
AD-0169 94 MIL SYSTEM INTERFRCE ISSUES WITH R UNIX-MRCINTOSH /
D-01697 INPLENENTNTXON(U) BROWN UNIV PROVIDENCE RI DEPT OF

-9 MISYTMCOMPUTER SCIENCE J J1 DOME RPR 86 CS-S6-18
U iC LASSIFIEE F/O 9/2 M

I flf~~l=lllllllllll

- .. ,., b * * -

4 1).

-. .--_
,.',I-" . . 4. . ,-

I IIII II'.-. ,- -- .- .-

III iii2I11124 4 .. . j 4
- .

III lll IrIII~ ~ ..

1.* - --

- -' 4 .-.-.-.-4 ..-.-.4

.4 . 4 •4 . -4 -,

.4 . .4

- ~ - -- -----------------

hl F \M4

BROWN UNIVERSITY

~-~-W- Nk _27 7W7 .

Co

* e * to
..

Department

g ~JUN 9 18

LUJ

5. Compu ter ScienceA

86~j4

y~~~V .7V .7." - -

No DoD funds for this report.
Per Ms. Tremblayr, Brown Universitj,
Dert. of Computer Science

Mail System Interface Issues
With a UNIX-Macintosh Implementation

by
John Joseph Bowe

Technical Report No. CS-86-1 0
April 1986

Sc.M. Project.-

Submitted in partial fulfillment of the requirements for the Degree of Master of Science in the
Department of Computer Science at Brown University.

Thomas W Doeppner
Advisor

2". 2"

Mail System Interface Issues
With a UNIX-Macintosh Implementation

John J. Bowe

Brown University Computer Science
April 1986

Abstract

An electronic mail system is a communication tool employed by
users of computer systems. Messages are typed by one user, stored
on a computer, and read by any number of users. A mail program is
simply an interface between a human and a store of mail messages.
Therefore, there are two possibly independent interfaces to
consider: one is the interface between the person and the mail
program, and the other that between the mail program and the actual
stored messages themselves. This project addresses these issues. A
prototype front end was implemented on a Macintosh with the
guidelines of user friendliness used by many Macintosh programs.
An interface to the department's mail server, a VAX-1 1/750 running
UNIX 4.2bsd, which was implemented in the summer of 1985, was
written to provide an efficient exchange of mail messages between
the Macintosh and UNIX host. -

7 1.
/?

C

L - II , : In_ ,. ,, . . - -. . . ., . . .- --

INTRODUCTION

An electronic mail system is a set of tools shared for communication

among users of computer systems. Users need not be using the same

machine or even the same kind of machine to relay messages. Mail

messages are typed by one user on a computer read by other users on

another computer. What happens to the message between the users can

vary from being complex to very simple. The simplest case would be having

a mail program read keyboard input and store the message directly in the

destination mailbox file. This is sufficient for relaying a simple message

to another user of the same computer. Some possible paths that a message

can take include: being formatted with a text processing program such as

nroff or fmt, being sent through an accounting program to charge the user

for the message service, being transferred across the country over

telephone lines to another computer, or being moved by a high-speed local

area network, such as Ethernet, within an organization to a specialized

mail handling computer. In most cases the user is unaware of what is

happening to the message; the destination address of the message is typed

and sent with the same confidence and casualness as a telephone number

is dialed.

In its simplest view a mail program is just an interface between a human

and a store of mail messages. Interfaces to mail messages vary as much as

the computer systems themselves on which the messages are stored. There

can be a multitude of possible features, even within the same operating

environment. Some of these include: being able to organize and store

Mail Interface Issues Bowe
°w

.

messages in the file system, having a choice of which text editor to use,

and having the ability to easily forward pieces of messages to other users.

The implementor of the user-interface program must choose a practical

and useful subset of features possible in the intended environment.

Another consideration is the target audience of users. A UNIXt hacker

would probably not be upset by a cryptic and powerful interface while a

naive or occasional user would need an interface where all options are

clearly given and catastrophic operations, such as deleting all messages

ever saved, are impossible to do unintentionally. An ideal interface would

be one that was "fast" to use, that is commands require little user effort,

one that has powerful features such as text manipulation, and one where

commands and options are obvious.

The following discussions explore three areas. The first will discuss

aspects of mail systems in general, in particular what features are useful

and when they might be used. The second summarizes the UNIX 4.2BSD mail

system and how it fulfills some of these features. It will be assumed that

the reader is familiar with the UNIX mail system. (Note: The UNIX 4.2BSD

mail program, often referred to as the UCB mail program, will usually be

referred to simply as the UNIX mail system in this paper.) The final area of

this paper will cover the Macintosh implementation of a mail interface to

the UNIX mail system.

INTERFACE FUNCTIONALITY

* Mail Interface Issues 2 Bowe

Below is a detailed discussion of the important functions of a mail

interface. Of course what is important depends on such things as user

abilities, required functionality, and personal taste. Many important

aspects are drawn from the existing ways that people compose and read

memos and letters on paper at their desks. This is because people already

have methods and systems for dealing with messages at their offices and

a computer can enhance their message handling capabilities without

forcing them to change their work habits.

Displaying messages

The most important function to a user is the ability to examine messages.

There are many aspects of message displaying that a user may wish to use.

First of all, there should be some indication of from whom the messages

came, and the user should have a choice of which messages to read, if any.

There should not be a requirement to read them in any particular order.

This idea is similar to thumbing through a stack of (paper) mail, reading

the return addresses, and deciding which to read now, which to read later,

and which to discard without reading. A useful display might be a list of

message senders with the date, subject, and length of each message. The

user would then choose what he wants to do with each message.

