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ABSTRACT

Certain new approaches to linear programming have recently received considerable publicity be-

cause of the promise of substantial improvements in efficiency compared to the simplex method.

This note briefly discusses several research directions in methods for solving linear programs using

nonlinear problem transformations. In particular, we describe application of a barrier transforma-

trion to the dual, and the development of sparse least-squares methods based on the LU factorization

9 ,of the least-squares matrix or its transpose.

The material contained in this report is based upon research supported by the U.S. Department

',f Energy Contract DE-AAO3-76SF0O326. PA No. DE-AS)3-76ER72018; and the Office of Naval

Research Contract N00014-85-K-0343.

.O t Presented at the Workshop on Iterative Methods for Mathematical Programs, Stanford Univer-

sity, April 17 18, 1986.

I:



2. A Darrier.Funetion A,'hid for the Primal LP

1. Introduction

Linear programming (LP) has been the subject of great interest recently because of publicity

surrounding an algorithm (Karmarkar, 1984) that is not only polynomial in complexity, but also is

claimed to be much faster than the simplex method, developed nearly 40 years ago by Gcorge B.

Dantzig. Since the publication of Karmarkar's original algorithm, interest has continued to grow in

alternatives to the simplex method (see, e.g., Gay, 1985; Goldfarb and Mehrotra, 1985; Osborne,

1986; Shanno and Marsten, 1985; Todd and Burrell, 1985; Tomlin, 1985; Vanderbei, Meketon and

Freedman, 1985). In this connection, Gill et al. (1985) have shown that Karmarkar's projective

method is closely related to the classical logarithmic barrier function. In particular, Karmarkar's

projective method is a special case of a projected Newton method applied to the logarithmic

barrier function. Based on this equivalence, many researchers are re-examining the effectiveness of

once-discarded methods that in effect "nonlinearize" a linear program. The proof of polynomial

complexity of Karmarkar's original algorithm suggests that a suitable nonlinear transformation

may somehow overcome the inherently combinatorial nature of the simplex method.

Because the main interest in nonlinear LP techniques arises from their potential speed, an

essential part of the work reported in Gill et al. (1985) involved numerical experiments with an

initial implementation of the barrier method on a set of small- to medium-scale test problems. The

results were encouraging in that the barrier method was comparable in speed to the simplex method

on certain problems. Typically, a barrier algorithm converges in a smaller number of iterations

than the simplex method. However, since each iteration of the barrier method requires solution of

a linear least-squares subproblem, a barrier method will be faster than the simplex method only

if these subproblems can be solved quickly. Thus, the hope is that barrier-type methods will be
faster tihan the simplex method--even substantially so-for problems with structure that allows

fast solution of the least-squares subproblems.

The remainder of this note is organized as follows. In Section 2, we summarize some back-

ground on the application of a logarithmic barrier function method to a linear program in standard

form. A disadvantage of the primal formulation is that the search direction is restricted to lie in a

subspace. In order to satisfy this requirement, either the associated linear least-squares subproblem

must 1 solved accurately, or the vector must be projected into the appropriate subspace. As an

alternative, Section 3 gives the dual formulation of an LP, which leads to a purely unconstrained
subproblem, thereby allowing approximate methods to be used to solve the least-squares subprob-

*-1.lerm. In Section 4, we discuss techniques for solving the least-squares subproblem, and consider

possible uses of the LU factorization.

2. A Barrier-Function Method for the Primal LP

'*1 This section is intended to serve as general background on barrier functions and on the work

d ,cihed in Gill ct al. (1985).

iarrier-function methods treat inequality constraints by creating a barrier function, which is

a ,, tibination of the original objective function and a weighted sum of functions with a positive

.-. ..



