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- ABSTRACT

b Certain new approaches to linear programming have recently received considerable publicity be-
o canse of the promise of substantial improvements in efliciency compared to the simplex method.
:-:: This note briefly discusses several research directions in methods for solving lincar programs using

nonlinear problem transformations. In particular, we describe application of a barrier transforma-
tion to the dual, and the development of sparse least-squares methods based on the LU factorization

of the least-sqnares matrix or its transpose.

)

The material contained in this report is based upon research supported by the U.S. Department
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- Research Contract N00014-85-K-0343.
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2. A Barricr-Function Mcthod for the Priwnal LP 1

1. Introduction

Linear programming (LP) has been the subject of great interest recently because of publicity
surrounding an algorithin (Karmarkar, 1984) that is not only polynomial in complexity, but also is
claimed to be much faster than the simplex method, developed ncarly 40 years ago by Gceorge B.
Dantzig. Since the publication of Karmarkar’s original algorithin, interest has continued to grow in
alternatives to the simplex method (sce, e.g., Gay, 1985; Goldfarb and Mehrotra, 1985; Oshorne,
1986; Shanno and Marsten, 1985; Todd and Burrell, 1985; Tomlin, 1985; Vanderbei, Meketon and
Frecdman, 1985). In this connection, Gill et al. (1985) have shown that Karmarkar’s projective
method is closely related to the classical logarithmic barrier function. In particular, Karmarkar’s
projective method is a special case of a projected Newton mecthod applied to the logarithmic
barrier function. Based on this equivalence, many researchers are re-examining the effectiveness of
once-discarded methods that in effect “nonlinearize” a linear program. The proof of polynomial
complexity of Karmarkar’s original algorithm suggests that a suitable nonlincar transformation
may somchow overcome the inherently combinatorial nature of the simplex method.

Because the main interest in nonlinear LP techniques arises from their potential speed, an
essential part of the work reported in Gill et al. (1985) involved numerical cxperiments with an
initial implementation of the barrier method on a set of small- to mediuin-scale test problems. The
results were encouraging in that the barrier method was comparable in speed to the simplex method
on certain problems. Typically, a barrier algorithm converges in a smaller number of iterations
than the simplex method. However, since each iteration of the barrier method requires solution of
a linear least-squares subproblem, a barrier method will be faster than the simplex method only
if these subproblems can be solved quickly. Thus, the hope is that barrier-type methods will be
faster than the simplex method-—even substantially so—for problems with structure that allows
fast solution of the least-squares subproblems.

The remainder of this note is organized as follows. In Section 2, we summarize some back-
ground on the application of a logarithmic barrier function method to a linear program in standard
form. A disadvantage of the primal formulation is that the search direction is restricted to lic in a
subspace. In order to satisfy this requirement, cither the associated linear least-squares subproblem
must be solved accurately, or the vector must be projected into the appropriate subspace. As an
alternative, Section 3 gives the dual formulation of an LP, which leads to a purely unconstrained
subproblem, thereby allowing approximate methods to be used to solve the least-squares subprob-
lem. In Section 4, we discuss techniques for solving the least-squares subproblem, and consider

possible uses of the LU factorization.

2. A Barrier-Function Method for the Primal LP

This section is intended to serve as general background on barrier functions and on the work
described in Gill et al. (1985).

Barrier-function methods treat inequality constraints by creating a barrier function, which is

a ¢ ubination of the original objective function and a weighted sum of functions with a positive




2 Nonlincar Approaches to Lincar Proyramming

singularity at the constraint boundary. (Many barrier fuuctions have been proposed; we consider
only the logarithmic barrier fuuction, first suggested by Frisch, 1955.) Barrier-function methods
require a strictly feasible starting point for cach minimization, and generate a sequence of strictly
feasible iterates. (For a complete discussion of barrier mcthods, see Fiacco, 1979; both barrier-
and penalty-function methods are described in Fiacco and McCormick, 1968. Bricf overviews are
given in Fletcher, 1981, and Gill, Murray and Wright, 1981.)
In particular, consider the inequality-constrained problem
minimize ()
zER" (2_1)
subject to h(z) > 0,

where h is an £-vector of nonlinear functions. Let £° denote the solution of (2.1). With a barrier-

