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EXECUTIVE SUMMAR

Evaluations of reliability, maintainability, and availability
(RMA) of large-~scale coﬁplex systems have received a great deal of
attention in defense and commercial fields. In these studies, an
extremely difficult yet critical issue is effectiveness of the
model.

Experience in RMA anlaysis for many practical large-scale
systems has shown that more than 50% of BIT-related maitenance
actions are due to false alarms. This clearly implies an exces-
sive operation and support (0&S) costs. Further, to improve
system availability, one often employs redundant components (or
modules). Redundancy not only increases hardware costs but
imposes additional difficulties on analyzing system RMA as it
increases modeling complexity, especially for large-scale systems.

Analytical models for such systems that provide an accurate
picture yet are not too complicated are very difficult tn find.
Simulations, though can be made very accurate, could often be
costly. On the other hand, analytical models are very efficient
for sensitivity analysis and numerous tradeoff studies, provided
that they are accurate.

Two important ingredients must be taken into account in set-
ting up models for RMA analysis, i.e., conditions and activities
(events) of the system. In fact, for large-scale systems, numbers
of conditions and activities often become intractably large. It is
this problem that has prevented monst currently available schemes

from providing accurate and effective RMA analysis.
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E: In this report, we propose’to use generalized stochastic Petri :"

nets (GSPN) in RMA studies. The novelty of this modeling approach 2
g lies on the ground of the following distinctive reasons. ,.
%‘ (i) !'The GSPN offers a precise description of system activ- :5:
ities and conditions while involves less complexity, comparing to .ih’.
:"n other modeling techniques. Specifically, it is an inherently :_:E

) effective bookkeeping for conditions and activities}. ::\
ﬁ (it) - It provides a clairvayant insight of the key parameters K
’E'_L- that affect RMA analysis. Causes and results of events can be (:f_fj
- easily tracked by executing the GSPN., ' “ ‘

o
E (iil) It takes the advantage ofj the existence of concurrency ]

- and timing of events, thus describes accurately the sequence of '_::::
: events., - _ ?.
. The report is divided into two parts. 1In the first part, =
. definitions and classifications of concurrent tasks are given. \
* Existing analytical models which are based on queueing networks f
- (QN) are reviewed. Approximate hierarchical models based on GSPN o
- and QN are both presented. In the second part, analysis of GSPN -
’,:_' is considered. Techniques for reducing analytical complexity such
- as reduction and aggregation of GSPN are introduced. Applicaitons =

of such techniques tn the approximate hierarchical decomposition ‘:

. nf stochastic Petri nets are discussed. In addition, approximate ::E
b lumping of synchronous parallel operations is considered. For et

simplicity of discussions, many of these results are illustrated »
| via performance evaluation of computer systems. Finally, examples :.,
E nf RMA analysis and fault detection and isolation are given using &
P the developed techniques. 3_:
-.,: :;-\.
! ii ::'
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CHAPTER 1
INTRODUCTION

l.1 Motivation

Advances in solid-state technology have provided us with high
speed computer systems of ever increasing computational power. In
addition to the speed of the components, their organization may
be a limiting factor. Design efforts have therefore been geared
toward improving performance on the systam level, Parallelism in
the architecture has been the most successful approach. It

includes multiple functional units, pipelining array structures,

-and multiprocessor architectures. Distributed computing and

network configuration represent parallelism on an even higher
level. Design efforts also focus on operating system functions
and strataeagies for managing system resources, and further
inprovements can yet be obtained by designing programming
languages features that match the underlying architacture. Cocmmon
to all these design efforts is the desire to evaluate perfomance
impacts prior to implementation. Even though the basic components
of such systems are inexpensive, the design costs are so high
that an incorrect design which is undetected until late in the
development procass, can have a serious negative impact on a
company. Therefore, cost effective tools for performance
oradiction of such system , ai the early stage of design, are of
vital importance.

Simulation models, though could be made very accurates, are
a3t cost-effective.. Therefor2, they are not adeguata at ths

23rly stages of design when the design space is very large.

Simulations ars most wvaluabla however when detailed evaluyations
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are required at the final stage of design.

Analytical models are cost effective because they are based
on efficient solutions to mathematical eaguations. However, in
order for these equations to have a tractable .solution, certain
simplifying assumptions must be made regarding the structure and
behaviour of the model. As a result, analytical models cannot
capture all the details that can be built into simulation models.
Nevertheless, an analytical model can provide insight into the
key factors affecting performance of a proposed system, and
determine the sensitivity of performance to parameter changes.
Such a model can provide guidance into the overall design of the
system and also be useful in the development of mora detailed
simulation models as the design matures.

1.2 Definition of Parallel Processing:

Parallel processing, in contrast to sequential processing, is
1 cost-effective means to improve performance through concurrant
activities in the computer. Parallel processing, can formally be
defined as follows (XAl 84},

Definition : Parallel processing is an efficient form of

information processing which emphasizes the exploitation of
concurrant events in the computing process of a job. Concurrancy
implies parallelism, simultaneocuty, and pipelining. Parallel
avants may occur in multiple rasources during the same tine
interval ; simultaneous events may occur at the same instant and

Pipelined events may occur in overlapped time spans,

Concurrent events in the processing of a job ara attainable

at various lavels. These levels ars summarizad as follows :
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l- Task or procedure level.

2- Interinstruction level.

3- Intrainstzuction level.

The first level is conducted among procedures or tasks
(program segment). This ianvolves the decomposition of a program
into multiple tasks which may be processed concurrently. The
second level is to exploit concurrency among multiple
instructions. Data dependency analysis is often performed to
reveal parallelism among instructions. Vectorization may be
desired among scalar operations within DO loops. Finally, in the
third level, concurrent operations within each instruction c¢an be
exploited, The highest level is often conductad algorithmically
and will be discussed further in chapter 2. The lower level is
implementad directly by hardware.

Parallel computers are those systems that emphasize parallel
processing. Such systems are categorizad as follows :

l- Pipeline computers : such systems perform overlapped
computations to exploit temporal parallelism. They are more
attractive for vector processing, where component cperations may
be repeated many times.

2- Array Computers : an array processor is a synchronous
parallel computer with multiple aritamatic logic unit callad
processing element (2E). The PEs ara synchronized to perform the
same function in the same time.

3- Multiprocessor Systems : consist of tWO Or more processors
of comparabls capabilities that operate asynchronously. All

processors share access to common sets ¢f memcry modules, IO
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channels, and peripheral devices. Each processor has its own

local memory and private devices. The entire system is controlled
by a single operating system providing interactions between
processors and their programs as various levels.

Clearly, pipeline and array computers exploit parallelism at
the inter and intra instruction level whereas parallel précessing
at the task level is adequate in a multiprocessor system. Our
primary goal in this work is to develop analytical models for
parallel processing in a multiprocessor environment.

1.3 Analytical performance modeling :

Computer systems can be generally characterized as consisting
of a set of hardware resources (e.g. processors, channels, disks,
ets...) and a set of tasks, or jobs, competing for and accessing
those resources. Because there are mutiple jobs competing for a
limited number of resources, gqueues for the resources are
inevitabla and with these gqueues ccme delays. It is, then,
natural to model the system by a ﬁetwork of interconnected
queues.The purpose of the model is to predict the performance of
the system by estimating charactaristics of the resource
utilization, the gueue lengths, and the queueing delays.
Therefore, analytic models of computer systems have been solely
zased on queueing network (QN) models.

Research in perfdrmance modelling methodology has essentially

2en researcn in gueueiang theory. Key advances in computer

o

serformance mcdeling have also been seen as fundamental
oreakthroughs in gueueing theory. Queueing Theory has at:tained

new relevance bacause of the computer performance modelling

applicaticn. Furthermors, to a gr=2at extzsnt, the directiocn ¢f
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queueing theory has been influenced and driven by this
application (HED 84].

Figurel.l shows the famous QN model of multiprogramming
systems, the so called central server model (BUZ 71]. It was
introduced to model'contention among programs for processors and
10 devices. The model is a QN consisting of a J service centers
and a population of N active jobs (the multiprogramming level).
Service center (SC) 1, represents the processor and service
centar j; 3j=2,...,J represents an IO device. Each job is assumed
to reside in main memory, and goes through a number of CPU-IO
cycles; it executes on the CPU, performs IO on one of the IO
devices, and returns to the CPU, repeating this process until it
is terminated. The termination of a program and initiation of a
new program is represented by a job re-entering service center 1
naving completed service £from that service center. In order to
completely define the model, the following must be specified,

1) The queueing disciplines at 2ach one of the centars.

2) The service requirement of jobs at the centers.

3) The routing probabilities of jobs between centers,

When the above are appropriately defined, the evolution of
the network can be represented by a continous time Markov chain
(MC), the sate of which is defined by the number of jobs at each

sC. However, as N and J increase, the state space of this MC

Secomes unmanageably large.

Tor a restricted class of nectworks called product form
setworks [KLI 735, CH 8l], saveral computationally efficient

analysis algcrithms have been developed (CH 81,RSl 8@d]. The
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*,existence of such algorithms for a broad class of models makes
<
“‘analytic queueing models an attractive tool for applied

AL
)

LI

n performance modelling studies of computer systems. The above

y

) 1

central server model has been used in several performance

oy

t: prediction studies (e.g. the VM/378 performance predictor (BARD

7,78})) .

Product form QNs, however, are not suitable for modelling

parallel processing [CH 81, HID 84]. In chapter 2, models of
parallel computations will be discussed. A classification of
parallel programs based on such models will also be discussed. In
é chapter 3, current analytical models of parallel processing
. systems will be briefly described. In chapter 4, models of
b Parallel processing systems using the generalized stochastic
i petri nets (GSPN) will be presented. In chapters 5, 6, and.7, the
inalysis techniques for such networks will be developed. Finally

in chapter 8, analytical models £for systems reliability,

e

maintainability ,availability, and fault diagnosis, using GSPNs,

“ .
"
e

are considered,
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CHAPTER 2

> MODELS OF PARALLEL PROGRAMS

2.1 Introduction

A parallel program consists of several cooperating concurrent

~

3"f‘tasks that can be executed in parallel. The terms task and
§Tptocess are intended to mean a self contained portion of a
hS

computation that once initiated can be carried out to its

us Completion. The completion of a task is significant in that its
occurrence can initiate the execution of another set of tasks.
The problem of defining parallel programs received much:

é attention in the literature. Two approaches were followed, one is
to have explicit concurrency, by which the programmer specifies
the concurrency using certain language constructs. Conway [coné63]}
. drcposed a FORK and JOIN statements. FORK spawns a new concurrent
drocess, and JOIN waits for a previously c¢reated process to
terminate. Dijkstra (DIJé8] éroposed a block structure language,
:‘ which defines concurrent tasks by using the constructs parbegin
’ and parend. For example in the following program segment, the
. computations for matrices A and B are to be carried out in

parallel.

begin
initialize;
parbegin
compute matrix A;
compute matrix B;
parend
C = A*B;
end

L%

LA
ot

| g LA

Several general purpose high Llevel 1languages have

S

incorporated these concepts in their definitions ( PL/I, ALGOL-
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88, concurrent PASCAL, ADA,..).

The second approach is to have implicit Concurrency. In this
case the compiler determines what can be executad in parallel
(BAER73].

In section 2, graph models of parallel computations will be
described ([KAR 66, ADAM70, CER72, BEA77, PET80, MOL8l]) . These
models were developed to facilate the design of parallel programs
and deal with the issues of correctnes and efficiency. In section
3, classifications of parallel programs and algorithms will be
discussed.

2.2 Models of Parallel Computations
2.2,1 Computation Graphs

Karp, Miller (KAR66], and Acdams (ADAM70] have developed
acdels for parallel computations, in which the sequencing control
is governed by the flow of data. A directed graph was useé to
represaent the computation. The nodes of the graph recresent
Ssmputation steps, which can range from a single operation to a
complex computational task. An edge in the graph can be thought
cf{ as a gqueue of data produced by one node and waiting to be
sonsumed by another. A computation step may be initiated whenever
each edge directed into that node of the graph contains the
amount of data required for that node to execute properly. The
Jumber of computation steps which may be executed at any given
time is dynamically determined by the flow of data. Thus
udnecessary sequencing constraints may de eliminated.

The propertiss of the model with which Karp was garticularly
concerned are : Ll- to pdrcve that the mcéel is determinata,i.s,

£or 3 given input, the precgram will vyield a unigue output
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b - independent of the relative processor speeds; 2- a test to
determine whether a given computation will indeed terminate; 3- a
g stocedure for finding the number of performances of each

« COmputation step; and 4- the amount of temporary storage required

for the data queues associated with the branches (edges) of the

graph, together with the conditions for the queue length to

remain bounded. The weakness in this model, however, is that

data-dependentconditional transfer cannot be taken into account,

since the logic at the nodes corresponds to AND-input-AND-output

logic, i.e, the computation is started when enough data exist on
all input edges, and the output data is placed on all output

edges.

The model described by Adams was an attempt to provide a
framework within which various classes of computations can be
tapresentad. The model has been developed so that computations
rapraesented within it will be determina%e. The model also deals
#ith data structures , and a hierarchical description of the
orogram. Data structures were treated with generality and include
the hazdwaré defined structures such as bits and words, and
structures usually defined in a programming language such as
arrays, strings, and lists. The hierarchical program description

4as achieved by being able to treat each node in the grapnh as

. representing operation perhaps very complex, and alsco being able

t0 represent as a grapgh the suboperations or instructions of
i [f which it is constructed, Moreover, data-dependent conditional
f . tzansfers can be accomodated. This is achieved by dividing the

S nodes of thne gragh into two types, computational (r-nocdes), which
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maps data on the incoming edges to data on the outgoing edges,

y and computational and logical (s-nocdes), which also map edge

status as locked or unlocked, an edge with a locked status is

treated by successor nodes as empty (contains no data).

O

$ 2.2.2 Control graphs
F Control graphs (CER72, BEA77) are bilogic directed graphs.
: The arcs contain non-negative gumbez of tokens. Logic expressions
; are assigned to the set of input arcs and to the set of output
g arcs for each node in the graph. The expressions are made of
5 "ané's" (*) and "or's" (+). Computation is simulated by the
L? acvement of tokens from arcs through nodes to arcs. Formally a
control graph is defined as follows:
B=(G,L,Q) , where G={(W,U) is a directed graph with
. Wia{w),eeeyWpal is the set of nodes, and U is the set of ordered
N dairs or arcs “k’(wi'wj)° There is a unique entry arc with w;=0.
? L=(L~7,L*) being the logic conditicns (L™ is the input and LY is
L ;f the output logic. Thus with each node wj is associated one of>the
) dzdered pairs (%, +),(+,*),(+,#),(*,*). If L7=*, w, is said to be
; E of AND=-input logic (respectively OR if L”=+), and similarly if
’;, AL W; is said to be of AND-output logic (raspectively OR).
E‘ finally Q=(0~,0%) are the {input,output) token value
;; specifications which map WXU into the set of positive integers N.

The 1initiation of a computation modeled by w; can proceed
) - “hen LT=* (respectively L7=+) only if for each (at least one)

ncident arc a there is at least Q(wj,2) tokens on it. Figura 2

™,

shows an example of a control graph which could be a mcdel for

.f. LA

the foliowing segment of a program:

T T T T—— e W W ay e ——y
»




Repeat
b ncde 1; parbegin
ol begin action at node 2 .. end
) begin action at node 3 .. end
“ parend
Yy Until condition at node 4;
v The main imputence behind control graph studies is to show

that the graphs are terminating properly, 1i.e.,that they

tepresent correct and terminating programs from the flow of

control viewpoint.

- 2.2.3 Standard Petri Nets

In this section a simple, yet very powerful graph model of

cehaviour will be presented.

L)
.
m-.

2.2.3.1 Petri Net Structure

Jefinition 1l: A Petri net is a bipartite directed graph

PEARE |

PN = (X,A), where

l- X =P U T is a finite set of nodes with P={py,...,p,} being a

sat of places, and T=(tj,...,t;} being a set of transiticns, such

oo

Wat PN T = Q.

2- 3 =1 0 is a finite set of directed arcs with

o

I: PXT --» B are the input arcs, and

R

O: TXP --» 3 are the output arcs, where B = (g,1l}.

Inthe sequal, a Petri Net will be referred to by the four

tuple PN = (P,T7,I,0). And the functions I and O will be called

i the input and output functions. A place p; € P such that

s I(Dl,bj) > @ (O(.J,_l) > 8) is called an input place (output

place) of transition ty € T.

Tigure 2.2 shows a Petri Net (PN), with places drawan as

. circles and transitions drawn as bars.
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P » (p1,p2,P3,P4sP5/P6)

T = {t1,ta,t3, 84,5, 6]
elements of I and 0 > 0 are
1(py,t1),T(P2.t2) 1 (P3,E3),
Ipgrty) I(Ps,ty)  I(Pgsts) e
[(pg.tg) ,0(t1,P2),0(t1,P3),
O(t5,p4) ,0(t3,P5) O(ty,Pg)
and O(tg,py).

2,2.3.2 Petri Net Marking

A marking is an assignment of tokens to places of-a PN.

Tokens can be thought to reside in the places, and the number and
position of tokens may change during the execution of a PN. The
tokens are used to define the execution of a PN,
Definition 2: A marking M of a Petri Net PN = (P,T,[,0) is a
function from the set of places to the nonnegative integers N,
l.2., M: P =-==>» N,

The marking M can also be defined as an n vector

A

¥ = (My,0eeeep@y), Where mj is the number of tokens in pj.

isl,...,n. The definitions of a marking as a function and as a
7ector are obviously related by M(p;) = my.

2.2.3.3 Execution rules for Patri Nets

The execution of a PN is controlled by the distribution of
tokens in the PN places. A place holding one or more tokens is
said to be full. A PN executes by £firing transitions. A
transition is firable (enabled) if all of its input places are
fall.

Sefinition 3: A transition tj &€ 7 in a marked PN = (?,7,1,0) with

marking M is enabled if and only if for all p; ¢ P,
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A ;
f-\%: I(py,ty) $ M(py) ':
B The firing of a transition generates a new marking by ?i
- removing tokens from the input places and addéing tokens to the ' ;ﬁ
i: output places. E“
- Definition 4: A transition ty in a marked PN with marking M may _%

: . fire whenever it is enabled. Firing an enabled transition tj ?3

{ - results in a new marking M' defined by ‘

{ M'(py) = M(pj) - I(pjrty) * O(k5,pj) Yp;€P (2.2.1) .

E M' is said to be immediatly reachable from M. E}

k E A more general definition of a PN can be obtained by g
) assigning weights to the input and output directed arcs between ;.
E; places and transition. ;;
. Jefinition S5: a Petri Net is the four tuple, PN = (P,T,I,0), Eﬁ
. <4here the input and output functions I and O now are defined as ~
EE I: PXT =====» N , and O0: TXP =~--=-» N - ;;
- In this case, following the above definitions for enabling -
-t
- and firing of transitions, a transition {s enabled if and only if ;i
g its input places are full, and each input place holds as many EE

sckens as the weight of the arc linking it to the transition.
Moreover, the firing of a transition generates a new marking by :;
removing tokens from the input places and adding tokens tc the

uwtput places according to the weights of the input and output _

3 azcs. In a PN graph a weight label is added tc each dirscted axc -
E /she weight may not oe indicated if i: is 1). Ei
.

The state of a PN is defined by its marking. The Iiring of a bk

=ransition represents a change in %h2 scate ~of a PFYN. The state :i

stac2 0f a PN with n places is the set of all markings, =ha: is, :E

e T g e lTh e e s % « e e e
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N?, The change in state causad by firing a transition is defined

N by a change function called the next state function f.

. Definition 6: The next state function f: NPXT -----» NU' for a
: PN = (P,T,I,0) with marking M and for tj € T is defined if and
ﬁ only if M(p;) 2 I(pj,ty) for all pj € P (i.e.,ty is enabled in
? M) . If E(M,tj) is defined, then f(M,tj) = M' , where M' is
- defined as in (2.2.1).

2 Given a PN = (P,T,I,0) and an initial marking Ml, we can

execute the PN by successive transition firings. Firingan

-
P

anabled transition tj in the initial marking produces a new

marking M2 = E(Ml,tj)- In this new marking we can fire any new

. . enabled transition, say, t,, resulting in a new marking M3

£(M2,ty). This can continue as long a2s there is at least one

anabled transition in each marking. If a marking is reached where
70 transition is enabled, then nc transition can fire, the
function £ is undefined for all transitions, and the exacution
aust halt.

Two sequences result from the execution of a PN: the seguence
3f markings (M1i,M2,M3,....), and the sequence of transitions
dhich were fired (tjl,tjz,u.J. These tw> sequences are ralatad
a2y the relationship f(Mk,tjk) = Mk+l , kx = 1,2,3,....

The set of all reachable markings from the ini%ial marking is
zalled the zeachability set S.
cefinition 7: The reachability st § £or a mazked PN = (2,7,I,%)
+ith initial marking M1, is the smallest set 0of markings 2efined

7, 1) M1 € s, 2) 1f M' & S and M" = £(4',t,) for scme

14

=3
saen M" € 3.

A transition Si is live, if for all markings M'€£€ 5, therse
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5 firable. A PN is live if all its transitions are live. A PN is

P
I3

said to be k-safe (k-bounded) if a place cannot hold more than k
tokens at any time, i.e., if M(p;) < k for all p; € P and all ME€
5. A PN is said to be safe if k = 1.