2 Nonlinear Approaches to Linear Prorainiing

singularity at the constraint boundary. (Many harrier functions have been proposed; we consider

only the logarithmic barrier function, first suggested by Frisch. 1955.) Barrier-function methods

require a strictly feasible starting point for each minimization, and generate a sequence of strictly

feasible iterate,;. (For a comnplete discussion of barrier methods, see Fiacco, 1979; both barrier-

and penalty-function methods are described in Fiacco and McCormick, 1968. Brief overviews are

given in Fletcher, 1981, and Gill, Murray and Wright, 1981.)

In particular, consider the inequality-constrained problem

minimize 0(z)

a -, St" (2.1)
subject to h(x) _> 0,

where h is an I-vector of nonlinear functions. Let X* denote the solution of (2.1). With a barrier-

function approach, the inequality constraints of (2.1) are "removed" by including transformed

versions in a modified objective function, as follows. Given a barrier parameter p (p > 0), let z(p)
denote the unconstrained minimum of

B(z,p) O(X) - E In(hi(x)).

Under mild conditions, it can be shown that

im z() =

Many results have been proved concerning the asymptotic properties of the sequence 0(p)} is

1A - 0 (see, e.g., Mifflin, 1972a, b; Jittorntrum, 1978; Jittorntrum and Osborne, 1978).

Now consider applying a barrier-function method to the following linear program in standarii

form (which will also be called the primal LP):

minimize cTz (2.2a)

subject to At = b (2.2b)

z > 0, (2.2c)

where A is an m x n matrix with m < n.

Since the barrier transformation may be applied only to the inequality constraints (2.2c),
the subproblem associated with the primal LP treats the linear equality constraints directly and

transforms only the bounds:

minimize F(x) -cTZ - jI lnxj
"j=n - (2.3)

subject to At = b.

A standard approach to solving a linearly constrained problem of the form (2.3) is to use a

feasible-point descent method (see, e.g., Gill, Murray and Wright, 1981). The current iterate x

always satisfies Az = b, and the next iterate f is defined as

= + ap, (2.4)

2



2. A Barrier- Function Method for the Primal LP

where p is an n-vector (the search direction), and a is a positive scalar (the steplength). The

computation of p and a must ensure that Ai = b and F(i) < F(z).

The Newton search direction is defined as the step to the iniimum of the quadratic approx-

N iniation to F(x) derived from the local Taylor serie';, subject to retaining feasibility. Thus, the

Newton search direction is the solution of the following quadratic program:

minimize gTp + lpTHp (2.5a)

subject to Ap = 0, (2.5b)

where g VF(x) and H - V 2 F(x). The optimality conditions for (2.5) imply that

.g + Hp = ATw (2.6)

for a vector 7r of Lagrange multipliers. Thus, p and r satisfy the partitioned linear system:

... "A 0 W" 0

If H is nonsingular, one method of solving (2.7) is to solve the equations

AH-Aw = AH -'g (2.8a)

Hp = Air - g. (2.8b)

Let p,, (the Newton direction for the primal LP) denote the solution of subproblem (2.5) when

F is the barrier function in (2.3), with associated Lagrange multiplier W, The derivatives of F

are:

g(z) = c - pX-e and H(z) =/IX - ', (2.9a)

where
X =diag (zj), j =1,...,n, (2.9b)

and e - (1, 1 ... ,1). Since H(z) is positive definite when z > 0, p, is finite and unique, and is

a descent direction for F(x), i.e., (c - PX-e)Tpp < 0. Substituting from (2.9a) in (2.8a), we see

that irp satisfies

AX 2 ATr - AX(Xc - pe). (2.10)

Recall from standard linear algebra (e.g., Stewart, 1973) that, for any matrix C, the solution

of the least-squares problem

minimize Ill - Czjj (2.11)

satisfies the normal equations

CTC' = CT,, (2.12)

which are always compatible. In referring to (2.11) and (2.12), we shall call C the least-squares

matrix and CTC the normal-equation matrix.

