We provide sufficient conditions under which two random vectors could be stochastically compared using the standard construction. These conditions are weaker than those discussed by Arjas and Lehtonen (1978) and Veinott (1965). Using these conditions, we present extensions of (i) a result of Block, Bueno, Savits and Shaked (1984) concerning the stochastic monotonicity of independent and identically distributed random variables conditioned on their partial-order statistics, and (ii) a theorem of Efron (1965) regarding an increasing property of Pólya frequency functions. Applications of these extensions are also pointed out.
Management Science
Working Paper No. MS-13

On Stochastic Comparison of Random Vectors

J. George Shanthikumar

April 1985
ON STOCHASTIC COMPARISON OF RANDOM VECTORS

J. George Shanthikumar*
School of Business Administration
University of California
Berkeley, CA 94720

April 1985

*Supported by the Air Force Office of Scientific Research, U.S.A.F., under Grant AFOSR-84-0205. Reproduction in whole or in part is permitted for any purpose of the United States Government.
ABSTRACT

We provide sufficient conditions under which two random vectors could be stochastically compared using the standard construction. These conditions are weaker than those discussed by Arjas and Lehtonen (1978) and Veinott (1965). Using these conditions we present extensions of (i) a result of Block, Bueno, Savits and Shaked (1984) concerning the stochastic monotonicity of independent and identically distributed random variables conditioned on their partial order statistics, and (ii) a theorem of Efron (1965) regarding an increasing property of Polya frequency functions. Applications of these extensions are also pointed out.

Key words: Random vectors, stochastic ordering, negative dependence, Polya frequency function, component cannibalization.
1. INTRODUCTION

Let X and Y be two real valued random variables with survival functions \tilde{F} and \tilde{G} respectively. Then X is said to be stochastically larger than Y if:

\[(1.1) \quad \tilde{F}(t) \geq \tilde{G}(t), \quad t \in \mathbb{R} \]

and is written $X \succeq_{st} Y$ [When equality holds in (1.1) for all values of t we write $X =_{st} Y$. That is, they are equal in law]. Once \tilde{F} and \tilde{G} are given it is usually easy to verify (1.1). The natural extension of (1.1) for finite or infinite dimensional random vectors is as follows [e.g. Kamae, Krengel and O'Brien (1977)]: Let $X = (X_1, X_2, \ldots)$ and $Y = (Y_1, Y_2, \ldots)$ be two n-component random vectors [n ≥ 1 or $n = \infty$] with survival functions \tilde{F} and \tilde{G} respectively. Then X is said to be stochastically larger than Y if

\[(1.2) \quad P\{X \in A\} \geq P\{Y \in A\} \quad \text{for every increasing set } A \in \mathbb{R}^n, \]

and is written $X \succeq_{st} Y$ [When equality holds in (1.2) for all increasing sets $A \in \mathbb{R}^n$ we write $X =_{st} Y$]. In this paper 'increasing' stands for 'nondecreasing' and 'decreasing' for 'nonincreasing'. Unfortunately, even with \tilde{F} and \tilde{G} explicitly specified it is usually not very easy to verify (1.2). However, in light of

Lemma 1.1: $X \succeq_{st} Y$ if and only if there exist two random vectors \hat{X} and \hat{Y} defined on a common probability space such that $P\{\hat{X} \succeq \hat{Y}\} = 1$ and $X =_{st} \hat{X}$ and $Y =_{st} \hat{Y}$,
[e.g. Kamae, Krengel and O'Brien (1977)], effort has been made to stochastically compare random vectors by constructing them on a common probability space. In this respect three alternative constructions have been used. They are (i) standard construction [e.g. Arjas and Lehtonen (1978)], (ii) non-homogeneous Poisson process (NHPP) construction [e.g. Shaked and Shanthikumar (1984)], and (iii) total hazard construction [e.g. Norros (1984), Shaked and Shanthikumar (1985)]. Since we will be using the standard construction we will describe it here. Let

$$
\tilde{F}_1(t) = P\{X_1 > t\}, \ t \in \mathbb{R}
$$

and

$$
\tilde{F}_j(t|x_{j-1}) = P\{X_j > t | X_1 = x_1, X_2 = x_2, \ldots, X_{j-1} = x_{j-1}\},
$$

$$
x_1, x_2, \ldots, x_{j-1}, t \in \mathbb{R}; \ j \geq 2.
$$

Note that the dimension of the vector x_{j-1} will vary depending on where it is used. In $\tilde{F}_j(\cdot | x_{j-1})$, x_{j-1} will represent $(x_1, x_2, \ldots, x_{j-1})$. We will follow this convention throughout this paper. Define \tilde{G}_1 and $\tilde{G}_j(\cdot | x_{j-1})$ similarly.