2.2.3.4 Modeling with Petri Nets

Petri nets were used to model various types of systems, where
dlaces represent conditions and transitions represent events.
Hence a full place shows the holding of a condition, and when all
sonditions prior to an event are holding, then éhe event can
Sccur (a transition is enabled). PN models allow all possible
states of a system to be examined, so that it can be determined
w“hether sesquences of events leading to undesirable conditions
2xist (2.g. deadlock conditicns).

In modeling parallel computations, the firing of transitions
12 a PN represents the execution of computations, while tokens in
tlaces represent the conditions under which computations can take
slace. A computation sequence follows the execution seguence of
transitions. It has been found by Gostlow (GOS71l], and Peterson
(PET74,80] +that the control grapns defined above and PNs
computation sequences were in the same theoretical class of
fcrmal models, Figurs 2.3 shows the mapping of contzol graphs to
Flls,Therefor2 figure 2.2 is <the equivalent 2¥ mcdel of the control

3tapn in figure 2.1 [BE2A77,M0OL8l].

R AT T A . .
'~ g AR S AN e e .
L Yy . W T e e e e e et e et e e R . .
e e T VL UL AT AP AP S Y CIRNEIF AT B A L R T L ISR S
s A g WD S P S SN S I fa LTl w




(g W ¢ Bt gt W ‘ . r & » - .

5 %
L
!

"\ N

-~ S

-\' %

-~ h r:

2

\/

.

(a)

-
s

W)
41""

. e, :..
’ 4

\ »

|

(b) 2

_ RN
A
O ;
=
2 — S
o / - \ ::
N
E: ' "
: (d) X
DN
. 2
N ‘J'
. *
.

r Figure 2.3




L’Q»\ '

VAR - |

AR |

Ramchandani [RAM74] has extended the standard PNs to include
a2 measure of time to what is called Timed PNs. The basic idea pf
the extension was to simply add a label to each transition which
indicated how long that transition takes to fire (which
represents the computation time). These time values are fixed
(deterministic). Molloy ([MOL82], and others, introduced what is
called Stochastic PN (SPN), where transition firing times are
exponentially distributed random variables. 1In this case
transitions are characterized with their firing rates, which can
%e marking (or state) dependent. This extension was significant
in the sense that it defines a non-deterministic model that can
be analyzed by Markov chains (MC). A formal definition of the
5PN is thus the following:

SPN=(P,T,I1,0,R), where P,T,I, and O are defined as above, and

R’{‘l'"°'rm} is the set of firing rates associated with
transitions.

The problem with analyzing SPNs, however, is that the number
0f states of the associated MC grows very £fast with the
dimensions of the graph.

Marsan et al [MAR83], have extended the SPNs to the s3> called
Generalized SPNs (GSPNs). GSPNs are obtained by allowing
transitions to belong to two different classes: immediate
transitions and timed transitions. Immediate transitions fire in
Zé:o time once they are enabled, while timed &transitions behave
like in SPNs. A formal definition of a GSPN is thus as for SPN,
where now the set R cecntains onlx m' elements, m' being the

sumber of timed transitions. The significance of this extension

i1s due to the fact that the operating sequence of a systenm
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comprises activities whose duration differ for orders of
magnitude. It is then conceivable tc model the short activities
only from the logical point of view, wnhereas time is associated
with the longer ones. This choice becomes particularly convenient
if by doing so the number of states of the associated MC is
reduced, hence reducing the solution complexity. Figure 2.4 shows
an example of a GSPN (immediate transitions are drawn as double
dars). This model is the same as the one in Figure 2.2, except
that times for the activities of synchronizing tasks 2 and 3 as
well as the conditional transfer at node ¢ are neglected. The

analysis of the GSPN will be considered in more details later.

2.3. Classifications of Parallel Programs
Using the above models of computations, Herzog et al (HER79]

classified the structure of a variety of application programs
into four types as follows:

l1- Type-1 program structure(figure 2.5 (a)): The program
consists of a loop which may be passad several times. This locp
consists of a primary task Sz, upon completion of which n
independent concurrent tasks are spawned. A new loop may be
started if and only if all n tasks are completed. Problems of
this type are, algorithms for the solution of linear-algebric or
Partial differential egquations, optimization procedures,
simulations includiag sub:uns‘for the purpose ¢cf estimating
cenfidence intervals, and problems of picture processing.

2- Type-2 program structure(figure 2,5(b)): Hers, the progranm

also consists of a loop. However, &the n concurrent tasks

.......... LA s | o e N N N NI w T W I e I wrwYwy—y
A
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influence each other in some way rather than being completely r-
KN ~
I% !

Y | independent. =

“
. .; Tasks interact at some points called interaction points. These P
' 2oints divide the tasks into stages (subtasks). At the end of
each stage a task communicates with some other tasks before the

dext stage of computation is initiated. Compared to type-l, there

EReR?

] are not only global but also local synchronization necessary.
2': J- Type-3 program structure: Here the degree of parallelism
. varies rather than being constant. An example is shown in figure
2 1 s (o).
- | 4- Type-4 program structure: These program structures consist

of completely independent tasks S1reeserSpy that execute
concurrently with the primary task Sg and terminate
. independently. Here, no synchronization is necessary since the

tasks are completely independent (figure 2.5 (d)).

Kang (KUN76, KUN8@)]) classified algorithms for multiprocessors
as synchronous and asynchroaous. In a synchronized algorithm
(type-l and type-2), the program is decomposed into tasks which
= | ars syncharonized at interaction points. At these points tasks are
% -1 tlocked while waiting for inputs from others. The loss due to
waiting was characterized by a penalty factor defined as £follows:
Suppose that we want to synchronize X identical tasks, and that
the time taken by the ith task is a random variable t;. Since the
tasks are all identical, tjy,...,t, 2re identically distributed
tandom variables with mean, sav, t. The expacted time taken until
all of the tasks are completad is the mean T of the random

variable T=max(tj,...,ty) rather than t. In general, 7T is larger
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(¢} Type-3
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Figure 2.5 Classification of Parallel Programs
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than t. The penalty factor for synchronizing the k tasks is then
defined as the ratio T/t. Clearly if the penalty factor is large,
then the performance of the synchronized algorithm is largely
degraded. Baudet (BAU76] has observed that, if the t;'s are
identical and independent exponentially distributed random
variables, then the penalty factor for k tasks is the Kth
harmonic number H,. Note that Hy grows like 1In k as k increases.
Hence synchrcnized algorithms should be used when there are only
few tasks to be synchronized. Futhermore, the execution time of
the needed synchronization primitives is usually non-negligible.
Thus, it is not always advantageous to create as many concurrent
tasks as possible according to the maximal decompositicn of a
problem.

Asynchronous parallel algorithms (type-4 preogram structure),
consist several concurrent asynchronous tasks. Communication
between these tasks is acheived through a set of global variables
or shared data. The main characteristic of these tasks is that
they never wait for the completion of others at any time, but
continue or terminate according to whatever information is
currently contained in the global variables. However, %to insure
logic correctness, the operation on global variables are
programmed as critical sections. This asynchronous behaviour
leads to serious issues regarding the correctness and efficiency

of an algorithm. The correctness issue arises becauss during the

execution of algorithm operations £frcm different tasks may
interleave in an unpredictabla2 manner. The efficiency arises

tecause any synchronization introduced £2r =csorra2chness reascns

takes axtra time and also reduces concurrancy. Xung examinad
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vazious techniques for dealing with these issues, and also showed

examples for synchronous as well as asynchronous implementations

of zero searching and iterative algorithms.
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CHAPTER 3
CURRENT MODELS OF PARALLEL PROCESSING SYSTEMS

In this chapter, current analytical models proposed in the
literature for parallel processing systems will be discussed [MAE
76,PET 75,PRI 75,TOW 75,TOW 78,BAR 79,HEI 82,HEI 83,TOM 84].

1.1 Models for CPU:I10 Overlap.

The models developed in (MAE 76,PET 75,PRI 75,TOW 75,TOW 78]
were primarily intended to model CPU:IO overlap using double or
aultiple buffering. This means that a program issues two Oor more
concurrent requests on distinct system resources. In the
following paragraph, we describe briefly the most recent of such
aodels developed by Towsley (TOW 78].

The model developed in {TOW 78] is based on the central
server QN model. The assumption normally made in this model is
that a job alternates betwéen CPU and IQ0 activities. The job may
e thought of as repeating cycles, where each cycle consists of
tWwo tasks : a task requiring the use of CPU followed by one
tf2quiring the use of an I0. In an overlap system (figure 3.1), a
cycle may consist of three tasks; CPU; followed by the concurrent
tasks CPU, and IO0. The approximate aggregation technique known in
Qs as Norton's Theorem was used to obtain a network with two
Gueues; the CPU gqueue and an aggregate 10 gqueue. The aggregate
network under the overlaped job cycle in figure 1 using the sxact

tecursive analysis of Markov models of two gueue networks
develcped by Herzog, Woo, and Chandy [HER 75].

The accuracy and validity of the model have bheen verified

against detailed simulations. This model can also be extsnded to
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aodel overlap in CPU:CPU and I0:I0 activities. However, such
concurrent tasks use only one resource 2ach before they
synchronize and merge.

Models of systems with programs defined as a set of
concurrent tasks, where each task reguires multiple accesses to
2any different system resources before it either terminates
independently or communicates with other tasks, have been
developed in (HED 82,HED 83,TOM 84). The remaining of this
chapter will be devoted to the description of such models.

3.2 Models for Asynchronous Tasks:

The model developed in [HED 82) does not account for any
synchronyzation between tasks. It assumes a system workload
consisting of a set of statistically identical jobs. Each job
consists of a primary task (labeled 1) and zero or more
statistically ideﬁtical secondary tasks (labeled 2) . The
secondary tasks are spawned by the primary taskisometime during
its execution and execute concurrently with it, competing for
systems resources. A secondary task is otherwise assumed to run
and terminate independently. An approximate multi-chain QN model
4as developed with two chains; one closed and the other open. The
clbsed chain models the execution of primary tasks in the system
and a specially defined node (node @) was defined such that a
secondary task is spawned whenever a primary task enters this
tode. The open chain which shares the same systems resources with
the closed chain, models the execution of secondary tasks which
compete for the system resources with the primary task, and leave
the network when they terminate. The arrival rate ¢f the open

chain is set equal to the throughput of primary tasks,at ncde J
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<1 ,of the closed chain.

independent of the state of the network.

The arrival process of primary tasks at

. node @ is approximately assumed to be Poisson which is

Since the throughput of

the closed chain is itself a nonlinear function of the arrival

rtate of the open chain,

a closed form solution is not available.

An iterative algorithm was used to solve this nonlinear equation,

and the conditions for its convergence were given.

of the approximation was

simulation.

To illustrate the above model,

chain shown in figure 3.2.

Let N =number of primary tasks,

rp=arrival rate of the open chain

:ijsthroughput of task j at queuve i; i=0,1,2,

i=1,2,.

The accuracy

studied through comparison with

consider the two-chain QN

and

viz=mean number of visits a secondary task makes to queue

i (open chain)

ujo=utilization of server at queue i due to secondary

tasks,

Qij=mean gueuing time of task j at gqueue i.
Lij=mean queue length of task at qQueue i.

Sijsmean servic

e time of task j at server i.

f=probability that a primary task will go to node 4.

Py=probability that a secondary task return to Qy for

some more service.

At steady state,

Vig=l+ Pz V12s V12=l/(1-92)
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~then , ryz= ro Vi3
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h)

Up2= rz vi2 S12. and
P u22® r2 V12 S22
) then using the MVA algorithm for mixed QNs (REIl 88), we have,
: Qi1 (M) = sy (1+ Lyp(N=1)1/(l-uy))
T Q1) = s (14 Ly (N-1)1/(1-u32)
i £y11= N/ Q1 (N)+(1-£)Qp1 (N) ]
) _ rg1=f ry; » and ro;=(1-f)ry,

Lip)= £ (N) Q1 () ; i=1,2
frem the above,
b B 2N =rg=EN/{[(S11/(1=-E5(N)v g s72)) (1+Ly1(N=1)]+
[((1-£)s832/(l-tav]12S22)) (1+Lyy (N-1))1}
“ The above nonlinear esquation is solved iteratively for 9, such
! .:hat ravissjz <15 i=1,2

If this condition is not satisfjed, then a stable solution

:::7 cannot be obtained, which means that primary tasks ars able to
M jenerate more secondary tasks than the system can handle, and the

22an queue length of secondary tasks at at least one queue will
Lo ~
- % ba infinite.
3.3 A Model for Synchronous Tasks:

In (HED 83], another model was developed for synchronous
, ' tasks. It assumes a workload consisting of a set of statistically
identical jobs. Each job consists of a primary task and a fixed
fuaber of synchronous concurrent secondary tasks. The system
E 3gain consists of a finite number of servers including processors
and I0 devices, a particular pseudo server labeled g, and a

AN . : :
- finite number N of jobs. Each primary task of a job executes on a

M sequence of servers and whenever it enters server 3, it splits
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into a fixed number (>=2) of secondary tasks. Each primary task
is the parent of its secondary tasks and later are said to be
siblings. Each secondary task executes on a sequence of servers.
A secondary task is considered complete upon entering node 6. At
node @, the secondary task must wait until all of its siblings
have completed execution, at which time the primary task becomes
active again and the process is repeated. Syncronization between
secondary tasks is achieved by requiring all siblings to complete
execution before the job can c¢ontinue processing. Two
approximations wers proposed to come up with a tractable solution
for the above model. Both approximations are based on solving a
set of related multi-chain closed QNs.,

The first method is based on decomposition approximation,
lollowing the decomposition approach of Courtois (COU 77]. For
durposes 0f illustration, we restrict our discussion to the case
in which a primary task subdivides into two secondary tasks. Each
9f the N jobs may either have its primary task (labeled 0) or
nave one or both of its secondary tasks (labeled 1 and 2) active.
At time t , let aj(t) denote the number of active,i.e. executing,
tasks of type i, and let w;(t) denote the number of i secondary
tasks which have completed execution and are waiting for their
respective sibling to complete ; i=1,2. Let a(t)=
(3g(t),a1(t),az(t)) and w(t)=(wy(t),wq(t)). Then at time t
N=ag (L) +a; (t)+wj (&) for i=1,2.

If the primary and secondary tasks are relatively long in the
sense that many servers are visited before the task, then changes

in a(t) will occur frequently as cocmparad to changes in the queue

M ""-"-"-"rmmm.?




lengths of tasks at the servers. In this case, it is reasonable

to assume that queue length distributions converge to steady

state distributions prior to the next change in a(t). Therefore,

for every feasible multiprogramming level(mpl) a=(ag,aj;,az), a
closed three-chain QN, with population ag,aj,ap respectively is
solved for the performance parameters (throughputs, utilization ,
and mean queue lengths). Let rj;(a) denote the throughput of type
i tasks at node 0 when the mpl is a. The process {a(t), t>=@} is
then modeled as a finite sta;e Markov chain with state space E
and transition rate matrix Q. The state space E is a subset of
{8<ag<N, 0O<a;<N-ag,8<az<N-ag}l. The exact definition of E however
is quite complex. Another assumption was made to facilitate the
state space definition by keeping track of only the mpl without
specifyidg the identity of the waiting tasks. Let Pj(a) be the
drobability that a type i secondary task that has just completed
finds that its sibling has also completed, when the mpl is a.
These probabilities are defined as follows,
Pr(a) = wy/a; if a1>@
) if a;=0
pala) = wy/ajy if ay>@
g if a;=¢

Then the state space E is given by,

E={ a: 0¢ ag<yN , 08¢ aj<N=-ag, @< as<N-ag, N<ag+aj*az}, and the
off diagonal elements of the rate transition matrix Q (g(a,b))

e listed Dbelow (g(a,a) = - a=/=p g(a,b)).
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. b a transition explanation
.d‘
> (ad-l,al+l,a2+l) rd(a) task @ completed, tasks 1,2 spawned
= (ad,al-1,a2) rl(a) (1-pl(a)) task 1 completed, sibling active
N (aB,al,a2-1) r2(a) (l-p2(a)) task 2 completed, sibling active
; (a8+1,al-1,a2) rl(a) pl(a) task 1l completed, sibling waiting
(a0+1,al,a2-1) r2(a) p2(a) task 2 completed, sibling waiting

PR

nT

- The stationary distribution P of this Markov chain can be

E obtained from solving PQ=@, such that the elements of P sums to
one. The global performance parameters can then be obtained.
2.9., the job throughput r is given by,

xx= 57, ¢ g P(a) rg(a)

The second approximate method proposed is basad on the method

3f complementary delays and is similar to the one proposed in

-
- (IAC 81] for simultaneous resource possession. It consists of
:; iteratively solving a sequence of product form (pf) QNs. The
- synchronization delay experienced by a task was modeled by an

infinite server queue. The mean synchronization delays are
“; estimated by assuming the tasks response times to the
S

. independent, exponentially distributed random variables. The mean
tasks response times are obtained from the solution to the pf QN

at the previous iteration. However, the decomposition

[ 4
t approximation was found to be clearly superior %to the above

method. The former was found to be remarkably accurate, when

compared to simulation results, predicting throughputs and device

utilizations with a mean relative error c¢f one percent.
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Q.«l A Model for a Task System:

" Thomasian et Al (TOM 83) developed a QN model based on the

bove decomposition approximation. The model assumes that there

;'.;}xists only one active job in the system (monoprogramming), which

is defined by a set of tasks T={T;,T,..,Ty} with a partial

eorder defined on T specifying deterministic precedence
:_:.constraints. Only a directed acyclic graphs were considered.
“from such a graph, a MC is constructed, the state of which

)
[Fdefines the active task combination. A closed multi-class QN is

.S0lved for each state of the MC.
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CHAPTER 4

MODELING PARALLEL PROCESSING SYSTEMS
USING THE GENERALIZED STOCHASTIC PETRI NETS

4.1 Introduction

In the previous chapter current models for parallel
processing were discussed. Such models were based on analytical

queuing networks (QNs). And due to the fact that analytical QN
models become intractable when modeling parallel operations,
several approximate models were developed. Even though the
accuracy of such models were found to be adequate, they were
restricted to a workload consisting of statistically identical
jobs with one type of parallelism or another. For example, the
model in section 3.2 assumes only asynchronous concurrent tasks.
In section 3.3, the model was developed for jobs with fixed
number of synchronous tasks. And in section 3.4, the model is
restricted to one active job consisting of a fixed number of
tasks with deterministic precedence relation.

From the classification of parallel programs given in chapter
2, it is clear that the active jobs in the system may consist of
both synchronous and asynchronous tasks. Moreover, a
probabilistic model is needed to represent a wide variety of
active job structures.

In this chapter, a different analytical modeling tool,
namely, the Generalized Stochastic Petri Nets (GSPNs), is used to
model activities in a pazallel processing system. Such activities

include parallel operations, synchronization, contention for

resources, and Queuing.
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GSPNs are a very versatile modeling tool. The probabilistic
nature of GSPNs allows systems operations to be described in a
high level of abstraction. As indicated in chapter 2, Petri Nets
(PNs) are very powerful in modeling parallel activities and
synchronization. A distinctive feature of GSPNs, with respect to
standard PNs models, is their isomorphism with markovian models,
which allows evaluation of the performance of a system. However,
GSPN models eliminate a major difficulty in the direct
construction of a Markov chain, that is, its state space
definition. Also GSPN models retain much of the characteristics
of the system, therfore they provide greater insight into the
various system activities.

In section 2, a2 more detailed description of GSPNs will be
given. The analysis of GSPNs, however, will be deferred to the
next chapter. In section 3, modeling parallel processing systems
using GSPNs will be considered. And in section 4, an approximate
dierarchical model for large scale systems, using both tractable
QNs and GSPNs, will be presented.

4.2 Description of GSPNs

Recall the definition of a Stochastic Petri Net (SPN)
(MOL8l]), which consists of a set of places P, a set of
transitions T, the input output functions I and 0, and the set of
transition firing rates R.

spPN = (P,T,I1,0,R),
where, P = {pl,p2,...,p0n}, T = {£1,82,...,tm},
I:PXT «==» N , O:TXP -=-» N , and R = (zl,z2,...,rm}

For a given initial marking M1, the reachability set S can be
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cbtained using the same analysis performed on standard PNs.

Once enabled, a transition ti €T takes an exponentially
distributed random time, with rate rj, to fire. In a GSPN
transition fi:ing':ates can be infinite. Therefore the set T is
partitioned into a set of timed transitions with finite firing

rates defined in the set R, and a set of immediate transiticns.

" Clearly, for any marking in S at which several timed transitions,

and one immediate transition, are enabled, the immediate
transition fires with probability one. However, if several
inmediate transitions are simultaneously enabled at a marking,
then it is necessary to define a probability density function on
the set of enabled immediate transitions according to which the
firing immediate transition is selected. This is defined more

precisely as follows,

Definition 1 : Let Ti(M) = {til,ti2,...,tik} be the set of all

enabled immediate transitions at a marking M € S. If k > 1, then
3 probability distribution, called the switching distribution
K
Py(tij), 3j=1,..,k, with :E;,l Py(tij) = 1, is defined on the
set Ti(M) such that transition tij fires with probability
Py(tij). This set of immediate transitions together with the

associated switching distribution is called a random switch.