Long messages sometimes are inconvenient to access on a computer. Many

times the person reading the message will want to randomly look at

different parts, usually referring back to a passage from the beginning

once at the end or skipping backwards a page (or screen). He should not be

forced to scan only sequentially from top to bottom, but should be provided

Mail Interface Issues 3 Bowe

with the same random access convenience as a multi-page paper letter.

Incorporating several functions to easily access parts of a message

borders on the functionality of a text editor. Allowing the user to enter an

actual system text editor, perhaps the one of his choice, would permit fast

access to any part of the message and give the added power and

convenience of that text editor. The additional features of the text editor,

such as string searching, can be very helpful for the user.

Very often a user will want to see several messages simultaneously on a

display. Being able to display several messages at once can be difficult on

a standard terminal. At best an emacs-like program can be devised to

divide the terminal screen into two areas for independent viewing. The

ideal situation would be to have separate windows of a workstation with a

message in each one. Each window should be totally independent of the

others and should provide full functionality. This feature becomes a

necessity when one wants to compare several messages. An added nicity

would be to allow the user to size the windows at will to show the desired

portions of each message. This could be implemented on a

window-oriented workstation such as a Sun, Microvax, or IBM RT-PC.

Another useful feature is to allow easy printing of an individual message.

Although this can be accomplished in several steps, saving the message

and then running a printing program, it could be part of the mail program

itself. This seems to move away from the concept of a "paperless office".

which may verge on defeating the purpose of electronic mail, but it will be

desirable at times.

Mal Interface Issues Bowe

Message composition

The simplest case of sending mail is simply giving the destination user to

the mail program and then typing the message from scratch. Much of the

time this is sufficient. However, there are many occasions where the

sender of the message would like to have more information and tools

available on the same screen as the message being composed.

A nice feature is to have the ability to send a message while reading

another. This enables one to reference a message as another is typed. For

example, one could answer questions from someone else and be able to

refer to the questions as the answers are typed. This is a very common

mode of operation in an office; a person answers a letter with the original

message in front of him or her almost without exception. Multiple

windows or a split screen, as mentioned above, would be needed for this.

An extension to this is to use a more general interface, allowing

incorporation of arbitrary text files and perhaps pieces of text files into

mail messages. A workstation with mnulIt iplIe windows and

mouse-selectable text make this concept very easy to use, even for a

novice. This saves a lot of retyping and time when one wants to forward

information to others. As a further extension, messages need not be

confined to text. As computers become more widely used, people will want

to exchange other forms of information, such as pictures, sound, or video.

The format of this information will have to be carefully considered when

this is implemented, but that issue will not be discussed here.

Mail Interface Issues 5 Bowe

.41

II_ + - | , . : . -. ++ '. - - -,+ . -. -. : . . + + + _ . 'I - • - +. . - . - . ,

At times one may wish to compose several mail messages at once, perhaps

to different users. A practical use for this would be to easily ensure that

the facts of the messages to two different people are consistent. Again, a

window-oriented workstation would be ideal.

Many people like to save messages they send for future reference. Offices

have files filled with carbon copies. As convenient option the user

interface would have some provision for this, whether automatic or

explicitly invoked by the composer.

Saving and organizing messages

Most people reading mail, whether on a computer or from the postmi'n, will

want to save some of the messages and discard others. A typical person at

home may separate mail into various piles: bills, business reminders, * -

advertisements, or love letters. Old or uninteresting mail will be thrown

out or kept in a shoe box in a closet. This idea extends to sorting mail on a

computer. The categories may, in fact, be exactly the same as those of the

home example. The various "piles" must somehow be incorporated into the

file system of the computer. In an office a file is a place to keep a small

pile of messages. Also in an office messages may perhaps be put in a huge

disorganized drawer filled with hundreds of messages. Thus the concept is

easy to understand and use. The point is that a user can organize messages

as carefully or as loosely as desired, whether on a computer or in a filing

cabinet. The mail program must, of course, interface with the file system

and should not overburden the user with the details of the file system

Mail Interface Issues 6 Bowe

-+,~~._...._ - .- ,. -........

itself. It may be convenient to have the mail program keep messages in an

area separate from other files on the computer, perhaps in a subdirectory,

if the file system is tree oriented. This may help to user organize

messages, but may be too strict; he may want messages scattered about in

some other logical organization.

Modeless operation

There are advantages and disadvantages to using modes of operation. I

define a "mode" as a logical section of a program where only a subset of

all commands, usually closely related, may be called. The advantage is

mostly for the implementor of the mail program; it is usually easier to

program modally. When in a particular mcde the user must complete an

operation before switching to another mode. For example, a program may

be in "read mail" mode where all commands are related to reading and

storing messages, but to send a message, the user must leave that part of

the program and go to "send mail" mode. As mentioned above, a person may

often want to send a message while reading one without losing the state

of the original act of reading. An interface using an ordinary terminal is

inherently modal; the user can only see and do one thing at a time. People

tend to think non-modally. If the mail interface program is non-modal, the

user will not be required to adapt his work habits. Instead, the mail

program should be used as freely as any other office tool, like a telephone

or typewriter. A truly modeless interface would permit a user to both

perform any task at any time, and allow several tasks to be done in

parallel. For example, someone could be reading two messages at a

multi-window workstation, both messages being on the screen in windows.

Mail Interface Issues 7 Bowe

.
o . , - 'o

In another window, he could be typing a message to someone else. At any

time he should be allowed to do any of the following: scroll up and down

either incoming message, type some more of the message being sent, send

that message, start typing a new message to someone else, read any other

new messages, or close any of the windows.

