g

3r r

and

2 2 K (3j*) + I3* .(45b)

-- J 73 r r 3 r r
r r

-A A . & , a
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Multiplying Eq. (45a) by ru nl(r), Eq. (45b) by rugn 3(r), and integrating

both from 0 to rw yields:

E ,n2 a 2 /r2 ) = S + (46a)
n xn w )I EmS2n-1,2m-1 + IBMS2n-1,2mm=1 m=1

" - for

r +.r
0

zfru (r)[± )+kN(

+ [a J2(r) + k N2(r)] uL2(r0 dr (46b)

and

r O+tr

S = - f rU ni(r){[ J(r) + k N3(r)] u 3 (r)
2n-.,2m r -Ar z z

0

+ [ J4 (r) + kN 4(0] u 4 (r)1 dr , (46c)

and

2 a 2/r) ES + BS (46d)
nl en w in 2n,2mn-l m n2m

m= m=1

for

O, r +Ar
0 1 2'

S 2n,2m- f {u~n3 (r)[Jr(r)u XI (r) + r(r)u (r)]

_%u Cr) J1 (r)u (r) + J2 (r) ] dr (46c)"* - Un4 (r[M 1  0 r m2(r

I

'. ,-.. . -- . . - ..- .
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Sand

034S~n,2m = iU 3 (r)x[J (r)u (r) + J (r)U 4(r)

2 n,2m f-Ar r m3 r um 4

- Un(r)[j3 (r)u (r) + J4(r)u4(r)]I dr (46f)
ukn4 0 6 m3 a 6f)

By defining

D =dlag 2 - (0 1/rw)2 2 - (a /r w2

2 _ /rw)2 '  2 _ ( /rw)2 ] (47)

it follows from Eqs. (46) and (47) that the elgenvalues are given by:

det(D- S)(w) 0 • (48)

If W is a solution of Eq. (48), the fields are given by the vector

-(El, B1 ..., E, B, ...)T (49)9' 1 1'm m

that satisfies S(M)I-- D(w)X.

* The solution of the linear growth rate problem can in theory be found

by locating the solutions of Eq. (48). Everything that is needed to find

the matrix S has been derived in this section. When n = 0, S is

* Identically zero and the solutions correspond to the empty waveguide modes,

"p

S.:. ,
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. as they must. When n 0 0, the solution can only be found approximately by
0

r, numerical techniques.

Solutions are found as follows. The D and S matrices are truncated

after a finite number of rows and columns. The integrals in the S matrix

are approximated by Simpson's extended rule. The determinant of the matrix

* is found by Gaussian elimination with full pivoting. The zeros of the

*determinant are found by recursive linear extrapolation starting with the

single particle results. Although the thick beam model is formally valid

without any restrictions (except for self-field considerations), it is

computationally practical only to look for solutions near the tenuous,

*resonant limit.

B. Properties of the Solution

Numerical solutions of r as a function of beam thickness are shown in

Fig. 8 for a system with Z = 7, n = (TE), 0.06 m, rw
mr =r WTE, 006 m,

* 8 -2
. = 0.85, 6 = 0.5, n = 10 m , k z = 0, and z 2.0, the equilibrium

0 0

defined in Eq. (6). For these parameters, the cusp cutoff limits the beam

- thickness to xo < 0.16. The solutions are plotted for several different

finite approximations of the D and S matrices in order to demonstrate

convergence problems. As the beam thickness decreases, the growth rate

solution for a fixed number of eigenvectors starts to decrease. The

"' solution eventually begins to increase and ultimately heads toward Infinity

- as the beam thickness approaches zero. The tendency of the growth rates to

"":" "eventually increase as the beam thickness decreases is a result of the

truncation of the D and S matrices and is not a property of the exact

[ Isolution. As the number of eigenvectors used increases so does the region

A. * * * .

.. ... '-.o z " . _ " * "" -" * . "" " " * " . . ." ' .. . .. .. * ..""'* ... .. " ' " " " * -'. "
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of convergence. When 50 eigenvectors are used, the result appears to have

converged all the way down to xo - 0.06. When x° > 0.13, 20 eigenvectors

are sufficient to get an accurate answer. More elgenvectors are needed for

- "convergence as the beam thickness decreases because the density

distribution becomes more and more like a delta function distribution.