The reachability set S of a GSPN is a subset of the
teachability set of the associated PN, because precedehce rules
introduced with the immediate transitions do not allow some
states to be reached. For example, figure 4.1 shows a GSPN where

{el,t2} are timed transitions , and (t3,t4} are immediate

tzansitions. Clearly a marking with two tokens in place p3
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<annot be reached. Note also that a switching distribution must

LY

Je defined on transitions t3 and t4 since they are simultaneously

!knabled when there is a token in p3.
., A crucial aspect of the definition of a GSPN is the
2Pﬁxc:lel'xt:if.icat:i.on of all random switches and the correct definition
Tof the switching distribution. This distribution, however, cannot
J¢ clearly specified when the set Ti contains independent
wmiransitions. Since it represents possibly unclear relation
-.Setween fast independent events in a system. In the following we
K:est:ict our discussion on immediate transitions to address this
Eissue.
--Cefinition 2: a set of transitions are said to be independent if
ané cnly if they do not share any input place. Let Pin = { pk /

jl(pk.ci) > @ } be the set of input places of transiticn ti € T.

Then transiticns ti,tj € T are independent if and only if,

2
AN

?ia(ti) ) Pin{tj) = &. Otherwise they are said to be dependent.

o
e
. "

For example consider the portion of a GSPN shown in figure
.1 (b). Assume %tl fires first, so that a token moves to place

2l, thus enabling the immediate transitions t4 and t5. Siace

| AR

- these transitions are dependent, the switching distribution can

o~ r
*

te easily specified because it depends on scme local behaviour of

Pl

the system. Let P(t4) and P(t5) be the switching distribution

defined on (t4,t5}. Similarly, if t2 fires £first, let P(t6) and

e
- 8

?2(t7) be the distribution defined on {t6,t7}. Now if t3 fires
e Sfirst, a token is placed in both pl and p2, thus enabling the

four immediate transitions t4, tS5, t6, and t7. However, since
¢ transitions in {t4,t5} and (t6,t7} are independent , the

E sditching distribution on {t4,t5,t6,t7} accounts for possibly

o 'hj'.ltA\)_‘. " o IR ST S A N
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unclear relation between two separate parts of ths system.

Ry

It is implicitly assumed in the above definition of a random

sditch that no two transitions can fire simultaneously even if

4

o0 12222

they ,are independent. In the sequal we relaxe this assumption to
find a more general definition of the switching disribution.

Definition 3: a set of enabled transitions are said to be

autually exclusive , i.e., only one of them can fire , if they

are dependent.

Definition 4: for each set Tj = {tjl,tj2,..,tjr} of mutually

exclusive immediate transitions, defineaswitching probability
distribution Pd(tjk), k = 1,2,..r, such that 2','(:1 pd(tjk) = 1.

For example figure 4.1 (c) shows a set of dependent
transitions (tl,t2,t3,t4} with a common input place p2. In a
marking with a token in both pl and p2, tl and t2 are mutually
exclusive and a switching distribution must be specified on the
subset {tl,t2}. Similarly, for a marking where pl, p2, and p3 are
full, a switching distribution must be defineéd on the set
{el,£2,t3,t4}.

Now let H(M) be the set of all enabled immediate transitions
at a marking M. H(M) can be partitioned into several subsets of
Jutually exclusive transitionms Qi(M), i=l,..,2, such that for any
tu ¢ Qi(M) and tv € Qj(M), i#j, tu and tv are independent. Let
?in(tij) be the local switching distributicn defined on the set
of mutually exclusive transitions Qi(M). Assuming that
independent transitions can fire simultaneously, let M =
(£1,E2,..,2J} be the event space at marking M, whers Z2i,
i=1,...,2, are the events when only one transition in Qi (M)

fires, Bi, i=z+l,...,2!/(2!*(2=2)!) are the events when exactly

s v'ﬁ"('._f I P e N T o i T A
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§ o transitions fire simultaneously, and EJ, J=(2%2-1), is the
7ent when 2 transitions fire. Also let P(Ei) be the probability"

’ ‘ . . T .

. X event Ei, 1is=sl,...,J, such that 25;.1 P(E1i) = 1. These

g ricbabilities can be defined by the system analyst if the
t2lations between the parts of the system represented by the sets

b . 3f transitions Qi(M) is clear. If this is not possible, the above

events can be assumed to be equally likely , and in this case

P(Ei) = 1/(2%-1) o i%l, 0000000, (2221)
The global switching distribution of the set H{(M) can then

e defined as follows,

Py(til,ti2,...,tik) = P(Ek) . pa@3l(ril) . paQI2(ri2)
. . . . Pdek(tik) ’

k=1'ooo" (22"1)

dhere P, (til,ti2,...,tik) is the probability that the set of
transitions {til,ti2,..,tik} will simultaneously fire, Ek is the
gvent that k transiticns one from each Qjs, s=1,..,x, will fire,
and Pinj(tij) is the probability that transition tij € Qij will

fire.

3.) Modeling Parallel Processing Systems Using GSPNs

Because of the nature of parallel processing systems, a mcdel
3f such systems has to handle such phenomena as contention for
sultiple resocurces, queueing, parallel and seguential operations.
As demonstrated earlier, unlike petri nets, analytical gqueueing
tetwork models are not adeguate for_modeling parallel

¢Perations. However, they are very pvowerful in modeling

contention fcr resources. In this section, we demonstrate by
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sixamples that GSPNs can also be used to model contention for .
n:nltiple resources. iji
'

Molloy (MOL8l]) addressed gueuing issues in Stochastic Petri
o .. N
&xas (SPNs). Where places are viewed as queues, and transitions o
. ,"\-
scdel arrival and departure events. For example consider the SPN N

~
t"

I ““shown in figure 4.2 (a). This SPN represents a service center
4ith a stream of customers arriving with an exponentially

distributed inter-arrival time with a state dependent rate rl(m),

-
Dl
[

ind exponentially distributed service time with state dependent

fate r2(m), where m is the number of customers in the center

re."

aumber of tokens in pl).

= If rl(m) and r2(m) are constants, i.e., they do not depend on
i‘ 3, then the SPN represents an M/M/1 queue. for an M/M/k queue,
ti(m) is again constant, and r2(m) is given by,

r2(m) =m . r2 » 8 <m <k

- = k., r2 , M > k
= Due to the memoryless property of the exponential
2istribution, and since we have only one class of customer, the
- acove is adequate for both first-come first-served (FCFS) and
= last-come first-served (LCFS) queuing disciplines. If the queuing
‘ discipline is processor sharing (PS), then r2(m) will be given
' 5y,

r2(m) =m . r2 0 <m <k
.. = k.r2/m ,m >k
{-' [t is not possible, however, to model service centers with

7 sutiple classes of customers and fixed priority or FCFS queuing

e
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.disciplines by SPNs. Since in this case we must take into account
~‘:he order of customers waiting for service. As shown in the

,‘;revious Chapter, this class of service centers is very important
e

_in models of parallel processing systems. In the segquel we will
’.
-~ . )
+" show that this class of service centers can be modeled by GSPNs.

= Figure 4.2 (b) shows a GSPN that represents a service center
..wi:h J classes of customers. A token in pli, i=l,..,J, represents
: 1 class i customer has arrived and is waiting for serxvice. A
token in p2i, i=1,...,J, represents that a type i customer is
- zeing served. And tokens in ps represent the number of availzble
é sarvers or resources. Again the inter-arrival (service) time of
class i customers is exponenti&lly distributed with rate rli
T (r2i).
. The gueuing discipline is assumed to be of a fixed priority,

4ith class 1 customers have the highest priority and class J

‘. zustomers have the lowest priocrity. When a resource becomes

2 |

2vailable, and if there are customers waiting, several immediate

“»

transitions are simultaneocusly enabled. And their switching

Ve
LA

T

distribution is defined such that the transition that corresponds

r‘

;%0 the highest priority class will fire with probability one.

g Figure 4.2 (¢) shows a GSPN model of a service center with J
customer classes and FCFS queuing discipline. The queue portion
9f the model is divided into s stages where customers are ordered
- according to their arrival., It is assumed in this model that the

f SJaximum number o0f customers that can exist in the center is

{s+X), where k is the number o¢f available resources (number of

tckens in gs).

P The following example demonstrates the ability cf GSPNstd
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I‘,.l

!h aodel sequential and synchronized parallel operation, and
it:’ contantion for multiple resources.

;g Sxample 4.1 : Consider a system consisting of two service
‘&f centers. Service center one (SCl) consists of an infinite number
’& of servers (e.g. IS gqueue). Service center two (SC2) consists of
s two resources with FCFS scheduling policy. Jobs in the system
consist of either a sequential task (labeled 1), or a sequential
task followed by two synchroncus parallel tasks (labeled 2 and
J). The GSPN shown in figure 4.3 models the activities in such
:.3 systaﬁ when there is only one job in the system at a time. A
BE token in places 1,2 and 3 indicates that a type i task ; i=1,2,3
is being serviced at SCl. Also a token in places 16, 11 and 12

<7 indicates that a type 1 task is being serviced at SC2 and a token

i in places 14,15 and 16 indicates that task i has completed. When

a2 job is completed we assume that a similar one immediatly enters
(- the system. The rates r; of timed transitions t; ; i=l,2,...,6 ,
= are given by,

Ly = mi/Sil ¢ is1,2,3

= 1/sy2 ; k=1,2,3 , i=4,5,6 ,respectively

N “here m; is the number of tokens in place i, and Sjjy = mean

service time of type i task at SCj ; i=1,2,3 , j=1,2.

‘ Also, the branching probabilities (of immediate transitions) are
. defined as follows,

-

> = probability that a type i task will visit SCk upon

Pijx
cempleting service at SCj , i=1,2,3 , j,kx=1,2, and

P 8

ToTTEERSSTE O OTR W W W W W YWY W R,WTW

Pijg » probability that a type i task will terminate upon

7isiting SCj ; i=1,2,3 , j=1,2,
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Also, p' is the probability that a type 1 task, upon terminating,

YA

will spawn two synchronous tasks.

Transition tl6 models the synchronization operation between

e

the two parallel tasks and is enabled when both tasks have
completed service. When the multiprogramming level is greater
than one, i.e., there are several jobs that are being processed
simultaneously in the system, synchronization must be acheived
g only between parallel tasks that belong to the same job.
| Therefore we must find a way to identify such tasks. This can be

done by using colored tokens. In this case the initial marking is
E defined by the number of tokens in pl and each token is given a
distinct c¢olor. The state or marking of the colored GSPN is
defined by the number and color of tokens in each place, i.e.,
- the current marking M is given by,
- M= {(ml,m2,.....,mn} , and

mi = {mil,mi2,..mik}

whefe mij is the number of tokens of color j in place Pij. In this
case a transition is enabled if there exists a token of the same
color in each one of its input places. And it fi:es‘by removing
these tokens and depositing a token of the same color in 2ach one
of its output places. For example transition tl6é is enabled when
there is a token cf the same color in places 135 anf 16, and its

firing resembles the synchronization of two parallel tasks that

belong to the same job. Tokens in place 13, however, are not
Y colored since they represent available resources at SC2.

Therefore, transiticon tl3 is enabled when there is a colored

- token in place 7, and 2 token in 13, and fires by taking these

tokans and depositing a token in 10 with the same color as the

e e e D A et e . .-
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. enabling token in 7. And transition t4 fires by taking a token

from place 10 and depositing one with the same color in 17, and a

~* noncolored one in 13.

v It can be easily seen that the GSPN model is adequate for
?’ explicitly representing all key activities in a parallel
processing system. However, for large scale systems with large
number of service centers, and a workload with a large number of
different types of tasks, the model becomes quite complex. The
complexity of the model arises not only from the explicit
E representation of the various activities by places and

transitions, but also due to the fact that the number of states
o (markings) will be prohibitively large. Therefore, the analysis
i of the model will be very complex. In the next section, an

approximate hierarchical model, which is adequate for large scale

ch
AP

systems, 1s presentad.

-

= 4.4 An Approximate Hierarchical Model

~ In this section 2 hierachical model will be discussed. It

4

- employs both QNs and GSPNs. QMNs are usad to represent queuing and

E: contention for multiple rescurces. And GSPNs are used to

= represent concurrant activities,

' The model is based on multiple time scale decompositicn. The

5? time behaviour of the system can be divided in two time scales, a
i - fast time scale, and a slow time scale. The fast time scale
: ccemprises activities describing the contention or 2a2xecution of
g'ﬁ tasks at a certain resource in the system. And the slow time

scale comprises activities describing the execution of tasks in
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the system as a whole. The motivation behind the above assumption
comes from the fact that, tasks in a.system need several CPU-IO0
processing cycles before they terminate. Therefore, the soujorn
time of a task in the system is much larger than the time needed
by that task to execute at one of the resources during a cycle.
4.4.1 Model Discription

The model consists of two hierachical levels. At the lower
level, the parallel processing system under consideration is
represented by a multi-chain closed queuing network (QN). The
system consists of a £finite number K of servers including
processors and IO devices, a particular pseudoserver labled @,
and a finite number of jobs N (the multiprogramming level). A job
consists of several synchronous and asynchronous tasks. The
pseudoservexr, server 9, is a node in the network defined to
accomodate changes in the number of tasks being processed in the
system,

Let L denote the total number of the different <types
(statistically non-identical) tasks of the N jobs. The model
assumes the availability of the routing behaviour as well as the
service time distributions of the different types of tasks. Let
pijk denote the probability that a type i task goes to server k
after visiting sever j, and let sij denote the mean service tine
of type i task at server j. In order to make the model
computationally feasible, we assume that the QN have a preduct
form solution for a fixed number of the different types of tasks.
Therefore, the gqueuing disciplines at each of the X servers are
restricted to either, FCFS, processor sharing (PS), infinite

server (IS), or last-come-first-served preemptiva resume
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(LCESPR). The service times may have arbitrary distributions,

p except at FCFS servers in which case the service times of all
tasks are exponentially distributed with a common mean, i.e., Sij
i is independent of i if server j is a FCFS queue. These are the

standard assumptions for a queuing network to have a product form

k|

A

solution [CHA77]. The QN can then be analyzed by the fast and

(3¢

simple Mean Value Analysis (MVA) algorithm of Reiser and
Lavenberg [REI8J]. However, an approximate analysis of some non-
ﬁ product form QN's, for example when a FCFS gqueue have
o non-exponential service time distribution, can be obtained using
the extended MVA algorithm developed by Bard ([BAR79].
. At the higher level of the hierarchy, the behaviour or
i structure of jobs is modeled by means of a GSPN. In the GSPN,
tokens represent tasks, places define the type and state of tasks
in the QN (e.g., a task can be active, i.e., being processed, or

is completed), and transitions resemble the activities of

-

- spawning, synchronization, or execution of tasks. an enabled
E timed transition resembles that a task is being processed in the
‘,

system, and it fires when the task is completed. Therefore, the
state (marking) of the GSPN defines the number of the different
types of tasks competing for resources in the QN.

The QN is solved for each state M cf the GSPN with different

number of active tasks to determine the firing rates of enabled

of

transitions. The rate of tranmsition t; (r;(M)) is =he throughpu
of type i tasks at node @ of the QN, 2= state M, Hara2 we also

assume that the times between task arrivals at nods J (task

completions) are exponentially distributed. The correctness of
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|  this assumption was proved by Courtios and Kleison [cOoU77,KEIL78].
'.
':S‘rhe local performance parameters such as the steady state

b e e

sutilization ug (M), and mean gqueue length lj(M) of server j is
“also evaluated at each state M.

;; The GSPN is then solved for the steady state probability

distribution. The global performance parameters are obtained from

3
~local ones as follows:

l.:;. Ri=Zyes £4 (M . P(M) , i=0,...,L

. Uj’f“és uj (M) . P(M) ’ Lj'f{qes lj (M) . P(M) ’ jal'.."K

£'1'7 where, P(M) (M S), is the steady state probability distribution
g.énd S is the state space or reachability set of the GSPN. Also

Ry is the throughput of type i task at node 4, Uj and Lj are the

PR
oA

global utilization and mean gqueue length of server J
. respectively.

To further illustrate the above model, let us consider the
= following two examples:

n Example 4.3: Asynchronous tasks.

Let us consider the case where there are N statistically
identical (s.i.) jobs in the system. Each job consists of a
grimary task (type @), and one or more s.i. asynchronous (type 1)
. tasks initiated one at a time by the primary task, and execute
. concurrently with it and terminate independently. Also consider

the central server QN model shown in figure 4.4. The model
.~ consists of a processor queue, and an I0 gueue. The processor
. Queue is assumed to be a single server queue with a PS queuing

discipline, and the I0 gueue is single server gqueues with FCFS
}. queuing discipline. Figure 4.5 shows the SPN model of jobs
sehaviour (with N=22), The state of the SPN is M=(N,k), where N is
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the number of primary tasks (tokens in p;p), and k is the number

J‘J
L4 |7

iﬁ of spawned secondary tasks (tokens in Ppj). The firing of

N

| SO

_ E transition ty resembles the initiation of a secondary task, where
‘- a token is placed in p,. The firing of t; resembles the &
é E? termination of a secondary task, where a token is taken out of ;
.?- P2. The firing rates of these transitions rg(N,k) and rj(N,k) are
Q i the throughputs of N type @ and k type 1 tasks at node @ of the

QN, respectively. The corresponding M.C of the SPN is shown in

figure 4.6. This M.C obeys local balance, i.e., at steady state,
the balance equations are,
rg(Z'k-l).P(k-l) = rl(zlk)vp(k) k>d,
) ¥
and with :Ek,e P(k)=1l, the staady state probability distribution
is then,
K=t
P(@). ;TG ry(2,i)/80(2,i¢1) k>@, and

-1

P (k)

P(3)
The global performance parameters are evaluated as follows:
-
Ry = =g=g r;(2,%) . P(Kk) i=g,1,
L J .
U; = ZxZg uj(2,k) . P(k), and Q3 = Zg.g ay(2,K).B(k)
(4 j’l,Z,...,t‘H’l

The existence of the above solution can be easily proved

o since rg(2,k)/ry(2,k) < 1 for all k>2. Therefore the term
K1

35 iIE rg(2,i)/ry(2,i+1) rapidly tends to zero as X increases, and

3
' i
. the above infinite sum can be accuratly approximated by taking a
} -" -
| .’.-
o finite number of terms.
ﬁ Zxample 4.4: Synchronous tasks.
|

Let us consider the case where a primary task subdivides into
2xactly two secondary (type 1, and type 2) synchronous concurrent

. tasks. When a secondary task completes, it must wait until its
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N

.. 8sibling has completed, at which time the primary task becomes

Zactive again and the process is repeated. The GSPN snown in
'figu:e ‘4,7 resembles this behaviour (N=l). The number of tokens

in p, and p3 are equal to the number of active type 1 and type 2

o
¥ tasks respectively. The number of tokens in py and pg are the

[ 4

number of completed tasks that are waiting for their siblings.

Ny |

The reachability set of the GSPN is shown in table 4.1. And the

corresponding MC is shown in figure 4.8. As mentioned in the

.. previous section, if N > 1, the tokens are colored to acheive

proper synchronization between the secondary tasks. Therefore,

é each token defined initially ian p; should have a distinct color.

Now consider the simple three chain QN model shown in figure

"+ 4.9 Both the processor and 10 gueues are two server queues, Since

i with N=1 there will be a most two tasks in the system at any

given time, the queues are effectively IS (no contention).

= Let the mean service time of the above tasks be,

-~ Sj1 = S = l sec. , i=0,1,2. Also the routing probabilities
Pi1g = ® ,i=0,1,2. Since the mean service times for a task at

- soth queues are aqual, the probability of £finding at least one

task of a certain type at any one of the gueues is 1/2. Therefore

the throughputs of tasks at node 3 are,

-t rg(l) = 1/2 1/S4, Pg1g= P/2 = ry(3) , i=1,2 , and j=2,3,4,

The rate transition matrix of the above M.C. is

-1/2 172 @ g




56

XA

o pt
%

o -
"X AR N

0
e
©
-
0
[AY]
0
(97
0
N
o
wn
2 [

w LA WN
o O O O
—
o
o
—

q. p4é P>

i

i N Table 4.1
R t3 |

Figure 4.7

.‘, . l/ '

. 0
< Nocie\ Figure 4.8
e —/
pil0, i=0,1,2
-

Figure 4.9

a
e e e AR e R e et e A A et s
et e e S T T T e e e e e e T e e e AU S AR v
C..I.-'-{'I..."J'° OIS XS 0 et e, o™t e e N TS A AR I St S LA A AR BN RGN




AR (X

A

2% S

N

A

L ]
B 4

r
>,

Using the above matrix, the steady state probability
distribution of the GSPN can be evaluated, and the global

performance parameters can be obtained as indicated earlier.

$.4.2. Theoretical Verification

The development of the above hierarchical model is based on
the concept hierarchical aggregation of continuous-time discrete-
state Markov processes. The thecry presented here was developed
in tWwo recent papers by Coderch et al [COD83a,b], which

generalizes the earlier work on decomposition of Markov chains

sroposed by Courtios ([COU77].

Let {XP(t), t>=0} be a finite state markov process (FSMP)
with rare transitions. The transition probability matrix of this
process is PP(t) = exp{A(p)t}, where

ap) = Zi.g ot Agy (3.1)
is the matrix of transition rates, and p [d,p,] is a small
sarameter modeling rare transiticns in XP(t). This process can be
-onsidered to be a perturbed version of the FSMP X°(t), where
shese rare transitions are neglected (p=d).
“efinition: XP(t) is said to be regularly perturbed if

limg_pg Supsap |[PP(0) = 2O(u)| = 3

stherWise, the perturbation is singular. In wnich case
rank A(p) > rank Agg, or equivalently, the number of srgedic
~lasses at of XP(t) is less than that cf X°(%).

