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Abstract

It is shown that if the transition kernel of a discrete time Markov chain with state space
{0, 1,...} is totally positive of order two (TP,), the first passage time from state 1 to state
0 has decreasing failure rate (DFR). This result is used to show that (i) the sum of a
geometric number (i.e., geometric compound) of i.i.d. DFR random variables is DFR and (ii)
the number of customers served during a busy period in an M/G/1 queue with increasing
failure rate service times is DFR. Recent results of Szekli (1986) and the closure property
of i.i.d. DFR random variables under geometric compounding are combined to show that the
stationary waiting time in a GI/G/1 (M/G/1) queue with DFR (increasing mean residual)
service times is DFR. We also provide sufficient conditions on the inter-renewal times under
which the renewal function is concave. These results shed some light on a conjecture of
Brown (1981).

AMS 1970 subject classification: Primary 60J27, secondary 60K10.

Key words and phrases: DFR distributions, geometric compounding, renewal function, GI/G/1
queues.
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1. INTRODUCTION

Brown (1980) proved that the renewal function for a renewal process with decreasing failure
rate (DFR) inter-renewal times is concave. In a subsequent paper (Brown 1981) he conjectured
that DFR is also a necessary condition for concavity. A consequénce of this conjecture, as
pointed out by Brown, is that DFR distributions are closed under geometric compounding
(i.e., the sum of a geometric number of ii.d. DFR random variables is DFR). Thus a
counterexample to this (possible) closure property of DFR random variables under geometric

compounding would provide a counterexample to the concavity conjecture.

In an attempt to verify Brown's conjecture we obtained sufficient conditions for (i) the first
passage time from state 1 to state 0 of a Markov chain with state space {0, l,...} to be DFR
L—» and (ii) the renewal function to be concave. These results led to progress in two areas which

' shed light on Brown's conjecture:

X (i) It is shown that DFR distributions are closed under geometric compounding,

(ii) An example is given which shows that the conjecture does not hold in the discrete

time case.

The discrete time example does not generalize to the continuous case, and the truth of the
conjecture is still unresolved. In the continuous case, however, it is shown that a consequence
of Brown's conjecture, if true, is that the first passage time from state 1 to state 0 in a
stochastically monotone Markov process with state space {0,1,...} is DFR. This property is
known to hold for birth and death processes (Keilson 1979) and in general for any Markov
process that can be uniformized such that the embedded Markov chain has a totally positive

of order two (TP;) transition matrix (Assaf, Shaked and Shanthikumar 1985). But it is not

DFR Property of First Passage Times and Its Preservation under Geometric Com- 1
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known whether it holds for this larger class. For this class of Markov processes (i.e.,

stochastically monotone) it is easily verified that the first passage time from state 1 to state
0 has the new worse than used (NWU) property. The NWU property is weaker than the
DFR property.

The results presented in this paper, apart from providing some useful insights into Brown’s
conjecture, have other applications. The DFR property of the first passage times of Markov
chains is used to show that the number of customers served during a busy period in an
M/G/1 queue with increasing failure rate service times is DFR. Geometric compounding of
i.i.d. random variable arises naturally in many applied probability models. A recent paper of
Gertsbakh (1984) discusses a wide range of applications in reliability theory. In the queueing
theory context it is well known that the stationary waiting time in a GI/G/1 queue can be
represented as a geometric compound of i.i.d. random variables (e.g., Feller 1971). Related
results are that the class of completely monotone (CM) distributions is closed under geometric
compounding and the stationary waiting time in an M/G/I queue with CM service times is
CM (Keilson 1978) and that the distribution function of a geometric convolution of DFR
distributions is concave and the stationary waiting time in a GI/G/1 (M/G/1) queue with
DFR (increasing mean residual) service times has a concave distribution function (Szekli

1986). We will strengthen the results of Szekli.

One aspect of our methodology which appears to be new is the consideration of a monotonicity
property for a Markov chain which is stronger than stochastic monotonicity and weaker than
TP,. Stochastic monotonicity is based on the partial ordering of stochastic ordering, TP, on
ordering by monotone likelihood ratio. An intermediate ordering we use is the hazard rate
ordering {(e.g., Ross 1983). This ordering is utilized by Brown (1980, 1983, 1984) to study
properties of IMRL and DFR distributions.

