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ABSTRACT

Through-flow and blade-to-blade calculations were made in association
with a number of experimental research activities at the Turbopropulsion'
Laboratory, Naval Postgraduate School. The Q3DFLO-81 code was operated on an
IBM 370-3033 mainframe computer. The flow through a single stage transonic
axial research compressor was computed and compared with both probe survey and
stage performance map measurements. Swirling flow produced by a vaned
out-flow generator for a radial diffuser test facility was calculated for both
large low-speed and small-scale high-speed versions of the device. Flow
through a two-dimensional compressor cascade of “"controlled-diffusion™ blade

shapes was calculated and the results compared with experimental data, and

with predictions obtained using the NASA code QSONIC.
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I. INTRODUCTION

Attempts to model the complex three—dimensional flow in turbomachines

B

have resulted in the development of various quasi three-~dimensional numerical

AN
oy

techniques.

- ‘.'.

Most methods follow the work of Wu (Ref. 1), wherein the fully 3D flow is
resolved into a succession of 2D-calculations, The flow is solved on
meridional surfaces (S2), and blade to blade surfaces (S1). In general, the
intersection of an Sl surface and an S2 surface is a twisting line with three
dimensional variations, The interaction of the two families of surfaces czn
be quite complicated. However, if an axisymmetric assumption is made, the 52
surfaces will become identical to the meridional plane. An important drawback
in this method is the lack of knowledge on the degree of approximation which
is made by assuming axisymmetry.

The program used in the present study, therefore, follows another
approach where the S2-surface calculation is replaced by the calculation of
the flow in the true meridional section (R-2 plane), based on the solution of
exact pitch averaged equations. The numerical method used to solve the
equations in the meridional and blade to blade plane is the finite element
method. An interconnection of the meshes allows for a consistent interactiomn
to be defined in the calculation,

Q3DFLO-81 is only valid in the absence of backflow and hence does not
handle separation regions or secondary flow. The calculations are based on
the existence of an inviscid core flow, but accommodates empirical input with
regard to loss levels, slip factors and axial-velocity-density ratio (AVDR),

or superimposes a two dimensional boundary layer calculation. The program is
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Y described in References 2 and 3. The procedure to run the code on the Naval
i, Ts,
N Postgraduate School (NPS) computer is given in Reference 4, The present J
:;} report describes the application of this code to various turbomachinery flow
__.:_'. J
e fields. Results from applying the through-flow calculation to a tranmsonic
~
) axial compressor and to a novel radial cascade are given in Section 2, 1In
j%:l Section 3 results from the blade to blade calculations applied to a controlled
f&:: diffusion compressor stator section are compared with measurements taken in a
- linear cascade and with the results from the finite difference code QSONIC.
::T: The conclusions drawn from these applications are given in Section 4,
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II., THROUGH FLOW CALCULATION

A, Axial Compressor

A single stage, small diameter (11 inches) high speed axial flow

compressor, of in house design, was investigated (Fig. 1). Test data from

" radial surveys at different axial locations and overall machine performance at

various stage conditions were compared with results of corresponding computer
runs, Furthermore, a compressor performance map for machine speeds higher
than those already tested was calculated to estimate the machine conditions at
higher speeds. Figure 2 shows the calculation mesh for the compressor.
Thirteen streamlines run from three rotor tip chord lengths upstream of the
rotor leading edge to about 2 rotor tip chord lengths downstream of the rotor
trailing edge. Station lines 5, 8 and 13 are placed axially in a way that
they coincide with probe traverse locations. The rotor leading edge
corresponds to station 9, trailing edge to station 12, and the stator leading
edge is located at station 15, with its trailing edge at station 18, Rotor
and stator geometry input is limited to blade inlet and outlet angles, maximum
relative blade thickness, solidity, chord length and leading edge radius.
These quantities have to be given for a number of blade cuts at different
radii. They must also be parallel to the centerline. This made a
recalculation of the blade profile coordinates necessary, since in the
original design they were specified on conical surfaces. The cross-section of
stage inlet and outlet up and downstream of the regime shown in Fig. 2 is
constant and cylindrical. A small fillet at the tip of the rotor spinner was
incorporated in the geometry input to eliminate the blunt stagnation point
singular condition., Using the mesh shown in Fig., 2, calculations were