1£ XP(t) is a singularly perturbed FSMP, chen
1) the limits

lim

o-»g PP(2/2F) = Py, x=1,2,...,m.
n

sv2 all well defined and deternmir

e a finita seguence cf (in
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jeneral stochastically discontinuous) FSMP's Xy (t), k=1l,..,m with
transitinn probabhility matrix P,(t) (refer to section 2 of the
22zt chapter for the detailed definition of s;ochastically
discontinuous FSMP's);
ii) the limit processes Xy(t) can be aggregated to produce a
hierarchy of simplified, approximate models of XP(t), each of
which is a FSMP valid at a certain time scale t/pk describing
changes in XP(t) at a distinct level of detail; and
iii) the collection of the aggregated models X, '(t), k=1,...,m
can then be combined to construct an asymptotic approximation of
XP(t) uniformally valid for t>=4.
The above can be expressad by the following theorem:

Theorem 1l: Let XP(t) be a singularly perturbed stochastically
continuous FSMP taking values in Eg={1,2,..,ng}, with transition
probability matrix P(t) = exp{A(p)t}, and infinitismal generator
A(p) of the form (3.1), then

i) let Ay and 2y be respectively the infinitismal generator and
the srgodic projection at zero of some FSMP X (t) taking values
ia Eg,

limp_,g SUPt ¢ (d4,T] ,l?(t/pk) - 2y exp{Akt}” = ¢

for all &>6¢, and T<xand k=1l,..,m ( T can be taken equal to s for
X=m). Furthermore, let 2Zp= Vi.Up be the canonical product
decomposition of Z, (see proposition 2.1 of the next chapter) .
Then,

ii)

m
P(z) = exp{A(p)t} = expliggt} + Zg. (Viexp{ardStlUp = Zp)+o(l)

uniformally £for t>=0, where Ay' = Uga Vy is the generatcr of a

" e %e T.T ey e Yata e
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FSMP Xi'(t) taking values in Ex={1l,..,n} and

»

bead
D = ng - Zja=g rank A;

1 %
a’s

! Proof: [COD83b)
L%

Y

The matrices Ap' and 2y are evaluated for k=0,1,2, as

&+
A
R Pt '. :

¥ follows:

Ag' = Ag = Agg

S et e e
- .

Al' = Uy Ay Vy =0 Agy V1 2
; Ay' = Uz Ay Vp = Uy (Agz - Agy A% ag1) vy, ?é&
- where A% = (Agg * Zl)'l - 21 i '-
Eh: and 2; = lim._,oo ©XP{Ag t} , or-is the solution of \
E ag 2y =8 , with 27 1¥ = 1% , where 1*T = (11 . . .1] _13

’

or can be evaluated from
B A;* 2;' =6, with 2;' 1* = 1% and then
22 =V1 2" Uy
For the expressions for higher order models refer to

- {COD83b]. Also Delebeque (DEL83] developed a recursive algorithm

to compute the above aggregated mcdels A,',

Example 4.5:

LS R
O 1
.

To illustrate the above theory, consider the simple FSMP XP(%) - N
» the state rate transition diagram of which is shown in figure \
4.10. With the transition rate p between states 2 and 3 is much :;l:

N

less than one, the process will spend a random amount of time |

e .

a sWwitching between states 1 and 2 and eventually it will get

E. trapped in 3. It is clear that we can identify phenomena occuring e
at two time scales. At the "fast" time scale only transitions .

: N

- between 1 and 2 occur and X°(t) is a good model for that. At the =
W

. "slow" time scale (t/p) a sample function of the process in the Y
e nm
- "
‘s
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: .:3it p-»@ is shown in figure 4.l11, which is denoted by X;(t). It
i s clear that this function has an infinite number of
7+ Uscontinuities on a finite time interval. The distribution of
% e random variable describing the length of this in*2rval
’ ::averges to the exponential distribution [KEI78]. This process
: :an then be approximately aggregated (figu're 4.12). The rate
s itansition matrix of the aggregated model is obtained as follows:
- let the rate transition matrix of XP(t) be expressed as,
Z . -1 1 @
. Ap) = Agg + P Agy - Agg® é -é g] , and
i ‘ _[a g e] '
351 =|@ -1 1| , then solving for the steady state
e 3 ¢ ¢
2 ;rocability matrix 2; of the process X%(t),
i agg 2; = 8 with 2; 1* =17, we have
. 1/2 1/2 a] - [1 o] fi/2 172 @
- Zy={1/2 1/2 @ |=vy U =]l 0
: a ) 1 g 1 ) ) 1l
"' ited using the above exp:essions,'
[—1/2 1/2]
= Ayt = Uy Agy YV =
2 7} g
i.50 notice that rank 3gg + rank &' = rank A(p), and therefore
iy theora 3.1,
é— exp{a(p)t) = exP{Aggt} + Vy exp{Ad; p t} Uy = 21 + o(l)
sz small t exp{ay; p t} = I , exp{A(p)t} = exp{aggt} , and
{2z large t axp{agget} = 2; exp{A(p)t) = Vv exp{Ajpt} U;
E To show the application of the above theory to the
] “izzarchical model describted in previous section, let us consider
,:2: 2x3nple 4.4 of that secticn. And let us analyze the exact
. sc.ution of the QN in figure 4.9 under the specified jcbd
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g behaviour using the Markov cba?n model. And assuming that the E

serxvice times distributions for all of the three types of tasks Ei
g in the network are exponential. The M.C. model of the QN in -~
g. figure 4.9 is shown in figuze 4.13. The state is characterized by ?

a 2X3 matrix with raws representing queues and columns

=
N representing the task types.
o For example at state 1, a type @ task is being serviced at queue
o
1 (the processors queue), while at state 2 it is being serviced
at the 10 gqueue. The transition rate from state 1 to state 2 is
E equal to 1/Sg; . (l-Pgig) = 1 - p , where Sgy=l and Pgyg = P
The limit as p-~ & can be interpreted as that the average
numder of cycles that a task makes through the processor queue
and the IO queue :eéds to infinity. If the tasks are large, i.e.,
' they need several cycles of CPU I0 procesing (p<<l) before they
E terminate (branch to node J), the above M.C. can be analyzed
- using the theory described above. Let the rate transition matrix
- of this of this M.C. be expressad as
Z A" 0 @ @
= a B" @ g
A(P) = Agg * P A where A =7 ) c" g
1} a1 ¢ 249 3 p p o
i -2 1 1 ¢
s -1 1 1 -2 ¢ 1
Y A" = cu = al‘ = ’ BII = l G -2 l R and
\ o 1 -1 g 1 1 =2
Lo @ -1 1 ¢ ¢ 0 @ @ 3 @]
N g @ ¢ ¢ ¢ @ ¢ @ 3 @
Y g ¢ -1-1 0 1 @ 1 ¢
| € a4 0 8 9 0-1 3 8 9 1
. Agl = J 3 ¢ ¢ @8 -1 9 1 @g g3
d a4 3 ¢ 9 I 3 23 ¢ @
1 g ¢ 9 6 9 9 -1 @ @
g ¢ @ ¢ ¢ ¢ ¢ @ 3 9
™ 1l ¢ ¢ 0 0 90 0 9 @g =1
- g 3 8 8 ¢ 3 ¢ 2 3 @
N AR e e R
S . e P O A ORI O SAS AN SRS
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It can be easily seen that the M.C. is decompocsed into four %

- a
DAY

B ergodic classes at zero (i.e., at p=0), with transitions Ef;"
23

l"\

. rapresented in the figure by solid lines as follows:

313{1,2} ’ 323{3141506} ' 53'{708} , and 343{9110}-

v
E-t These classes partition the M.C. into four chains with rate

B

transition matrices given by A", B", C", and D" respectively. In

&

- chain 1 the type @ task is being processed in the network in

‘ either the processor gqueue or tl;xe I0 gueue, in chain 2 both type

1 and type 2 tasks are being processed, in chain 3 the type 2

gj'.'. task only is being processed (type 1 has terminated first), and

'E in chain 4 the type 1 task is being processed (type 2 has
terminated first). The steady state probability matrix 2, can be
evaluated by solving each one of these chains separatly for the

‘ steady state probability matrices ;" , i=1,2,3,4, which are

- 1/2 1/2 .

o ;" = L2 1/2 o 1=1,3,4 , and 23" = [z34), z34= 1/4

= , 1,3=1,2,3,4

: 2, 1

- z2"

Then, Z; = 2" = V.U

- ) -1/2 12 @ ¢

' g -1 l//2 1/2 .

E and A)' = U; Agy V1 = %;% g -162 -132 . which is

) the rate transiticn matzrix of the aggregazad M.C. shewn in figure

Y $.14. This M.C. 1s the same as *theona in £fijure4.3, whizh »o
LD

corresponds to the GSPN model in figurs 4.7,
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models the system from a higher level of detail defining the
number of the different types of active tasks in the system. And
the corraesponding M.C. model of the GSPN is the aggregated model
that describes the behavicur of the process at the slow time
scale (the time required to process a whole task). While at the
fast time scale (the time required to process a portion of the
task at cne of the servers, i.e., during one cycle in the system)
the QN models the behavicur of the process at a lower level of
detail, i.e., the types of servers required and the mean service
time at each server per visit.

The above example demonstrates that the approximate
hierarchical model proposed in the previous section is based on
the approximate hierarchical aggregation of the exact M.C. model.
And the basic assumption is that jobs consists of large tasks

(i.e., tasks that :equi:é multiple accesses to many different
system rascurces befors they terminate.
1.4.3 Validation EZxamples

In this section, the accuracy of the above mcdel is validated
Dy comparison to discrete event simulation. Two examples of
systems with asynchronous tasks and synchronous-asynchronous
concurrant tasks are considered.

In the first example, the system described in example 4.3
ydith jobs consisting of asynchronous tasks, is considered. This
system was simulated 2y a simulation pregram writen ia SIMSCRI®T
[I.5. The analytical results, obtained frcm the hierarchical
model as descibed in example 4.3, were founé to he very accurate

compared to the simulaticn zasults for a variety of mcdels. Table
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;
o 4.2 shows the parameter settings for 10 different models (figure E
| Y 4.4). These parameters were chosen such that the IO server E
~7 (server 2) or the CPU server (server l), or both are heavily i
A utiltized. This corresponds to cases l-4, cases 6-9; and cases S Si
™ and 18, respectively. The mul&iprog:amming level N is equal to S 5&
? in all cases. For simplicity, The service time distributions of é
o both tasks at the IO server are assumed to be exponential with :
- the same mean S, so that the underlying QN will have a product
EI form solution. The following parameters are common to all cases,
Sy, = 9.00001 , and S, = 08,0002
£
.. Model number pélao plld Sal
g 1 a.1 g.1 3.9091
| 2 9.3 d.1 @.0601
{ - 3 8.5 g.1 g.0001
S 3 6.1 6.3 dg.0001
o 5 g.1 g.3 ¢.0001
' i 6 .1 g.1 g.001
a 7 .1 9.3 g.601
8 g.1 g.5 0.991
] 9 8.3 dg.1 g.4aal
& 19 a.s 5.1 9.001
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Table 4.2 Parameter settings for central server models.

Table 4.3 shows the results obtained for the throughputs of
tasks at the CPU, and servers utilization. The simulaticn results
are shown between paraenthesis follcwed by the relative percentage

error detween the analytical and simulation results.

N St e .

. CaAt) e T e . . - e

LT 8T @t et ey s - Nt v

L.AL)"A‘..'_.".."".t)'*.- ’: .......................................
'''''''''''''''''''''''''''''''''''''''''''''''''''''''




A |

Feel

MOCEL NO.

wn

2777
(2783),.21

1474
(L475),.33

1943
(L9@7),.29

4379 ,
(4399),.45

4926
(4951) Ics

989.7
(998.5),.88

996
(10@3),.7

997
(Lg02),.5

969.7
(981.7),1.2

935.9
(951.9),1.6

THROUGHPUTS AT CPU OF TASK
TYPE @

1
2777
(2784d),.1
4417
(4413),.04
4998
(5687),.17
1459
(1460),.06
985
(988),.35
989.7
(981.5),.83
332.2
(332.1),.93
199.6
(2¢0.1),.2
2999
(2912),.1
4679

(4734),1.1

UTILIZATION
cpU 10
.31 .999

(.31) (1.909)
.19 1.9
(.21),1.8 (1.9)
.15 l.0
(.17),11 (L.9)
.45 .99
(.44),2.2 (.99)
.49 .98

(.5@),2 (.99), 1
1.9 «36
(.99),1 (.36)
.99 .23
(.99) (.23)
1.0 .20
(.97),3 (.29)
1.9 .66
(.99),1 (.66)
.98 <94
(.98) (.94)

AP D AD A G A G G G WP TR D D D WD D D U WD WD D D D D D D, G SIS WP Y D D G D D D WD WD D D N D L WD D D WD Tn Ch D D WD WD WD G R D D

Table 4.3. Comparison between analytical and simulation cesults.
Notice that the analytical

even when one

This was not the case in the model developed in [HED 82])

0f the servers is saturated

mainly suitable for balanced systems.

Figure

results are still very accurate

(199% utilization).

which is

4.15 shows thne throughput of primarzy tasks as a

function of the muctliprogramming level N from the analytical and
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simulation models. And figure 4.16 shows the the CPU utilization
as a function of N. The parameters for these figures are as

follows,

Sgy = .0001, S;; = .@0001, S, = .2001, pg;g * .95, and py1g = -4

Example 4.7: Consider the QN in figure 4.17 with a CPU queue at
node 1, and an !0 queue at node 2. Let us assume again for
simplicity that the CPU queue is a single server queue with
processor sharing queueing discipline, and exponentially
distributed service times with mean Sj3 for type i tasks. The IO
queue is also a single server queue with FCFS queueing
discipline, and exponentially distributed service times with
common mean for all types of tasks, i.e., §S;, is independent of
i. This QN will have a product form solution for a specific
aumber of tasks.

Jobs behaviour is modeled by the GSPN in figure 4.18 ,
where a primary task may with probability P(2) subdivide into two
synchrenous (type 1 and type 2) tasks, or with probability (1l-
P(2)) spawn an asynchronous task (type 3), which executes
concurrently with 1% and terminatas independently. The markovian
model of this GSPN is complicated to evaluate., But using the
concept of hierarchical decomposition on the GSPN the above
system can be easily solved. If we assume that the initiation of
syncnronous tasks is more fraquent than asyncaronous ones (2(2) >
8.5), and that asynchreonous tasxkxs take lcnger time to exacute
than synchronous ones. Then, while a certain numbexr of
asynchzonous tasks are executing in the system, several

synchronous ones will start and terminate for some time enough to

4_“.--.-.
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E let the subnetwork that models their activities reache local
o~ equilibrium. The GSPN can then be decomposed to the GSPN (N1l) in
figure 4.7 of example 4.4 at the lower level, and the SPN (N2) in
. figure 4.5 of example‘4.3 at the higher level of the hierarchy.
e In figure 4.19, let rdl and r82 be the rates of transition tg
for N1 and N2 respectively. Then, at each state k of N2 which is
e defined by the numbei of tokens in p7 (i.e, for a certain number
of asynchronous tasks in the system), Nl is to be solved for the
local steady state probability distribution Py (M',k), M' Sy
where S; is the reachability set of N1 when there ar=a N tokens
N initially in pl (f£igure 4.19 (a)). and rdl(M',k) = P(2).rd(M',6k).
E Also the local performance parameters such as throughputs,
) utilizations, and mean queue lengths are to be evaluat2d. Then N2
can be solved as mentioned in example 4.3, with
rga(k) = (L-P(2) Zy' ¢ g1 rgM'sk) Py (M'k),

and  rg(k) = Zyr g g1 Lg(M',k) Py(M',k).
Where rg(M',k) and rg(M',k) are the throughputs of :ype J and
type 3 tasks respectively at node O of the QN at stats M=(M',k).
And the global performance parameters can be evaluated from local
cnes as mentioned before.

The above was implemented for a set of ten central server

models. Table 4.4 shows the different parameters of the models.

'—("l N

This set contains cases with only moderate utilizations at the
devices as well as heavily CPU and / or 10 bound cases. The

following parameters are commaon to all cases;

¥
i No=2, p113® 1 - P112% 9.9+ p219= 1 - pp0% 3.2,

p3lg= 1 - P312°% 2.1 , Sgl= .31 , and 33l= 3.9393
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Model number P(2)

N
1 3.9

i
::" 2 G . 7
T 3 8.5

ot
4 8.9
éﬁ S g.s
- 6 g.3
7 .9
E 6.7
9 g.5
13 g.3

Sll

.5
3.5

a.s

.01

g.a1
g.01
g.41

s2l

g.5
@.5

9.5
@.5
g.5
.5
g.d85
g.05
.45
.85

s2

g.1
G.l

g.1
.04
.04
g.94
g.098
g.008
@.008
g.a08

Table 4.4 Paramerter settings for central server models

Notice that the synchronous tasks

asynchronous tasks are I0 bound tasks.

orogram written in SIMSCRIPT II.S.

for several minutes on an I3M 30633,

are

bound and the

Each of the above models was simulated by a simulation

And each simulation was run

Table 4.5 shows the percent :eiative errors ( ldd

percent times the absolute wvalue of

simulation estimate minus

approximate analytical value divided by simulation estimate ) for

the performance rarameters of each nodel.
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"' M0DEL THROUGHPUTS AT CPU OF TASK UTILIZATION MEAN QUEUE LENGTH s
NO. TYPE 0 1 2 3 cpu 10 AT CPU
1 ¢.1 @.3 6.9 2.2 0.5 g.9 4
2 g.6 1.6 1.6 6.5 1.9 g.1 8.5
3 14 14 1s 15 15 16 20
4 2.2 1.8 1 g.1 2.2 3.8 7.2
5 4.6 4.3 4.3 6.3 5.2 2 e.1
6 15 17 17 17 19 15 10
7 5.1 5.2 4.9 6.9 4.7 5.3 6.1
3 3.1 1.4 2.1 2.1 2.7 2.8 2.5
9 ¢.¢ 1.1 6.4 3.8 4.6 1.3 2.5
13 4.8 6.3 6.3 6.3 5.3 5.6 10

Table 4.5. Percent relative errors
Large errors were £found in models with high 10
utilization (around 99%), such as models 3 and 6. 3est results
were found in the CPU bounded models, as expected. The above
decomposition of GSPNs will be investigated further in Chapters 6

and 7.
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¥ ANALYSIS CF THE GENERALIZED STOCHASTIC PETRI NETS
9 BY STATE AGGREGATION |
' 3.1 Introduction
\’? .
{ In this chapter, the analysis of GSPNs will be considered.
X The existing methods of analysis will be briefly described with
= tieir advantages and limitations. A different and more general
E’ sethod of analysis will then be p:esented;
- As mentioned before there are two types of transitions in
- GSPNs, immediate, and timed. Once enabled, immediata transitions
;? f{ire in zero time, while timed ones fire in an exponentially
B iistributed randecm %time, Saveral t:ansi&ions may be enabled bdy a
.- szazrking. If the sat of enablad transitions H comprises only timed
3 iransitions with zrates z; (iéH), then the enadled timed
; izansition t; fires with probabilisy
£,/ cen Tk (5.1.1)
o if H comprises several timed transitions and one immediate
= tzansition, then this is the one that firas with probability one.
iﬁ 2 H comprises sevaral immediate transiticns, it s necessary to
o ssecify a probability distribution on the set of enabled
t inmediate transitions according to which the firiag transition is
ﬁ salected. The subset of d compzisiang all snabled immediata
- transitions togaether with the associated probadility distributicen
ﬁ .8 called a random switch, ané the associatad distzizution is
e talled =ha switching distrizution.
.
. Assuming that the r2achability set 3 ié fiaite, and Zirzing
'

tates of timed rtransiticns do not depend on the time parameta

B R g R R R o PP e e . - -
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,Jhoweve: they may be marking or state dependent), Marsan et al
&(uaaa41 have recognized that the time behaviour of a GSPN is
gequivalent to a stationary (hcmogenous), finite state, continuous
vtime stochastic poin% process (SPP). And that a one to one

L_a
:Vcorrespondance exist between GSPN markings and the SPP states.

'?The sample functions of the SPP may present "multiple
_Tdiscontinuities“ due to the sequential firing of one or more
; immediate transitions. The process is observed to spend a non-
negative amount of time iﬁ markings enabling timed transitions

only, while it transits in zero time through markings enabling

immediate transitions. It is called tangible a state (or a
- marking) of the former type and vanishing a state (or a marking)
of the latter type.
- Therefore, the state space of the GSPN is divided into, a set
-~ of tangible states, and a set of vanishing states. Furthermore,
dv assumiag that the GSPN is irzeducible, i.2., each element of
the set o0f all possible markings S is reachable with a non-zero
. Dorobability from any other state of the set (no markiag, or a
% group of markings exists that absorbs the process), they preposed
w0 solution methods for evaluating the steady state probability
. distributions of the GSPN.
3 The first methcd, which is a simple extension of the one
7. proposed by molloy (MOL8Ll], assumes that 2ll immediate
. tzansicions are replaced by timed transitiocas cha:ac:e:ized by
t 7ezy high £izing ratas propotional to an arbitrazy value x. Under
- this assumpticon all states are tangipble, and the GSPN reduces &to
a standard SPN, which can be analyzad by solving the

corzresponding M.C.. If an explicit solution expression £or the
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srobability distribution of this SPN is obtained, the steady
states probability distzibution of the original GSPN can be
obtained by taking the limit £or x going to infinity of such
solution. However, since most practical caées involve GSPNs with
a large state space, an explicit expression of the solution in
terms of % is usually not easy to obtain, and the practical
approach that can be suggested of numerically solving the problem
5y assuming x to be very large and setting to zero those
srobabilities that appear exceptionally small, is confronted Dby
numerical problems. Moreover, the above method not only requires
useless computations of the probabilities of vanishing states,
but it also increases the computational complexity by enlarging
the size of the rate transition matrix.