Standard Construction: Let $\{H\}$ be the inverse function of a survival function H [that is, $\{H\}(u) = \inf\{t \in \mathbb{R} : H(t) > u\}$, $u \in (0,1)$] and $U = (U_1, U_2, \ldots)$ be an n-vector with independent components uniformly distributed in $(0,1)$. Construct $\hat{X} = (\hat{X}_1, \hat{X}_2, \ldots)$ such that
\(\hat{X}_1 = \mathbb{I}\{\hat{F}_1\}(U_1)\)
and given \(\hat{X}_1 = x_1, \hat{X}_2 = x_2, \ldots, \hat{X}_{j-1} = x_{j-1}\),
\[\hat{X}_j = \mathbb{I}\{\hat{F}_j(\cdot|\hat{x}_{j-1})\}(U_j), \ j \geq 2.\]

Then one has [e.g. Arjas and Lehtonen (1978)].

Lemma 1.2: Let \(\hat{X}\) be the values obtained through the standard construction.
Then \(\hat{X} \not\preceq \hat{X}\).

Using the standard construction, Lemma 1.1 and 1.2, Arjas and Lehtonen (1978) [also see Veinott (1965)] have obtained sufficient condition on \(\hat{F}\) and \(\hat{G}\) that satisfy (1.2). Specifically they have

Lemma 1.3: Suppose

\[
\begin{cases}
\hat{F}_1(t) \geq \hat{G}_1(t), & t \in \mathbb{R} \\
\text{and} \\
\hat{F}_j(t\hat{x}_{j-1}) \geq \hat{G}_j(t\hat{x}_{j-1}), & t \in \mathbb{R},
\end{cases}
\]

(1.3)

\[x_i > y_i, \ i=1,2,\ldots,j-1; \ j \geq 2.\]

Then

(1.4)
\[\hat{X} \not\preceq \hat{Y}.\]

One may easily verify that if \(\hat{X}\) and \(\hat{Y}\) are constructed using a common \(U\) for both in the standard construction, \(\hat{X} \not\preceq \hat{Y}\). Conditions different from (1.3) that imply (1.4) have been obtained using the NHPP construction [see Shaked and Shanthikumar (1984)] and total hazard construction [see Norros...
In this paper we provide conditions weaker than (1.3) that imply (1.4) and prove it using the standard construction [see Section 2]. Using these results we obtain extensions of (i) a result of Block, Beuno, Savits and Shaked (1984) concerning the stochastic monotonicity of independent and identically distributed [i.i.d] random variables conditioned on their partial order statistics, and (ii) a theorem of Efron (1965) regarding an increasing property of Polya frequency functions in Sections 3 and 4, respectively. Finally in Section 5 we establish the negative association of i.i.d random variables conditioned on the partial order statistics and point out a sample application for results in Section 3.

The following preliminaries will be required in Sections 3, 4, and 5.

Definition 1.1: A random variable Z or its density function h is said to be Polya frequency function of order two [or log-concave and written PF_2] if $h(s+x)/h(u+x)$ is decreasing in $x \in \mathbb{R}$ for all $s > u$ [Karlin (1965)].

The following closure property of PF_2 densities will be needed later.

Lemma 1.5: A convolution of two PF_2 densities is PF_2.

Definition 1.2: Two random variables X and Y with density functions f and g are said to be ordered in the sense of likelihood ratio [and written $X \geq_{lr} Y$] if $f(t)/g(t)$ is increasing in $t \in \mathbb{R}$ [Karlin (1965)].

Lemma 1.6: Suppose $X \geq_{lr} Y$. Then $X \geq_{st} Y$.

Definition 1.3: A random vector $T = (T_1, T_2, \ldots, T_n)$ is said to be negatively dependent through stochastic ordering [NDS] if

\[{(T_1', \ldots, T_{i-1}', T_{i+1}', \ldots, T_n') \mid T_i = t}\]

stochastically decreases in t for all values of $i = 1, 2, \ldots, n$.

Block, Savits and Shaked (1985) then show
Lemma 1.7: If T is NDS, then

$$P\{T_1 > t_1, \ldots, T_n > t_n\} \leq \prod_{i=1}^{n} P\{T_i > t_i\}$$

and

$$P\{T_1 \leq t_1, \ldots, T_n \leq t_n\} \leq \prod_{i=1}^{n} P\{T_i \leq t_i\}.$$

2. CONDITIONS FOR STOCHASTIC ORDERING OF RANDOM VECTORS

In this section we provide conditions weaker than (1.3) that imply (1.4) and prove it using the standard construction. For a given pair of survival functions F and G define

$$a_1(t) = I\{\tilde{F}_1(G_1(t))\}, \ t \in \mathbb{R}$$

and

$$a_j(y_{j-1}, t) = I\{\tilde{F}_j(G_j(t|y_{j-1}))\}, \ y_1, y_2, \ldots, y_{j-1}, t \in \mathbb{R}; \ j \geq 2,$$

where $a_{j-1}(y_{j-1})$ and y_{j-1} will have different number of components depending on where it is used. $a_j(y_{j-1})$ in $\tilde{F}_j(G_j(t|y_{j-1}))$ is $(a_1(y_1), a_2(y_2), \ldots, a_{j-1}(y_{j-1}))$, y_i in $a_i(y_i)$ is (y_1, y_2, \ldots, y_i) and y_{j-1} in $a_j(y_{j-1}, t)$ is $(y_1, y_2, \ldots, y_{j-1})$.