3
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4 Nonlinear Approaches to Linear Programnring

Comparing (2.10) and (2.12) and taking C = XAT ini (2.12), it follows that 7r,. solves the

least-squares problem

minimize IIXc - pe- XATX112I~ (2.13)

The vector p,. is then defined by

p= -(1/11)Xr,, (2.14)

where rp is the optimal residual of (2.13):

r-'- Xc - pe - XATwr,. (2.15)

Note that if m variables are nonzero at the solution of (2.2) (i.e., if the primal is nondegenerate),

then XAT will retain full rank even as the iterates approach the solution. (This contrasts with
the structural ill-conditioning of the Hessian matrices of the barrier function when fewer than n

constraints are active at the solution; see, e.g., Murray, 1971.) However, a well known feature

of practical linear programs is that they usually are degenerate; i.e., fewer than m variables are

nonzero at the solution. In this case, the matrix XAT is rank-deficient at the solution, and becomes

increasingly ill-conditioned as p -, 0. Therefore, any method used in practice to solve (2.13) must

be able to cope with singularity and extreme ill-conditioning. (Numerical solution of the least-

squares subproblems will be discussed in Section 4.)

3. Solving the Dual Problem

With the approach described in Section 2, the search direction is required to lie in a particular

subspace in order for the iterates to retain feasibility with respect to the equality co,nstraints (2.2b).

In this section, we describe an alternative based on the dual linear program associated with (2.2):

minimize bTy
y-E°s,,, (3.1)

subject to ATy -c.

WiY The optimal vector y for (3.1) is the negative of the Lagrange multiplier vector mr* for the equality
S. constraints of (2.2). (Use of the dual LP in this context has been suggested independently by other

researchers, for example at the recent ONR-sponsored Workshop on New Directions in Mathemat-

ical Programming, Monterey, California, February 20--21, 1986. It is also closely related to the
* work of Eriksson, 1981, 1985.)

Since all the constraints of (3.1) are inequalities, applying the barrier transformation to this

problem gives a purely unconstrained subproblem:

minimize F(y) =T 11  p E ln(afy + c,). (3.2)
If 3=1

p'I.

Let s,(p) denote the unconstrained minimum of (3.2). Defining

D =diag(d) and X =diag(zi) =#D -

4



3. Solving the Dual Problem 5

where dj =ay + c3 and zj = p/di, we have

VF = b- Az and V2F = AX2AT.

The gradient of F must vanish at y(p), which implies that

a O + aj =b, (3.3a)

and hence lim =i (3.3b)

In order to define a Newton method for solving (3.2), we assume that a point y is available for

which ATy + c > 0 (so that V2F is positive definite). Using the above derivatives, PD (the Newton
4l search direction for the dual) then satisfies the system

AX 2 AT p =p(Az - b). (3.4)

In contrast to the subproblem (2.5) associated with the primal problem, Po need not lie in any
particular subspace, and hence (3.4) may be solved only approximately--for example, using a few

iterations of a conjugate-gradient method.
Note that if the right-hand side of (3.4) can be expressed in the form AXv for some vector

v, (3.4) will have the form (2.12) of the normal equations for a least-squares problem. (It is

advantageous numerically to solve a least-squares problem rather than equations of the form (3.4).

However, note that (3.4) always has a bounded solution if a primal-feasible point exists.) We

therefore seek v such that

AXv = Az - b, (3.5)

whereupon P. becomes the solution of the least-squares problem

minimize 1pt, - XATPII, (3.6)i-.' p

which may be solved using the techniques to be described in Section 4. Note that z > 0, whereas

A(z - Xv) = b. As convergence occurs, V -+ 0 and --, z
It might appear that the elements of the least-squares matrix would become unbounded with

this approach, in contrast to the primal. However, the relationship (3.3) shows that di -4 0 only

as j - 0, and thus the limiting matrices X and XAT should remain bounded.