Notification of new messages

An obvious necessity of a mail system is notification of the presence of

mail. In many homes, one can tell when new mail arrives when the postman

drops the letters through the mail slot. One can still see the new mail even

if he is just getting around to reading the previous day's mail. However, if

a person lives in the country, he may have to walk out to the end of the

driveway to check the mailbox. Clearly it is much more convenient to have

the mail drop inside one's front door. This notification should work as

asynchronously on a computer system as well.

A typical computer user may be logged into the computer all day at work. A

significant portion of the day may be spent running a mail program. The

user would of course like to know when new mail has arrived, but he

should not be inconvenienced needlessly by having to end the mail program,

check for new mail, and start it up again to read the new message. This is

essentially going out to the end of the driveway to get the new mail. So

there are two components to new mail notification: one is the actual

notification, and the other is fetching the new message. The notification

should be automatic and the fetching should be as easy as possible.

Mail Interface Issues 8 Bowe

4- -T

Workstations vs. terminals

Most of the nicer features mentioned above work much better on a window

and mouse oriented workstation or are even impossible without one. Most

user-computer interaction, however, is still done through plain terminals.

Therefore, much of the ideal functionality is impossible to implement.

More people are able to use a mail system from ordinary terminals,

whether in the office or at home with a modem.

Simplicity and power

As with many computer programs, there is a balance between power and

* simplicity. A powerful program usually implies complexity. The ultimate

goal of a mail program that everyone would use is to provide as much

power as possible while still retaining simplicity so the features will not

be beyond the grasp of average and novice users. This is a very difficult

problem for the designer of any computer system that will be used by a

wide variety of people.

One approach to this interface problem is to have a simple base of options,

each of which is flexible and easy to understand. All functions could be

obvious to novices, while more experienced users could use extensions to

the base functions to perform more advanced operations. The program

could be flexible enough to allow several ways of accomplishing the

desired tasks. Although some power may be sacrificed, usability may be

increased through such simplicity and flexibility. For instance, there can

be several ways to forward a portion of a message to someone else. One

way. perhaps, would be to save the message in a file and use a text editor

Mail Interface Issues 9 Bowe " -

m Rw

to keep only the part to be sent, then send that file. Another way would be

to directly edit the message with the mail program itself, sending only the

desired part.

Flexibility itself of the interface is an important issue. The person should

be able to do what he or she wants and when. It is important to try not to

force the user to do anything in any particular order. For example, people

would probably be annoyed if they were forced to first read incoming

messages before they could send any. Also, once an action is started, the

user should not be forced to complete it. People will often start typing a

message and decide in mid-sentence that they no longer wish to send it.

There should be an easy and fast way to abort most operations. This is how

people behave so an interface should be as adaptable as possible to

people's behavior. The designer of the program should strive to make it as

flexible and comfortable as a person's desk.

Providing several ways to perform tasks may add confusion to novice

users, but may please a seasoned user. Capable users will choose the

method of completing the message handling task which best suits their

particular task requirements and personal taste. To solve the problem of

confusion, the trickier operations could be made not quite as apparent as

the one "standard" method, thus guiding them toward that one method.

When they become more experienced, users may wish for fancier

operations and naturally try other methods.

No office tool should be designed with the intent of making a targetted

Mail Interface Issues 10 Bowe
.' .

[.--. °. '-:-. -" - .. .'" t

- .1. " " i " ; - '' , " " " d ' i " ". . . : - ; " " ' ' ' - i • " " - - - ' • " , , '

user change his or her work habits drasticly. Instead, the tool should fit

somewhat into established ways of doing things. This enables anyone to

use the tool since there is a very small learning curve. This is the most

important idea that the implementor of a computerized message system

should keep in mind.

THE UNIX 4.2BSD MAIL PROGRAM

In general many programs have more options than the average user will

ever use. The UNIX 4.2bsd mail program is one such program; there are a

multitude of options in this powerful program. In conjunction with the --

UNIX operating system, the user can usually accomplish almost any desired

task. However, many more complicated tasks require a fair knowledge of

UNIX and the mail program itself.

Since UNIX is a terminal oriented operating system, the desire to perform

several interactive tasks simultaneously is difficult to satisfy. On a

normal terminal, the UNIX 4.2 job control facility is the closest the user

will come to running two interactive tasks at the same time. He or she can

easily bounce back and forth between jobs, perhaps two processes reading

different mail messages. A danger to this scheme, however, is that these

are two independent processes, each assuming that it has sole access to

the mailbox. The inconvenience of this approach is that both jobs are not

visible on the screen at the same time. A multiple window workstation

would ease this problem, however, since the user could see both jobs at

once. However, if the mail program is running independently (separate

Mail Interface Issues 11 Bowe

M W

.

processes) in two windows, both reading the user's mailbox, the same

problem arises as in above. Both processes believe they have exclusive

access to the mailbox. The user must be very careful with the disposition

of his messages.

In a typical mail reading session, a user will invoke the program, which

will show from whom the messages came with the time, date, and the

subject of the message. The user can read messages as desired, keep some

in the mailbox, delete some, and easily reply to any. These nicely agree

with the desirable features discussed above.

The UNIX mail program has excellent interaction with the file system.

Messages can be written anywhere in the file system (providing the user

has proper access). Saved messages can easily be read from files by the

program, edited, and saved again. The program interfaces not only with the

file system, but other programs such as vi, csh or any program that uses

standard input and output.

