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Abstract

It is shown that if the transition kernel of a discrete time Markov chain with state space
fO, 1, .. is totally positive of order two (TP2), the first passage time from state 1Ito state
o has decreasing failure rate (DFR). This result is used to show that (i) the sum of a
geometric number (i.e., geometric compound) of idi.d. DFR random variables is DFR and (ii)
the number of customers served during a busy period in an M/G/1 queue with increasing
failure rate service times is DFR. Recent results of Szekli (1986) and the closure property
of iLi.d. DFR random variables under geometric compounding are combined to show that the
stationary waiting time in a GI/G/1 (M/G/1) queue with DFR (increasing mean residual)

* service times is DFR. We also provide sufficient conditions on the inter-renewal times under
which the renewal function is concave. These results shed some light on a conjecture of

* Brown (1981).

AMS 1970 subject classification: Primary 60J27, secondary 60K10.

Key words and phrases: DFR distributions, geometric compounding, renewal function, GI/G/1

queues.
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1. INTRODUCTION

Brown (1980) proved that the renewal function for a renewal process with decreasing failure

rate (DFR) inter-renewal times is concave. In a subsequent paper (Brown 1981) he conjectured

that DFR is also a necessary condition for concavity. A consequence of this conjecture, as

pointed out by Brown, is that DFR distributions are closed under geometric compounding

(i.e., the sum of a geometric number of ii.d. DFR random variables is DFR). Thus a

counterexample to this (possible) closure property of DFR random variables under geometric

compounding would provide a counterexample to the concavity conjecture.

In an attempt to verify Brown's conjecture we obtained sufficient conditions for (i) the first

passage time from state 1 to state 0 of a Markov chain with state space {0, 1 ... } to be DFR

and (ii) the renewal function to be concave. These results led to progress in two areas which

shed light on Brown's conjecture:

(i) It is shown that DFR distributionsare closed under geometric compounding,

(ii) An example is given which shows that the conjecture does not hold in the discrete

time case.

The discrete time example does not generalize to the continuous case, and the truth of the

conjecture is still unresolved. In the continuous case, however, it is shown that a consequence

of Brown's conjecture, if true, is that the first passage time from state I to state 0 in a

stochastically monotone Markov process with state space 10, ]...} is DFR. This property is

known to hold for birth and death processes (Keilson 1979) and in general for any Markov

process that can be uniformized such that the embedded Markov chain has a totally positive

of order two (TP 2) transition matrix (Assaf, Shaked and Shanthikumar 1985). But it is not

DFR Property of First Passage Times and Its Preservation under Geometric Corn- 1
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known whether it holds for this larger class. For this class of Markov processes (i.e.,

stochastically monotone) it is easily verified that the first passage time from state 1 to state

0 has the new worse than used (NWU) property. The NWU property is weaker than the

DFR property.

conjecture, have other applications. The DFR property of the first passage times of Markov

chains is used to show that the number of customers served during a busy period in an

M/G/1 queue with increasing failure rate service times is DFR. Geometric compounding of

i.i.d. random variable arises naturally in many applied probability models. A recent paper of

Gertsbakh (1984) discusses a wide range of applications in reliability theory. In the queueing

theory context it is well known that the stationary waiting time in a GI/G/1 queue can be

represented as a geometric compound of ii.d. random variables (e.g., Feller 1971). Related

results are that the class of completely monotone (CM) distributions is closed under geometric

compounding and the stationary waiting time in an M/G/I queue with CM service times is

CM (Keilson 1978) and that the distribution function of a geometric convolution of DFR

distributions is concave and the stationary waiting time in a GI/G/1 (M/G/1) queue with

DFR (increasing mean residual) service times has a concave distribution function (Szekli

1986). We will strengthen the results of Szekli.

One aspect of our methodology which appears to be new is the consideration of a monotonicity

property for a Markov chain which is stronger than stochastic monotonicity and weaker than

TP2 . Stochastic monotonicity is based on the partial ordering of stochastic ordering, TP2 on

ordering by monotone likelihood ratio. An intermediate ordering we use is the hazard rate

ordering (e.g., Ross 1983). This ordering is utilized by Brown (1980, 1983, 1984) to study

properties of IMRL and DFR distributions.