An alternative to the exact dual formulation (3.4) is to retain the same "Hessian" for several
iterations. In Newton-type methods for nonlinear optimization, it is common to define the search
direction with a positive-definite approximation to the Hessian matrix. (For example, the exact
Hessian may be indefinite or expensive to compute.) In the present context, any positive-definite

5

A N &SA--W-



6 Nonlitnear Approaches to Linear Piopamnsiaq

X may be used in (3.4) (3.6) to generate a des(ent (lirection. It is essential to retain the delinition

z = pD-'c ti obtain the correct gradient b - Ax, but X need jiot be defined as 14D 1

An imnediate implication is that same matrix X could be used for perhaps several iterations

of the Newton-type mnethod. (Convergence results for methods for this type are given in, e.g.,
Dennis, 1970, and Ortega and Rheinboldt, 1970.) Since a sparse factorization of XAT is needed to

compute v and p in (3.5)(3.6), considerable ceconomies can be made by retaining the factorization

from the previous iteration.

4. Solving the Least-Squares Subproblem

It should be emphasized that the least-squares subproblems associated with the primal and dual

* :linear programs ((2.13) and (3.6)) are very similar, and it is crucial that they be solved efficiently.

In this section we review techniques that have been suggested or used, and then describe some new

* approaches based on the LU factorization.

4.1. Background

The major strategies for solving sparse least-squares problems include:

e direct methods, based on a sparse QR factorization of C (e.g., George and Heath, 1980) or on

the Cholesky factorization of the normal-equation matrix CTC (e.g., George and Liu, 1981);

0 updating methods that factorize most of C or CTC and deal with a few omitted rows or

columns by partitioning (e.g., Heath, 1984);

e purely iterative methods that perform no factorization, such as a straightforward conjugate-

gradient method;

e hybrid methods that combine factorization and iterative techniques. For example, in Gill et

al. (1985), the subproblem (2.13) is solved with a preconditioned version of the stabilized

conjugate-gradient method LSQR (Paige and Saunders, 1982), where the preconditioner is

the Cholesky factor of a sparse matrix related to AX 2 AT. (The use of a preconditioned

conjugate-gradient method in this context is also discussed by Gay, 1985.) For early work on

"preconditioners, see Axelsson (1974) and Concus, Golub and O'Leary (1976). Some techniques

for computing an approximate ("incomplete") Cholesky factor based on sparsity considerations

* arc given in, e.g., Meijerink and van der Vorst (1977), Manteuffel (1980) and Munksgaard

(1980).

The effectiveness of these options varies with the problem.

When using an iterative scheme, it is desirable to be able to use only an approximate solu-

tion (obtained, say, from a truncated conjugate-gradient method; see, e.g., Dembo, Eisenstat and
Steihaug, 1982). In this context, a disadvantage of the primal formulation is that an approximate

solution of (2.13) will not satisfy the equality constraints (2.5b). One means of overcoming this

difficulty is to project the search direction into the null space of A, for example using a sparse

6

¢?-*'V



4. Soltviny the Least-Squarem Subproblcm 7

representation of a basis for the null space. Such a matrix may be constructed front an LU fac-

torization of A (which would need to be complted only once), or alternatively it may be obtained

from an LU factorization of XAT.

For the dual formulation, a truncated conjugate-gradient method is most promising because

an approximate solution of (3.4) can be shown to be a descent direction, as required. However,

the speed of convergence of the conjugate-gradient method is crucial to practical success. We now

consider methods for preconditioning the conjugate-gradient method using an LU factorization.

4.2. The LU factorization

Given a general sparse matrix C with n rows and m columns, we write

C = LU, (4.1)

where L is square and nonsingular, the dimensions of U are those of C, and L and U are (nominally)

unit-lower-triangular and upper-triangular respectively. (In general, the rows and columns of C will

have been permuted during the factorization, but we shall ignore the permutations for simplicity

of notation.) If a suitable form of threshold pivoting (see Section 4.4) is used in computing L and

U, L tends to remain well-conditioned throughout, so that the condition of C is almost always

reflected in U.