-- Thus, it is the truncation of the infinite matrices that puts a practical

limit on the allowed values of x in the thick beam model. In the

"- remainder of the figures in this section, the curves are plotted for a

fixed number of eigenvectors ( 50), and regions where the solutions have

not converged are indicated by dashed lines.

'-' - In Fig. 9, r is plotted as a function of the effective beam thickness

for three different beam profiles. The beam parameters are still those of

Fig. 8; the other two curves correspond to z = 1 and p = 0.95. The

- effective thickness for the three models as defined by Eqs. (3) and (8)

are: 0.383 x for z = 2.0, 0.603 x for z = 1.0, and 0.975 x
0 0

for p = 0.95. The growth rate is in reasonably good agreement for the

various models. Unfortunately, convergence problems make it impossible toI

determine if the solutions converge to the same point as x + 0 (as

predicted by the thin beam model). Because an effective thickness is used,

the differences between the curves are attributed mainly to the shapes of

-"-' the density profiles. The curves predict less than a 1% shift in r over

the whole range of beam thicknesses.

S" "The three models (single particle, analytic, and numeric) are compared

in Fig. 10 for the parameters of Fig. 8. (except that the p = 0.95 curve is

shown). The effective thickness is used for the numeric model. The

allowed range of x for the analytic model is not well defined because the.4.

* . . : •. ..
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solution is at a resonant point. Nonetheless, there is excellent agreement

of the two models for r.

The agreement of the two fluid models should not be taken for

granted. Although the models start with the same basic equations, the

gapproaches taken are quite different. For example, the thin beam model is

essentially an expansion about the zero thickness dispersion relation

[Eq. (29)] while the numeric model is an expansion about an empty waveguide

solution (the matrix D). The two methods should only be expected to agree

perfectly when the analytic models' Taylor series expansion is carried out

to all orders and the numeric models' D and S matrices are solved exactly.

* In Fig. 11, the growth rate is plotted as a function of beam thickness

for two systems with different wall radii. The common parameters are X = 7,

= 1, r0 = 0.06 m, % 0.85, = 0.5, n = 108 m 2 , and z = 2.0.i[n =  r o 0.0 6, o

The axial wave numbers are adjusted so that both solutions correspond to

resonance points. The first curve has kz = 0 and rw = 0.0365 m, and the

second curve has k = 1.165 m-l and rw = 0.0860 m. For the first time aZaa. z

solution has been plotted for a system having k, v, and x all nonzero

- simultaneously. Consequently, this is the first result for a system whose

E layer is only approximately in synchronism with the EM wave (for the

first time i, is a function of r). The finite kz growth rate is a rapidly

- ,- decreasing function of beam thickness. For example, the finite k growth
z

-. rate is roughly one half of the zero thickness growth rate (indicated by

* the square) at a relative thickness of 7.5%.

SBecause the two cases in Fig. 11 are very similar physically (the wall

radius changes by less than 0.6%), the difference In the curves Is

* attributed mainly to the loss of complete synchronism. This quasL-

q"
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synchronous effect can be scaled to higher densities as follows. An

estimate of the relative deviation from synchronism at the outer beam edge

is [from Eq. (15)]

/v z , (50a)I. £ z

so in the tenuous limit
5

Z1 1/3,,.. (k /n• (50b)
4)zs

Thus, for every three orders of magnitude increase in beam density, the

growth rate curve will be similar for a one order magnitude decrease in

axial wavelength. The axial wavelength for the finite k case Is - 5.4 m.

6 - 2
- For a beam density of ns = 10 m , the same relative decrease in r should

10 -2be found for X. - 25 m. Likewise, for n 10 m , the appropriate X z

Is - 1.16 m. Normalized growth rates at isolated points are indicated In

Fig. 11 for n = 106 m - 2 (diamonds) and n = 10 1 0 m - 2 (circles). The axial

wave numbers are scaled accordingly. The results support this simple

.. =1 10 - 2
scaling law. It should be noted that the xo = 0.04 point for n 10 m

had not completely converged after 50 eigenvectors and the actual result is

(probably) closer to the curve than indicated.