Then

Theorem 2.1: Suppose

$$\tilde{F}_1(t) \preceq \tilde{G}_1(t), \ t \in \mathbb{R}$$

and

$$\tilde{F}_j(t|a_{j-1}(y_{j-1})) \preceq \tilde{G}_j(t|y_{j-1}), \ y_1, \ldots, y_{j-1}, t \in \mathbb{R};$$

Then $X \succeq_{st} Y$.

Proof: Constructing two random vectors \hat{X} and \hat{Y} according to the standard construction with a common U one sees that

$$\hat{X}_j = a_j(\hat{Y}_1, \hat{Y}_2, \ldots, \hat{Y}_j), \ j \geq 1.$$

With Condition (2.1) one can easily verify that
From (2.2) and (2.3) one sees that $X \geq Y$ and the result now follows from Lemmas 1.1 and 1.2.

Remark 2.1: From (2.3) it is immediately clear that (1.3) implies (2.1).

The popularity of using Lemma 1.3 for stochastic comparison of random vectors is its relative easiness to verify (1.3). As we will see in Section 3 there are interesting examples which satisfy (2.1) but do not satisfy (1.3). In such an example we will also see that it is not hard to verify (2.1).

In some applications it is possible to identify stronger conditions on \tilde{F} and \tilde{G} that imply (2.1). Such a condition is given in [see Remarks 2.2 and 2.3]:

Theorem 2.2: Suppose there exist a set of non-negative functions $\{b_1, b_2, \ldots\}$ such that

\[
\begin{align*}
\tilde{F}_1(t) & \geq \tilde{G}_1(t) \geq \tilde{F}_1(t+b_1), \quad t \in \mathbb{R} \\
\tilde{F}_j(t|x_{j-1}) & \geq \tilde{G}_j(t|x_{j-1}) \geq \tilde{F}_j(t+b_j(x_{j-1}, y_{j-1})|x_{j-1}),
\end{align*}
\]

for $t \in \mathbb{R}$, $y_1 + b_1 \geq x_1 \geq y_1$, $y_i + b_i(x_{i-1}, y_{i-1}) \geq x_i \geq y_i$, $i = 1, 2, \ldots, j-1$; $j \geq 2$,

where b_1 is a constant and $b_i(x_{i-1}, y_{i-1}) = b_i(x_1, x_2, \ldots, x_{i-1}, y_1, y_2, \ldots, y_{i-1})$, $i = 2, 3, \ldots$ Then $X \geq_{st} Y$.
Proof: Observe that \(F_1(t) \geq G_1(t) \geq F_1(t+b_1), \ t \in R \) implies \(t + b_1 \geq \alpha_1(t) \geq t, \ t \in R. \) Therefore \(F_2(t\mid x_1) \geq G_2(t\mid y_1) \geq G_2(t + b_2(x_1,y_1)\mid x_1), \ t \in R, \ y_1 + b_1 \geq x_1 \geq y_1 \) implies

\[
F_2(t\mid \alpha_1(y_1)) \geq G_2(t\mid y_1) > G_2(t + b_2(\alpha_1(y_1),y_1)\mid \alpha_1(y_1)), y_1, t \in R.
\]

and hence

\[
F_2(t\mid \alpha_1(y_1)) \geq G_2(t\mid y_1) \geq F_2(t + b_2(\alpha_1(y_1),y_1)\mid \alpha_1(y_1)), y_1, t \in R.
\]

Now as an induction hypothesis assume that

\[
F_i(t\mid \alpha_{i-1}(y_{i-1})) \geq G_i(t\mid y_{i-1}) \geq F_i(t + b_i(\alpha_{i-1}(y_{i-1}),y_{i-1})\mid \alpha_{i-1}(y_{i-1})), \ t \in R, \ y_{i-1} + b_i \geq y_i \geq y_{i-1}, \ t \in R,
\]

for all \(i = 2, 3, \ldots, j-1. \) Note that (2.7) and (2.8) are valid for \(i = 2 \) [see (2.5) and (2.6)]. Now from (2.8) with \(i = j-1 \) and (2.4) one sees that (2.7) is satisfied with \(i = j. \) However, (2.7) with \(i = j \) implies (2.8) with \(i = j. \) Then by the induction hypothesis one sees that (2.7) and (2.8) are true for all values of \(i = 2, 3, \ldots, n. \) That is Condition (2.1) of Theorem 2.1 is satisfied. The result now follows by Theorem 2.1.

Remark 2.2: As we have noted in the proof of Theorem 2.2, Condition (2.4) implies (2.1).