Most of the more common commands are obvious. For instance, "p" will

print a message, "d" will delete it, and "q" will quit. Some, however, may

lead to confusion. For example, there are two different commands to save

a message to a file - one will save all the header lines while the other

will not. This kind of thing may lead to confusion for a novice and a fairly

experienced user as well. A nice feature is the on-line help that is

available for every command. Although all the possible options are not laid

out in front of the user, there is information available interactively, 1

Mail Interface Issues 12 Bowe

.. , _ , .". ". -'- - . " -, .: ,I ,.".''-"i -

rather than off-line.

THE MACINTOSH

The Apple Macintosh, introduced more than two years ago, has given many

people in both academia and business access to window-oriented and

mouse-oriented computing at a fraction of the cost of higher-power . "

workstations. The Macintosh interface has undoubtedly influenced more

recent interface designs. Although this interface style was not started by

Apple, the widespread use and availability the Macintosh has made the idea

of window-mouse computing and the Macintosh synonymous to many.

Naturally, a Macintosh does not have the same power as a more expensive

workstation. Such limitations include: memory, screen size, and disk

storage, both in speed and capacity. A Macintosh is not only single-user,

but also single-task. A mail system that covers the scope of the UNIX mail

system would be impossible on such a machine. However, the speed of the

graphics, and the interface tools within the Macintosh can provide an

elegant user interface to a mail system. This is the human-computer

interface mentioned in the introduction. The other interface to consider is

that between the mail program, i.e. the Macintosh, and the store of mail

messages. This can be accomplished through a slave program run on the

mail serving host with which the Macintosh communicates through the

serial port. A significant effort of this project was spent on these

interfaces.

Mail Interface Issues 13 Bowe

* The Macintosh interface tries to imitate office processes in general to the

point of emulating a desk top. This familiarity is comforting to computer

novices, while usually not a hindrance to experts. There is a drawback to

this, however. The user may continue to think strictly in terms of current

office concepts rather than extending his conception of an office.

MACINTOSH MAIL IMPLEMENTATION

A Macintosh interface to the UNIX mail system was designed and

implemented to explore and demonstrate some of these ideas. This was

written to conform to the Macintosh implementation guidelines as -

discussed in Inside Macintosh. A technical description of the details is

given in the appendix. The following discussion assumes that the reader

has some familiarity with the Macintosh.

There are four menus in this application: Mail, Edit, Connect, and
Settings. As is usually the case with Macintosh applications, the first

menu, the Mail menu, often labeed the File menu, contains the open and

close entries for windows and files and contains the option to quit the

program. The second menu is almost always called the Edit menu and is

described in more detail below.

All windows support vertical scrolling, with the standard Macintosh scroll

bar, but not horizontal. The reason for this is that UNIX mail messages are

usually sent on 80 column terminals. Implementation was also easier.

Mail Interface Issues 14 Bowe

As windows are created on the screen, they are staggered slightly

horizontally and vertically until they reach the right or bottom of the

screen, respectively. When an screen border is reached, the new windows

are created at the left or top edge, depending on which border was reached.

From Window

The From window gives the user a list of from whom his mail has come.

The menu option is disabled until the user makes his presence known to

the host via the Connect menu. When selected, the Macintosh creates a

window and asks the host from whom the messages (if any) came. The

From selection is disabled while the From window is on the display; it

makes sense to only have one of these windows open at any time. This is a

"read-only" window. It may be picked at with the mouse, but will not be

affected by typed keys or attempts at pasting. When a point of the window

is picked, the entire line is selected and highlighted. This is the message

that is to be read. When a message is selected and the From window is

active, the Read item will be enabled in the Mail menu. When the

close-box is picked, the window is removed and the From item is once

again enabled. When the From window is removed from the screen, the

Read selection is disabled in Mail menu. Thus the user has full control

over which messages are to be read.

Read Window

A Read window displays a mail message from host and is invoked by

choosing Read from the Mail menu. The message displayed is the one

selected in the From window. The entire window is dedicated to the one

Mail Interface Issues 15 Bowe

TR

.-.

message. Thus, each individual message is independent visually as well as

logically. Any number of these windows may be displayed at one time, with

* a limit being the memory capacity of the machine. This window is now a

simple text window and its contents can be manipulated as such. When

* active, it responds to keyboard input, text selection with the mouse, and

Edit menu commands such as cut, copy, and paste. Undo is not

implemented.

The user has several choices upon closing this window with the close box.

A dialog box with several button items prompts for a response. The text

can be either saved to file or discarded. Saved files are of type TEXT. TEXT

is the standard application non-specific file type. It can be read by

MacWrite. As with all dialog boxes in this program, there is a Cancel

button in case the user decides not to close the window.

Compose Window

A Compose window is used to create a messages to be sent. It behaves

like ordinary text window and is, in fact, handled in exactly the same

manner as a Read window above. This type of window may be created in

several ways. Most obvious is by the Compose item of the Mail menu.

Note that this item is always enabled; the user need not be connected to a

host to type text into a window. The Callup File will also invoke a

Compose window; this is discussed below. If the user chooses Reply to a

Read window, a Compose window will be created for the user to type a
response to a message.

Mail Interface Issues 16 Bowe

- . . - - - -I _

W.,+ W

The choices upon closing this window are similar to those of a Read

window. A dialog box prompts for a response. The text can be saved to file,

discarded, or sent to the recipient user by passing the message to the

connected host. If the user has not connected himself via the Connect. -

menu, the send option has no effect. Note that a message can be composed

and saved to a file without being sent. This is useful if one wants to

compose several messages off-line and send them all later.

Edit Menu

The Edit menu strictly follows the Macintosh user interface guidelines.