DFR Property of First Passage Times and Its Preservation under Geometric Corn- 2
pounding
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2. PRELIMINARIES

A random variable X or its distribution F on [0,oc) is said to be DFR (IFR) if its failure

rate ry(i) =_f(t) / F(t) is decreasing (increasing) in iE [0, ac): f and F are the density and

survival functions of X ("increasing" and "decreasing" are not used in the strict sense). X

is said to be IMRL if E(X - t IX > 0 is increasing in t E [0, 4)

Two non-negative random variables X1 and X2 or their distributions F1 and F2 are ordered in

the sense of usual stochastic (hazard rate) ordering if TI(i) T 2 (t),t > 0 (NO(t / 2 (t) is

increasing in tE [0,). Denote X'1 2! 5tX2(Xi hX2). Note that (e.g. Ross 1983) X'1  h 1 X2

implies {X 1 IX1 >} 1 st {X2 IX2 > t,t ? 0.

A function a f a(i,j)J of two real variables ranging over linearly ordered sets X and Y,

respectively is TI'2  if for any nj < n2 and ml < m2 (ni E X, m, E Y),

a(nl, mfla(n2, m2) ? a(nl, m2)a(n2 , ml). Equivalently using the convention 0/0 = 0 one has
a~~n2 ,m2 ) ~ _anm)>0 (when defined; otherwise set the difference equal to zero).

a(n2 , MO a(nl, ml)-

*Let t = I'(u~-'] 1,p N t(i,j) 1, i > j and t(i,j) =0 otherwise. a =a~), and

*b =[b(i,j)]N are non-negative matrices (here N+ 1,2.1.

Lemma 2. 1: a! t TP2 , ri t TI'2 and t~ rt> 0. Then a c TI',.

Proof. Let A a at, R =r i, B= art and for I < ni < n2, < ml <Km 2 and B(nj, ml) > 0 con-

sider

DFR Property of First Passage Times and Its Preservation under Gecometric Comn- 3
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______a -a(n,, k) R(k, m2)

(21 B(n1, M2) _k-I

B(nl,m1 )

R,m2) a(nl,k)R(k,ml)
k R (k, al )R f l

~~R~~rn2 R~kl~m2 I a(nl,j)R (j, ml)

R (k m2)R (k- 1,m2) -

where R (0, rn12) = .Since R1 E TP2 , the expression in the square bracket in the right hand
R (0, ml)

side of (2.1) is non-negative. Consider

j-k1
* (2.2) k

1+

Now for .4 (n1, k) > 0, set R (0,m 1) =0 and consider

DER Property of First Passage Times and Its Preservation under Geometric Corn-4
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k-I

~a(nl, flR (f, ml,)

EA~nlf)[R~ml)- R (I - 1,ml)] -A (nl,k)R(k,ml)

iA4(nl,j)[R~j,ml) - R(j- 1,ml)] +A (nl,k)R(k - I,1,)
'-k

k A (nl, F)

E (1 k [R i,m) R (f- 1,i,)]-R(k,mi)

4A (nl,k)

A A(n2 ,)
~A~nk)[R(P,ml) - RU' - 1,ml)] -R(k,rnil)

1-. (n2 , k)

)-k

A(nl,F) /A(nl,k) (5) A(n 2 ,f) /A(n 2 ,k) forf <~(2!) k and n1  n2 . Then from (2.2) one gets

DFR Property of Yirst Passage Times and Its Preservation under Geometric Com- 5
pounding



r.d.

(2.3)

Ea(n1, f)R (i, mj) Ea(n2, f)R(f, ml)
t-I t-I

When A(nl,k) =0, the left hand side of (2.3) is zero and the above inequality is trivially

satisfied. Combining (2.1) and (2.3) one has

B (n 1, mt2) B (n 2 , mn2)
(2.4) B(n 1 ,rm2 )< B(n 2 , 1 <n 1 <n 2 ; I<m 1 <m 2 .B(n 1 ,m 1) -B(n 2 , n 1)

Since a r > 0, B(i,j) is increasing in j and therefore B(nj, ml) = 0 implies B(n 1 , m2) = 0. 1lence

(2.4) in this case is trivially satisfied.