Remark 2.3: If we set \(b_j = \infty, j \geq 1, \) Condition (2.4) reduces to Condition (1.3). We will use the above result to obtain an extension of a Theorem of Efron (1965).
3. STOCHASTIC MONOTONICITY OF I.I.D RANDOM VARIABLES

CONDITIONED ON ORDER STATISTICS

Let \(Z_j = (Z_1, Z_2, \ldots, Z_j) \) be a random vector of \(j \) i.i.d random variables with survival function \(H \) and density \(h \). Now let

\[
N_j(t) = \#\{i: Z_i > t, \ i = 1,2,\ldots,j\}.
\]

\(\{N_j(t)\} \) is assumed to be right continuous with left hand limits. For a given \(r \geq 1, z = (z_1, z_2, \ldots, z_r) \), \(\ell = (\ell_1, \ell_2, \ldots, \ell_r) \) and \(m = (m_1, m_2, \ldots, m_r) \) such that \(z_1 < z_2 < \ldots < z_r \) and \(0 \leq \ell_r \leq m_r \leq \ldots \leq \ell_2 \leq \ell_1 \leq m_1 \leq j \), define \(\hat{Z}_{j, z, \ell, m} = \{Z_j : N_j(z_1) = \ell_1, \ N_j(z_i) = m_i, \ i = 1,2,\ldots,r\} \)

Let \(\hat{T} \equiv Z_{j, z, \ell, m} \). Then simple calculation shows that

\[
P\{T_1 > t\} = \frac{1}{j} \{m_i + (\ell_{i-1} - m_i)\hat{H}_{z,i}(t)\},
\]

where

\[
\hat{H}_{z,i}(t) = \frac{\hat{H}(t) - \hat{H}(z_i)}{\hat{H}(z_{i-1}) - \hat{H}(z_i)}, \quad z_{i-1} < t < z_i,
\]

\(i = 1,2,\ldots,r + 1 \)

and \(z_0 = -\infty, z_{r+1} = +\infty \). Since \(\hat{H}_{z,i}(t) \) increases as \(z_{i-1} \) and \(z_i \) increases for \(z_{i-1} < t < z_i \), it is not hard to see

Lemma 3.1: \(P\{T_1 > t\} \) given by (3.1) is increasing in \((z, \ell, m)\).

Now consider \(P\{T_2 > t|T_1 = t_1\} \). A routine calculation shows that

\[
P\{T_2 > t|T_1 = t_1\} = \frac{1}{j-1} \{m'_i + (\ell'_{i-1} - m'_i)\hat{H}_{z,i}(t)\},
\]

\(z_{i-1} < t < z_i, \ i = 1,2,\ldots,r + 1, \)
where

\begin{align*}
\ell'_i &= \ell_i - \mathbf{1}(z_i < t_1) \\
(3.3) \quad \text{and} \quad m'_i &= m_i - \mathbf{1}(z_i \leq t_1) , \quad i = 1, 2, \ldots, r.
\end{align*}

Define \(T' = (T'_1, T'_2, \ldots, T'_{j-1}) = \mathbf{Z}_{j-1}, \mathbf{Z}_j, \ell', m' \). Then comparing the right hand side of (3.2) and that of (3.1) one sees that \(P\{T_2 > t \mid T_1 = t_1\} = P\{T'_1 > t\}, \; t \in \mathbb{R} \). Now considering \(P\{T_3 > t \mid T'_1 = t_2\} \) and continuing this one can establish

Lemma 3.2: \(\{(T'_2, T_3, \ldots, T_j) \mid T_1 = t_1\} = \mathbf{Z}_{j-1}, \mathbf{Z}_j, \ell', m' \), where \(\ell' \) and \(m' \) are given in (3.3).

Remark 3.1: Note that the event \(\{N_j(z_i) = \ell_i, \; N_j(z'_i) = m_i, \; i = 1, 2, \ldots, r\} \)
relays information on the order statistics \(z[1] \leq z[2] \leq \ldots \leq z[j] \) of \(\mathbf{Z}_j \).

For example consider the following event \([1 \leq k_1 < k_2 < \ldots < k_r \leq j]:

\begin{align*}
(3.4) \quad A &= \{N_j(z_i) = j - k_i, \; N_j(z'_i) = j - k_i + 1, \; i = 1, 2, \ldots, r\}, \\
& \quad \text{for some } 1 \leq r \leq j.
\end{align*}

Then clearly

\[A = \{Z[k_1] = z_1, \; Z[k_2] = z_2, \ldots, Z[k_r] = z_r\}. \]

Block, Bueno, Savits and Shaked (1984) consider the random vector \(\mathbf{Z}_j \)
conditioned on event \(A \) as given in (3.4) and study its stochastic monotonicity and NDS properties. Alternatively consider

\begin{align*}
(3.5) \quad A &= \{N_j(z_i) = j - k_i + 1 = N_j(z'_i), \; i = 1, 2, \ldots, r\}.
\end{align*}

Then

\[A = \{Z[k_i - 1] < z_i < Z[k_i], \; i = 1, 2, \ldots, r\}, \text{ where we set } Z[0] = -\infty. \]

Now we present the main theorem of this section.
Theorem 3.3: Let Z_n,z,m be as defined in this section with $j = n$. Then Z_n,z,m is stochastically increasing in $(z, \ell, m)[\text{that is } (w,u,v) \geq (c,a,b) \Rightarrow Z_n,w,u,v \preceq_{st} Z_n,c,a,b].$

Proof: Let \tilde{F} and \tilde{G} be the survival functions of $X \equiv Z_n,w,u,v$ and $Y \equiv Z_n,c,a,b$, respectively for some $(w,u,v) \geq (c,a,b)$. From Lemma 3.1 one has

\begin{equation}
\tilde{F}_1(t) \geq \tilde{G}_1(t), \quad t \in R
\end{equation}