There are two reasons for this. First, since edit functions are common to a --

great number of applications, the interface should remain constant across

applications. Second, and more importantly, is that many desk accessories

have edit capabilities, most commonly Copy and Paste. Desk accessories

do not have access to information about an application's menus, such as

the name of each item. They can, however, get events from the Edit menu.

To assure the items are in the correct locations, applications

programmers should include all the items of the Edit menu in the standard

order even if the specific application does not support them.

File Manipulation and Off-line Operation

The feature of being able to compose messages and save them to files is

useful for composing messages when a connection to a host is unavailable

or impractical. Such a case may be when one is working at home and

logging in to the mail host by a modem is expensive. Supporting the

common Macintosh file of type TEXT greatly expands the flexibility of

Mail Interface Issues 17 Bowe

LVM

IF_ V" V.-

*. information exchange among users. The Callup File item will read files

,from MacWrite that have been saves as "text only", Word files, MacTerm

,files, statistics files from many games, or files from many other

applications. For more flexibility, one can copy text from several

' documents all on the screen at once and paste it into a message to be

saved or sent. MacWrite can not do this. The combination of Compose and

Call Up is essentially an editor for plain text.

Settings

The items in the Settings menu in general should rarely need attention.

These set the various configuration parameters of the mail communication

sessions. If one accesses his mail always from the same location, the

settings will never change. The following is a short description of each of

the Settings options. All dialogs below have a Cancel option if the user

sees that information is correct or does not wish to change it.

The Connection item allows selection of the device to which

Macintosh is connected. This is done with a dialog box using radio butto,

- The possible connections are directly to a host, through a modem, or

directly to Localnet-20t t-box. The connection is remembered when the

program ends. The Login item in the Connect menu uses this information

to determine how to connect to the mail serving host.

The Baud item gives the option of three baud rates for the Macintosh

connection. These rates are 9600, 1200, and 300 bps. As in the
- Connection menu, radio buttons are used to make the selection.

Mail Interface Issues 18 Bowe

The T-port is the Localnet-20 port (t-box) to which the host is connected.

This should be set if the connection is directly to a t-box or through a

modem, which will use Localnet-20 at the modem pool to connect to the

host. This is selected through an Editable text dialog.

The Phone # (obviously) is the phone number used to connect to the host.

This is also selected through an Editable text dialog.

The Login name is the users account name n the UNIX host. This is

-* selected through an Editable text dialon. The user must have an account on

a UNIX host to read his mail.

The Password item allows selection of the password for the user denoted

in Login. Like the other text settings, it is set with an Editable text

dialog. However, for protection, the existing password is not shown when

this item is selected. It is echoed as it is typed for verification, but will

never be displayed again.

Check New Mail enables automatic checking for new mail from the host.

Will only work if there is a mail checking program such as hclock running

on the host. The program assumes the receipt of a bell (ASCII 07) means

new mail. This is checked in the idle loop of the program, so normal

communication with the host will not be disrupted. When selected, the

menu item will have a check mark next to it. When selected a second time,

this feature will be disabled and the check mark will disappear.

Mail Interface Issues 19 Bowe

Connect

The Connect menu is used to initiate or terminate a mail transaction

session with the host computer. The items were designed to provide as

much flexibility as possible. Login initiates the login procedure with the

host. Depending on what was selected in the Connection item in the

Settings menu, the mail program will expect different responses on the

serial line.

Logout logs the user off the UNIX host. This need only be done if the he is

completely finished with the host. If he plans to use a terminal emulation

program to proceed with other work, he should use Quit. Using Logout

does not end the mail program. The user can still create messages, write

them to the disk, edit files, etc. without leaving the program. After

logging out, Login or Already In must be used to re-establish a mail

session with the host.

Already In is used if the user is already logged in to the host. This will

be true in several instances. The first is when the user has already logged

in to the host with a terminal emulator and has decided to use the

Macintosh mail front end. The other case is when the user has already used

the mail program, Quit from it to do some local Macintosh work and

wishes to re-enter the mail interface.

Quit terminates the Macintosh mail program, but leaves the user logged in

to the host. This allows the user to work on other Macintosh applications

Mail Interface Issues 20 Bowe

. -
.-

h.°

and to easily return to the mail program or leaves him logged in if he

wants to use a terminal emulator.

MAIL-CHECKING DESK ACCESSORY

A very convenient feature of a mail interface is its ability to notify the

user that he or she has new mail. This is easy if there is a program in the

interface that is dedicated to this task. However, when a person is using a

Macintosh, he will undoubtedly be doing other work (other Macintosh

applications) some of the time. The purpose of a Macintosh desk accessory

is to provide a small service while running any application. Furthermore, a

desk accessory must be independent of running applications to assure

complete compatibility with all applications. A desk accessory,

MailCheck, was written to do this.

This is activated like any other desk accessory, through the apple menu.

When new mail arrives, the user is notified in two ways, visually and

audibly. For each new message that arrives, the Macintosh produces a beep.

If this is the first message since the accessory was activated or since the * -

user acknowledged a new message, a small window is created telling the

user about the new mail. This window is removed when the mouse is

pressed anywhere on it. However, if another window is subsequently

created on top of the notification window by an application, the

notification window is hidden, partially or fully. Thus, it behaves like any

ordinary window. The purpose of this scheme is to remind the user of the

new mail even if he chooses to not acknowledge it immediately and to

Mail Interface Issues 21 Bowe

:. .. ;.:''L ;- '. :, . * -: . . / - . . . - , -' : " i :.. . l

nlmI -A -W- V m,,

proceed with an application.