A set of procedures (LUSOL; see Gill et al., 1986) has recently been developed for computing

and updating the LU factors of a general sparse matrix; the techniques in LUSOL are related

to the work of Reid (1976, 1982) on computing a sparse LU factorization and performing sparse

Bartels-Golub updates (Bartels and Golub, 1969). LUSOL provides a means for implementing

several methods to be described below.

In the problems of interest, C is of the form XAT and n > m. Hence (4.1) has the form

C=XAT=LU=LU, i = L(~ ~ Q ) (4.2)

where L denotes the first m columns of L and & is an m x m upper-triangular matrix. (The last

(n - m) columns of L will simply be those of the identity.) Again L should be well-conditioned,

while U reflects the condition of C. For the present we assume that C has full rank, so that 0 is

nonsingular.

Note that (4.2) can be used to find the vector v in (3.5) needed to formulate the dual as the

t* least-squares subproblem (3.6). It is sufficient to solve the two systems

U Ag - b and LTv 0% .

4.3. LU preconditioning

Following Peters and Wilkinson (1970) and Bj6rck (1976), we note that the least-squares problem

minimize I1f - Cpll2 (4.3)

7
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8 Nonlinear Approaches to Linear Progcrainnng

may be solved using a factorization of the formi (4.2), by solving

minimize If/- Lql, (4.4a)
q2

op q. (4.4h)

Because L is well-conditioned, an iterative method may converge more rapidly on problem (4.4a)

than on the original problem (4.3) (unless C itself is well-conditioned or has clustered singular

'values). Some experiments with this approach are described in Saunders (1979); for related work,

see Delves and Barrodale (1979).

In the present context, greater efficiency is likely to result from further preconditioning, par-

ticularly as the solution is approached. If L is the first m rows of L:

it follows that p may be determined by solving

minimize I1 - (sil, (4.5a)

Lq=a, Up q. (4.5b)

The nature of the linear programming problem and the pivoting strategy used in LUSOL are such

that ML -7 -* 0 as y -* y. Hence, the number of iterations required by a conjugate-gradient

algorithm should become small as the solution is approached.

In fact, the factorization XAT LU obtained with the LUSOL pivoting strategy serves to

partition X and A in the form

XT=(X8B XN)()(NT

and (4.5) is equivalent to solving the original problem (4.3) with the preconditioner XBT= L.
At all stages, the partitioned factorization pinpoints a nonsingular B that corresponds to the usual

basis matrix in the simplex method, and ultimately it will correspond to an optimal basis.

* q In general, it may not be necessary to recompute the LU factorization at every iteration. If

the current factors are X,,AT = LkU16, the factors of Xk+ 1 AT could be taken as L1,+1 = /LA, and

Uj.+1 = Ul,, where f) = Xk+IXk1 , as long as 15 is reasonably well-conditioned. In some cases
it may be efficient to update the LU factors to account for those elements of that introduce

ill-conditioning, using some of the update procedures available in LUSOL.

Another approach is to compute the LU factorization of CT so that

.^. C T = AX LU, (4.6)

Jss
8



5. Rtft'iurcs9

where L is nonsingular and U is an in x - trapezoid. In this case, LUSOL will teed to be enhanced

to use a threshol( forin of complete pivoting, in order to ensure 'that tei first in columnts of U point

"-" to a suitable basis matrix B. If a matrix C has full column rank, a reliable factorization C = LU

can almost always be obtained using Gaussian eimirtion with threshold partial pivoting. By this

we mnean that when a potential pivot is selected front the remaining rows and columns, it must be

reasonably large relative to other elements in the sane column, but it need not be compared with

elements in other columns. Virtually all existing LU software uses this strategy.

When computing the factorization (4.6), the column rank will be drastically deficient, and the

triangular part of U will reflect the true rank only if pivots are chosen to be reasonably large relative

to all remaining elements; i.e., only if threshold complete pivoting is implemented. Such a strategy

requires keeping track of the largest remaining element at each stage without excessive overhead.

Any such enhancement to LUSOL would carry a benefit whether C or C T is being factorized, since

XAT is expected to be rank-deficient.

d
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