DFR Property of First Passage Times and Its Preservation under Geometric Com- 2
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2. PRELIMINARIES

A random variable X or its distribution F on [O,ac) is said to be DFR (IFR) if its failure
rate ry(s) = fir) / F(¢) is decreasing (increasing) in e [0,): f and F are the density and
survival functions of X ("'increasing" and "decreasing" are not used in the strict sense). X

is said to be IMRL if E(X—t[X> 1) is increasing in 1€ [0, ).

Two non-negative random variables X and X; or their distributions F; and F, are ordered in
the sense of usual stochastic (hazard rate) ordering if fl(l) 2?2(1),120 (fl(z)/fz(l) is
increasing in ¢ [0,=)). Denote X 2 ¢ X,(X; > hX2). Note that (e.g. Ross 1983) X > Xo
implies {X1 | X1 >} 25 §X1X>1},020.

A function g ={a(i,/)] of two real variables ranging over linearly ordered sets X and Y,
respectively is TPy if for any ny<m and m<m (njeX,meY),
a(ny, my)a(ny, my) 2 a(ny, my)a(ny, mp}. Equivalently using the convention 0/0 = 0 one has
alna, m)  alny, mp)

> 0 (when defined; otherwise set the difference equal to zero).
a(np,my)  al(ny, my)

Let (= [I(i,j)]w(‘vﬂ.: w(,N=1,i2j and i j)=0 otherwise. a= [a(i,j)]'_‘],(‘,y,+ and

b= [b(i,ﬂ]‘J(N+ are non-negative matrices (here N+ = {1,2,..}).

Lemma 2.1: at e TPy, r 1 € TP; and 1']=r=lzg. Then ar

e TPs.

d

Proof: Let 4=at,R=rt,B=gartandforl<n <n,l<m <mpand B(n,m) >0 con-
sider

DFR Property of First Passage Times and Its Preservation under Geometric Com- 3
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= R(k,rn?') a(nl‘k)R(k,ml)

‘ Rk, =
' k=t ( ml) Ea(nl,[)R(l’,ml)
a r=1 .
:

J=k

R(k,m;) R(k—1,m)

] > alny, ARG, my) B

< I:R(k.mz) R(k—1,m))
Py Za(nl,l’)R(f.ml)

(=1 -f'.
R(0, my) . i . . ) ) o
where EEO—YEO. Since R e TP,, the expression in the square bracket in the right hand
»my -
side of (2.1) is non-negative. Consider
20('7],j)RU,ml)
Q2 -—
Za(nl,/)R(f,ml) za(nl,f)R(f,ml)
=1 -1
1+ —
Natn, HRG,my)
J=k
Now for 4(n,k) >0, set R(0,m;) =0 and consider
~
DFR Property of First Passage Times and Its Preservation under Geometric Com- 4
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k-1

Za(nl,?)R(l’,ml)

=]

> alny, NRG, my)

=k

k
> A, O[R(E,my) = R~ 1,my)] —A(ny, KR (k, my)
ta]

S A, H[RG, M) — RG = 1,m)) ] +A(ny, k)R — 1,my)

=k

k A(ny, )

24(,11,10

lwl”

[R(i’,ml) - R(f - l,ml)] —R(k,my)

TS Al ))
EA(:: Z)[R(j,ml)—R(j—l,ml)]+R(k— 1,my)
s '

A, 0)
2,4(:2 SIREm) — RE = 1mp] =Rtk m)
-] *

T -4('12’}) R i
> 4(n2'k)[R(/,m1) ~RG~1,m)] +R(k —1,m))

y=k

»-
'

a(nz. f)R(!’,ml)
1

o bl

Za(nz,j)R(j,m])

J=k

~

-1

since L7 r1 >0 implies R(i,m;) — R(i-1,m;)>0,i=1,2,.. and A= 4t e TP, implies

A(ny, 8) JA(ny, k) 2 (L) A(ny, )/ A(ny, k) for £ < (2) k and ny <ny. Then from (2.2) one gets

DFR Property of First Passage Times and Its Preservation under Geometric Com- S
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Yatn, pRG.my) X alng, ARG, my)

(23) = <= .
Yaln, ORE, m) Y alny, OR(E, my)
=1 (=1

When A(ny,k) =0, the left hand side of (2.3) is zero and the above inequality is trivially
satisfied. Combining (2.1) and (2.3) one has

B(ny,my)  Blny, my)
< b
B(ny,my) ~ B(m,, my)

(2.4) l<n<n 1<m<m, .