Of course, for this to work properly, the host must run some supporting

software. The program hclock, used at Brown on the VAXes, performs this

task nicely. Normally, hclock runs in the background and puts text in the .

status line of a terminal every minute. The name comes from the Heathkit

Heath-19 terminal, which supports a status line. Other terminal types are

supported, including VT100. Depending on options, hclock will put the

time, date, and load average in the status line. When new mail arrives, the

word "mail" appears in the status line and the bell is sounded. Writing to

the status line is accomplished with escape sequences. Running hclock

with the -C option is the most efficient for the desk accessory, sending

one character (bell) only when new mail arrives; nothing else is written to

the terminal.

This accessory makes two assumptions. First is that the host is connected

through the modem serial port in the back of the Macintosh. Second is that

the user has logged in to the host with some sort of host-Mac program,

such as MacTerm, Red Rider, or the mail program discussed above, and has

started hclock. This sets up the baud rate for the serial port; the default

baud rate for a Macintosh at power-up is usually 9600 bps.

SUMMARY

This proved to be a very interesting experiment in user-Macintosh and

Macintosh-host interfaces. The window and mouse oriented interface is

Mail Interface Issues 22 Bowe

- -- -- - - - - - -- '

indeed pleasant to use and has features that enhance the usability of the

standard UNIX mail system. The Macintosh may perhaps be thought of as an

intelligent front-end interface processor to the host. This idea could be ,

expanded to other applications where the Macintosh would handle most

user interface chores, leaving tasks requiring other resources to the host "

processor.

Mai' Interface Issues 23 Bowe

Conversion to a Centralized Mail Service

A Summary

Appendix A

John J Bowe

INTRODUCTION

When the trend in computing has been heading toward decentralization and

workstations, why implement a central, department-wide mail server?

The strongest reason for this is to enable a single mail service to be

available to the entire community of computers. Maintaining the server in

a well-known location in the local network domain allows assured access

by other hosts. Thus equal mail service is provided throughout the

community.

The mail program distributed with Berkeley 4.2 UNIX is designed to allow -

each host to run a totally independent mail system. The department had

been using this configuration until the centralized mail server was

installed in August 1985. Usually, a user arranged to have his or her mail

forwarded to his primarily used host. This is is not very inconvenient if

the number of hosts is small. However, since there are a fair number of

workstaions are now in use with more planned, a user may no longer have a

"primarily used" host.

Another consideration was offloading the burden of mail handling from the

Mail Service Summary A- 1 Bowe

i _ . " ' " "" " - " " " -- , " ' - - ' " " " ' " " n I l -- i - i"b-

V, -- 7 - -
-ar

L-

department's primary two hosts, VAX 11/780s. Sendmail, the back-end
delivery program of Berkeley mail, uses a large amount of CPU time. This

problem is further loads the host during peak usage hours. Having a host

dedicated to such chores would free CPU cycles on the other hosts for

other uses.

There are, however, a few disadvantages to this scheme. Most importantly

is fault tolerance. If the computer on which all the department's mail

resides suddenly becomes unavailable, all existing mail is inaccessible.

With the system distributed by Berkeley, only the mail of the users who

primarily use the down host is unavailable. Another disadvantage is that

there is now a much greater communication load on the serving host. Every

access to a person's mailbox requires inter-process and inter-host

communication. This also may take time if the server host is very busy,

which may annoy the user. Under normal system load, however, this is not

noticeable.

SERVICE vs A SERVER

A goal of this project was to provide a milI service, rather than a

server. A service implies a movable entity, rather than a statically

assigned, machine-dependent implementation. Thus, ideally, the service

could be transparently moved from host to host. Clients should not have to

be concerned with the details of discovering where that service is; the

information should be readily available. This is, in fact, how the

implementation was done. Each client host has a file telling which host on

Mail Service Summary A- 2 Bowe

S. . 04

.~~~~. . . .

the local network is the mail server at any particular time. If the server
host is scheduled to be taken out of operation for a while, all existing

mailboxes could be migrated to another host and the service information

on the clients could be adjusted. If the mail serving host crashes

unexpectedly, the disk drive containing the mail files could perhaps be

moved to another host to act as the mail server.

It is hoped that the idea of having this "service" as an entity available to

clients would extend to other services. Possibilities include: news,

printing, text processing, and perhaps CPU time itself. As of yet there is

no design for this "service server." The interface to the mail service was

designed so that the process of finding where the service currently is

would be easily changed to fit this more general scheme.

SERVICES IMPLEMENTED

The purpose of this project was to experiment with server-client

interaction, not write a mail interface. The goal of the implementation

was to keep the appearance of the existing Berkeley UNIX mail program,

but to move the resource consuming parts, mostly the sendmail program

to the server. Thus, the Berkeley program was divided into a front and a

back end. All interactions are dependent on TCP/IP and UDP/IP, which UNIX

4.2 (and 4.3) sockets use. Thus, any host which can use this interprocess

communication scheme can join the heterogeneous community of mail

clients.

Mail Service Summary A- 3 Bowe

t.w

L-I

. ."

There are two basic services provided: sending mail and receiving mail.

Both use TCP/IP to assure reliable communication of data. Let us start

with sending, since it is simpler. When a client wants to send mail, the

front end must rendezvous with the server whose function is to deliver the

message to the final destination. With the aid of some smaller

destination-dependent delivery programs, the Berkeley program sendmail

performs this task completely. In fact, the division between client and

server was made where the Berkeley mail program invokes sendmail. The

server simply gets the message to be sent from the client and passes it to

sendmail.