* C. Solition of the Coaxial Case

The only difference between the solutions of the coaxial case and the

si ple empty waveguide case is in the CONS used. The two CONS for the

* rt:< cirase are given by

........................ "".....-...-"...-............" .'"".-..".-."-"..' .
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/2P (0 y'a )/r
U (r). 2m'2m V 5a

.m1r) [(2/ 2 _ 2 2 1/2 (51a)

and

/2 Q (azy,O )/r
j-.. 2 (r)22 /m2 (2 / 2 2 1/2
,m-3. {(-) [2 IQ (a )}12

X m ~ I XM m .
Pim

(51b)

for fixed X and I < m < , and for y = r/rw and yi r/rw" Now alm(a m )

is the mth zero of S2X(c£myi,a .m)[PZ(a£mYi,0Pm)]. Equations (37) and (38)

are valid for the functions defined in Eq. (51) provided that the lower

integration limit Is set to ri [K 2 and K are still given by Eq. (40)].

P2 Growth rates for coaxial cases with finite axial wave numbers are

shown in Fig. 12. The parameters are X 7, n = 1, rI = 0.0626 m,

. r0 = 0.07509 m, rw = 0.1 m, 6 0.9, a 0.4, k = 0.3 mn1

0 0 -08 m- 2 .

and n - 1 m . The curves are drawn for z = 1'.0 and z 2.0. The

curves are plotted as a function of the relative beam thickness and

- the kz = 0 (ro = 0.07500 m) growth rate is shown as a reference. The two

finite kz growth rates are in good agreement with each other. As usual,

". the curves drop off rapidly as the beam thickness Increases.

'M.I

'
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./ -

*4¢ .*



42

V. CONCLUSIONS

In summary, we have carried out a linear fluid analysis that is

applicable to cusp-injected beams with finite radial thickness. Two

approaches were taken. In the analytic approach, we expanded the fluid

equations in the ratio Ar/r and recovered the single particle, tenuous

beam result. Futhermore, we noted that the analytic result was valid off

resonance and at somewhat larger beam densities (than the single particle

result). The latter extension was useful in helping to quantify the limits

of the tenuous regime. Unfortunately, we discovered that the analytic

result has only limited usefulness in the analysis of thick beam

configurations.

In the numeric approach, we solved the Inhomogeneous wave equations

via expansions In the homogeneous solutions. Because of computational

limitations, results were only displayed for resonant systems with tenuous

beams. We demonstrated that resonant systems with thick, tenuous beams

cannot be operated far from cutoff without a substantial reduction in the

linear growth rate. We attributed the reduced growth rates to the loss of

synchronism inherent in systems that have a spread in canonical angular

momentum (manifested by a finite Av in our model).

In our analyses we focused on two particular conducting wall

geometries: circular and coaxial waveguide systems. Extending the

analyses to other waveguide geometries is straightforward. In the analytic

model, only the geometry parameters (normalized wave admittances) need to

% .-. be adjusted. For the numeric model, results can be obtained if the

S.
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complete, orthonormal systems consisting of the relevant homogeneous

solutions are known. Other physical systems can be modeled by choosing the

* "appropriate equilibrium and following the general procedures outlined in

this paper.

,

1
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APPENDIX A

Integrals of the Perturbed Fluid Velocity

Equations (10) and (21) are used many times to obtain the following

results:

r +Aren 0 (1i + Fx) v
enn o

(-.o) f n v rdr
o r -Ar O

0

- i + o -o) o -o

C , - .2n £[- 0  + ( ) - E 8 A),
D LY 9 L£ o o o~1Df +'o

0 0. 0 r+ -or(;A z o(A))

o

2x

+ - 2TG ), + T(I -n)S0 ] r)

([(F +TlnQ i
0

+- " [(F - 2T + )4) + T(1 - n)fl8 - ic )
00

2T- -t)- T1 -n) 1

.;2(F- 2 )
>. + (F - 2T *0S0 o (E )

(F - 2Ta 2 
- nTO /4- T)Q8~0 B(A.1a)

0 0 z0

fr2.
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r r+Ar
len r -tFr
(+) f - v dr

a r -Ar 4,
01

-2
_ br r 2 ) .o *~ -o'-:"-~ (1 -8 JEQ+8 c ° -8 8 E
'- a r 0 z z

" o A2  A; * -,A _ o -. o At"*'- "-" .-- [(1 - Q)to(E)0  + Sz r°(c r- 8 ('
0 0 0 0

, 2x°
+~ {t -(% + T ( -

000 0
* 

-A

+ IF- (n + 1)To /! 0 -1 ;B

0£ z r
0

" - (n + 1)T o/4 + 1 (Ai ab)

" " "" ' r o+A r
en

00F

"-""' 0 -Co f°( ) f-a (1v+ + ) r1  dr ,(A. Ib)

0
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ien 0~0 C1 +FxY-() J dr
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Figure Captions

FIG. 1. The fluid equilibrium.