Since a r 20, B(4,)) is increasing in j and therefore B(ny, m;) = 0 implies B(ny, my) = 0. Hence

(2.4) in this case is trivially satisfied. D

Remark 2.2: Keilson and Kester (1978) show that if ateTP; and =1"1__{=1 € TP, then
1

1 € TP, This follows from the observations that r 1 and that the class

[1E)

It=a11"

of TP, matrices is closed under multiplication. Since 17°r 1 ¢ TP, implies r 1 € TP, our

€ TPy and ¢! £ 2 0 is weaker than the TP, condition of =1’1=r

condition r

I~
ll

L

3. DFR FIRST PASSAGE TIMES

Let X={X,,n=0,1...} be a temporally homogeneous discrete time Markov chain with state
space N=1{0,1,.} and transition probability matrix

P= [P(i,j)]w(x (P(i,)) = P{Xy =/ Xp1 =i}, 4,j € N). Define the first passage time

(3D T={min[n:X, =0, n=12,.]1%=1}.

DFR Property of First Passage Times and Its Preservation under Geometric Com- 6
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Let Q= Pt be the transition kernel of X (i.e., Q(4,)) =k2 P(i,k),i,je N). One has
- =]

Theorem 3 1: Q€ TP, implies T € DFR

Proof: The failure rate rr of T is given by rr(n) = P{T=n|T2n} = P{X,=01X,_121} =
XIP{X,,=0|X,1_1 =i, X,—12 1} P{X,_1=1ilX,_121}. That is

(3.2)  rp(m) =1- E[Q(X,_;. D],

Iy d , d . . .
where X,,_1 = {X,_11X,_1 2 1} (= stands for equality in law.) Let £; = [P(l,j)]w( Ne be the
transition probability matrix of the lossy process 1(’ = {X,’;,n =0,1, } of X on the state space
N+ (e.g. Keilson 1979). Let v, and _v;i be the probability vector of ')Fn and X{, respectively
(ie., vy (k) = P{)?,, =k} and vik) = P{x,i = k}). Since state O is absorbing it is casily verified

that

where e = (1, 1,...)" and W= yé: {(1,0,0,...)). Now consider (_\‘,[,,n =0,1,...). Clearly

v
€ TP, and therefore from the closure property of 7/, matrices under multiplication
IS
K4 4 £
i3 Yo Yo
i f= i == K
¥ g Y

~1

DFR Property of First Passage Times and Its Preservation under Geometric Com-
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is TP, since Qy = [Q(i,j)]i‘je\.+ is TP, ( Q e TP, implies Qy € TP;). Now as an induction

S Yﬁ—l
hypothesis assume that ’

- Yn

1t € TP. We have shown that this is true for n=1,2.

Now observing that =t'1£/=t 20, since Pt is TP, and P is a transition probability matrix

L

one has from Lemma 2.1

I4 14
Yn Y1
{ = P[_l_
[ == [ =l=
Yn+1 Yn

is TP,. Observe that this TP, property implies

PiXs, 2k +1}  PiX, 2

n+ k
49 Pixi >k + 1} ? Pix! > i}

Combining (3.3) and (3.4) one sees that

3.5) X124 X, n=01,.
Since 2 ¢ _lies stochastic ordering and Q(;, 1) is increasing in i one has from (3.2) and

(3.5), ry(n) is decreasing in ne N +. E]

Remark 3.2: 1t is known that if P is TP, then T has log-convex probability mass function

which implies T ¢ DFR (Assaf, Shaked and Shanthikumar 1985). However, our condition Q

is TP, is weaker since P e TP, implies @ is TP, and not necessarily in the reverse direction.

2 DFR Property of First Passage Times and Its Preservation under Geometric Com- 8
- pounding
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Remark 3.3: Let Ty = min[n: X,<sk-1,n=12,.]1%= k}, (k > 1). Considering a mod-
ification of X such that its states {0,1,...,k — 1} are lumped into one absorbing state, from

Theorem 3.1 one sees that Q e TP, implies Ty e DFR.

Next consider an absorbing, right-continuous continuous time Markov chain Y= {Y(z), > 0}
with state space N, where 0 is the absorbing state. Let p = [y(z’,j)]w,eN be the transition

rate matrix of Y (u(i,)) is the transition rate from state i to state ).