The second method proposad in (MARS4] eliminates some of the

disadvantages of the above method, Dby computing the total

transition probabilities among tangible states only. The method

is described as follows:

Let § = state space of the SP?, |S| =ks
T = set of tangible states in $PP, iT]=kt
V = set of vanishiang states in SPP, [VI=kv

with $§ =720V, TNV = 4@, and ks = xt + Kkv.

Disregarding £or :the time being the concept of time, and
focusing attention on the set of states in which the process is
led because 32 a transition out of a given state, it is chsezved
that a stationary embeded markov chain (EMC) can be recognized

within the 3PP, The tsransition probability of this EMC can be

written as follows:
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The elements of matrix A, which represent the probability

r.
ALA

that the process will go to a vanishing state (C) or to 2
tangible state (D) given that it is at a vanishing state, can be
% obtained using the switching disributions of random switches. And
the elements of B, which represent the transition probabiiicies
can be obtained

given that the process is in a tangible state,

usingthe firing rates of timed transitions as in relationS.1l.1.

4 B

The transition probability matrix Q = [qij] between tangible
ﬁ states only can be computed as follows:

N Qi = £5§ + Srev @ir Prlz-»13l, i,jeT, rev (5.1.2)

- where fij is the transition probability from tangible state i to
tangible state j, e;, is the transitionm probability from i to a
vanishing state r, and Pr(r-+ j] represents the probability that

the SPP moves from the state r to the state j in an arbitrary

aumber of steps following a path through vanishing states only.

L", .
AR

The probabilities of reaching tangible states in exactly k steps
of vanishing states starting from a vanishing state are given by
K
ck =2 .5 ch oo (5.1.3)

The irzeducibility property of the SPP insures that the
spectral radium of the matrix C is less than one. This implies
, . K n ... :
that the limit of the sum limy_, 4o Z?xﬂ? CH" exists, and is

finite. Egquation (i.2) ia the matzix £orm tecomes

Q =F + £ GO° (5.1.4)

K
S5 ch D, where CP=3 b > k
GOO= Q -
(I - ¢)=l , since this equals %o ::L-G ch o

TS .. .
T N e e
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o
‘rh1ch corresponds to cases where there exist no loops among
vanxahxng states, and cases where such loops exist, respectively.

m The solution of the system of linear equations ¥ = Y.Q, can
sbe interpreted in terms of the number of transitions performed by
1»He EMC obserwving that

1/y; = E{ number of transitions performed by the EMC to return
o to state i }

Selecting state i as a refersnce state,
éLet Vij = vy3/¥y " E{ number of visits to state j between two

subsequentvisits to state i}

-~
[ A
A
.

The computation of steady state probability distribution of
ithe SPP can be obtained reintroducing the concept of time by
means of the average sojourn time in each state (STi , iéT) as
follows:
® Let Hi = sat of timed transitions enablaed at state i

then STi = 1/Zvenyi rx + 1s the average sojourn time for state
i,
The amount of time spent by the SPP to return to state i is

= =fjeT Vij STi , where Vij is con;idered to be the mean

—L< n; v

amount of time spent by the SPP in state j during a cycle. The

LR
3
.

average fraction of time spent by the SPP in each of its states

s

is given by

™=

Pj’VijSTi/Wi ’ 353

« “hich is the steady state probability distribution of the $?2P.
.:,

The advantage of the above metheé over thae first method

E is that it zeduces the impact of the size of the set of vanishing

80
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Tstates on the complexity of the solution from O(ks**3) in the
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first methed to O(kt**3) + O(kv**3), where ks = kt + kv.

Appart frem the fact that SPP must be irreducible, the above
E,}:ethod, however, have a serious limitation. It implicitly assumes
.that the steady state probabilities of all markings that enable

. immediate transitions are zero. This limitation will be

- demonstrated by the following example.

ixample S.1
31;; Consider the GSPN in figure 5.1, t; and t,; are timed
-H transitions with rates r; and r; respectively. The rest of the

tzansitions are immediate transitions. The reachability set S

"~ with one token in the network is

1 19da¢@
{:f 2 a14d0
- I G010 -
4 03961

Solving £for the steady state probability distributicn of the

above states using' the first method, where we assume that the

fizing zates of all immediate &transitions is x, the rate

tzansition matrix of the corresponding M.C. is,

<.
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The S.S. probabilities P = [Pl P2 P3 P4] are obtained by

54

solving

4
PA=0, with Z;_; Pi =1

ML

§ Let d = 2 zy/x + 2(l+ry1/z3) + ryra/x

e

then,

W

Pl = (l+:l/x)/d P) PZ. =1/4 , PI = (l+rz/x) El/(rz d),

and P4 = ry) /(zy @) .

.F&l ’,

in the limit as x-- 00, we have

-2

E Pl = P2 = 1/2 . ry/(ry+ry) , and P3 = P4 = 1/2, ry/(ry+rsy)

pel Using the second solution methcd, although the GSPN and the
corresponding SPP is irreducible, it is treated by this method as

= if it is reducible to two ergodic classes: states 1 and 2 as the

. first, and states 3 and 4 as the second class. Therefore, the
method is not applicaﬁle in this case, and in any GSPN where

“. ergodic instantaneous markings exist.

> To demonstrate the importance of the above class of GSPNs,

consider the matrix A in the above example. If every element in A

is divided by x, then

A = A(p) = A0 + p Al, where p = 1/x,

-1 1 @ @ g 2 g ]

o 1 -1 0 4 g -zrl rl @
b AQ = g ¢ -1 1}, and Al =@ g g g
g 9 1 -1 2 ¢ g -r2

atatht
2% s

The steady state probability distributiocon of the GSPN can be

obtained from those of the above M.C., be letting p =--» J., Clearly

i, o

the above M.C. is singularly perturbed since raak aA(p) > rank

L

A(d). Therefore, a GSPN is equivalent, in the sense of steady

kY

B sctate probability distributions to a perturbed S2N with rare
N
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transitions modeled by a small parameter p in the limit when
p ~=->» 3. And the class of GSPNs, equivalent at the limit to
singularly perturbed SPNs, have an important role in the
hierarchical aggregation of the later. The hierarchical
aggregation of SPNs will be described in Chapter 7.

In the next and subsequent sections we will introduce a more
general solution method that will alleviate the computational and
numérical disadvantages of the first method by eliminating the
set of vanishing states, and generalize the second method. The
method that will be discussed is based on charactrizing the GSPN
time behaviour by a stochastically discontinuous finite state

Markov process, which is a special SPP. The properties of this

process will be discussed in detail in the following section.
5.2 Stochastically Discontinuous Finite State Markov Process

The stochastically discontinuous, continuous-time, finite
state markov process is a process (x(t), t 2 @} that may undergo
an infinite aumber of transitions in finite time intervals. Such
processes violate the continuity condition

lime_y g Prix(t) = X(8) } =1

They wére first analyzed in (L0042, and DIN65), but were
considered pathological from an application viewpoint, and since
then stochastic continuity has been a standard assumption in the
literature. Coderch ([COD83k] has recognized that stochastically
discontinuous processes are obtained as limits of marzkov
processes with transition rates of different orders sof magnitude,
and that the stochastic discontinuity property has a natural and
important interpretation in this context.

Stochastically Qdiscontinuocus FSMP's (SDMP) are




85

:?ha:acterized as follows:
"y

Let (X(t), t > 0} be a FSMP taking values in a finite state
v'space E = {el,e2,...,2n}. This process is completely described by

‘uts transition probability matrix P(t) whose elements are
o

pij(t) = Pr(X(t) = 3j / X(@8) =i}, i,j€éE, t > 0.

7
‘and satisfies the following conditions:

| ci) P(@) = I, ii) P(r) > @ , iii) P(t) . 1*s 1%, and
[ ]
iv) P(t) P(s) = P(t+s) t,s > @, 1*Tafi 1 .....1].

ﬁ It is known that P(t) is continuous for t > @, and the limit

vlime_5 g P(8) = 2 always exists., If Z is the identity matrix then

. A

the process x(t) is called stochastically continuous, otherwise

Eit is stochastically discontinuous with the following transition
probability matrix:

“Theorem 2.1: If P(t) is the transition probability matrix of a
SDMP then,

P(t) = 2 expfA t} t >0 (5.2.1)

r*':" T"‘P-P' "-

Ec: a pair of matrices Z, A satisfyving:
;11) Z2>8, z.1%=1%, 2222 ; Qi) Z.A = A.Z = A;
iii) a.1*=1% ; iv) A + c 2z > @ for some c > @.

] Conversaly, any matrices A, 2 satisfying the (i)=(iv)

;ﬂuniqﬁely determine a FSMP with transition probability matrix
'1 given by (5.2.1).
, - Proof: (COD83b].

'4 . ] '] - -
v The matrix z = lxmt_,,g P(t) is referred to as the ezgedic

‘Q’p:ojection at zero, and the matrix A = liap_, g (P(h)=-2)/h is
e

if*alled the infinitismal generator of 2(t).
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The diagonal entries of the matrix 2 classify the states of
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- the process as follows:
K2

$'..

" "Definitionl: A state i is called instantaneous if z2;4 <1, and

86

Eregular if z;; = 1. An instantaneous state j is called evanescent

& if zjj = g,
- It was proved that:

f 1) the sojourn time in an instantaneous state is zero with

probability one (w.p.l), and in a regular state i {is

i exponentially distributed with rate a;; (diagonal entries in A).

2) Even though the duration of stays in a given instantaneous

v
(AR
AR

state is zero w.p.l, there is, in general, a non-zeroc probability

-
! b4

of finding the process in an instantaneous state at any given
;E time. However, the probability of finding the process in an

evanescent state at any given time is zero. The evanescent states
N can thus be negelected in the sense that therea exists a version
of the process X(t) with the same finite dimensiocnal

distributions which does not taxke values in the set 0f evanescent

-

“- states.

. 3) 2 is the matrix of ergodic probabilities of a markov chain
- and as such it determines a partition of the state space E in
&5 terms of ergodic classes E; , i=l,...,s, and transient states Eg,

. e, E = (U Bj) U Eg (5.2.2)

v this is referred t9 as the ergodic partition at zero. Each
ergodic class E; consists of either one element ( a regular

state), or several elements (instantaneous states). The set of

L transient states ET charactarizes the evanescent states.

D A .

= The evolution of a SOMP can be thought of as followsé wnile
in a regular state it behaves as a stochastically continuous

- prccess, Upon entering a state belonging to an ergoedic class at
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t2

‘i zero wigh more than one state, say, Ex, the process starts
stitching instantanuously among the states in Ex. The amount of
Ii‘l.cj,me spent in Ep is exponentially distributed, and after a random
Ejstay in Ey the process jumps to some state in E-Ex. Evanescent
* = states may be visited during transitions between the ergodic

Classes at zero.

The probabilistic properties of a SDMP are derived from its

. ergodic projection at zero plus an aggregated version of the
process that is stochastically continuous. This can be
demonstrated. as follows:

orooosition 2.1: Let Z be the ergodic projection at zero of a

SOMP, then by adequate orderi.g of states,

zll g e s eetosr o ’ ﬁ
g 222 LR I I I A I AR Y a :
zZ =1 . . (5.2.3) ;
. . 2gq a
Z1,s+1 23,5+l ¢

e with 2y, = l"'.wkT » k=l,...s, for some vectcr wy > 3 such that
wkT.l+ = 1; and Zy g4 = dk.wkT » k=l,...s fcr a set of vectors

$
de 2 @, such that S .; dy = L%,

?.
i
j
i
’[ »
)
b
»

ANS

s JIs5

Furthermore, define the (nxs) matrix V and the (sxnj matrix U

as follows:

..
o
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k
l+ g ........aﬂ
G l+ ® ¢ 0o 000 a
v s, g . g
. . 1* o
. . 8 1%
d d d
B 1 2 {J
wlr g ® & 0 0 60 00 0
a WZ? eeaoeoe g
U = » . [ ] G (502.4)
g g ) wsT @
Then, 3 =
vV.0=2, 0.,.Vs] ' (5.2.9)

Proof: Follows from the fact that 2 is the matrix of ergodic
procabilities of a markov chain. The vector w, is the vectoﬁ of
steady state probabilities of a chain with state space B and
steady state transition matrix Zy,. The vectors d, are the
trapping probabilities from transient states to the ergodic

classes (D00QS3].

The structure of (5.2.3) makes explicit the ergodic partition
at 2ero. (2.4) is called the canonical product decomposition of
2. Also U and V satisfy the following

t.1*s1*, v,1t=1*,0.220,ad2.VasvV
Theorem 2.2: Let P(t) = Z exp{A t} be the transition probability
Zatrix of a SDMP X(t) taking values in E={el,e2,...,en} and let s
Se the number of ergodic classes at 2ero., Lat Z = V . U be the

canonical product decomposition ¢f 2, then

P'(t) = U P(2) V = exp{U A V &} , for all = > @ ($5.2.9)

88
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is the transition probability matrix of a stochastically
continuous FSMP taking values in E'={el',e2',...,es'}, and

P(t) = V P'(t) U . for all t > @ | (5.2.7)
Proof: ([COD83Db]

Equation (2.6) can be interpreted as performing an
aggregation operation that masks the stochastically discontinuous
nature of P(t). Also egquation (2.7) can be interpreted as
follows:

Pr{X(c)=ei / X(O)=ejl= Wij « Pr{X'(t)=el' / X'(0d)=ep'}

r ej EBp . eiek
where wyj is the component of the steady state probability vector
w; corresponding to ei. That is, the transitions between the
ergodic classes £; are governed by the aggregated process, while
once in one of the classes E;, the probabilities w; are
immediatly established due to &the instantaneous nature of
transitions.

12 should be noted here that the above aggregaticn is exact,
i.e., there is no approximaﬁion involved whatscever, whereas the
aggragation described in the previous chapter was approximate due
to the fact that the transitions were not guite instantaneous.

Corollarv 2.1: The rate transition matrix A' of the aggraegated

process X'(t), which is the infinitismal generator of P'(t), is
given by,

A' = 0 ALV (5.2.8)
where A; is the matrix of transition rates of the process X(%)
when all instantaneous transiticns have been ramoved.

Proof: Ffollows £from theorem 2.2 above, and the theory of




...........
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e singularly perturbed FSMP's presented in the previous chapter.
Example 5.2: Consider the GSPN in figure 1.1 of the previous
g section. The graph of the GSPN represents the transigion diagram

of a SOMP with state space E={el,e2,23,e4} represented as follows

el 10090

e2 61009
el e 9149
ed g adgl

Clearly the ergocdic partition at 2ero is
£1={el,e2} , and Ej={el, e4}
2;, @ 172 172
and 2 = » Wwhere Z)13273% ’
¢ 22 /2 172
since wiT = wZT = (1/2 1/2] '

1/2 1/2 @ ]

then V = , and U =

Q0 re -
Hrraa

) a l/2 1/2

The rate transition matzix A' is given by

g g ) g
g -r) £y g
A' = A1 V. , where A; = g g 2 g
1:2 g g -rz

-1/2 3 1/2 3
1/2 4 =1/2 £3

then A' =

Solving the aggregated process for the steady state prcbabilities

of the ergodic classes, we have

¢ P(Ey) = r3 / (zy*r2) ,  B(E3) = ry / (r1+ry)

and the steady state probabilities of the SCMP are evaluatad by

| I

» b 2 (el) P(a3)

: . = W l . p ( E l ) ’ a nd = W . P ( E )
yool P(e2) P(ed) 2 2
: therefora, |

| e

-'.;‘;."'p;.-.;.\"'.".-_-{;:-t:‘.;:n-:.';:..:..::.:;:._... .':__-".‘;;‘_. ;.. “_'-;... .......... - ‘_:- 5 S .; --:..\'_.‘ PR
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N P(el)=P(a2)= 1/2 ry/(r1+r3) , and P(eld)=P(ed)= 1/2 1r;/(ry+rjy)
! which is the same result obtained before using the first method
)}

in section 1.

==

5.3 Evaluation of the GSPN steady state probability distribution

g In this section a solution method for the steady state
. probability distribution of the GSPN will be presented. This
= nethod is based on characterizing the time behaviour of a GSPN as
.E-; a SOME. ,

.- Theorem 3.1l: The mérkiné sequence of a live and k-bounded GSPN
2

forms a SDMP.

proof: Let S = {M1,M2,...,Mn} be a reachability set of a live
and bounded GSPN with an initial marking Ml. Since the GSPN is
live, then there exist no marking in S at which all transitions

are disabled.

- Let (X(%), £>=0} be é stochastic process wi:p a finite state
" space E = {1,2,...,n}, such that
ﬁ; l- There exist a one to one mapping T between the elements
- 0f £ and the elements of S5, i.a., for eSch Mi € s,
EE there exist a corresponding state i € B, such that F(Mi) = { ,
*;; 2- Tor each Mi,Mj € S, where Mj is reachable from Mi by the
: fizing of a transition enabled by Mi, there exists a transition
in X(t) from the corresponfing state i to j, and
£ 3- For all { € T, the soujorn time of i is equal o that
of Mi, i.e,
Pz X(w) = i, w £ (08,t]/ X(0) = i] = exp{-yi t}
r
S B R R Ny e e e e i e T T e T e




,EShe:a yi = Zz;il tj , and rj is the rate of transition tj
enabled at Mi, k>=l. If any one of these transitions is an
‘““mmediats transition, the above probability will be 2zero, since
E;he rate of such a transition is infinite. Therafore, the soujorn

>
time of state i is either zero if Mi enables any immediate

At:ansition , or exponentially distributed if Mi enables only

timed transitioas.

The state space £ of the above process can be partitioned
E}nto a set of instantaneous states, and a set of regular states
..with exponentially distributed soujorn time. Clearly, if all
states are regular, then X(t) is a finite state stochastically
&continuous Markov process. From the theory described in the
.previous section, the existence of instantaneous states results
“ia a Markov process, fhe transition probability matzix of which
Ef?(:) is discontinuous at t=3d, i.e., from theorem 2.1
P(t) = 2 exp{a &}, &> 0, P(@) =1 , and Z = ].im,:__,,° P(%)

" If all statses are ragular, then for each stat2 i , 2zii = 1, and

7 s I. If there exist an instantanecus state i, then z2ii < 1, and

the process is stochastically discontinuous. $

The above theorm astablishes the fact that the steady stata
srobability distributtion of the GSPN markings can be cbtained by
solving the corzresponding SOMP. As in the previous section, we
gead to obtain the matrices U, Vv, and A', w«which Zully
, Sharacterize the time behaviour 9f the process. These matrices
1ize cttainad as follows:

Trom the zeachability graph analysis {[NAT 80, FLO 384,835, CHI

'S] of the GS?PN under immediats transitiosns only, the

.

A rachability sat S can be partitioned intc two subsets Sl aad ss.

F'.'.'.’.q-."".v. e e LA AR T T T e et L e S T

N s A S, S (e LR o ,;_, e T e e L e e
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B 3
§rhe subset S, contains markings which enable any immediate
b

transition, and markings reachable by the firing of an immediate :
'»'tzansition. The subset S; contains all other markings.

furthermore, S, is partitioned into several subsets S2i,

r

S5,

isl,..,g, and a subset S2T7. This partition corresponds to the

3

‘e o

a

state space partition into ergodic classes at zero expressed in

- equation (2.2) as follows:

*

E=g§ = Sl U s, (5.3.1)
= 7here, S = UiK'l ei' , SH ‘(Uig’l §S2i) U sS2T , and k + g = s

which is the total number of ergodic classes at zero. Each S2i

———————
. .

consists of one ergodic class which may contain one marking that

absorb the process under immediate transitions, or several

v

Rarkings reachakle from one another by immediate &transitions.

tach ei' consists of one marking. And the set S2T consists of

——y-

transient markings.

The reason for the above modification of the partition of
* eargodic classes at zaro is to allow a more straightforward
senstructisn of the matrices U and V, which can then be

sartitioned as follows:

Sl s2

= S1 |1 ] Ix b
v s k , and U = ' (5.3.2)

$2 ) K ] K"

< . . . . . . . :
<’ Whera I, is an identity matrix of dimension k, X' is an (a=k) xg

> Catrix, and X" is a gx(n-k) matrix given by

heend i e A A R S
- ‘
» .
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rn.;qmma.:".“l LT T MR TR P B N T N ey M DS S0 DA avg
= . ~ - - .

g s21 s22 .
o -
' s21 [ 1* T

s22 1* : w,yT
!K ' = : . K"
. S2g L*
E $2T | d; d; . dg

 where d; is a vector of trapping probabilities from transient

‘-
.