Now consider $a_1(t)$ as defined in Section 2. From (3.6) it is clear that $a_1(t) \geq t$. A careful study of \tilde{F}_1 and \tilde{G}_1 [given in (3.1) with appropriate values for z, ℓ and m] will show that for fixed i, c_i and w_i:

\begin{align}
\begin{cases}
\text{If } u_i = a_i & \text{then } \{t:t>c_i\} = \{t:a_1(t) > w_i\}, \\
\text{If } u_i > a_i & \text{then } \{t:t > c_i\} \subseteq \{t:a_1(t) > w_i\}, \\
\text{If } v_i = b_i & \text{then } \{t:t \geq c_i\} \equiv \{t:a_1(t) \geq w_i\}, \text{ and} \\
\text{If } v_i > b_i & \text{then } \{t:t \geq c_i\} \subseteq \{t:a_1(t) \geq w_i\}.
\end{cases}
\end{align}

Therefore if we set

$$
\begin{align}
&u'_i = u_i - \mathbb{1}(w_i < a_1(y_1)); \quad v'_i = v_i - \mathbb{1}(w_i \leq a_1(y_1)) \quad \text{and} \\
&a'_i = a_i - \mathbb{1}(c < y_i); \quad b'_i = b_i - \mathbb{1}(c_i \leq y_i),
\end{align}
$$

from (3.7) one sees that for all $y_1 \in R$, $(u', v') \geq (a', b')$. Therefore from Lemmas 3.1 and 3.2 one has
\{X_2, X_3, \ldots, X_n \mid X_1 = \alpha_1(y_1)\} \overset{st}{\leq} Z_{n-1, \omega, u, v', v''}

\{Y_2, Y_3, \ldots, Y_n \mid Y_1 = \gamma_1\} \overset{st}{\leq} Z_{n-1, \omega, v, v', v''}

and

$$\tilde{F}_2(t; \alpha_1(y_1)) \leq \tilde{G}_2(t; \gamma_1), \quad y_1, \ t \in \mathbb{R}.$$

Therefore a continued application of the above analysis will result in

$$\tilde{F}_j(t; \alpha_{j-1}(y_{j-1})) \leq \tilde{G}_j(t; \gamma_{j-1}), \quad y_1, y_2, \ldots, y_{j-1}, \ t \in \mathbb{R}; \quad j \geq 2.$$

That is \((\tilde{F}_j)\) and \((\tilde{G}_j)\) satisfy Condition (2.1) of Theorem 2.1 and therefore \(X \overset{st}{\geq} Y\).

Now combining (3.4) with the above result one obtains

Corollary 3.4: For some \(1 \leq r \leq n\), \(z_1 < z_2 < \ldots < z_r\), and \(1 \leq k_1 < k_2 < \ldots < k_r \leq n\) let \(\mathcal{I} = \{Z_n \mid Z[k_1] = z_1, Z[k_2] = z_2, \ldots, Z[k_r] = z_r\}\). Then \(\mathcal{I}\) is (i) stochastically increasing in \(z\) and (ii) stochastically decreasing in \(k\).

Block, Beuno, Savits and Shaked (1984) proved (i) [see the Corollary to Lemma 4.2 there]. They also used this result to show some negative dependence properties of \(\mathcal{I}\). In Section 5 we will show the negative dependence property of \(Z_{n, z, \xi, m}\). Now combining (3.5) with Theorem 3.3 one obtains [as a special case].
Corollary 3.5: For some $1 \leq k \leq n$ and $z \in \mathbb{R}$ let $\mathcal{T} = \{Z_n | Z_{[k-1]} < z < Z_{[k]} \}$. Then \mathcal{T} is stochastically increasing in z and is decreasing in k.

We will use the above result to provide a decision rule for selecting components during cannibalization [see Section 5].

4. INCREASING PROPERTY OF POLYA FREQUENCY FUNCTIONS

Let $Z = (Z_1, Z_2, \ldots, Z_n)$ be n mutually independent PF$_2$ random variables with density functions (h_1, h_2, \ldots, h_n). Let $Z^s = \{Z | Z_{1'=s} \}$, where $1' = (1,1,\ldots,1)$ is of appropriate dimension.

Theorem 4.1: For some $s \geq u$, let \tilde{F} and \tilde{G} be the survival functions of Z^s and Z^u respectively. Then (i) \tilde{F} and \tilde{G} satisfy Condition (2.4) of Theorem 2.2, and (ii) $Z^s \leq_{st} Z^u$.