B =j§o piy; Dy =diag {po, u1, ...}

(3.6) T*={inf [£¥() =0, ¢20]| ¥(0) = 1}

Define p* = sup{p,,i=0,1,...}. Then using uniformization (e.g., Keilson 1979, Chapter 2 or
Assaf, Shaked and Shanthikumar 1985, Section 3) one has from Theorem 3.1

is TP, then

i

Corollary 3.4: 1f there exists a A (u* € X <«) such that [__{ +%(E -D )]

T* ¢ DFR.

We now present some applications of the above results. Let {Z,, n=1,2,...} be a sequence
of i.i.d. random variables with support N+ and K be a geometric random variable with

P{K=k}=(1 —p)k“lp, keN+. {Z,} and K are mutually independent.
K
Theorem 3.5: Z, € DFR implies Z* = 2] Z, € DFR.

Proof: Let X be a temporally homogeneous Markov chain with state space N and transition

probability matrix P where P(0,0)=1, P(i,i+ 1) =1-=1rz(1),

PG, D) =(1 =pyrz(D). P(i,0) =prz(i), ie N 4 and al] other entries are 2e10.

DFR Property of First Passage Times and Its Preservation under Geometric Com- 9
pounding
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rz(i) = P{Zy = i| Z, 2 i} is the failure rate of Z,. Let T be as defined in (3.1) and define
(G.7  N={min[nX, <1, n=12,.]1%=1}.

Simple calculation shows that

k-1

(38)  P{Ty=k} =[] ~rz(t)rz(k)
{=1

=P{Z =k}, k=12,.

It can also be verified that P{Xy; =1} =(1-p) and P{Xr, =0} =p. Since state 0 is
absorbing, employing the Markov property of X, (3.8) and the fact that Tj is a stopping time

of X, it is not hard to see that

=,

(3.9) T=2Z*.
Computing [¢ one sees that Q0,0 =1ie NO(i, 1) =1 =prz(1), Q(i, )} =
1-rz(i),2<j<1i ie N+ and all other entries are zero. In this case Q € TP, as long as

rz (i) is decreasing in i € N +. The required result now follows from (3.9) and Theorem 3.1.

[

Consider a GI/G/1 queue at which customers arrive according to a renewal process with
rate A. The service times form a sequence of i.i.d. random variables with a common

distribution function F. The arrival process and service times are mutually independent. We

DFR Property of First Passage Times and Its Preservation under Geometric Com- 10
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will first consider an M/G/1 queue which is a special case of GI/G/1 queue with Poisson

arrival process.

Theorem 3.6: The number of customers served during a busy period of an M/G/1 queue with

IFR service times is DFR.

Proof: Let .'1?,, be the number of customers in the M/G/1 queueing system just after the n-th

customer departure. Then Z~( = {g,,, n=0,1,..} is a temporally homogeneous Markov chain

with transition probabilities F(i,j) =g(+1—1i), ie N+; ;(O,j) =g(/), je N, where

& k=-1,-2,.

0
glk) = w =My ok
fe——*’k(.m F(),  k=0,1,..
o !

(e.g., Ross 1983). Consider a modification X of 2 such that state 0 is absorbing in X (i.e.,
P, ) =F(i,_/), ie N+,je N and P(0,0)=1). Then if T is as defined in (3.1), it is the

number of customers served during the first busy period. Consider

QUi,N=GU+1-1, i je N+ (0(0,0)=1, 0(0,)) =0, je N +),

B 1 k=—-1,-2,.
Gk)=4 =
Set),  k=0,1,..
f=k

It is known that if F(s+ x)/ F(1) is decreasing in ¢ (i.e., F is IFR) then G(n + k) / G(k) is
decreasing in k (Block and Savits 1980). This observation leads to a straightforward verifi-

cation that Q € TP,. The DFR property of T now follows from Theorem 3.1. D

DFR Property of First Passage Times and Its Preservation under Geometric Com- 11
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4. CLOSURE OF DFR UNDER GEOMETRIC COMPOUNDING

§Wh, n=1,2, ...} is a sequence i.i.d. random variables with support [0, «) and survival function
F and K is a geometric random variable with P{K = k}=(1 —p)k-lp, k=1,2,... {W,;} and

K are mutually independent. Then one has
Theorem 4.1: W, ¢ DFR implies W* = Z W, ¢ DFR.