- FIG. 2. The piecewise cubic equilibrium density profile: (a) n (z) and
0

(b) no'(z) for p = 0 (K), 0.5 (V), and 0.95 (A). For each

. "-curve, n = 2Ar.

FIG. 3. The smooth equilibrium density profile: (a) n (z) and (b) n'(Z)
0 0

*i :for z = 0.125 (A), 1.0 (V), and 2.0 ('). For each curve,

n 2Ar.s

FIG. 4. The dependence of the growth rate r on beam density: (a) at

resonance (k = 0) and (b) off resonance (kz = 66.11 mn). The

z zcommon parameters are I = 7, ro = 0.06 m, r - 0.0865 mn,
V

0.85, O = 0.5, and x 0= 0.
0 0

FIG. 5. The dependence of the growth rate r on axial wave number: (a) r

along a beam line and (b) the corresponding dispersion curves.

Parameters: X 11, n = 1-3, n5 = 08 r 0.06 ,r s o0.6,

rw = 0.10 M, 0.85, ;z  = 0.5, and x = 0. Single particle

* results are indicated by .

. FIG. 6. The dependence of the growth rate f on beam thickness.
8 -2

Parameters: 1 7, n r 1, n =10 m , r = 0.06 m,

r = 0.09 m, = 0.85, O = 0.5, and k = 0. Linear

0 0

, expansion V, exact solution A.

FIG. 7. The dependence of q on the axial wave number for a coaxial

system: (a) w and (b) r. Parameters: £ 7, n = 1,
r r

11 -2 A
ns 10 m , ro = 0.075 m, ri = 0.0626, rw 0.10 m, 80 - 0.9,

A 0

. =0.4, and x = 0.a , Z 0 0

a,0
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FIG. 8. The convergence of the truncated solutions for r: 20 (A), 30 (V),

40 (0), and 50 (0) elgenvectors. Parameters: 2 = 7, n = 1,

r = 0.06 m, rw = 0.0865 m, % = 0.85, = 0.5, n = 10 m-2 ,
0s

0 0

- K k = 0, and z = 2.0.

FIG. 9. The effect of the density profile on r. The common parameters
U

.
I  are 2 = 7, nr =1, ns  108 m- 2

r X , ro = 0.06 m, rw = 0.0865 m,

0 = 0.85, = 0.5, and k= 0. Models: D single particle,

p = 0.95, A z = 1.0, and V z = 2.0.

A - FIG. 10. Comparison of the three methods of solution for r. The common

parameters are those of Fig. 9. Models: fl single particle,

" "0 analytic, and numeric: p = 0.95.

FIG. 11. The effect of axial wavelength on the growth rate r. Common

parameters: 9 = 7, n r = 1, ro = 0.06 m, 06 = 0.85, 8 = 0.5,

0 0 2

and z = 2.0. Models: 03 single particle: A n = 108 m-2 ,

rw = 0.0865 m, and k z = 0; V ns = 10 8 m 2 , = 0.0860 m,

and k = 1.16 m-l;0 n = 106 m 2 , rw = 0.0864 m,

Skand k = 0.251 m - 1 ; andO .n = 1010 m- 2, rw 0.0843 m,

and k = 5.41 m -I

z

FIG. 12. The effect of axial wavelength on the growth rate of a coaxial

system. Common parameters: I = 7, nr  1, n 5 = 108 m
- 2

. r = 0.075 m, ri = 0.063 m, rw = 0.10 m,8 = 0.9,0 0
0

' - and = 0.4. Models: 0 single particle,,O k = 0,

A kz  0.3 m- 1 and z =1.0, and V k =0.3 m-- and z =2.0.

S%.

II. .
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