::-:-}: function approach, the inequality constraints of (2.1) are “removed” by including transformed
S versions in a modified objective function, as follows. Given a barrier parameter g (g > 0), let z(p)
ﬁ denote the unconstrained minimum of

., ¢
B(z,p) = $(z) ~ 1) In(hi(2)).
=1

Under mild conditions, it can be shown that

lim z(p) = 2.

pn—0
Many results have been proved concerning the asymptotic properties of the sequence {z(u)} as
u — 0 (see, e.g., Mifflin, 1972a, b; Jittorntrum, 1978; Jittorntrum and Osborne, 1978).

Now consider applying a barrier-function method to the following linear program in standartl
form (which will also be called the primal LP):

minimize ¢’z (2.20)

zcR"
subject to Az =b (2.2b)
z >0, (2.2¢)

where A is an m X n matrix with m < n,

Since the barrier transformation may be applied only to the inequality constraints (2.2¢),
the subproblem associated with the primal LP treats the linear equality constraints directly and
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transforms only the bounds:

n

C e _.T )
minimize F(z)=c'z - 42 Inz;
e RN (z) / ]

~ (2.3)

subject to Az = b,

A standard approach to solving a lincarly constrained problem of the form (2.3) is to use a
feasible-point descent method (see, e.g., Gill, Murray and Wright, 1981). The current iterate z
always satisfies Az = b, and the next iterate # is defined as

£ =2z+ ap, (24)
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2. A Barvier-Function Mcthod for the Primal LP 3

where p is an n-vector (the search dircction), and a is a positive scalar (the steplength). The
computation of p and o must ensure that AZ = b and F(z) < F(z).

The Newton search direction is defined as the step to the minimum of the quadratic approx-
imation to F(z) derived from the local Taylor series, subject to retaining feasibility, Thus, the

Newton search direction is the solution of the following quadratic program:
minimize ¢7p + 1pTHp (2.5a)
pcR®
subject te Ap =0, (2.5b)
where g = VF(z) and H = V2F(z). The optimality conditions for (2.5) imply that

g+ Hp=ATx (2.6)

for a vector 7 of Lagrange multipliers. Thus, p and = satisfy the partitioned linear system:

H AT -
(3 9)()-0) e
If H is nonsingular, one method of solving (2.7) is to solve the equations
AH 'ATx = AH g, (2.8a)
Hp = ATx — g. (2.8b)
Let p, (the Newton direction for the primal LP) denote the solution of subproblem (2.5) when

F is the barrier function in (2.3), with associated Lagrange multiplier x,. The derivatives of F

are:

g(z)=c—-pX'e and H(z) = pX 3, (2.9a)

where

X =diag(z;), j=1,...,n, (2.95)

and e = (1,1,...,1)T. Since H(z) is positive definite when z > 0, p, is finite and unique, and is
a descent direction for F(z), i.e., (c — pX 'e)Tp, < 0. Substituting from (2.9a) in (2.8a), we see

-
-

o .
L I )

that x, satisfies

AX?ATr, = AX(Xc — pe). (2.10)
®
Recall from standard linear algebra (e.g., Stewart, 1973) that, for any matrix C, the solution
of the least-squares problem
minimize ||f - Cz|} (2.11)
satisfies the normal equations
CcTcz = CTf, (2.12)

which are always compatible. In referring to (2.11) and (2.12), we shall call C the least-squares
matrix and CTC the normal-equation matrix.
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‘: Comparing (2.10) and (2.12) and taking C = X AT in (2.12), it follows that =, solves the

.-:l'f: least-squares problem

LR

ooy minimize || Xc — pe —~ X ATr|2. (2.13)
- ph

e The vector p, is then defined by

Pr = —(1/u)Xr,, (2.14)
:-:T_*:j where 7, is the optimal residual of (2.13):

N rp = Xc— pe — XATr,. (2.15)
2

1 Note that if m variables are nonzero at the solution of (2.2) (i.e., if the primal is nondegenerate),

- then X A7 will retain full rank even as the iterates approach the solution. (This contrasts with