Proof: From Theorem 2.2 and (i), (ii) follows. So consider (i). Let q_j be the density function of the sum $Z_j + Z_{j+1} + \ldots + Z_n$. Then if (f_j) and (g_j) are the densities of (\tilde{F}_j) and (\tilde{G}_j) respectively,

$$
\frac{f_1(t)}{g_1(t)} = \left\{ \frac{q_2(s-t)}{q_2(u-t)} \right\} \left\{ \frac{q_1(u)}{q_1(s)} \right\}
$$

Note that $s-t \geq u-t$ and since q_j is PF$_2$ [Lemma 1.5], $q_2(s-t)/q_2(u-t)$ and hence $f_1(t)/g_1(t)$ increases in t. That is $X_1 \geq_{2r} Y_1$ and from Lemma 1.6, one has

$$
\tilde{F}_1(t) \geq \tilde{G}_1(t), \quad t \in \mathbb{R}.
$$

Now consider

$$
\frac{f_1(t + (s-u))}{g_1(t)} = \left\{ \frac{h_1(t + (s-u))}{h_1(t)} \right\} \left\{ \frac{q_1(u)}{q_1(s)} \right\}
$$
Since h_1 is PF$_2$, $h_1(t-(s-u))/h_1(t)$ and hence $f_1(t-(s-u))/g_1(t)$ decreases in t. Therefore as before $Y_1 \succeq \lambda \cdot X_1 - (s-u)$ and

\begin{equation}
(4.1) \quad \tilde{f}_1(t) \succeq \tilde{g}_1(t) \succeq \tilde{f}_1(t + b_1),
\end{equation}

where

\[b_1 \equiv s-u. \]

Now let

\[b_j(x_{j-1}, y_{j-1}) \equiv s-u - \sum_{i=1}^{j-1} (x_i - y_i), \quad j = 2, 3, \ldots, n. \]

From (4.1) one has $y_1 + b_1 \geq a_1(y_1) \geq y_1$. Hence with restriction $y_1 + b_1 \geq x_1 \geq y_1$ one sees that

\begin{equation}
(4.2) \quad b_2(x_1, y_1) \geq 0.
\end{equation}

Now as an induction hypothesis assume that

(A1) $b_j(x_{j-1}, y_{j-1}) \geq 0$, $j \leq l$ and

(A2) Condition (2.4) holds for all values of j up to $l-1$.

Note that (A1) and (A2) is true for $l = 2$ [see (4.1) and (4.2)]. Consider

\[
\frac{f_2(t | x_{l-1})}{g_2(t | y_{l-1})} = \begin{pmatrix}
\frac{q_{l+1}(s-t \Sigma x_i)}{q_{l+1}(u-t \Sigma y_i)}
\end{pmatrix}
\begin{pmatrix}
\frac{q_{l+1}(u \Sigma y_i)}{q_{l+1}(s \Sigma x_i)}
\end{pmatrix}
\]

Since by Assumption (A1), $b_2(x_{l-1}, y_{l-1}) \geq 0$, one has

\[
s-t \Sigma x_i \geq u-t \Sigma y_i.
\]
Therefore as before

\[\{X_\ell | X_1 = x_1, \ldots, X_{\ell-1} = x_{\ell-1}\} \supseteq \mathcal{X}_\ell \ \{Y_\ell | Y_1 = y_1, \ldots, Y_{\ell-1} = y_{\ell-1}\},\]

\[y_i + b_i(x_{i-1}, Y_{i-1}) \geq x_i \geq y_i, \ i = 1, 2, \ldots, \ell-1,\]

and

\[\tilde{F}_\ell(t|x_{\ell-1}) \supseteq \tilde{G}_\ell(t|Y_{\ell-1}).\]

Now consider

\[f_\ell(t + b_\ell(x_{\ell-1}, Y_{\ell-1})|x_{\ell-1}) = \left(\frac{h_\ell(t+b_\ell(x_{\ell-1}, Y_{\ell-1}))}{h_\ell(t)}\right) \left(\frac{\sum_{i=1}^{\ell-1} y_i}{\sum_{i=1}^{\ell} x_i}\right)\]

Since by Assumption (A1) \(b_\ell(x_{\ell-1}, Y_{\ell-1}) \geq 0\), the log concavity of \(h_\ell\) implies

\[(4.3) \quad \tilde{F}_\ell(t|x_{\ell-1}) \supseteq \tilde{G}_\ell(t|Y_{\ell-1}) \supseteq \tilde{F}_\ell(t + b_\ell(x_{\ell-1}, Y_{\ell-1})|x_{\ell-1}),\]

for all \(y_1 + b_1 \geq x_1 \geq y_1, \ y_i + b_i(x_{i-1}, Y_{i-1}) \geq x_i \geq y_i, \ i = 1, 2, \ldots, \ell-1.\)

With (4.3) one has

\[(4.4) \quad y_\ell + b_\ell(x_{\ell-1}, Y_{\ell-1}) \geq a_\ell(Y_\ell) \geq y_\ell.\]

Therefore with the restriction \(y_1 + b_1 \geq x_1 \geq y_1, \ y_i + b_i(x_{i-1}, Y_{i-1}) \geq x_i \geq y_i, \ i = 1, 2, \ldots, \ell-1\) one obtains

\[(4.5) \quad b_{\ell+1}(x_\ell, Y_\ell) = b_\ell(x_{\ell-1}, Y_{\ell-1}) - (x_\ell - Y_\ell) \geq 0.\]

From (4.3) and (4.5) and the induction hypothesis one sees that

\(\tilde{F}\) and \(\tilde{G}\) satisfy Condition (2.4).