‘Fmarkings to the ergodic class in S2i. And w; as before is the

quteady state probability vector of a markov chain with state

- space S2i. 3

B The vectors of trapping probabilities can easily be obtained

-~ as follows: consider an absorbing MC with a state space defined
by the union of the set S2T, and a set of g absorbing states each

i:of wnhnich corresponds to an ergodic class S2i, i=1,..,9. The

transition probability matrix PT of this MC is given by

vl

% Ig a

) 2T =

5 S2T | Y X

E Where Ig is an identity matrix of dimension g, Yij is the

. transition probability to any state in ergodic class j from a
g 5 state i in S27, and Xi is the transition probability to state j
E ; in S27 from state i in S27, The vectors of trapping probabilities
E .. Aare then ccmputad as follows (XM 64d],
;55 (d1 ¢2 . . dg] = (1-X)"t . ¢ (5.3.3)
i E To obtain the aggregated matrix A', consider now the GSPN

under timed traansitions only. The matzix A;, which is the matrix

- of =ransizion zates batween markings that enables timedé

| v transitions, is also partitioned as follows:

Y S S e N LR TN . .-

-~ LT T P SN e e

R R N s e T e T e L e
A P . e et S e et T, e e e T,
_ .

RN
y VY .. o Cee
PSSR OO e e T e e . s .- .
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s
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A" a"

M oAy = , where A" is a kxk matrix with off- :

O c" o*" h;’

*y

5

.; diagonal elements representing transition rates between marking ﬂ
Dy

that belong to the set S;, B* is an kx(n-k) matrix with elements N

(S|

W

tl

3'

;-.
& reprasenting the transition rates from markings that belong to S

. to markings that belong to S,, and such that the diagonal

e mﬁs

elements of A" is the negative of the sum of the off-diagonal

ﬁ elements of each row in A" plus the elements in the

corresponding row in B". Also D" is an (n-k)x(n-k) matrix with

Yy

off-diagonal elements representing transition rates betweem

E markings that Dbelong to S,;, and C" is an (n-k)xk matrix of
transition rates f{rom markings in S; back to markings in S§;, such
that the diagonal elements of D" is the sum of the off-diagonal

_. elements of D" and the alements of C" for each raw.

Using equation {2.8), the sxs matrix A' is obtained as

sllows:
A" snKQ
A' = A Vv o= (3.4)
K"cﬂ KIOD"KI

i

Which can then be solved for the steady state probabilities of
the ergedic classes at-ze:o ?(ei'), i=1,...X, and P(S2i),
i=l,...,g. The steady state p:obabiiity distridbution of the GS2N
RS zarkiags can then be evaluated from,

P(Msi) = P(el) , 12l,.ceeee/X » Where Msi are marzkings that

Selong to §;, and

~—, e
B, LN

?(MLE
. = w;T P(52i) for the j markings that belang =2
P(Mji) SZi, i’l'..i'l"g‘

B

3.4 Examplas
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A 1) Consider the simple GSPN shown in figure 4.7,

inicially in p;, the reachability set is

(SIS SR~

z2
rl

)
g

-y

with one token

M1 1 00609
& M2 G1198080
s M3 329011040
- M4 G1301
-l MS 364011
o
Under immediate transition t3, we have M5 -=-%» M1, therefore
Sl 3 [M2’M3,M4} = {el,ez,e3} ? Szl = {Ml}p and
- S2T = {MS}.
o
. Then ' 1 9 8 ¢
T g 1 ¢ ¢ l @ ¢ @
vV = g 9 1 @ , U= 16 1 3 @
i ¢ 8 a9 1 g 8 1 ¢
o g a o0 lj g 9 ¢ 1
- 1
T i.e., R' = K* = w T = (1 0]
1
-
h -(zl+r2) zl 2] 3
ﬁ also A" = " -z " , 8" a g
g 3 -rl g
. -zd %) ') g
. and D" = ’ C" =
; g 3 g g
and usiag (3.4) the aggregated transition matrix is given by
-(zl+z2) rl r2 g ]
a -r2 g £l
A' =
3 d -zl rl
L rd g 3 -3
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M1
M2
M3
M4
M5
M6

M7

Considering immediate transitions only we have

We can clearly distinguish

Therefore,

1
)

<
Qa O & 9

g g

Q ~r a8 - ©
0 Q € 9+ + ©
(ST o -

)

g

a2 -~ o 8 e B 9
Q O a w

'—‘

M1l

v

td

M6 -=» M7
\

§21 = {M3}

Wwhere

M6,

N\

42 -=» M3

. 2) Consider the GSPN in figure 5.3. tg and tg are immediate
“* transitions that form a random switch, and fire with probability

QP(S) and P(6), respectively. The reachability set S is

two ergodic states M1 and M3.

, 822 = (M1}, and S27 = {M2,M6,M7}

and

M2 are evanescent states.

To obtain the

trapping probability wvectors from these states to S21 and §22, we

have,

M3

M1l

M2

l
@
?:_._
g
3 9

anif

&
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v 1 g ﬁf

o\
, ,and from equation (3.3) [(dl d2 ] = [2(5) P(6) '
\I‘ ’ -
P(5) P(GL !
™ v
I}. N
M3 1 g ]
“ M1l @ 1l 1 8 ¢ @ ¢
) K' = M2} 1 ) , and K" = 54
M6 |P(5) P(6) g 1L 8 ¢ 9 e
. M7|P(S) ©P{(6) g@
- v
Now considering timed transitions, we have !%
ua [ -r2 o] 0 s 8 x2 0 =
At = ’ B" = 1 ’ :"
E M5 a -:l.t g g g r G“l
. . ) -
M3 | 1 2 F(ri+z2) @ ¢ @ @
. M1 g g @ -r@ 3 @O g
> cn oa M2 ] a , and D" = g g ] g a
;f M6 g "] ("] g a g d
- . M7 ! a g | L ] g g g GJ
P(5)r2 P(6)r2 rl r2
" then 3"K' = , X"C" = , and
= P(S)cl p(6)rl ] 2
-(rl+r2) g 1
g"prK! = , therefore, we have
rd ~-rd
q
N -2 d P(S)zr2 P(6)r2

’ ) -rl P(3)rl P(6)zl
. Al o=
t zl z2 -(zl+z2) )

] g rd -z9
- }) Consider the GS?N in figure 3.4, transitions :, and t3 can de

simultanecusly 2nadbled. Thereiors, the procabilities ?{2) and
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P(3) are assigned to determine wich one will fire first.

reachability set is given by

Ml 100000009240

M2 911000000
M3 60114004929
M4 0100100090
MS 000110009
M6 9 00001149
M7 06000311l
M8 0 9 G‘G g1aeag
M9 930002301

Again considering

The

immediate transitions only, we have

S

’
MY —=> Ml -=>» MZ:

Therefore,

§21

~
~A

M3~

Sa
7

MS == M1

rd

{MI,MZ,;‘!3,M4,M5},

there is one 2rgodic class given by

“here M9

state., Solving the above markov chain,

probability matrix P given by

M1
M2
P = M3
M4

MS

for the stsady stata probabilities we get,

'41? = [1/4

d
g

1/4

‘.-‘.-".'.'." " _"“- S T
’:Et.‘ .y -1 1.. - .‘.'.-, ‘.‘:'-‘"l‘)t-i%

1
g

P(2)/4

g
P(2)

P(3)/4

g
P(3)

@2 - a9 a9

-

/4 1.

is a transient

which has a transition

1
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Then, K « (1111111, and K" = w; ned
<y
5 Considering timed transitions, we get, —
o
v -y L%
V“. - - Ww,
\ ~
'\ M6 |- (£x6+27) r6 ) ¢ ¢ 0 @ 9 @ :
s A" = M7 g 1 @ | , B"=|06 @ @ & 0 x7
M8 L g g -zr6 g 0 o ¢ 4d :6L
- : - -
- -1 - o
o~ Ml 4 9 '] -xt5 9 ¢ @ 0 @
: M2 g g ) d a ¢ ¢ 0 @
gocr =3 ) g ¢ , pns=|0 a 5 @ 6 O
M4 g g g ¢ ¢ ¢ 6 @ 9
M5 "] %) g g ¢ ¢ 9 @ @
| wo| @ s @ G ¢ 8 0 8 @
- B ]
- Then' = -l
o g
v B"K' =| 7 |, K"C" = [L/4.25 @ @] ., and R"D"X!' = {-1/4.25]
- 6
: Therefore,
a -(z6+rc7) z6 r7 g
% e -7 ¢ 7
RS A' =
* ) ) -z6 6
N | 1/4.58 a 9 -1/4.15
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. CHAPTER 6 N
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' TECHNIQUES FOR REDUCING ANALYSIS COMPLEXITY .‘s

3 ' N

- R
~6.1 Introduction Y
e v
- The method described in the previous chapter is valid for the N
~

ianalysis of general GSPNs., However, the analysis can be quite

.. complicated for GSPNs with large state spaces. For example,

\u‘

*

¥

consider the GSPN in example 1 of section 5.4 in the previous
E?Chaptez, with one token initially in pl, there were S feasible

.. states for the network. If, however, we added k tokens in pl, the
»

Em.mzbe: of states will be in the order of 5K. Therefore even with
% such a simple GSPN, an explosion of the state space can make the

' analysis very complicated.

In this chapter, rather than describing the stochastic
-~ behaviour of a GSPN by a SDMP, which is then analyzed from its
™ projection at zero plus an aggregated version of it represented
by the rate transition matrix A', we attempt to do such
aggregation or reducticn directly at the GSPN level.

The analysis in this chapter will be restricted to a class of

T
e

GSPNs that innerits the structure of restricted PNs. Such ?Ns

¥

L4

will be defined in the following section, and scme of its

important properties will be developed.

6.2 Restzricted Petri Nets

Definition 1l: A Petri Net PN = (P,T,1,0), with an initial marking
““ M1 and a2 reachability set S, is called a restricted PN if all

!, arcs nave a weight of one, i.e., the input and output functions




-~ A s 4~ v Ta v, = w LR A Sl g arh o Ty v LA R e
"
‘_a:e such that, I: PXT --» (4,l} , and Q: TX? --» (0,1}, and for
p
any transiticn in T the set of input places and the set of ocutput

Molaces are disjoint (self-loop-frea).

We will also assume that the PN is live and bounded, 1i.2.,
-
Y-for asery ti €T and for all Mk €S there exists a transition
Sfiring sequence starting at Mk and ending at a marking that
W
N4

enables ti. An iamportant property of restricted ?PNs is

.

gestablished oy the following theorem,

.>Theorem l: (superposition theorem)

L
LN

let S1,S2,..,Sk be r=2achability sets

For any restricted 2V,
“-
frobtained from the different initial markings ML1l,M12,..,M1lk,
-, respectively. Then for an initial marking MLl' = M1ll+M1l2+...+M1lk,

¥
» el

whicn gives 3 reachability set S°,

N 1 Mzt o= M3lleMi22el. eM3xK (6.2.1)
- ,where Mjil € 5i , i=l,..,x
e :heﬁ Mz' € 5', t.e., S' ™ (slrs2~,..+s5Kk).
-
o Moreaover, the above condition ba2comes necessary and
n‘sufficien: if for every initial marking M1li, i=1,...kx, cthe PN is
; liva,
To prove the abovea theorm, we need to introduce the Zfollcwing
_ Cefinitions.
5 definizion 2: £or a rasgricted PN = (?2,7,I,0),
- “her2 ? = {pl,p2,..,90n}, T = {=1,22,..,5a},
o
1:2XT-» {J,l} , and Q:7X? -» {J,1}, with an
>
. inizial mazking ML and resachacility setc 3, then £or any MX,Mx-1%
i 5, such =tnat MKk is immediatly reachadle frcm Mk-l by the firiag
" cf transition =3,
,!L‘ Mk = Mx-L + 5T U3 (6.2.2)
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where Mk and Mk-l are nxl columa vectors, Uj is an mxl column

j vectox with exactly one nonzero entry in the position

corresponding to transition tj, and D is an mxn matrix called
transition to place incidence matrix defined as follows:

D = - DT + D%, where D" = {dij~} = {I(pi,ti)},
and D* = (dij*} = (o(ti,pi)}. '
Therefore, the entries of matrix D; dij, are 1, -1, or @ if
transition ti has an outgoing arc to place pj, an incoming arc
from place pj, or no arc between them, respectively.

Equation 6.2.2 is the matrix form of equation 2.2.1 in

Chapter 2 [MUR77, PETS8l]. For example, for Ml and M2 in exmaple 1

of section 5.4,

- r - tl ¢ £3 t4 -
) 1 pli-1 @ g 1 1
1 2 p2| 1 =1 @ @ g
11 =10 + p3] 1 ¢ -1 @ )
g g p4} 9 1 g -1 @
a| |9 05| 4 @ 1 -1 ]

The above can be extended to a sequence of transition firings

as follows:

Definition 3: for any PN with an initial markiag M1, incidence

matrix D, and reachability set S, if Mk ¢S, then
Mk = ML + DT Uy o (6.2.3)
where Ul,k is an mxl column vector called the firing vector, the
ith element of which is the number of times transition ti firzes
in the transition firing sequence (tjl,tj2,..,%3%) starting from
Ml and ending at Mk, i.e.,

K .
Up,x = =j=1 UJl

LS i aadlh - ol - ol
.
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Jroof cf thecram 1:
>
b

N
]

Let Mz' = Mjll + .. + M3k,

fcr any Mjit € si, i=l,..,k.

Yoen Mz’ = I Mli - 0T U, where U = 7.y Uy, 4y

121
= Ml' + D7 U

" ay 6.2.3’ Mjii = Mli + DT Ul,Jl ’ isl'oo'ko

L g

Since M1l' is the initial marking for the reachability set S',

™Mad all the transition sequences in U are defined in M1l', then

hgata by 8.2.3, Mr' is reachable from M1l', i.e. Mz'é S'.

For the second pazt of the thecrem, the above proves
Quffi-iency, the proof of necessity is done by contradiction as

“follows:

Lez Mz'é& §5', and Mr' =/= lel L Mjkk, for any Mjii ¢ si,

’

.Lhen, wr' = MLl' + 0T U = M1l = M12 + .. + Mlk + o7 ¢,

K L
=1 Mjit, trpen

and siace Mz’ =/= X

.:‘ K .
thers 2xists ac Ul,ji, such that C = E:E,l-gl,ji that is dafined

-

#8v a2 sequence of transiticn fizing frem MLli, then

. i ™ 3 .
Mr' = .y Mmit + D% U' , where mi® € Si,
aaé U' is a firing wvectsr of transitions not 2nadla2éd sy aay

Mail, i=1,...,%. Since the firiag vector U is definad for Ml',

T
e}
(1]
M
v
o]
<
(1]
n
o
o
(8]
(2

then thers 2xist at lesast twec markings, from
i . _
markings, cthatc can be added together to enabla 2 transicticn in

l2ast one imitial macking

(44

a

[

.
? - 2 % s =
\ﬂ . Thneraiors ther2 =213

~

1)l &
-

Ses (Mi1l,ML2,...,M1%) r which 2ha 2N is not live whica is 2

-
-

-

)

- A0 i1mpor=ant conseguancs 9f the atowe <cheora2m {s that aany
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into several initial marking Mli with a reduced reachability sets
Si, i=l,...k. And if, under each one of these initial markings,
the PN is live, then the reachability set S' can be constructed
by adding all possible combinations of markings in the reduced
sets Si.

corollary 1l: £for a live restricted PN with an initial marking M1,
and a reachability set S, if an initial marking M1l' = k Ml, for
some integer k, is considered, a reachébility set S' is obtained

such that, for any Mi'és', .
Mi' = Mjl +# M32 + ... + Mjk , where Mjl, 1=1,.,,k, aze in

The above corcllary can be used to analyze the behaviour of
restricted PNs where there exists a place pl P, called the
exciting place, such that, the initial marking of the BN is
defined by one or more tokens in pl and zero tokens in all other
places. Such PNs are particularly suitable for modeling jobs
oehavicur as described in the previous chapter, where the number
of tokens initially in pl resembles the number of jobs that are

Seing processed in the system (the multiprcgramming level).

8.3 Reduction And Aggregation of GSPNs.

In this section, reduction and aggregation of GSPNs will be
consideraed. B8y reduction we mean the elimination of immediate
tzansitions that caused the existance 0f transient instantaneous
narkings ( the steady state probabilities of which will always be

Zero). And by aggregation we mean, the aggregation of subnetworiks
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Figure 6.1 shows four examples of the reduction process.
These examples involve subnetworks containing single input-single
output, single input-multiple output, multiple input-single

output, and multiple input-multiple output immediate transitionms,

' respectively. This process is done locally in each subnetwork

without affecting the rest of the network, which is a very
important property. The multiple input immediate traasitions, as
the ones shown in figure 6.1 (¢) and (d), cannot be eliminated if
they are in conflict (i.e. share a common input place) with any
other immediate transition. As was shown in Chapter 4, by using
such conflicting multliple input immediate transitions, we are
able to model gueuing systems with multiple classes of customers
and fixed priority gueuing disciplines, which can not be modeled
by SPNs. This is ofcourse due to the fact that SPNs form a
subclass ¢f GS?Ns. The above reduction process will Dbe
investigatad further towards the end cf this section.

The aggregation process can be carried ou:t on a class of
subnetworks defined by the folleowing definitions.

Definition 4: for a GSPN = (P,T,1,0), with an initial marking M1

and a reachability set S. A subpnetwork N = (P1l,Tl1l,I1,01l) is
defined such that, TLCT is a set of immediate transitions.
PLC P is the set of input and output places of the traansitions
in Tl, i.e., for any pi € P, if and only iSf

I(pi,e3) = 1 ,~oxr O(ej,pi) = L , for any =j € 71,

then pi é Pl.

Also Il and Ol are the inpuct output functions I and O restricted

*9 Pl and 71, i{.2.,
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7 I(pi,t3j),if(pi,,t3) € PLXTL

I11:21XT1--»{d,1} such that Il(pi,tj)=

e |

@ if not

o(tj,pi), if (tj,pi) € T1XP1

r Fal
AL

0l:T1XPl--={d,1l} such that Ol(tj,pi)s=

5 |

g if not

-
"5

> pDefinition S5: for subnetwork N defined above, the set of places

~ Pinc Pl and the set of transitions Tin ¢ {T-Tl}, are defined
= such that for any pi é Pin, O(tj,pi) = 1 for some tj € Tin. Also
.  the set of places Pout & Pl and the set of transitions

Tout «— (T-Tl} are defined such that, for any pi ¢ Pl, with
I(pi,tj) = 1 for some tj ¢ {F-Tl}, then pi & Pout and tj ¢ Tout.
. Transiticns in Tin deposit tokens into places in the set Pin of

subnetwork N. And transitions in Tout remcve tokens from places

TN

in the set Pout of N.
The subnetwork N defined above pactiticns the reachability
set § into t=wo subsets defined as follows,

Definition 6: the subnetwork N partitions the set $ into two

subsats S1 and S2, such that for all Mi ¢ sl and all pig Pl,
Mi(pi) = 9, and for all Mj € s2, Mj(pi) > 0. Moreover the set S2

can also se partiticned into several subsets as follows,

A
§2 = Uj4; S2i ,such that Zor any Mk,M3 €& S2i, Mk(pn)=Mj(pn)

- £or all pné (P-Pl}. Therefore, if Mj is reachable {rom Mk, then
i t all transitions in %the transition seguence startiag at Mk and
_ ending az M3 belong to Tl.
i. Defianition 7: The subnetwork M defined abova is said to Dpe
ad tecurren: if for each S2i, i=1l,..l, and for any Mk,Mi € S2i, Mk

A A T A R O A NI e . . -t .
PRFRIIE . » A S NN e e st e T e e e e e e et e e e ',-~‘.
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wJdefinition 8: The sets s2i, i=l,..,1 belong to equivalent classes

‘denoted by the sets Sel,Sel2,..,Sem, where each Sei =
ﬁ{szil,SZiZ,".,SZi:}, such that the sets S2ij, j=1,..,r contain
gexactly the same number of markings, and for any $2ij,S2in € Sei,
~ there exist a marking Mi é S2ij and a marking Mj € S2in such that
" for all pk €Pl, Mi(pk) = M3(pk).

Each of the equivalent classes defined above is obtained

from a different initial marking in the subnetwork N. Therefore,

" if we define a marking function MY, which the marking M

~ restricted to the set of places Pl of subnetwozk N, then the sets
in each one of the classes Sei, i=l,..,m, become
+ indistinguishable, and therefore, each of the above classes
' raducas to a set of markings defined on Pl and obtained from an
initial marking wN1i, i=21,..,m. These initial markings are
~ intzroduced into the subneiwork by the firing of one or more

® transitions in Tin (the set of input transitions of N) which

modify the markings of places in Pin(the set of input places of

oW,
: For a recurrent subnetworX, and for each initial marking
¥1i, the marking segquence in the subnetwork is isomorphic to an
ergodic discrete parameter Markov chain, and the steady state
orobability distribution of the number ¢ Ltokans in each place
can be cobtained ., However, in order to analyze a subnetwerk in
ﬁ isolation of the rest o0f the network, the £follcwing locality
condition must te satisfied.
£ the probability

-

-t Definition 9 (leccality): FTor a subdbnetwork N, i

L cf firing a Ssranmsiticn in N is dependent oaly on the local

'~."'.'-‘ T ".“,"."‘.~'.- Tt et e e e e
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markings of N, then N is said to satisfy the locality condition

s by

“ Definition 1@ (conservation): for a subnetwork N, and for any

-

»

(]
L4

L

.

| ! initial marking MNeli of N, if the total number of tokens in MN1i

J ; is equal to the total number 2f tokens in any marking that E%
¥ enables an output transition in Tout, N is said to satisfy the ;§
'? conservation condition. , éi

The above definition is merely stating that a conservative ;E
% subnetwork is a one which does not create (or eleminate) tokens 23
to (from) the rest of the network.