performed in which input quantities (besides the geometry) were taken from a
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compressor test run., This test run provided results from three radial surveys
at locations corresponding to calculation stations 5, 8 and 13, These
stations serve to evaluate flow into and out of the rotor. Stator outlet
measurements were not available, Figures 3 through 16 show comparisons of
measured and calculated radial distributions. 1In Fig. 3 fair to good
agreement is shown for the absolute flow angle., The axial velocity component
(Fig. 4) does not agree too well for the lower portion (40%) of the channel
height at station 5, The change in geometry used in the calculation is
probably the cause for this variation.
In the following figures, comparisons are shown only for calculation
] stations 8 and 13 and the corresponding test results, since the main purpose
F: of the investigation was to evaluate the compressor rotor, The radial
= velocity component (Fig. 5) seems to have rather large discrepencies for
: station 8 (rotor inlet), especially in the hub region. If, however, the
radial velocity component is converted to flow pitch angle, the difference
shown represents an error of no more than four degrees. 1In Fig. 6 the
absolute flow Mach number for rotor inlet and outlet are compared. The

discrepencies in the tip areas, also apparent in Figures 3 and 4, are the

B result of a measurement arror due to a casewall effect on the probes used.

-,

For the evaluation of the rotor performance, total pressure (Fig. 7) and total

b=

]

:;t temperature (Fig. 8) at the inlet and outlet were observed. The total

;? pressure distribution measured is constant over the blade span. A distinct
:: increase of the outlet total temperature was calculated in the tip region.

ﬁi Variations in total temperature measurements are known to reflect changes in
:E ambient conditions., Thus a temperature differential calculated hetween rotor
L

f; inlet and outlet would not show the variations of those in Fig. 8. Further
.7
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evaluating the stage flow, Figures 9 through 11 show incidence angle,

AN
AL

deviation angle and loss distributions, hub to tip. Again, for the rotor a

]

- comparison between measurement and calculation is given., The discrepencies in
rotor incidence angle at the hub and tip are rather large while the stator

- shows good agreement near the tip and qualitative agreement along the span

o (Fig. 9). The rotor deviation angle also shows disagreement near hub and tip.
< The stator deviation angles predicted by the program appear to be fairly

L large, especially im the tip region., No test data are available for
comparison, but the magnitudes used in the design of the blading were similar
to those in Fig. 10, Figures 12 through 16 show distributions of other flow

quantities calculated for the same axial positions.

i
TEE For the compressor stage, the performance was carefully measured for the
Ef full throttle range at 60% and 70% of design speed. The program calculates
. the overall stage performance data. In Fig., 17, calculated and measured

EEL compressor performance are compared. The agreement in the total pressure

5 ratio is quite good, Two efficiencies calculated by the program are shown.

f The total efficiency takes the casewall boundary layer and the losses

% associated with it into account, while the adiabatic efficiency excludes case
oY

wall effects. The discrepency between measured and calculated total efficiency

x

'l
.

is quite large and has yet to be explained.

In order to estimate the compressor performance for higher speeds,
calculations were carried out for 80, 90 and 100% of design speed for a
variety of flow rates. Uncertainties in the efficiency calculation were
accepted. In Fig, 18, the predicted performance map is shown., It can be

observed, that the efficiency curves drop off more drastically for higher flow
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rates at high speeds. This is typical for high speed compressors. The

calculated pressure ratio of 1.715 at 100% design speed is considerably higher
than the value expected in the design process (1.5-1.6), and the referred flow
rate of 19.7 lbs/sec is somewhat lower than the design value of 21.24 lbs/sec.
However, this is the first attempt to predict the performance of the
compressor hardware, as built, and the differences may well be explained by

an error which was built in to the rotor blade setting angles (Ref 5).