Remark 4.1: Efron (1965) using an alternative proof established (ii) of Theorem 4.1. The discrete analogue of this result has proved to be very useful in the analysis of queueing networks [see Shanthikumar and Yao (1985a), (1985b)]. We will next provide an extension [the main result of this section] of Theorem 4.1. This extension has useful applications in the analysis of queueing network and these applications will be discussed elsewhere.
Theorem 4.2: Let \(\hat{X} = (\hat{X}_1, \hat{X}_2, \ldots, \hat{X}_n) \) and \(\hat{Y} = (\hat{Y}_1, \hat{Y}_2, \ldots, \hat{Y}_n) \) be two independent random vectors of mutually independent elements with \(\text{PF}_2 \) densities \((\hat{f}_1, \hat{f}_2, \ldots, \hat{f}_n)\) and \((\hat{g}_1, \hat{g}_2, \ldots, \hat{g}_n)\) respectively.

For some \(s \) and \(u \) define

\[
\hat{X} = \{ \hat{X} | \hat{X}_1 = s \} \quad \text{and} \quad \hat{Y} = \{ \hat{Y} | \hat{Y}_1 = u \}.
\]

Suppose for some \(0 \leq a_i < \infty \)

\[
X_i \geq_{tr} Y_i \geq_{tr} X_i - a_i, \quad i = 1, 2, \ldots, n.
\]

Then for \(s \geq u + \sum_{i=1}^{n} a_i \), \(X \geq_{st} Y \).

Proof: Suppose we can show that

\[
(4.6) \quad \{ \hat{X}_1, \hat{Y}_2, \ldots, \hat{Y}_n | \hat{X}_1 + \hat{Y}_2 + \ldots + \hat{Y}_n = v \} \geq_{st} \{ \hat{Y}_1, \hat{Y}_2, \ldots, \hat{Y}_n | \hat{Y}_1 + \hat{Y}_2 + \ldots + \hat{Y}_n = u \}, \quad v \geq u + a_1.
\]

Then applying (4.6) with \(\hat{X}_2 \) replacing \(\hat{Y}_2 \) one sees that

\[
\{ \hat{X}_1, \hat{X}_2, \hat{Y}_3, \ldots, \hat{Y}_n | \hat{X}_1 + \hat{X}_2 + \hat{Y}_3 + \ldots + \hat{Y}_n = w \} \geq_{st} \{ \hat{X}_1, \hat{Y}_2, \hat{Y}_3, \ldots, \hat{Y}_n | \hat{X}_1 + \hat{Y}_2 + \hat{Y}_3 + \ldots + \hat{Y}_n = v \}, \quad w \geq v + a_2
\]

Continuing this way one can obtain the desired result. Hence all we need is to establish (4.6) for \(v = u + a_1 \). So without loss of generality let the left hand side of (4.6) be \(\hat{X} \) and the right hand side be \(\hat{Y} \), with survival functions \(\hat{F} \) and \(\hat{G} \), and densities \(f \) and \(g \), respectively. Then,
\[
\frac{f_1(t)}{g_1(t)} = \left\{ \begin{array}{c}
\frac{\hat{f}_1(t)}{\hat{g}_1(t)}
\end{array} \right\} \left\{ \begin{array}{c}
\frac{q_2(v-t)}{q_2(u-t)}
\end{array} \right\} \left\{ \begin{array}{c}
\frac{g_1 * q_2(u)}{f_1 * q_2(v)}
\end{array} \right\}
\]

where \(q_2 \) is the PF_2 density of \(\Sigma_{i=2}^n Y_i \) and * stands for convolution.

As before one sees that \(f_1(t)/g_1(t) \) is increasing in \(t \) and hence

\[
\bar{F}_1(t) \geq \bar{G}_1(t), \quad t \in \mathbb{R}.
\]

Consider

\[
\frac{f_1(t + a_1)}{g_1(t)} = \left\{ \begin{array}{c}
\frac{\hat{f}_1(t + a_1)}{\hat{g}_1(t)}
\end{array} \right\} \left\{ \begin{array}{c}
\frac{g_1 * q_2(u)}{f_1 * q_2(v)}
\end{array} \right\}
\]

The above expression is decreasing in \(t \) and hence

\[
\bar{F}_1(t) \geq \bar{G}_1(t) \geq \bar{F}_1(t + a_1).
\]

So \(\bar{F}_1 \) and \(\bar{G}_1 \) satisfy (2.4) with \(b_1 = a_1 \geq 0 \). Now note that

\[
\{X_1, X_2, \ldots, X_n | X_1 = x_1\} = \\
\{Y_2', Y_3', \ldots, Y_n | Y_2 + Y_3 + \ldots + Y_n = v - x_1\} \equiv Y^{u-y_1}
\]

and similarly

\[
\{Y_2', Y_3', \ldots, Y_n | Y_1 = y_1\} = \\
\{Y_2', Y_3', \ldots, Y_n | Y_2 + Y_3 + \ldots + Y_n = u-y_1\} \equiv Y^{u-y_1}.
\]

Then for \(y_1 + b_1 \geq x_1 \geq y_1', v - x_1 \geq u - y_1' \), and therefore from Theorem 4.1 one sees that \(\bar{F}_j \) and \(\bar{G}_j, j \geq 2 \) also satisfy Condition (2.4) of Theorem 2.2.

Hence \(X \geq_{st} Y \).