Remark 2.2: Keilson and Kester (1978) show that if at f TP2 and t 1  rt I TP2 then

a r t c TP2 . This follows from the observations that a r t= a t I r t and that the class
of TP2 matrices is closed under multiplication. Since t-r e TP2 implies r 6 TP2 , our

condition rt c TP2 and t - r t > 0 is weaker than the TP2 condition of t r t.

3. DFR FIRST PASSAGE TIMES

Let X= {X,,n = 0, 1...} be a temporally homogeneous discrete time Markov chain with state

space N = {0, 1, ..} and transition probability matrix

P - P(i,J]i (P(,) P =j X = i},j, j c N). Define the first passage time

(3.1) T= Imin[n:Y =0, n=l,2 .... A,-1}.

DFR Property of First Passage limes and Its Prcscrvation under (;eometric Com- 6
pounding
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Let Q P ,t be the transition kernel of X (i.e., Q , P(i, k), i,j E N). One has

Theorem 3 1: Q c TP2 implies TE DFR

Proof: Thc failure rate rT of T is given by rj.(n) PIT= P7 T> n} PIX, =0 X_1 2! 1

11PjXn0Ix1 Xn1i, Xn- 1  11 P{X,-j =iIX,-i 2! 1}. That is

~°-'

(3.2) rT(n) 1 E[Q(Xn-] 1

dher stands for equality in law.) Let Pi =P~).N be the

transition probability matrix of the lossy process X' IX', n = 0 1_j. of X' on the state space

N+ (e.g. Keilson 1979). Let , and v be the probability vector of (i j and i, respectively

(iTeoe ) 1: Q an Therefores fro thDcsRepoetofT marcsudruliiain

(if i (k) pfire r atendo Ti s a d Si srtsat)T in s n rb e ti rni verified

that In l i n 1 >1 {X~~ln 1 > } hti

(3.3) r- ) = 1 e 1[Q(1 P, l,1)],

where~~ e (, adv 6=(,0,0 ... N wc nsie 0, 1 -.. . ) f Cl"ontesate pac

N+ (e-g. aKdi sn e1 efore Le rom anhe clbeute probablty ecmtorie f u' nde multieplictionl

whe r e rt = 1, First P'a ssg erd _I=ts=1,, .... ). Now on nder Geometric..) Coeary

* pounding

I



is TP2 since Q= [Q(i,j)] + is TP2 ( Q c TP2 implies Qj E TP2). Now as an induction

hypothesis assume that t c TP2. We have shown that this is true for n = 1,2.

Now observing that t -_.P t > 0, since P t is TP2 and P is a transition probability matrix

one has from Lemma 2.1

Vn+ 1Vn

t I

is TP2. Observe that this TP2 property implies

P 1+ k + 1} PjV+ k}
(3.4) >, k=,2...

PIX,$ k+ll PI'A>k}

Combining (3.3) and (3.4) one sees that

(3.5) Xn+l h Xn, n0,l1,..

Since >h lies stochastic ordering and Q(i, 1) is increasing in i one has from (3.2) and

- (3.5), rT(n) is decreasing in n c N +.

Remark 3.2: It is known that if P is TP2 then T has log-convex probability mass function

which implies TEDFR (Assaf, Shaked and Shanthikumar 1985). However, our condition Q

is TP2 is weaker since P E TP2 implies Q is TP2 and not necessarily in the reverse direction.

DFR Property of First Passage Times and Its Preservation under Geometric Com- 8
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Remark 3.3: Let Tk-= min~n:X, :5 k-i1, n =1, 2,...] IX0 k}, (k > 1). Considering a mod-

pp

ification of X such that its states O, L..., k - I } are lumped into one absorbing state, from

Theorem 3.1 one sees that Q E TP2 implies T - c DFR.

Next consider an absorbing, right-continuous continuous time Markov chain Y= { Y(t), I > 0}

with state space N, where 0 is the absorbing state. Let u [u(i]I3.N be the transition

rate matrix of Y ()u(ij) is the transition rate from state i to state j).

Ai -jX ; D, =diag Jo,iu....