Since the mail is no longer stored on the local (client) host, another server

must exist to fetch a person's mailbox. This server-client division was

made where the mailbox is accessed. There are several complications in

reading mail. If the user always read his or her mail and then discarded it

or saved it to a file on the client host, the server would simply fetch the

mailbox and delete it. However, it is often the case that users just want to

read their mail, leaving it in their system mailbox or read only some of the

messages, deleting them, and leaving the others in the system mailbox.

Also, the Berkeley program keeps track of which messages in the mailbox

were read, which are old, but unread, and which are new. This requires

further interaction between client and server. To complicate matters

more, new mail may arrive for the user while the present mail is being

read, so the system mailbox will actually contain more messages than the

client thinks is there.

M r m-

Mail Service Summary A- 4 Bowe

When the person is finished reading some number of messages, some of

those will be marked for deletion and some for saving. This information is

passed to the server to adjust the mailbox. Many times all messages will

be marked for deletion in which case the mailbox is removed. This was

fairly simple to implement since, fortunately, the Berkeley software had a

module which did just this on a local host given the name of the mailbox

file and a structure telling which messages to save and which to delete.

This structure is built and adjusted by the front end program as the user

reads the messages. The structure is therefore passed to the server, which

then adjusts the person's system mailbox accordingly by essentially the

same module used by the Berkeley program.

OTHER SERVERS AND INTERACTIONS

There are other peripheral servers running which do not interact directly

with the user or the front-end mail program. One performs the task of

notifying users that they have new mail. Before this mail system was

implemented users were notified of new mail by the locally written

program hclock. This periodically checked the last modified date and time

of the person's mailbox (on that host) and sent notification to the

terminal. A scheme was devised where a process on the mail serving host

would instead send a datagram, via UDP/IP, to the hclock process on the

local host when the user got a new message. This way no matter where the

user is, he or she will be notified of new messages.

In order to assure that the mail serving host is still operating properly, a

Mail Service Summary A- 5 Bowe

a

daemon runs on each client host to listen for datagrams periodically sent

by the server. The same daemon performs the analogous function of

sending the datagrams on the server. If a client detects that the datagrams

are not being sent, it assumes that the server had failed and adjusts the

information for the client programs (the mail front end). If another host

becomes the mail server, datagrams are sent from the new server to that

same daemon, which makes proper note of the new situation.

HOW HAS IT WORKED? A SHORT RETROSPECT

From the user point of view, the mail interface has not changed. Users can

indeed read and send mail from any host on the local Ethernet. It is much

more convenient to type mail user rather than mail user@host. Which

host a user usually uses is no longer a concern. Fetching a mailbox is not

noticeably slower.

An occasional annoyance occurs when the usual mail serving host is down

for maintenance. The down time is not long enough to warrant moving the

mail service to another host. So for that short time, existing mail is

inaccessible. The client hosts continue to run in "local mode", which is

exactly the Berkeley distribution implementation.

A serious concern was the data structure representation among the

community of homogeneous hosts. In the first phase of implementation,

where all the hosts were VAXes, this was not a problem. Other hosts, such

as Suns and Apollos, use a different byte order for integers and fill

Mail Service Summary A- 6 Bowe

i.

* structures differently in memory. This problem was solved by assuring

that the structures passed from each host were equivalent. A much better

* solution is to use some sort of external data representation, such as Sun's

XDR in their RPC implementation. This would add a small amount of

complexity, but would ensure portability.

FUTURE DIRECTIONS

There are several paths to pursue to improve the present scheme. One

would be to simplify the control scheme of which determining and

maintaining on which host the service resides. A general "service sevr

would an elegant way. In general, there are too many servers and daemons

* running on the server host. A smaller number which performed more

functions would be more manageable. Another would be to do the

inter-process communication through remote procedure calls, rather than

* strict client-server rendezvous. This would make the code more readable

and more easily portable to hosts that use the same RPC scheme.

Mail Service Summary A- 7 Bowe

I _ +I _ I ! _ : I + Pl+ .+" + -, ,, -, + , + , '

Technical Implementation Notes

Appendix B

John J Bowe

INTRODUCTION

There were several major goals in this implementation of a Macintosh

interface to UNIX mail. The first was to create a usable software product

which people could use to read and send electronic mail. Another was to

experiment with Macintosh applications in general. There is a very steep

learning curve in unlocking the Macintosh toolbox and understanding how

the components of an application work together.

Two independent pieces of software were written. Ideally, the entire mail

program would be a desk accessory, which could be used at any time, no

matter what application was running. However, an average size for a desk --

accessory is about 3K of code; Apple claims that a limit to a desk

accessory is 8K [Appl85]. This is the major reason that two independent

parts of the mail interface were written. The desk accessory simply

checks the serial line of the Macintosh for a signal of new mail from the

host and asynchronously notifies the person using the Mac when new mail

arrives. To access the mail system on the host, the user would then invoke

a separate mail interface program.

The longer of the two programs by far, is the front end mail interface. This

" Implementation Notes B- 1 Bowe

,.-.. I

-. - , . ." *;- * ' *$,. ' V'. - , .'. , -.

is invoked as any other Macintosh application. With this one can compose

messages, read them from a UNIX host, send them, and save them in

Macintosh files in a window-oriented, friendly environment. To compose

and create files, the Mac need not be connected to a host. The

communication with the host is transparent to the user.

DEVELOPMENT ENVIRONMENTS

A different development environment was used for each of the two

programs. At the time of the start of implementation there was only one

choice within the department: the SUMacC (Stanford University Macintosh

C) compiler and rmaker, the resource compiler. Programs are written in C

on a UNIX host and compiled and linked with the SUMacC package (cc68 and

Id68); the SUMacC package was written at Stanford University. The code

module is combined with resource information by rmaker into a resource

file, which is transferred to a Macintosh running MacTerm by macput on

| the UNIX host. MacTerm automatically detects when a file is being

transferred to it. The protocol used for the transfer is XMODEM. The

advantage to this is that the compilation is quite fast on a large host.