.
E |

. ,l
M

The aggregation of a subnetwork with immediate transitions is
I given in the following theorm,
- Theorem 2: Tor live and bounded restricted GSPN B=(P,T,I,0) with
an initial marXing M1l and a2 set of transition firing ratses R
. (defined £or timed transitions), if thers exists a sunbetwork N
= (?1,71,11,01) as defined ia definition 4, such that,

i) The sat of input places ?Pin contains only one element, and

T' the sat oI output transitions Tout consists of timed transitions,
. ii) The subnetwork is recurren:t 2nd satisfies the locality and
= conservation conditions,
Then, an aggregated network B8'=(?',7',1',0') with a set of

m transition rates R' is obtained by substituting the subnetwork N
v by one place pa, such that,

-321 ' = (P-Pl} U {pa} , T' = (T-Tl},

N I'(pi,e3) = I(pi,td), O'(tj,2i) = O(sj,pi)

. Y 921 &P2-2l and tj & 7-T1, ané
z I'(pa,ti) = I(pj,cd) , O'(ti,pa) = O(ti,23)
r ¥ pj &2l and  ti &T-TL.

e s IR N AN I NS M AP NSNS BT AT S I SN F LR




r—__.--.-npvm’b.;‘\,’-“v“\;"."‘.'\‘-".'V"-"'C“ SRR
P g Kol it

w

§
@
"

[ ]

rw

F L
& A A

and if ri is the rate of an output transition tié Tout of the

subnetwork ,i.e., I(pk,ti)=1l for some pk & Pl, then the rate of

such a transition in the aggregated network becomes marking

dependent and is given by,

£'i(j) = ri . Pi(j) , where j is the number of tokans in pa

at the current marking, and
Pi(j) = Pr{ of finding at least one token in place pk of the

subnetwork/given jl.

These probabilitiec are obtained by solving the subnetwork N in

isolation for the steady state probabilities for each possible

value o0f j which defines the initial marking for N. The rates

of transiticons in {T-Tl-Tout} remain unchanged, i.e., for any

ti € {T=-Tl-Tout}, ri' = ri.
Proof: We prove the above theorem, using the theory described in
the previocus Chapter, by showing that the above aggregation is

actually a state aggregation cf the process that describes the

stochastic behaviour of the GSPN.
Assuming for simplicity that there exist no other immediate

transitiocns ia the GSPN (other than the ones in N), then the

partition defined in definitisn 6 of the reachability set S iato
the subsets S1 and S2 is precisely the partition of S defined in
equation (5.3.1) into ergodic classes at zero of the SDMP that
describes the behavicur of the GSPN, Where Sl contains %

markings, and S2 is further partitioned into 1 argodic classes

§2i,i=1,...,1 (since N is a recurrent subnetwork). The matrices

k' and X'' of equation (5.3.2) are

TN AT AN O N Ty o
- - Y
&
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S21 | 1+ 1 w1
s22 | 1+ w,T
R' = : . , and K" = wlT
§21 1+
L J L J

Where w; as before is the steady state probability vector of a
Markov chain with state space S2i. The trapping probability
vectors do not appear here since there is no evanescent states.
However, the subsets S$2ij, j=1l,...,z , that belong to the same
equivalent class Sei as defined in definition 6 , will have the
same probability vector wj, which is obtained by solving the
subnetwork N in isolation with an initial marking of i tokens in
its input place.

The rate transition matrix A' of the aggregated process,
given in equation (5.3.3), is now shown to be the same as the
rate transition matrix of the aggragated network B'. Figure 6.2
shows a transition diagram between the various subsets of S.
Where rini is the transition fizring rate of a tramsition in Tin
enabled by a marking in Sl, rl is the rate of a transition in (T-
Tl-Tin-Tout} enabled by all markings in S21, rin is the rate of a
tzaansition in Tin enabled by all markings in S21, and rzout is the
rate of a transition in Tout enabled by a marking in §$21. The

matrices A",B",C",and D" in equation (5.3.3) are,
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A" =

Then,

nonzern elememts in B",

given by,

~N -

Kucn =

Where w;; is the probability of marking i in s21

rout. '

-rini

rout

it

D“

the kx(s~l) martix B"K'

y K"D"K'=

rini
s21 s§22
~(zl+zin) rl
§21 -(zl+zin) rl
-(£l+rin+rout)
b

(where s=k+1)

1

-(rout.wli+rl+:in)

T

rl

and the matrices K"C" and K"D"K'

S2z+l

rin
rin

rin

will have the same

are

r+l

rin

that anables

Clearly the only elements affected by the aggregation are the

rates of the output transitions

general case,

ergedic class that enables an output

rate

however,

is multipliad by

(transitions

in To).

ransition,

the

In the

whnen there is more than one marking in an

transition

the sum of the probabilities of

such

markings. Which can be expressed as the probability of findiang at

least one token in the input place of such output transition. $
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The above theorem defines an aggregation operation on a GSPN.
The importance of this theorem for the approximate aggregation of
SPNs will be demonstrated in the next Chapter.

The reduction operation described in the begining of this
chapter can be generalized for a class of reducible subnetworks
defined as follows,

Definition ll: A subnetwork N, defined in def. 4, is said to be

reducible if, for each pi é Pout, there exist no transition
tj é T1l, such that Il(pi,tj) = l. Therefore, there exist
markings in each S2i, i=l,..1, that only enable transitions in
Tout.
The reduction operation of a reducible subnet&ork is given in
the following proposition.

Provosition l: for a live and bounded restricted GSP2N

B = (?,T,I,O); Wwith an initial marking M1, reachability set S,
and a set of transition firing rates R, if there axist a
reducible subnetwork N = (p1,71,11,01) as defined above, such
that,

i) the set of input-cutput transitions Tin U Tout consists of
timed transitions, and for each ti € Tin (ti € Tout), there
exists only one place Pj & ?in (pj € Pout) such that,

o(ei,p3) = 1 (I(pj,ti) = 1), and

ii) N satisfies the locality and conservation conditions.
Then, a reduced netwozk 3' = (?',7',1',0') is obtained by
replacing N, except £ox its places ina Pout, by a set of timed
.tzansitions Ta such that,

P' = (P-Pl} U Pout, T' = [T=-T1}

PSR RS .. ........... W e e -.' .
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™ for all tj € {(T=-Tl},

l 1'(pi,tj) = T(pi,td), O'(ti,pi).= O(ti,pi),V pi € (p-Pl},

. I'(pi,tj) = I(pi,tj), Y pi & Pout,

ﬁ for each ti € Tin, and for Pout = {pol,po2,..,p0x}, define new
ﬁ transitions til,ti2,..,ti(x-1) & Ta such that

,: O'(ti,pol) = 1, O'(til,po2) = 1, 0O'(ti2,p03) = 1,.....,2and

& O'(ti(x~l),pox) = 1. Also

0'(tis,pr) = O(ti,pr), I'(pr,tis) = I(pr,tis) , pr & (p~-Pl},
| S = l,.c.r(x-1).
é (each ti & Tin is connected to the first place in Pout, and for
each ti, (x-l) transitions, tis, s=l,...,(x-l), are defined in Ta
that have the same input and output places in {P-Pl} as ti. Each
.. tis also has po(s+l) & Pout as an output place. Ta is the set of
all transitions tis, s=1,...,(x-l), defined for each ti).

Also the set R' is defined as follows,

;’ for each timed transition tkx € {T-Tl-Tin}, r'k = rk, and
. for each ti & Tin and its correspondiag tis, s=1,...,x-1, in Ta,
~ 'i = zi ., Pi(l), =x'is = ri ., Pi(s+l) for s = 1l,....,x-1,
where ?2i(j), jJ = 1l,...,x, are the trappping probabilities of a
token in the output place ¢of ti in the set Pian to each one of the
v dlaces in Pout, respectively.
? Proof: we prove the above proposition, usiag again ﬁhe theory
. described in the previous chapter, by showing fhat the above
ti reduction operation correspends to neglecting evanescent states in
the process that describe the behaviour of the GSPN.
In f£igure 6.3(a), let ti be a transition in Tin with rate =i,

Place pj is a place in P2in such that O0(zi,pj) = 1. The set of
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4% places (pol,po2,...po0x) is tha set of output places Pout. and
w

goi, i=l,...,x, are the rates of ocutput transitions in Tout.
N _
»~ Assuming for simplicity that there exist no other immediate

1. transitions in the GSPN (other than the ones in N). Let Mil be a

F\‘

‘marking that enables ti, SN = {Mj1,Mj2,...,Mjk} be the set of
E markings that enable transition in Tl, and the set SO =
- {Mol,M02,..,Mom} be the set of marking with at least one token in
= in any ocne of the places in Pout. Considering for simplicity

markings with only one token in any one of the places of figure

6.3 (a), and let Mjl be the marking in SN with one token in pj.

e Then the blocks VN and UN of matrices U and V that correspond to
ﬁ the above sets of markings are given by,
] Mil Mol Mo2 . . Mox
Mil[ §
. Mol
::-' i Mo2 I
- VN = Mox| —— e e
e Mjl 0 pi(l) ¢« o o Pi(x-)
. Mj218 PZ(l) . . . P2(x)
) Mik{ 8 Pk(l) . . . Pk(x)
Mil Mol Mo2 . . Mox Mjl Mj2 . . Mik
= MilT I
i Mol |
UN = Mo2 I I g

.;-.' . |

MOx ‘

%) . . : S
t where Pi(s) is the trapping provability frem Mjl, and 2Pm(s) is

the trapping probability from MJl, 1 = 2,..,k, to Mos, s =

!.:,
l-.
~

1,...,%. Also the corresponding block AlLN of Al is,
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_Mil Mol . . Mox Mil . . Mik
Mol ~zrol '
@ . .
.4 . . |
AlN = Mox____ —_— -ZOX
P = M3l intbdeis Bealbdb e -
. :’: . l
. ° g ' G
: - MjkL | _

The corresponding block A'N of A' is, therefore, given by,

- Mol -rol
i Mo2 -ro2
A'N = . .

Mox -LoX

‘ Clearly the the rate ri of the input transition is mutiplied

by the trapping probabilities from Mjl only to markings that
E o belcng to 350. Figure 6.3(b) shows the reduction operation which
produces the same matrix A'N. ) 4

Example: Consider the GSPN in figure 6.4(a), the subnetwork of
immediate transitions consists of reducible and recurrent parts.
Using theorem 1, the recurzent part can'be aggregated first to
o places pal and pal. And the ratas of transitions t6 and t7 are

multiplied by the appropriate prcbabilities. Then using

-
N
LI AN

proposition 1, a reduction operation can be done on the remaining

reducible subnetwork as shown in figure 6.4(b). Where Pj(k) is

i E the trapping probability £rem a token in pij to pak, j,kx=1,2.
| B
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APPROXIMATE AGGREGATION OF SPNs

2

7.1 Qverview

.
>
A,

-

- In this chapter the analysis of SPNs by approximate <
- !

y :f aggragation and lumping is considered. In section 7.2, the %

) )

approximate hierarchical aggregation of SPNs is demonstrated by 2

1]
[ Y
.
%
‘.

Y te e
n"ats

<
b = several examples. and in section 7.3, the approximate lumping
parallel transitions in a SPN is considered.

7.2 Hierarchical Aggregation of SPNs

é The analysis of SPNs with transition rates of different
F€ orders of magnitude can be é:eatly simplified using approximate
aggregaticn techniques. In this section, the analysis of such
- SPNs will be considered. And we demonstrate by several examples
that the analysis of singularly perturbed SPNs can be reduced to
the analysis of that ¢f a hierarchical sequence of subnetworks,
each of which is wvalid at a certain time scale. Since tﬂe time
behaviour of a SPN is isomorphic to a continuous time MC, the
i'- hierarchical aggregation of SPNs is equivalent to that of MCs
described in chapter 4. However, as was the case for queuing
networks, such égg:egation at the SPNs level is much more
advantageous than the aggregation of the correspoding MC when the
- state space is very large. This is because at the SPN level we
, are dealing with &the aggregation of subnetworks, whereas at the
F MC level we aggregate groups of large number of states.
The exact aggregation, defined in the previcus chapter £or
subnetworks consisting of immediate transitions is a GSPN, can be

employed for subnetworks consisting of fast transiticns in an

-----------
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o
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SPN. However, the aggregation is approximate since fast

» 8
' % o,

LN N

transiticas havs very large, yet finite, firing rates compared :tc

oa'y

F slcw transicicns. The following example illustrates the abeve

WA 1Y

& &

Tt

concept.

S
SA.

“ Examola 7.l: consider the SPN saown in figure 7.1, where

o

S rl,z2,z3, and r4 are large compared teo rS and r6. Considering

large transitions only with input-output places, the SPN is

- decomposed into the recurrent subnetworks Nl anf N2 shown in
figure 7.2(2). Using the theory developed in the previous
chapter, thes2 subnetworks can be aggregatad, and an aggragated
é SPN with slow transitions can be odbtained as shown in figure

", 7.2(d). Wheze r'S(i) and r'6(j) are stata dependent rates given

N
h?
Y,
- r'3(i) = r3 Pl(i) , and £'6(j) = z6 P2(j), where
- 2L(1) = Pr{of finding at l2ast one tokan in place 92 of Nl when
- thers 2ra i %tokens ia place pal], and
» . s e . .
- P2(j) = Pr(of finding at least one token in placz p4 of N2 when
- thers are j Lokens in pall.
i The abcve probabiliczies are cotained oy sclving subnatworks
E; M1l and N2 £or all possible markings of the aggregatad S?N, then
" PL(l) = z1l/(zl+z2) , P2(l) = r3/(r3+rdy,
»'~
o 9
& 21(2) = £l £2/(rl?erlz2+:22), P2(2) = 3 r4/(r3%+r3zd+re?)
]
L The rate transicicn matrix A' of che aggragataed S2N is given
] -~
: 2v,
.
. ~
N (-z'5¢ ='5(2) 3
. A’ ’ 1) =({z'3{L)+z'€ (1)) '3(1)
L 3 £'6(2) -z'6(2)
o Wwhicn can 32 sclved oz tihe st2ady state prapabilisias 98 she
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<« markings of the aggregated SPN. Y
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X 3
B . . . . . 4

To show tnat the above is equivalent to the approximate oA

]

{ 7%

. aggregaticn of the isomorphic MC of the SPN in figure 7.1, the

()
..'t‘

03 reachadbility set of this SPN and the corrasspcding rate transition

5

€ @
IO

WV
-
]

matrix are given by,

'y
‘l

ki

ol p2 D3 p4

M1 1 g 1 g o

M2 1 g g 1l

M9 3 g 1 1
- MLd @ ) 3 2
e M1 [ -x1 r4 rl
- M2 3 -x2 J
M3 r2 d -x3
o M4 3 r2 r3
t.
A= M9 J J @
M6 s 3 J
E M7 J J z3
M3 ] J 3
My | x5 3 3
» M13J L 3 x5 3
B Where xi is ths sum of the
R e e
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&5 Since the rl,z2,r3,and r4 >> rS and r6, the above matrix can %
. be written as, §§
E A = A(p) = A3 + p al, where p = r5 + r6 , is the maximum gé

? degree of coupling between aggregates [COUR 77], and §§

o AJd = A(Q), is obtained by letting rS and r§ equal 0 in A. Then Eg

E from theorem 1 of chapter 4, and since rank A(p) > rank A@ (i.e, ;;

s

o the process is singularly perturbed), the steady state transition I;ﬂ

= probability matzrix Pr of the MC is given by, ‘ﬁ?

? Pr = lim._5 o exp{3d t} = U exp{a" p t} V, where

. %= lime_y,2xp(a2 t} = V.U is the canonical decomposition of 37,

B and p A" = U p Al V , is the rate transition matrix of the

;: aggregated process. It can be easily shown that this matrix is

i the rate transition matrix A' of the aggregated SPN of figure

- 7.2(9).

;; The approximate aggregation of the SPN of figure 7.1 prcduces

; a nhierarcnical decomposition of the SPN at two time scales. At

55 the fast time scale t the SPN reduces to subnetworks N1 and M2 of

j figure 7.2(a). And at the slow time scale t/p, the aggregated SPY

f of figurs 7.2(b) is obtained. The cuzrent marking of the

EA aggregatsd S2N at the higher level of the hierarchy determines

N the number of tckens in the subnetworks at the lower level. Which

L are solvaed to determine the zates of transitions at the higher

3' level. Such hierarchical decomposition is symptomatic of

& singularly perturted SPNs defined as follows,

) Definition 1: a SPN with fast and slow transitions is said to be

P singularly perturbed, if and only if the corresponding uMC is

.."

singularly perturbed, i.2., 1f zank A > zank A@, where A is tRhe

m rate transition

N el WL e o et e ey el
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matzrix and A9 (s the matrix A when all slow
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transitions are set to zero. o

A

Iy

! In the rest of this chapter the analysis wil be focused on _\_,-'_*
irreducinle $PNs defined as follows, Yy

Wy

" Definition 2:a SsPN = (P,7,I,Q0), with an initial marking Ml and a

»

t . L3R} . - . . »
7. reachability set S, is said %o be irreducidble if it is live and

'c

3
l..
IR

if for any ti €T and for all Mj € S, there

in which ti fires. )

B

. recurrent, i.e.,

e
N
X

™ exists a transition firing sequence from Mj

Mk is reachable from Mj.

And if for any Mj,Mk £ S,

The recurzence of markings and the liveness issues are

e related, howaver they are not equivalent, It is clear that a

;e recurrent PN is not necessarily live, and not all live and

bcunded PNs are recurrent. Mollcy (MOL81l] proved that any live

. and bcundad 2N, with a reachability set S, has 2 unigue subset of

g recurrent markings S' & S. Which entirely describes %he staady
L
- stat2 behaviour of the S?PN. In the abcve definition of an
% irrsducibla SPN §' = §.
- The following proposition charactsrizes siagularly serturbed
<y
SPNs.

:? Prooocsiticn 7.1: an irrsducible SPMN with fast aad slow transitiaas,
L and a r=2achability set S, is singularly perturbed if and only if
= one of the following conditions is satisfiad,
-
§ i) There exists mora than one nmarking in § which anable cnly
- slcw transicions,
4

il) There exist at least two disioint zecurrent susne=works
SE consisitiag <¢f fast tramsitions, or
o iil) Theres 2xistc at least cne marking as dafinad in i), ané
S one sulsnetwork as defined in ii).
N R ) et e e ;
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Proof: from definition 1,
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a SPN is singularly perturbed if and

only if, in its corresponding MC rank A > rank ad, or

equivalently nul.d < nul.A@. Since for an irreducible SPN

nul.A=l, then

a) if condition i) is satisfied, then clearly nul.Ad > 1 (there

exist more than one row of zeros in Ad).

b) if condition ii) is satisfied, then each subnetwork will

produce at least one block diagonal matrix in Ad, the nulity of

which will be equal to l. And therefore nul.ddq > 1.

c) clearly from the above if condition iii) is satisfied, then
again nul.ad? > 1.

We prove the necessity of the above conditions by

contradiction as follows. Suppose that none of the above

conditicons are satisfied, yet nul.Ag > 1l. Then considering only

fast transitions, there exist more than one ergodic classes of

markings 2i,i=1,2,..,. Let E be the set of all ergodic classes.
if any i € E contains more than one marking, then these markings

must De reachable from each other by fast transitions

Bus since condition ii}) is not satisfied, then thers

(racuzzant).

exist at most ocne Ei € £ with more than cne farking. and each of

the remaining classes consists of a single marking. Now, since
condicions ii) and iii) are not satisfied, then these single
markings do nect enable any slow transition. Aand no other
is enapled. Then nul.A > 1, i.a, the S?YN |is

3

transition in the S?@N
is not live wnich is a contradiction.
As mentioned before, the hierarchical deccecmposition of ac

time scales of perturbed SPNs is symptomatic of

differen:
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- singular perturbation. The analysis of regularly perturbed SPNs gg
te. &
reduces approximately to the aralysis of the network under fast tﬂ
LN
gtzansi:ions only. We illustratees the above concepts by the s
(9}
- following examples. 5-
¥
Example 7.2: Consider the SPN shown in figure 7.3(a), where the £€

P
ﬂ rates of slow transitions are modeled by a small parameter p<<l. ]
-, The reachability set is given by ﬁ;
- W
4 {e
} pl p2 p3 P s
S ML 1 @ @ @ -
=t
- M2 @ 1 a @ oYy
“» o
& o
M3 3 g 1 ) ¢

. From proposition 7.1, this subnetwork is singularly perturbad

since marking M1l amd M¢ enable only slow transitions. At the fast
2. time scal2, =he SPN reduces to the subnatwork consistiang of
™ transitions £ and t3, and their set of ihput output places Pl =

2,23}. However, as shown in figure 7.3(b), slow transitions

-

(g

U

’

= tl ané t4, with input output places in Pl, are also included in
" the subnetwork. Although these slow transitiosns can 2e neglectad
at the fast time scale, their inclusion here is for improving the

i acurracy of the approximation. This subnetwork is now zecuzrent

and can be aggragatad into cne place pal. Figure 7.3(b) shows the
aggregatad S?PN at the slow time scala2 consisting of siow
K

ﬁ transitions only. This $2N can te solved Sor the probabilitias c¢f

the markings M1' a2nd M2' defined as foilows,

[
o

. N o .
N . N P P T A ot R A L St S
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® p(M3) = P(ML') . p2/(l+p+p2) , and P(M4) = P(M4')

- e cemnrmAa U™ VLR TR R Y TR R

pal p3

M1’ 1 e

M2 ) 1
Thus P(M1') = 2/3 , and P(M2') = 1/3 , anéd from the subnetwork in
figure 7.3(b),

P(ML) = P(ML') . 1/(l+p+p?) , P(M2) = P(ML') . p/(l+p+p2) ,
It can be easily seen that without the inclusion of slow
tramsiticns tl and t4 in the fast time scale,the probabilities
P(M2) and P(M3) would be zeros.