5."_:-".‘ the structural ill-conditioning of the Hessian matrices of the barrier function when fewer than n
':::-: constraints are active at the solution; see, e.g., Murray, 1971.) However, a well known feature

- of practical linear programs is that they usually are degenerate; i.e., fewer than m variables are

, nonzero at the solution. In this case, the matrix X AT is rank-deficient at the solution, and becomes
:::-:f increasingly ill-conditioned as ¢ — 0. Therefore, any method used in practice to solve (2.13) must

L

be able to cope with singularity and extreme ill-conditioning. (Numerical solution of the least-

-

squarcs subproblems will be discussed in Section 4.)

3. Solving the Dual Problem

With the approach described in Section 2, the search direction is required to lic in a particular
subspace in order for the iterates to retain feasibility with respect to the equality constraints (2.2b).
In this section, we describe an alternative based on the dual linear program associated with (2.2):
minimize b7y
yeER™ (3.1)
subject to ATy > —c.

The optimal vector y* for (3.1) is the negative of the Lagrange multiplier vector « for the equality
constraints of (2.2). (Use of the dual LP in this context has been suggested independently by other
researchers, for example at the recent ONR-sponsored Workshop on New Directions in Mathemat-
ical Programming, Monterey, California, February 20--21, 1986. It is also closely related to the
.; work of Eriksson, 1981, 1985.)

- Since all the constraints of (3.1) are inequalities, applying the barrier transformation to this

~ problem gives a purely unconstrained subproblem:

n
” minivmize F(y) = bTy - yZln(a,Ty +¢c;). (3.2)
J=1

e
'.‘.
»
.

<, c'.'-

Let y(u) denote the unconstrained minimum of (3.2). Defining

o
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D =diag(d;) and X =diag(z;) =puD},
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3. Solving the Dual Problem 5

where d; = ay + ¢; and z; = p/d;, we have
VF=b-Az and V?F= Ax’AT

The gradient of F must vanish at y(y), which implics that

.= b, 3.3
,2 LH (u) +e; (3.30)
and hence
‘l‘i_xg ﬁi =7 . (3.3b)
3

In order to define a Newton method for solving (3.2), we assume that a point y is available for
which ATy +¢ > 0 (so that V2 F is positive definitc). Using the above derivatives, p, (the Newton
search direction for the dual) then satisfics the system

AX?*ATp, = u(Az - b). (3.4)

In contrast to the subproblem (2.5) associated with the primal problem, p, nced not lie in any
particular subspace, and hence (3.4) may be solved only approximately—-for example, using a few
iterations of a conjugate-gradient method.
Note that if the right-hand side of (3.4) can be expressed in the form AXv for some vector
v, (3.4) will have the form (2.12) of the normal equations for a least-squares problem. (It is
advantageous numecrically to solve a least-squares problem rather than equations of the form (3.4).
However, note that (3.4) always has a bounded solution if a primal-feasible point exists.) We
therefore seek v such that
AXv = Az - b, (3.5)

whereupon p,, becomes the solution of the least-squares problem
minimize |juv — X ATp||3, (3.6)
P

which may be solved using the techniques to be described in Section 4. Note that z > 0, whereas
A(z — Xv) = b. As convergence occurs, v — 0 and z — z

It might appear that the elements of the least-squares matrix would become unbounded with
this approach, in contrast to the primal. However, the relationship (3.3) shows that d; — 0 only
as u — 0, and thus the limiting matrices X and X AT should remain bounded.

An alternative to the exact dual formulation (3.4) is to rctain the same “Hessian” for several
iterations. In Newton-type methods for nonlinear optimization, it is common to define the search
direction with a positive-definite approximation to the Hessian matrix. (For example, the exact