Proof: For some A >0 let G (k) = F( ), k=0,1,.... Then if {Z,,, n=1.2,. } is a sequence of
iid. random variables with a common survival function
G, rpk) =[G(k-1) = G(k)]/ Gk - 1) is decreasing in k=1,2,.. (ie, Z) ¢ DFR). Let
{E,’,\, n=1,2,. } be a sequence of i.i.d. exponential random variables with mcan % Now
define a sequence of i.i.d. random variables {Wﬁ, n= 1,2,...} such that W)‘ 5.‘. E}. That is

e E=AL . .
, if F is the survival function of W,);,

-At
(4.1) F(z)—ZF(ke M

Then it is easily verified that

_2A — _
(4.2) as A=+ oc, F (8) = F(¢) at every continuity point of F
(Feller 1971). Then consider

>'§z:
X d -] N
2“’3 > Er
-1

n=|

DFR Property of First Passage Times and Its Preservation under Geometric Com- 12
pounding




Al A Sl fon ndfed A 0' Rl G0 Lk AT A st it e Caul ant - S aos oo apd el ottt sk RIS ahe

Since Zk ¢ DFR implies 2 Zk ¢ DFR (Theorem 3.4) and a sum of DFR number of iid.
exponential random vanables is DFR (Esary, Marshall and Proschan (1973), E WA ¢DFR.
Since DFR property is preserved under limits as A -+ o« one has 2’ W, e DFR. D

Remark 4.2: Szekli (1986) shows that W* has convex survival function (say F*). However,

W* e DFR is equivalent to that F*is log-convex: a stronger property than convexity.
The above result combined with the results fo Szekli (1986) lead to

Corollary 4.3: The stationary waiting time in a GI/G/1 (M/G/1) queue with DFR (IMRL)

service times is DFR.

5. CONCAVE RENEWAL FUNCTIONS

Consider a discrete time renewal process with the inter-renewal time having the first passage
time distribution of X from state 1 to state 0. l.et y(n) be the probability that a renewal
occurs at time n=1,2,... (y is the renewal density). Then the expected number of renewals

M(n) during {1,2,...,n} is equal to kzly(k) (M is the renewal function.)

Theorem 5.1: =1‘IQ > 0 implies y(n) is decreasing in ne€ N + (i.e., M is concave on N+).

Proof: Let X*= {X,,,n-O 1,. } be a modification of X such that as soon as X reaches O it
is placed back to state 1 (representing a renewal). Then Q * (1,;) = Q(i, /), ie N+, j=2,3,..

and Q*(i,1)=1,ie N +. So -1 Q > 0 implies -1 Q 2 0 and therefore X* is stochastically

4

monotone. Specifically {X; | X = 1} 25t {X | Xg = 1} n=1,2,... {note that the state space

of X* is N+). Then the observation that e

DFR Property of First Passage Times and Its Preservation under Geometric Com- 13
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5 y(m =1- Efo(x;_, 1}

and that Q(i, 1) is increasing in / leads to the desired conclusion. I:]

We will next see that the inter-renewal time need not be DFR for the renewal function to
be concave. This will be achieved by showing that =l_1Q 2 0 is not sufficient for the DFR

property of 7.

Counterexample 5.2: Consider the first passage time T (defined in 3.1) of a Markov chain with

transition probability matrix

(=]

I~

i
O W
Slw O
b= Bj—= O

Then

—
o
o

— A'»——
NN
3

and =1'1_Q 2 0. So the renewal density is decreasing (Theorem 5.1). Computing one gets

rr(1) = %; rr(2)=0; rp(3) = _196 So T is not DFR. Then one sees that in the discrete time

case the DFR property of inter-renewal times is sufficient but not necessary for a concave renewal

function.

.j: DFR Property of First Passage Times and Its Preservation under Geometric Com- 14
. pounding
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We next turn our attention to the continuous time case. The inter-renewal times have the
first passage time distribution of ¥ from state 1 to state 0. y and M are the renewal density
and renewal function, respectively, of the renewal process. Similar to the discrete time case

one has

Theorem 5.3: Y is stochastically monotone implies y(s) is decreasing in t€ [0,) (ie., M is

concave on [0,x)).

Remark 5.4: An interesting consequence of Theorem 5.3 and the conjecture of Brown (1981),

VLI L

if true, is that the first passage time T* of a stochastically monotone Markov process Y with
state space N (i.e., for any k e N, Ekp(i,j) is increasing in i < k and Ek,u(i,j) is decreasing q
J2 J< :

in i> k) from state 1 to state 0 is DFR.
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