Example 7.3: Consider the SPN shown in figure 7.4(a), where p <<
l. Again this SPN is singularly perturbed, since there exist two
recurrent subnetworks N1 and N2 with fast transitions. Where N1 =
{p2,p2,23,54} and N2 = ({p4,p5,t6,t7}. At the fast time scale t,
the SPN. is decomposed into the subnetworks shown in figure
7.4(b). Where again the slow transiticn &5 is included since its
input and output places p2 and pl belong to the set of input
ocutput places of fast transitions in one of the subnetworks in
figure 7.4(b). The inclusion of this transition in this example
is crucial since the probability of finding a token in pl would
be zero otherwise. Anéd since pl is an ocutput place of :hi§
subnetwozX to the rest of the network, the rate of the ocutpus
transiticon tl depends on the abova probavbility.

At the slow time scale t/p the aggregated S?N shown in figurs

7.4(c) is obtained. Where the subnetworks in figure 7.4(b) azas
aggregated into places pall and palld. This 3SPN is also singularzly

it consists of slew and fas:t transitioms ( p andé

percurbed. Since

.'_- o

A e e e e
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Figure 7.4
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2) And there exists a recurrent subnetwork of fast transitions

P
! {pal2,p6,t8,t9}, and a marking that only enables the slow

o pt

-
L4
e s A a

5
b}

transition tl. Therefore at time scale t/p it reduces to the

)

"

subnetwork of fast transitions shown in figure 7.4(d). and at

A

N

f ~ time scale t/pz, the aggregated SPN of slow transition shown in éﬁ
s -
figure 7.4(e) is obtained. Therefore, the networks in figures o

& 7.4(b,d,e) are the time scale decomposition of of the S2¥ in ;3

3y figure 7.4(a) at t, t/p, and t/p2 respectively.

7.2 Approximate Lumping @

In this section, another method that reduces the analysis
ﬁ- complexity of SPNs will be discussed. Since SPNs are isomorphic
to MCs, state lumping defined for MCs can be implemented on

subnetworks of SPNS. We first review the notion of "lumpability”

X ‘[KEM 67, COU 77, DEL 84] of an irreducible finite state Markowv

prccess (FSMP), and demonstrate by an example the application of

-

e

a this notion to SPNs.

é Let X, be a discrete parameter homogenous MC, with stacte
space E={1,2,...,n}, and a transition pgrobability matrix P. Let
{@Q1,Q2/+...,Q3) b2 a partition of the set E. Zach subset

E Qj; i=1,2,....,R can be considered as a state ¢f a new process.

. Let 3. dencta the state occupied by this new process at time ¢t.

b The provability of a transition occuring at time t from state Q;

to state Qj, P'Qin(t), is given by,

™.

P'aiqgj * 2z S¢*Q4/ S+.12Qj- S$p.2=Qx,+..,5g2Q}.
o}

or

The original MC is thus reduced %:0o 2a stochastic process wi

o fewer states. The new preocess is called a lumped process, and Qj
b

(1

a lumped sta:

. e -
S PSS P N L I SRR R} - e e
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The lumped process is again a homogeaous MC only if it is
gtime independant and depends only on s._j, i.e.

R P'gigj(t) = Pr{ st=Qj/ S¢-12Qil
= PQiQj t>0 (7.2.1)
i; Kemeny and Snell (KEM 67] qualify x, a3 being lumpable if
equation (7.2.1) is true for every possible initial state. Defining
Pigy 25 Q3 Pij
as the probability of moving from state i to set Qj, then the MC
is lumpable with respect to the partition {Q1,Q3/s400.,Qg} if and
E only if all the Pin have the same value for every i€ Qj, and for
any given Qj % Qj.
Similarly, for a continuocus time, homogeneous FSMP

{x(t),t>@}, with a state space E, and a rate traansition matrix A.

+. Phen x(%) is lumpable with respect tJ a partition

{QI'Q2'°‘..’QR}' if and Only if

?: AU =UA' (7.2.2)
-+ where U is (n,R) partition matzrix, whose (i,Qj) entry is
o =@ otherwise

)Viégl j’l'2'~ooo'R

-

.
r
= . - . .
A' is the rate transition matrix of the lumped process {x'(%),

t>d}. Equaticn (7.2.2) can be written as

Z?(GQK aik = a'Qij p VLGQJ, .‘(’1,2,....3.
That is the rate of going £f:zom J éQj £0 grsup Qy depends cnly on

Q3 ané is independant of i.

As an exampla,consider the MC shown in figure 7.35(a).

1

I£ ajg sagg= a , then 2 lumped MC can be cbtained as shown in

--------
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‘ figure 7.5(b), where 53
! 22,{(3,4} T 32,3 * 22,4/ and 3
- ag3,4},s = 2 &
i
Al
. We demonstrate the application of the above concept to SPNs dy Cu
the following example. }_’
'5 Consider the SPN shown in figure 7.6(a), the reachability set of ‘-:'
) which is given by,
h M 100080 \
E My g 1194 {
_ M3 19091
& Mg 806110 i
5 Mg 93011 g
.;?j Let us investigate the probability of lumping the subnetwork
: {py,p3,t2,t3} consisting of the parallel transition ty and t3 ‘
- rogether with their input output places, to obtain the lumped SPN e
o shown in figure7.6(b), the reachability set of which is
o M'y 19094 -
> M'y 810
v Yoo
& R &3
- Clearly, we are investigating the lumping of marking M,, M3, and ;
g M4 ints M';. Let x De a random vazriable representing the firing é“\
E time of tramsition t',, It can be 2asily saen thas o
- x = max(xi,x3) , whera x; and x3 are r.v.s reprasanting the ‘
'~ €iring times of trzansitions t; and t, respectively. Since x; an
_!j %7 are independant and exponentially distributed withrates ) and
. ~F

-‘-.. S s N e ..-'..- -.‘...'.. . I ......_.. e e et
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: § £y then, E
f' P {xg t} =P (xy¢ t}. P {xp¢ ¢} :
! ~ = (l-e”F2%), (L-e=F3F) EE
g; Therefore, even if r; =rp, x is not exponentially distributed, ig
= and since by the definition of a SPN, every transition must be gg
Ke the | S

¥  associated with an exponentially distributed firing time,

Eadia
)
o
=t
.

is not defined. However, we

< lumped network in figure 7.6(b)

can approximate the distribution of x by an exponential distribution

"s  with rate r, such that the folloing integral is minimized,

e Ming P [(l-e”F2%) (1-e"%3%).(1-e7F%) 1% dt
,z,22,23 > 3

. Then 2:2(:+:3)2(r2+:3+:)2+2:2(r+:2)2[2:2(:+r3)+r22]-

- l/2(z+:2)2(r+r3)2(:+:2+:3)2=G

= which can be solved iteratively for =.

. Let z; =r, =r3 =1, ry = 0o (i.e. t4 is an immediata tranmsition)

Then, £zom the above, = = 9.649, Solving the lumped S?PN for the

3 st=2ady state probabilities of its marking, we get
:‘. P(M‘l) = 0-394 I P(M.Z) g 0.606 ’ (?(“'3) =G)
a And solving the original SPM ,

£ 2(My) = 8.4 , P(Mz)vP(Mz)+P(My) = 0.5

For £y al, ¥y a2, £q= 3, ra= 4, then r = 1.546 and

- 2(M';) =9.5271 , P(M'z) =0.341, 2(M'j)= 0.1317, 2(M)=.5339,

t ?(3‘!2)#?(?‘!3)-‘?(.“!4)59.335, ?{M3) = 2.1327, error

If the =zansition ra%tes az2 state (Marking)
» the above will not hold, since x; and x5 are no longer

independant. feor this case,
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1n figure 7.7 ,whers the subnetwork of parallel transitions t2

(SN

'.'n"'.l

il

"5 "y
Pl
L4

e v e 'k&"x

~ind ty are lumped into a subnetwork consisting of the two serial

transitions t's and t'j. The reachability set is given by,

-
» -
3

T M, 1000 s
- S
oMY, 2104

. My 2610 )

<

M'y 6001

“Ia this case, marking M3 and My were lumped into M';. Therefore,

E r'q9 =r(2) +r3(2)

where r;(2) ;i=2,3 , are the transition rates of tj and t3 at

-

Ty 8

L

marking Mj.
| Now l2t x be a r.v. represanting the firiag time of

transiticn t'3. then

(k< £)= Px1<E)rg(2) /({2 +r3(2)[+2(x3< £)x9(2)/(29(2)+2x3(2)]

- 21-r3(2)e”F2(3) 8/ 175 (2) +r3(2)]
:; ~ry(2)e T3 T s (2) v23 (2)]
3£ which raducas to the 2xponentzial distrzibuticn in two cases ; case
L when zy=r3 and case 2 when either ; or ry tends tc iafinity.
- Cefine z'y 2as the mean of the above distribution, then,
i 'y =rq(2)/(22(3)) (22(2)rr3(2))+r(2)/(23(4)) (22(2)+2x3(2))
~; Approximating the above distributiza witha an expcnential
- distridbuzicn with rat2 t';, then the lumged 352N c2n e solved fct
E the st2ady grovacilitcy distrisusica.

®  Then P(M'y) 23,7333, P(M'5)=Jd.14117, P(M';)=0.15293

The exacst solutionis,
u_.‘,:_(_' .:(:{‘.:-‘ .‘,:.J.-.}_'.._.._ e .._. e e s e e

PO ._1_4‘l'l-'__ ) \..>--".' ..".-'. RO R AN .
b o A l"‘- _p O T _'u“.'_ﬂ.._\'_‘\’:-.":.‘~‘._~‘.7»'A .




F‘Y" AT AR BRI R B LA D, 9, £ 5 T AR A SR U e e de Al Attt Ml Al 4 -V LA
By - - . -~ - - - - LU ., o -

o)
@

' =@, 85
'D(Ml)=0.7053 , P(M,)=0.14116 . P (M3) +P (Mg) g.152

and for ry =1, r, (2) =4, x5 (3)=6, ry(2)=6, ry(4)=10, 4% -

F.
Hoven ‘o318, T 14=7.1428

"p(w'l)sa 8376, P(M'7)=8.08076, P(M'3)=@.11154

and the exact solution is
P(Mo)=. g80Q64, P(M3)+?(M4)= 1128

. P(Ml)=0‘8064t

“ 1.1% erxror.
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CHAPTER 8

OTHER APPLICATIONS

-

8.1 Overview

S
S In this chapter two other applications of GSPNs as an
3; analytical modeling tool will be considered. In section 2,
; analytical models for systems Reliability and Maintainablity
ﬁ (RgM) are considered. In section 3, a model for systems fault

diagnosis is considered.

E 8.2 Modeling Systams Reliability and Maintainability
The development of cost-effective analytical models for
) complex systems R & M has been an active area of research [DOL

! 83, FLE 84a, 84b, 85). Generally speaking, the model can be

defined on the basis of the following information : system

structure, maintenance description, module or component data. A

complex system can often be divided into subsystems and modules.

A module is a replicable subset of a system chosen to be modeled

= as a unit, on which system design, input data and maintanance

[ policies are based. Subsystems are sets of dependant modules

which are redundant, or with interdependant maintenance strategy.
kE Subsystems are usually defined to be independan: and connectad in
r series, Thus a fajlure of a subsystem would cause system fajilure.

Maintenance description includes facilities, space modules, test

-
g equipment, and maintenance policies such as inspection,
replacements, and repair procedures. Mcdule data includes %failuzas

tates, repair rates, fraction of faults detacted, Zraction of

,! faults isolated, and false alarm rate.

o\ e . - . -
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~ The authorsin [FLE 84b] appeared to be the first ones to b.
! develop a MC model which charactarizes all key elements insystem ;‘
" R & M analysis. The state of the MC chain model is defined by the !!
S

Wi

o

§ number of operational, or failed modules and the maintenance
o actions in progress. Even though a MC can be constructed for each
- subsystem, the model becomes intractable for complex systems due
Lo state space explosion. In this section we consider the use of
GSPNs for modeling systems R & M. GSPNs allow the activities to
be modeled at a high, level of abstraction. In other words, GS?Ns
E provide a more detailed, yet simpler, descripticon of system

activities. By detecting activities with duration of different
' orders of magnitude, approximate aggregated mocdels can de

cbtained. This aggregation further reduces the ccmplexity of the

analysis. The above concept is demonstrated by the following

- example.

-

- N . . . -
] Example 8.l:Consider a system which consists of several redundant

modules. 3 built-in testing (3IT) unit monitors the operatiocnal
o status of all modules. A module that fails and its failure is
o coverad , i.e. detected and isolated, by the BIT, is removed from
the system and sent to the shop £or repair. The removal is
t considerad as a maintenance action at the organizatisnal ("OM)
= level ([FZL 84b). A failed module that was not immediatly detactad
will produce an srzor after some time. The system will thea be
: inspected and =he failed module will te removed and sent to the

shop £or repairz. The inspection and the zemcval of the module is

27
et

considered as ancther mainta2nance actisn aft the "O" level, A

5 fault that was detectad but could not te isolated causes a systen
“1__‘\_-:-‘_&1 RN ‘-.‘. s . ~_J.'-.,.'~._‘-;.'-;.‘-:_'.‘.-,;.._<-~._'-. N e e N ) .
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failure. In this case, all modules are sent to the shop for

Tr7

repair. The input parameters needed by the model are summarized

¥

I d

as follows @

E m; = No. of modules 2

_; Mu = module failure rate 16=5 failures/hr. h'
3% FA = false alarm rate varies gg
E’ r; = mean time for "O" level inspect and remove 2 hrs. P:‘-E
3 r, = mean time for "O" level remove 1 hr. §§§
Eﬂ ry = mean time for repair 72 hrs. E!!
oo d - fraction of faults detected varies ?h
o i = fraction of faults isolated varies '

: 100 hrs.

"4 K

D = mean time to detect an immediately undetected fault

-

The abova parameters are taken from an example given in (FEL

- 84b] for a mission computer in an air craft radar set. The false

w7 alarm rate is definad as the rate at which the BIT detects a

while the system is fault-free. Operational data of some

- fault
= systems show that often 50% of all.maintenance actions are due to
‘ég false alarms. Figure 8.1 (a) shows a GSPN which models system R &
. M of the above example. The initial marking of the GSPN indicates
S' that there are two modules installed and active, no maintenance,
E and the system is up. An impertant advantage of using the GSPN is
- that the graghical complexity doces not change with the increase
& of the number of modules ia the system. Note that the component
i failure rate and false alarm rata are nmuch smaller than detaction
and repair rates. An aproximate aggregated GSPN can thus be
? obtained (figure 8.1(b)). In figure 3.1 (B), ry = (FA+2Mu d) i,
) £92ry(i-1)/i, and r3=® 2Mu(l-d). The basic assumpticn ia the

> ¥
-
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h*aggregated GSPN is that a false alarm of a second failure is not

-~

*,
%

LN

o i

£L%
A

LA

!posible with one failure. Such a model can then be analyzed to ﬁ
obtain system unavailability, which is the probability of findiag gs
‘d

~x
o N " o
X

a token in F, and the average number of maintenance action per

ﬁ million hours. The approximation was found to be accurate for g%
.. imperfect isolatioa (i<l). 0
I oo
- Figure 8.2 shows the impact of false alarm on system EE

e

unavailability for differnt values of detection and isolation

'd
e

FAIAD
.

factors. The false alarm is increased up to a value where S58% of

'l’.l"l ]
[ SN 'Y

& all maiatanance actions are due to false alarms. It demonstrates
- that the isclation factor plays a key role in the impact of false
~alarm on unavailability. The higher the isolation factor is, the
- lower is the impact of false alarm on unavailability. This is
> Decause an alarm which could not be isolated causes a system

failure. The detection factor, on &the other hand, doces not saem

ko nave significant effect on the impact of false alarms.
However, the lower the value of @ in a system with falsa alarms,
- the lower is the unavailability. This is because an erzor caused
N oy an undetected fault requires an inspection which is assumed by
the model to detect any previously undetected £faults. The above

phenomena can de seen more clearly from the GSPN madel of figure

o 8.1(a), This also demonstratasthat %he GSPN model can facilitate

the study of system activities.

8.3 Modeling Tault Diagnosis

Ia this secticn, a model £2or fault diagnosis (fauls

isclation) will be gresented using 5PNs. The model is defined oy
';"’:..‘..!:'. .'. .'. ‘.. .!‘ .O'..d..’ “-.)-' % o PREIFRT IR . WY . .
> h_.\. o DA PRI A P LS LIPIC I P N S - .o . -
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'topological and functional descriptions of the system (the number ?{

, )
,Eof mocdules, connectivity description, and module functions), ;2
f -
'C\:ela:ive a priori module failure probabilities [PIP 84], and the oy
A N
[ aw . e
. specified normal raage for each module 1/0 value. The concept is <
v

‘fadescribed tzough the following example.

ﬁaxample 8.2: Consider a system which consists of three modules as

shown in Figure 8.3(a). The function of module 1 is such that an
"~ abnormal input will'still yield a normal output. Modules 2 and 3
E are linear, i.e. a bad input causes a bad output. Figure 8.3(b)
shows a2 GSPN model for the fault diagnosis, For each input and
output of a module, two places, say y; and y,, are 2assigned. The

] subscript 1 stands for a normal value while 2 stands for an

abnormal one,

Transitions between the input-output places cf a module
™ represent data flow activities. Probabilities assigned ¢o

confliccing transitions in each module are ccocmputed from the

E relative a priori module fajilure probabilities, which is assumed
~ t0 be much less than one . A token in place 1, 2 or 3 indicates
i that the corresponding module is bad., Given the measuzments x =Xy
é‘ and 2 -zé, the GSPN can be solved to determine the probability

that a certain module is faulty. As an example, suppose that a
priori failure probabilities ¢f all modules are agqual t5 d.1. The
E distributions oftockens in places 1, 2 and 3 are as follows: 143
with proo. 9.99, 10l with prodb., 9.61, 913 with prob, 3.31, and

-+ @ll with prob. 9.39, Thereforze, the above @easurements lead =0

the conclusion that module 2 is most ‘likely faulwy.
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N The above model can be used as a design for testability (DFT)

some DFT models pased on fault trees were

.
.
s

model. In [BAL 84],

- discussed. The complexity of which is proportional

. is the number of modules. On the other hand, the com

Y
GSPN is linearly proportional to n. Also, local changes in the

to 20, where n

plexity of

L s

-,

th system would require only corresponding l1ocal changes in the

< model.
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CHAPTER 9
CONCLUSIONS

The intent of this research was to develop analytical models

for parallel processing systems. Because of the nature of such

systems, the model has to handel such phenomena as parallel

synchronous-asynchronous operations, sequential operations,

contention for multiple resources, and queuing. The models

previously developed, all of which are based on product form

queuing networks (PFQN), are restrictad to a certain type of

parallel operations or another, namely, synchronous oz

asynchronous cperations. We considered the generalized stochatic

Petri Nets (GSPNs) as an alternative modeling tool to model such

systems. Yet a GSPN model rapidly becomes intzactable due to the

state space explosion. Therefore, a hierarchical model was

developed wiich utilizes both GSPNs and PFQNs. A GSPN was used to

model the system workload, which comprises such activities as

sequential, and parallel synchronous-asynchronous operations. and

a PFQN was used to model contenticn and queuing Sor the systen

resources.
In the second parct of the dissertatiocn, the analysis of GSPNs

was considered. A general method of analysis, based on

identifying an isomorpnism between GSPNs and stochastically

discontinuous Markov processes, was develcoped. This method,

though was showa to be mors general than previously proposad

methods, still needs the generation of the reachability sec of
the GS?Y¥. Which grows rapidly with the number of tokens ia the

inicial marking and the structure o0f the GSPN. Therefore two
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fStechniques for reducing analysis complexity were developed. !

f ! The first technigue deals with the decomposition of the é
;‘initial marking into several initial ma:kings_unde: which a a

E:simplified analysis of the GSPN can be obtained. For example, the 5

Ezexamples given at the end of chapter 5 with several tokens é

?‘initially in pl can be analyzed first with only one token in pl ;

E to determine the ergodic classes and transient markings under Eﬁ

which then can be obtained for the general S;

-» immediate transitions,

This tachnigue

.
[
]

e e

case when there is more than one marking in pl.

can de applied to raduce the analysis complexity of a GSPN model

of the system workload when the multiprogramming level is high.

Theseccnd tachnnigue is based on aggregaticn and reduction at

' the GSPN level. Where subnetworks of immediate :transitions can be

aggragated or reduced. This reduces the structure complexity of
T Gs?Ns.

= Approximate analysis of SPNs Dby multiple
t was shown that

time scale

dacomposition and lumping wera then considerad.

the analysis of singularly perturbed SPNs, with &transition firing

3; rates ¢ different orders of magnitude, can be raduced to that of

i a nierarchical sequence of aggragated subnetworks, eacn of which

9 is valid at a certain time scale. The Aporcximate lumping of SPMs

= Was also considared, and an example of obtainiang a lumped product
" form S24 from a non-product form S2N was givan,

ﬁ Tinally the application o2 G3PNs %o model systens
“ Reliability, Maintainavility, and fault diagnosis was considared.
N And it was shown than such models are much more easier =2
F construct in a compact Isrnm, especially for systems with a large
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