Also, facilities on the host such as the text editors, make, and grep are

very convenient. It takes a lot of time, however, to transfer a large

program to the Macintosh.

The desk accessory was written with Manx Aztec C. This runs totally on a

Macintosh. There were several reasons for using this. The first is that it is

easier to write a desk accessory in this environment. A program is

Implementation Notes B- 2 Bowe

r.

provided to easily install one into the system file of the Macintosh

diskette. I also wanted to experiment with another development

environment. The slowness of the Macintosh disk access was not a burden
j°

since the desk accessory code itself is small, and, in fact, resides in a

single file. Further development tools are necessary if more users wish to

write their own Macintosh applications.

WINDOW DISPLAYS

All window functions are performed using the standard Macintosh user

interface guidelines outlined in Inside Macintosh [Appl85].

There are three main windows, not counting dialogs. A from window to

show from whom one's mail has come, a read window to display a mail

message, and a compose window in which one composes a message. All

three are created by the same procedure, but handled slightly differently

when manipulated by the user.

The read and compose windows behave exactly the same until closed.

Text can be typed, selected, cut, copied, or pasted. When in these windows,

the cursor is the standard I-beam to denote this. Upon closing the user is

prompted for what he wants done with the window by a simple dialog box.

In both cases the options are to be saved to a file, destroyed, or no

operation. The compose window has the option to send the message.

The from window contents can not be changed. The cursor remains an

arrow. When the mouse is clicked, an entire line is selected and the Read

Implementation Notes B- 3 Bowe

1

• -o

L A-

option of the Mail menu is enabled. The line selection is done by looking

forward and backward for carriage return characters from the point

selected in the text and explicitly setting the selection range in the

TextEdit record for that window. From the array of linestarts in the

TextEdit record, the program knows which line was selected, thus knows

which message the user wants to read.

HOST COMMUNICATIONS

There are several major reasons to communicate with the host. The first

is to log in or log out. The user's login ID and password are kept as string

resources in the application itself. The standard UNIX login procedure is

assumed and the program recognizes when the host is prompting for the

parts of the login procedure.

A necessary task is to obtain a list of from whom messages have come.

The program fetch was written to fetch messages from a user's mailbox

on the UNIX host. Fetch -f behaves similarly to UNIX from command, but

uses less than half the CPU time. The Macintosh puts this information

directly into a window for the user.

To speed retrieval of messages from the host, fetch, unlike mail, fetches

a message from the user's mailbox quickly with no further command

interaction. Fetch is compatible with both the standard Berkeley mail

system and the Brown-enhanced mail program. The command is issued to

the host through the serial port and the mail message is returned. The

Implementation Notes B- 4 Bowe

. * . . .".

message asked for should never not be there since the Macintosh had just

previously asked the host for a list of the available messages. A user could -

fool the Macintosh program by deleting some messages at a terminal. This .

is no problem, however, since fetch will simply return nothing, including

no error message.

The communication process of sending mail is similar to reading. The

Macintosh invokes sendmail, the back-end delivery program, on the UNIX

host and simply sends the message typed into a compose window through

the serial line. Sendmail is called with the -t flag to get the recipient

from the header of the message rather than the command line.

DESK ACCESSORY

A Macintosh desk accessory is a specialized form of a driver. A driver has

entry points depending on what function is to be performed. Functions

include: open, close, status, prime (usually read and write), and control. It

is loaded into the system file as a resource and is of type DRVR (driver).

The mail checking desk accessory simply checks the serial line for

information about new mail. Thus, there must be two entry points. One.

obviously, is open. The other is to do the actual checking of th e ser a! !:2e

This is the control entry point. In this desk accessory it is invoked every

five seconds. To specify the time, there is a field of a table at the

beginning of the code of the desk accessory that specifies how often (in

system clicks, 1/60ths of a second) the accessory is given control. Other

Implementation Notes B- 5 Bowe
wJi.

information specified in this table is which events (mouse, keyboard, etc)

will be handled, the menu ID of the menu that the accessory will use, if

any, and a list of entry points the the functions listed above. The actual

checking is done by seeing if there are any characters available at the

serial port and if there are read them. If one is a bell (07 hex) then then

the desk accessory notifies the user of new mail. It is assumed that there

is a program running on the UNIX host that will send a bell when new mad

arrives. Hclock with the -C option will do just this.

lrnp!ementation Notes B- 6 Bowe

_ .W4

REFERENCES

[Appl851 Apple Computer, Inside Macintosh, 1985.

[Cher85] Chernicoff, Stephen, Macintosh Revealed, Volumes I and I,-
Hayden Book Company, 1985.

[Shloe83] Schoens, Kurt, "Mail Reference Manual", Version 2.18, UNIX
4.2BSD source tape: /usr/doc/Mail, 1983.

[Smit85] Smith, Michael G., "Ther New Mail System Overview", Brown
University Department of Computer Science, MA-6-85, August
1985.

[Sun85] Sun Microsystems, "Remote Procedure Call Programming Guide",
Release 2.0, 1985.

[Leff84] Leffler, Samuel J., Fabry, Robert S., Joy, William N., "A 4.2BSD
Interprocess Communication Primer", Department of Electrical
Engineering and Computer Science, University of California at
Berkeley, October 1984.

--

V

J

*. *. - . . .

* -.