B. Low Speed CDTD

A large scale subsonic radial cascade wind tunnel has been designed at
the Turbopropulsion Laboratory (TPL) at NPS to investigate flow phenomena in
and the performance of radial diffusers (Ref. 6). Various approaches to
analyze the aerodynamic operating conditions and the flow at the test section
inlet of the Centrifugal Diffuser Test Device (CDTD) have been conducted (Ref.
7).

Q3DFLO-81 accepts cylindrical inlet flow planes and was applied to the
CDTD geometry., Figure 19 shows a plot of streamlines and a cross section of
the axisymmetric flow channel between the inlet “"swirl vane cylinder” (station
1) and diffuser-vane leading edge (station 18). The flow is introduced almost
tangentially along the inlet plane at a radius of 19 inches, and then passes
outward through an angular contraction to the test section inlet at a radius
of 25 inches. The flow however, does not follow the physical contour of the

wall (see Fig., 19) and separates in the corners between station 4 and

station 6, The corner shape of the flow channel had to be approximated by a
smooth contour in order for the code to operate.
N3DFLO-81 accommodates a very versatile post processor and delivers

printouts and plots of the calculated flow properties at every required flow

-6=




station. Figure 20 shows plots of spanwise distribution of axial velocity,
Mach number, static pressure and flow angle for the different flow stations
shown in Fig. 19,

_f{ , The plots represent the inviscid solution of the core flow, considering a
blockage factor determined by the end wall boundary layer calculations for hub
and tip. It can be seen that the influence of the strong curvature in the
contraction region (stations 7-15) has almost decayed at the test section
inlet (station 18), and the flow properties are almost evenly distributed over
the span. Figure 21 shows a boundary layer thickness of 207 at the test

X section. The boundary layer also experiences a strong acceleration in the

contraction region, The velocities in the boundary layers are smaller, and
more nearly tangential., Figure 22 is a comparison of predicted and measured
spanwise flow angle distribution. The solid line represents the predicted
flow angle for the inviscid solution as in Fig. 19. The circle indicates the
calculated boundary layer thickness and the maximum angle at hub and tip. The
triangles are data acquired by the first author (Ref 7). The plot shows good
agreement of predicted and measured flow angles, The deviation in the mass
averaged measured and calculated flow angles is only 0.5%.

C. High Speed CDTD

One of the main objectives of the low speed cascade was to examine the
design concepts with a view to applying them to the design of a tramsonic
device; the high speed CDTD,

Q3DFLO-81 is capable of calculating transonic flow in a meridiomnal
2 through flow calculation as long as the meridional velocity remains subsonic.
.. A high speed cascade has been proposed with a nearly tangential Mach number of

. 1.48 and a total pressure of 1.6 bar at the inlet plane. The geometry of the

-7~
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flow channel is qualitatively similar to that of the low speed cascade. The
dimensions are smaller to reduce the massflow required to obtain higher
velocities and the curvatures are reduced to avoid flow separation., Figure 23
shows the flow channel geometry which was analyzed. Station 1 is at a radius 1
of 10 inches, Station 12 is at a radius of 12 inches,

The results obtained by applying Q3DFLO-81 to the high speed CDTD are
shown in Fig 24. Shown are results for the inviscid core flow, including
spanwise distributions of static pressure, Mach number, flow angle and
meridional velocity., Even though the Mach number of the overall velocity was
always supersonic, the meridional velocity remained subsonic., Consequently,

shocks should not appear in the flow into the test section.
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III. BLADE TO BLADE CALCULATION

The blade to blade calculation of the code Q3DFLO-81 is used in the
quasi-3D calculation for turbomachinery blade rows as described in Section
2.1 or for isolated blade-to-blade calculations. The application to linear
cascades will be described in this section.