Remark 4.2: Obviously when \(X_i \geq_{st} Y_i \), one can set \(a_i = 0, i = 1,2,\ldots,n \).

Then Theorem 4.2 specializes to Theorem 4.1. Now suppose instead of conditioning \(\hat{X} = s \) and \(\hat{Y} = u \), we condition them to be \(\hat{X} = s \geq_{st} Z_1 \)

and \(\hat{Y} = u \geq_{st} Z_2 \), where \(Z_1 \) and \(Z_2 \) are two random variables with distri-
butions H_1 and H_2, respectively. That is,

$$P\{X \in A\} = \int P\{\hat{X} \in A | \hat{Y} = s\} \, dH_1(s) \quad \text{and}$$

$$P\{Y \in A\} = \int P\{\hat{Y} \in A | \hat{Y} = u\} \, dH_2(u) , \quad A \in \mathbb{R}^n .$$

Suppose $Z_1 \geq_{st} Z_2 + \sum_{i=1}^{n} a_i$. Then defining $Z'_1 = Z_1 - \sum_{i=1}^{n} a_i$ with distribution function H'_1 one obtains

$$P\{X \in A\} = \int f(A, u) \, dH'_1(u) \quad \text{and}$$

$$P\{Y \in A\} = \int f'(A, u) \, dH'_2(u) , \quad A \in \mathbb{R}^n ,$$

where $f(A, u) = P\{\hat{X} \in A | \hat{X} = u + \sum_{i=1}^{n} a_i\}$

and $f'(A, u) = P\{\hat{Y} \in A | \hat{Y} = u\}$. From Theorem 4.2 one has $f(A, u) \geq f'(A, u)$ for all increasing upper sets A, and from Theorem 4.1 one has $f(A, u)$ and $f'(A, u)$ increasing in u.

Then it is easily seen that since $Z_1 \geq_{st} Z_2 + \sum_{i=1}^{n} a_i$ [that is $H'_1(u) \leq H_2(u)$], one has $P\{X \in A\} \geq P\{Y \in A\}$ for all increasing sets $A \in \mathbb{R}^n$. Therefore $X \geq_{st} Y$.

Using analysis similar to that in this section it can be shown that all the results presented in this section holds true for discrete random variables. A special case of the above extension has been used by Shanthikumar and Yao (1985b) in the analysis of closed queueing networks.

5. **APPLICATIONS**

We will first apply Theorem 3.3 to show that $Z_{n, z, \ell, m}$ defined in Section 3 satisfies the NDS property of Block, Savits and Shaked (1985) [see Definition 1.5].
Theorem 5.1: \(T \equiv Z_{n, z, t, m} \) satisfy the NDS property.

Proof: From Lemma 3.2 it can be seen that

\[
(T_1, T_2, \ldots, T_{i-1}, T_{i+1}, \ldots, T_n) | T_i = s \seteq Z_{n-1, z, t, m}, \text{ where}
\]

\[
S(z < s) \text{ and } m_i = m_i - I(z \leq s), \quad i = 1, 2, \ldots, n.
\]

Therefore

\[
s > t = (\ell^s, m^s) \preceq (\ell^t, m^t).
\]

Then from (5.1) and Theorem 3.3 one has the NDS property for \(T \).

Next we point out an application for Corollary 3.5 in component cannibalization. Consider a collection of heat sources each cooled by its own cooling system consisting of a set of \(n \) identical pumps and a circulation system [composed of radiators, pipes etc.]. The operation of the heat source is continued unless either the heat source or the cooling system fails. A cooling system failure may occur either because all the \(n \) pumps have failed or because the circulation system has failed. The circulation system fails mainly due to the structural damage caused by fewer number of pumps working. One may safely assume that the damage accumulation rate increases as the number of working pumps decreases.

After \(t \) time units of operation all the cooling systems are replaced by spare cooling systems. This \(t \) time units may represent the 'high reliable operating time' for the cooling system. These pulled out cooling systems may however be used elsewhere for less critical use. Since some of the pumps from these pulled out cooling systems may have already failed one could pool all such cooling systems and assemble fewer number of systems but all with \(n \) operating pumps. In such a case one has to choose the best circulation systems for these re-assembly. Since it is not economically feasible to test the circulation system for its structural damage one may use the following result to choose the desired circulation systems.

Let \(C_i \) be the circulation system belonging to the \(i \)-th cooling system.
Assume that we have also observed that k_i of the n pumps of the i-th cooling system were not operative at time t. Then if D_i is the damage accumulated in C_i, one has from Corollary 3.5

\begin{equation}
D_{\pi(1)} \leq_{st} D_{\pi(2)} \leq_{st} \ldots \leq_{st} D_{\pi(m)},
\end{equation}

where π is a permutation of $\{1,2,\ldots,m\}$ such that

\begin{equation}
k_{\pi(1)} \leq k_{\pi(2)} \leq \ldots \leq k_{\pi(m)}.
\end{equation}

One may now use (5.1) and (5.2) to choose the stochastically better circulation systems for re-assembly.

ACKNOWLEDGEMENT

The author would like to thank Moshe Shaked for his helpful suggestions.
REFERENCES

END

DTIC

7-86