Hessian may be indefinite or expensive to compute.) In the present context, any positive-definite
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i X may be used in (3.4) (3.6) to generate a descent direction. It is essential to retain the definition
:{‘i: z = D 'e to obtain the correct gradient b ~ Az, but X need not be defined as D !,
:":;-‘ An immediate implication is that same matrix X could be used for perhaps several iteratious
j:;’»::f of the Newton-type method. (Convergence results for methods for this type are given in, e.g.,
\ :) Dennis, 1970, and Ortega and Rheinboldt, 1970.) Since a sparse factorization of X AT is needed to
‘ compute v and p in (3.5)-(3.6), considerable cconomies can be made by retaining the factorization
from the previous iteration.
. 4. Solving the Least-Squares Subproblem
:‘f:: It should be emphasized that the least-squares subproblems associated with the primal and dual
'-':::" lincar programs ((2.13) and (3.6)) are very similar, and it is crucial that they be solved efficiently.
:'::* In this section we review techniques that have been suggested or used, and then describe some new
approaches bascd on the LU factorization.
1
.J“.:
:".-f’; 4.1. Background
;\ The major strategies for solving sparse least-squares problems include:
i e direct methods, based on a sparse QR factorization of C (e.g., George and Heath, 1980) or on
» - the Cholesky factorization of the normal-equation matrix CTC (e.g., George and Liu, 1981);
: e updating methods that factorize most of C or CTC and deal with a few omitted rows or
[ columns by partitioning (e.g., Heath, 1984);
e purely iterative methods that perform no factorization, such as a straightforward conjugate-
e gradient method;
::':;:j e hybrid methods that combine factorization and iterative techniques. For example, in Gill et
o al. (1985), the subproblem (2.13) is solved with a preconditioned version of the stabilized
Yo conjugate-gradient method LSQR (Paige and Saunders, 1982), where the preconditioner is
Py the Cholesky factor of a sparse matrix related to AX2AT. (The use of a preconditioned
.:-.'f:- conjugate-gradient method in this context is also discussed by Gay, 1985.) For early work on
': preconditioners, see Axelsson (1974) and Concus, Golub and O’Leary (1976). Some techniques
g
T - for computing an approximate (“incomplete”) Cholesky factor based on sparsity considerations
@y arc given in, e.g., Meijerink and van der Vorst (1977), Mantcuffel (1980) and Munksgaard
ra=
S (1980).
-::‘:'.'. The effectiveness of these options varies with the problem.
When using an iterative scheme, it is desirable to be able to use only an approximate solu-
tion (obtained, say, from a truncated conjugate-gradient method; see, e.g., Dembo, Eisenstat and
'-:::-:; Steihaug, 1982). In this context, a disadvantage of the primal formulation is that an approximate
;::':j solution of (2.13) will not satisfy the equality constraints (2.5b). One mecans of overcoming this
B o .
‘:'f,';:{ difficulty is to project the search direction into the null space of A, for example using a sparse
' 6
A L L O R Ao o A -‘ P AR RN e
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4. Solving the Least-Squares Subproblemn 7

representation of a basis for the null space. Such a matrix may be constructed from an LU fac-
torization of A (which would need to be computed only once), or alternatively it may be obtained
from an LU factorization of X AT.

For the dual formulation, a truncated conjugate-gradient method is most promising hecause
an approXimate solution of (3.4) can be shown to be a descent dircction, as required. However,
the speed of convergence of the conjugate-gradient method is crucial to practical success. We now

consider methods for preconditioning the conjugate-gradient method using an LU factorization.

4.2. The LU factorization

Given a general sparse matrix C with n rows and m columns, we write
C = LU, (4.1)

where L is square and nonsingular, the dimensions of U are those of C, and L and U are (nominally)
unit-lower-triangular and upper-triangular respectively. (In general, the rows and columns of C will
have been permuted during the factorization, but we shall ignore the permutations for simplicity
of notation.) If a suitable form of threshold pivoting (see Section 4.4) is used in computing L and
U, L tends to remain wcll-conditioned throughout, so that the condition of C is almost always
reflected in U.

A sct of procedures (LUSOL; see Gill et al., 1986) has recently been developed for computing
and updating the LU factors of a general sparse matrix; the techniques in LUSOL are related
to the work of Reid (1976, 1982) on computing a sparse LU factorization and pcrforming sparse
Bartels-Golub updates (Bartels and Golub, 1969). LUSOL provides a means for implementing
several methods to be described below.