A. NASA Controlled Diffusion Blade

A numerical optimization technique to design a controlled diffusion blade
shape was developed by NASA (Ref. 8). It allows analytical design
of airfoils which are shock free at transonic Mach numbers and avoids suction
surface boundary layer separation for the range of inlet conditions necessary
for stable compressor operation.

The on~ and off- design performance of one design of such blades have
been measured in a subsonic linear wind tunnel. The facility is described in
detail in Ref 9 . The tests conducted with a controlled diffusion blading
section designed for a compressor stator at mid-span are described in Ref. 10.
Cascade configuration parameters are given in Table 1. Table Il presents the
coordinates of the test blades.

Q3DFLO-81 was used to calculate the blade surface pressure distributions
to compare with measurements. Figure 25 shows the blade shape and Fig. 26
shows a typical finite element mesh for the blade to blade calculation. In
order to avoid the sharp increase in velocity, due to the potential flow
effect around a thick trailing edge, the trailing edge radius was removed.

The inviscid flow in fact does not see the trailing edge radius due to the
viscous behavior and thus the geometry should be modeled in this way. The
strong curvature at the leading edge of the blade also caused peaks in
velocity, as the inviscid flow negotiates the large curvature from stagnation

point to suction surface. To calculate such a leading edge shape, the mesh
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has to be much finer around the leading edge than Q3DFLO-81 is able to produce
(due to a restriction in the number of mesh points). The leading edge,
therefore, also had to be adapted to this situation. The remainder of the
flow field should be reliable since the occurance of velocity peaks seldom
invalidates more than a few grid points in their vicinity., Particularly with
these compressor blade geometries, the adverse pressure gradient tends to
discourage the velocity variation from propagating very far or reflecting off
the downstream boundaries. The influence of the flow at 5% of chord
downstream of the leading edge, and 5% of chord upstream of the trailing edge
is only 0.1%, therefore the calculation is accurate for 90% of the chord.
Figure 27 is a plot of streamlines which shows that the flow tangency
condition is very well satisfied along the blade surface and no flow
separation is encountered. Figure 28 is a comparison of predicted and
measured pressure coefficients along the blade surface for different inlet air
angles., Very good agreement is achieved for high inlet angles (38.9°, 42,9°,
45.,9°). The two smaller values at the suction side between 60% and 80% chord
are errors in the measurements, probably due to plugged pressure taps. For
smaller inlet air angles (24.4°, 28.0°, 32.95°) the measured values are
slightly smaller than those predicted by Q3DFLO-8l. The highest deviations
are noticed at 32.95° incidence. Figure 29 is a plot of the measured AVDR
versus inlet air angle. It is noted that the AVDR does not depend simply on
the static pressure rise as is shown in Fig. 30. The AVDR in the tests
reported in Ref, 10 was determined by measuring and integrating mass flux
distributions at midspan upstream and downstream of the blade row. The
technique is described in detail in Ref, 11, In the present calculations the

AVDR was assumed to be constant from the measuring plane upstream of the blade

-10~




row to the leading edge, and from the trailing edge to the downstream

measuring plane, and to have a linear distribution along the chord. The AVDR
is input to Q3DFLO-81 to account for quasi-3D-effects. The assumed
distribution of the AVDR along the chord of the blade might not be
sufficiently representative of the experimental conditions and this could be
responsible for the observed deviations,

B. Comparison with Finite Volume Code QSONIC

QSONIC is a FORTRAN computer code developed by NASA and is described in
detail in Ref. 12. It is capable of calculating the flow field about a
cascade of arbitrary 2-D airfoils and approximating the three-dimensional flow
in turbomachinery blade row by correcting for streamtube convergence (AVDR)
and radius change in the through flow direction. The program uses a
conservative solution of the full potential equation combined with the finite
volume method on a body-fitted periodic mesh. It is capable of calculating
through weak shocks (peak relative Mach number less than 1.4) by introducing
an artificial density in the transonic regions. The code has been adapted to
the NPS computer (Ref. 13) and was used for comparison with O3DFLO-81,