(3.6) T* =inf [t:Y(t)- 0, > 01 Y(O)= 11

Define p = supi. 3, i=0,1,...}. Then using uniformization (e.g., Keilson 1979, Chapter 2 or

Assaf, Shaked and Shanthikumar 1985, Section 3) one has from Theorem 3.1

,* Corollary 34: If there exists a X (t* <X<cc) such that [/+!()u-D,)]t is TP2 then

T* T DFR.

We now present some applications of the above results. Let Z,, n= 1,2...} be a sequence

of i.i.d. random variables with support N+ and K be a geometric random variable with

PIK= k} -(1 -p) k-p, k c N +. {Zn} and K are mutually independent.

K

Theorem 3.5: Z, E DFR implies Z* Y- Z, E DFR.

Proof: Let X be a temporally homogeneous Markov chain with state space N and transition

probability matrix P where P(O,0) = 1, P(i, i + 1) = 1 - rz(i),

P(i, 1) = (1 -p)rz(i), P(i,0) -prz(i), i e N + and all other entries are zero.

DFR Property of First Passage Times and Its Preservation under Geometric Com- 9
pounding
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rz(i) PIZ, i Z, > i} is the failure rate of Z,. Let T be as defined in (3.1) and define

(3.7) T,= min[n:X , 1 n=1 , 2 , Xo 1

Simple calculation shows that

k-I

(3.8) P{T = k} 1 (1 - rz())rz(k)
f-I

=PIZ, =kk =1,2,...

It can also be verified that P{XT = 11 = (1-p) and P{XT =01 =p. Since state 0 is

absorbing, employing the Markov property of X, (3.8) and the fact that T1 is a stopping time

of X, it is not hard to see that

(3.9) TdZ*

Computing Q one sees that Q(i,O) = 1, i E N, Q(i, 1) - 1 -prz(i), Q(i,j) =

I - rZ (i), 2 < j ! i; i c N + and all other entries are zero. In this case Q E TP2 as long as

r-(i) is decreasing in i E N +. The required result now follows from (3.9) and Theorem 3.1.

D

Consider a GI/G/1 queue at which customers arrive according to a renewal process with

rate X. The service times form a sequence of i.i.d. random variables with a common

distribution function F. The arrival process and service times are mutually independent. We

DFR Property of First Passage Times and Its Preservation under Geometric Com- 10
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will first consider an M/G/1 queue which is a special case of GI/G/1 queue with Poisson

arrival process.

Theorem 3.6: The number of customers served during a busy period of an M/G/1 queue with

IFR service times is DFR.

Proof: Let X, be the number of customers in the M/G/1 queueing system just after the n-th

customer departure. Then X J ', n = 0,1,...} is a temporally homogeneous Markov chain

with transition probabilities P(i,j) =g(j + 1 - i), i E N +; P (0,J) =g(J), j E N, where

Sk = -1, -2,...

[ J o ! d F t) , k 0 , 1 ...
k!

(e.g., Ross 1983). Consider a modification X of X such that state 0 is absorbing in X (i.e.,

P(i,j) = P(i,j), i c N + , j E N and P(0,0) = 1). Then if T is as defined in (3.1), it is the

number of customers served during the first busy period. Consider

Q(i,jQ) = G(j+ 1- i), i,je N + (Q(0,0) = 1, Q(O,j) =O,jE N +),

I k 1, -2,...G;(k) ={k -,2..

Egff), k 0 , 1,....
f-k

It is known that if F(t + x)/ F(t) is decreasing in t (i.e., F is IFR) then G(n + k) /Z(k) is

decreasing in k (Block and Savits 1980). This observation leads to a straightforward verifi-

cation that Q E TP2 . The DFR property of T now follows from Theorem 3.1.