In the problems of interest, C is of the form X AT and n > m. Hence (4.1) has the form

T - . I U
C=XA"=LU=1LU, L=L(o), U=(O), (4.2)
where L denotes the first m columns of L and U is an m x m upper-triangular matrix. (The last
(n — m) columns of L will simply be those of the identity.) Again L should be well-conditioned,
while U reflects the condition of C. For the present we assume that C has full rank, so that U is
nonsingular.

Note that (4.2) can be used to find the vector v in (3.5) needed to formulate the dual as the

least-squares subproblem (3.6). It is sufficient to solve the two systems

U'u=Aé-b and LTy= (;)

4.3. LU preconditioning
Following Peters and Wilkinson (1970) and Bjorck (1976), we note that the least-squares problem

minimize ||f - Cpll3 (4.3)
7
N g g T L A A e A



8 Nonlincar Approaches to Linear Prograynining

may be solved using a factorization of the form (4.2), by solving
ol minimize ||f — Lq||2, (4.4a)
q
Up=aq. (4.4h)

. Because L is well-conditioned, an iterative method may converge more rapidly on problem (4.4a)

T than on the original problem (4.3) (unless C itself is well-conditioned or has clustered singular
-j.:'-:: values). Some experiments with this approach are described in Saunders (1979); for related work,
. see Delves and Barrodale (1979).
i’iu“ - In the present context, greater efficiency is likely to result from further preconditioning, par-
‘;::"-_: ticularly as the solution is approached. If L is the first m rows of L:
A -

by i< ( L )

‘-‘. - - M )
f‘;i‘; it follows that p may be determined by solving

4 . I .

= minimize F - ML sli3, (4.5a)
3 Lqg=1s, Up =q. (4.5b)

.
.

(]
'
oo
PR T

PRI
.

The nature of the linear programming problem and the pivoting strategy used in LUSOL are such

v
’
.

that ML™! — 0 as y — y. Hence, the number of iterations required by a conjugate-gradient

Col

algorithm should become small as the solution is approached.

In fact, the factorization XAT = LU obtained with the LUSOL pivoting strategy serves to
e partition X and A in the form
1 \':‘:
e X BT Xy,BT
XAT= ( ® ) ( r) = ( s T) ,
“ XN N XNN
_.‘ and (4.5) is equivalent to solving the original problem (4.3) with the preconditioner X,BT = LU.
.:-:::- At all stages, the partitioned factorization pinpoints a nonsingular B that corresponds to the usual
' .'_-;‘-: basis matrix in the simplex method, and ultimately it will correspond to an optimal basis.
09 In general, it may not be necessary to recompute the LU factorization at every iteration. If
::'.;-. ' the current factors are X, AT = LU, the factors of Xj.1 AT could be taken as Ly, = DL, and
, - Uss1 = Uy, where D = X w1 Xn 1 as long as D is reasonably well-conditioned. In some cases
_:2: it may be efficient to update the LU factors to account for those elements of D that introduce
f‘ L ill-conditioning, using some of the update procedures available in LUSOL.
<7,
e Another approach is to compute the LU factorization of C7, so that
e
2R CT= AX = LU, (4.6)
I
s
& 8
TS
'y

g

o
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5. References 9

where L is nonsingular and U is an 1n x n trapezoid. In this case, LUSOL will need to be enhanced
to use a threshold form of complete pivoting, in order to cusure that the first m columns of U point
to a suitable basis matrix B. If a matrix C has full column rank, a reliable factorization C = LU
can almost always be obtained using Gaussian elimiration with threshold partial pivoting. By this
we mean that when a potential pivot is selected from the remaining rows and columns, it must be
reasonably large relative to other elements in the sawe columu, but it need not be compared with
elements in other columns. Virtually all existing LU software uses this strategy.

When computing the factorization (4.6), the column rank will be drastically deficient, and the
triangular part of U will reflect the true rank only if pivots are chosen to be reasonably large relative
to all remaining elements; i.e., only if threshold complete pivoting is implemented. Such a strategy
requires keeping track of the largest remaining element at each stage without excessive overhead.
Any such enhancement to LUSOL would carry a benefit whether C or CT is being factorized, since

X AT s expected to be rank-deficient.
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