N3DFLO-81 and NSONIC are both inviscid codes and solve the potential flow
equations. In the Mach number range of the linear cascade (the Mach number of
the flow at the inlet to the blade row is 0.25), they were expected to give
basically the same results, Figure 31 compares the results of both codes with
measurements from Ref, 10, They are in good agreement and show the same
limitations for the calculation of the flow around the leading and trailing
edges.,

Even though grid generator and flow solution runs can be separated while

operating 0SONIC, it requires 12 minutes CPU time for the flow solution

~-11-




while Q3DFLO-81 requires only eight seconds. For applications at low Mach

" numbers Q3DFLO-81 is much faster for the same degree of accuracy. It also
”::*::: provides a convenient post-processor which produces plots of mesh, blade shape
:_:_‘; and the calculated results. QSONIC should be used for Mach numbers on the

\." blade surface from 1.0 to 1.4,
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<o IV. CONCLUSIONS

< The experience of applying the computational code Q3DFLO-8! to several
turbomachinery flow problems allowed the following conclusions to be drawn:

o 1. Despite the apparent complexity of the geometry, the application of
; the code to the transonic compressor stage was straight-forward. The

-y mesh was simple and resulted in very modest CPU times.

&) 2. In the compressor stage analysis, the inlet flow to the rotor was
o very well predicted. Flow incidence angles were computed well except
}: near the hub, Deviation angles from the rotor were within 3° of the

j measured values with the largest departures near hub and tip. The

Y computed rotor losses agreed qualitatively with measured distributions
§= but were smaller in magnitude, The stage efficiency was computed to be
- lower than the measured values, suggesting an inconsistency which must
yet be explained.

RN
.
L4

[N |

Q.

- 3. Application of the code to the swirling flow generation within a
centrifugal diffuser test device (CDTD) required only that minor
geometrical approximations be introduced. Inlet and outlet boundary
S conditions were within the capability of the existing code.

]
Ky

¢

4, In the low speed CDTD, the computed spanwise distribution of flow
properties at the outlet did not agree with the measured values
suggesting the importance of viscous effects. The mass-averaged outlet
flow properties agreed quite well,

& oL
S

5. The code was applied with apparent success to calculate transonic
o swirling flow within a high-speed CDTD, and could therefore be used to
" design a suitable channel shape.

6. The prediction of the code in blade-to-blade calculations agreed well
e with measurements made in a linear subsonic cascade. Leading and trail-
N ing edges of the blades had to be modified to avoid non-physical velocitv
peaks, but the influences of the modifications were negligible 5% chord
downstream of the leading edge and 5% chord upstream of the trailing
edge.

PR R

- 7. Excellent agreement was obtained with the blade-to-blade predictions
AR of NASA's code OSONIC at a test Mach number of 0.,2. However, the

b O3DFLO-81 code required 8 seconds of CPU time compared to 12 minutes for
' OSONIC.

_,ﬁ Overall, the experience of the individual investigators was ~hat the code
N could be applied successfully with limited guidance from the code's author,

. The post processor package was extremely valuable, and was implemented without

@ difficulty on the NPS computer.
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TABLE I - CD COMPRESSOR CASCADE

Blade type

Number of blades
Spacing (inches)
Solidity

Thiclness (% chord)

Stagger angle

PARAMETERS

11.

TABLE II - CD BLADE COORDINATES

X-COORD.

0.0
.022
.057
.222
444
.666
.888
.110
.332
.554
.776
.998
.220
.442
.664
.886
.108
.330
.55
774
.996
.218
.440
662
.884
.925
.964
010
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