DFR Property of First Passage Times and Its Preservation under Geometric Corn- 11
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W: I W

4. CLOSURE OF DFR UNDER GEOMETRIC COMPOUNDING

W, n = 1,2, ...} is a sequence i.i.d. random variables with support 10,0c) and survival function

F and K is a geometric random variable with PIK= kj = (1 p) k = 1,2 . {W} and

K are mutually independent. Then one has

K

Theorem 4.1: W c DFR implies V* - I f c DFR.
n-I

Proof: For some X >0 let G(k) k =0,1 ..... Then if {Zn n=1,2.... is a sequence of

i.i.d. random variables with a common survival function

G, rz(k) = [G(k - 1) - G(k)] / G(k - 1) is decreasing in k = 1,2,... (i.e., Z, E DFR). Let

E , n= 1,2.. be a sequence of i.i.d. exponential random variables with mean 1 Now

define a sequence of i.i.d. random variables 10W, n 1,2,...} such that W ~ X Ex. That is

if X is the survival function of wn,

(At) k
(4.1) F (t)= k -( )

k-0

Then it is easily verified that

(4.2) as A -a c, F (t) -J () at every continuity point of F

(Feller 1971). Then consider

K

K k-I

DFR Property of First Passage Times and Its Preservation under Geometric Corn- 12
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K

Since Z ce DFR implies Y Zx eDFR (Theorem 3.4) and a sum of DFR number of i.i.d.
k-I K

. exponential random variables is DFR (Esary, Marshall and Proschan (1973), Y W, EDFR.
K n-1

* Since DFR property is preserved under limits as A -,- a one has I I n , DFR. D

Remark 4.2: Szekli (1986) shows that W* has convex survival function (say F*). However,

*W* c DFR is equivalent to that F * is log-convex: a stronger property than convexity.

The above result combined with the results fo Szekli (1986) lead to

Corollary 4.3: The stationary waiting time in a GI/G/1 (M/G/l) queue with DFR (IMRL)

service times is DFR.

5. CONCAVE RENEWAL FUNCTIONS

Consider a discrete time renewal process with the inter-renewal time having the first passage

time distribution of X from state I to state 0. Let "y(n) be the probability that a renewal

occurs at time n= 1,2,... (y is the renewal density). Then the expected number of renewals
n

AM(n) during {1,2, ...,n} is equal to -y(k) (M is the renewal function.)

Theorem 5.1: t -Q 0 implies y(n) is decreasing in n c N + (i.e., Al is concave on N+).

Proof. Let X*= {X",n 0, 1,...l be a modification of X such that as soon as X reaches 0 it

is placed back to state 1 (representing a renewal). Then Q (ij) = Q(iQ), i c N + , j = 2, 3,...,

and Q*(i, 1)= 1, ic N+. So t-1 Q 0 implies -Q*> 0 and therefore X* is stochastically

monotone. Specifically IX, I X; = I I ? st fX._ I X0 1 1, n 1, 2,... (note that the state space

of X* is N+). Then the observation that

DFR Property of First Passage Times and Its Preservaticn under Geometric Corn- 13
pounding
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*y(n) =1- EjQ(X 1, 1)1

and that Q(i, 1) is increasing in i leads to the desired conclusion.E

We will next see that the inter-renewal time need not be DFR for the renewal function to

be concave. This will be achieved by showing that I Q 0is not sufficient f or the DFR

property of 7.

* Counierexample 5.2: Consider the first passage time T (defined in 3. 1) of a Markov chain with

transition probability matrix

100

4 4

Then

and t Q > 0. So the renewal density is decreasing (Theorem 5.1). Computing one gets

3 9rTM1 7- r( 2) = 0; r- (3) = .So T is not DFR. Then one sees that in the discrete time

case the DFR property of inter-renewal times is sufficient but not necessary for a concave renewal

* function.

DFR Property of First Passage Times and Its Preservation under Geometric Con- 14
pounding

Couteexmpe .2:Cosierth fistpasae im T -dfne n..) faMakv hinwt



We next turn our attention to the continuous time case. The inter-renewal times have the

first passage time distribution of Y from state 1 to state 0. "y and M are the renewal density

and renewal function, respectively, of the renewal process. Similar to the discrete time case

one has

Theorem 5.3: Y is stochastically monotone implies y(t) is decreasing in i c [0,0) (i.e., M is

concave on [0, )).

Remark 5.4: An interesting consequence of Theorem 5.3 and the conjecture of Brown (1981),

if true, is that the first passage time T* of a stochastically monotone Markov process Y with

state space N (i.e., for any k E N, I u(i,j) is increasing in i < k and I u(i,j) is decreasing
jk jk

in i> k) from state 1 to state 0 is DFR.
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