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flutter and divergence flight envelope and may lead to fatigue damage of the
system even though aerocelastic instability is not encountered.

During a previous AFOSR sponsored study, an asymptotic expansion approxi-
mation technique was developed to predict the 1imit cycle response of aerodynamic
surfaces with discrete structural nonlinearities. As a part of this study,
numerical simulation results were used to evaluate the adequacy of the asymptotic
expansion solutions to the nonlinear problem. A “simple" trapezoidal numerical
integration procedure was used to obtain these simulation results. Results of
this previous study uncovered shortcomings with the trapezoidal integration
scheme Based on these results it was concluded that the application of more
refined integration techniques to the nonlinear aerodynamic surface problem
needed to be investigated.

Thus the present study was undertaken with the objective to evaluate, on a
comparative basis, different numerical simulation approaches for predicting
limit cycle response of aerodynamic surfaces containing discrete structural
nonlinearities. Results from such simulations are needed to compare and evaluate
approximate solutions for the limit cycle response of nonlinear systems. In
addition, these simulation results provide information concerning the nature of
the nonlinear system response which may be used to aid in understanding the
mechanism of the aerodynam1c surface dynam1cs and in understanding the response
of nonlinear systems in general.

Three numerical integration techniques were selected for evaluation: (l)
fourth-order Runge-Kutta, (2) eighth-order Shanks, and (3) fourth-order Adams-
Moulton predictor-corrector. The results of the three simulation technigues
compared well with each other. In addition they yielded improved correlation
with previously developed approximate sclutions when compared to the correlation
of the approximate solutions using the trapezoidal integration scheme, It was
concluded that any one of the three numerical techniques is appropriate for use
in determining 1limit cycle response of an aerodynamic surface containing
discrete structural nonlinearities. From a computational efficiency point of
view, the Runge-Kutta approach appears most attractive for this type of problem.

In spite of the improved results obtained with the numerical integration
technigues evaluated during this study, there remain regions where the correla-
tion between numerical and approximate prediction is inconsistent. The need for
additional research to address these inconsistencies has been identified. This
research will provide an improved understanding of the nonlinear response char-
acteristics of an aerodynamuc surface containing d1screte structural nonlinear-
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1.0 INTRODUCTION

Defining the flutter and divergence characteristics of aerodynamic sur-
faces is a basic requirement in assuring structural and performance integrity
of a given design for its operational environment. The response characteris-
tics of the divergence and flutter phenomena are illustrated in Figures 1(a)
and (b). For systems containing structural nonlinearities, another mode of
aeroelastic response--limit cycle oscillation--may be present. Limit cycle
response, Figure 1(c), is characterized by steady state oscillation whereas
divergence and flutter are unstable motions with increasing amplitude. The
potential of limit cycle response is of importance since these oscillations may
occur within the aerosurface flutter and divergence flight envelope. The
amplitude, frequency, and duration of these potential limit cycle oscillations
are of interest for a fatigue assessment of the system.

Frequently aerodynamic surface hardware designs do have nonlinearities in
the surface itself, support structure, and/or control actuators as a result of
manufacturing tolerances, design characteristics, and/or freeplay. When these
nonlinearities exist, the assumption of a linear force-displacement relation-
ship is no Tlonger justified. In this situation an understanding of the
nonlinear effect on the dynamic behavior is required to evaluate system
response.

The effects of structural nonlinearities on aeroelastic analysis have been
studied both analytically and experimentally, Reference 1 through 9. In these
studies several nonlinearities that are typically encountered in aerodynamic
surface designs were considered. The primary thrust of the early work
attempted to establish a basic understanding of the nonlinear system response
employing analog computers. The later analytical studies, References 4 and 6,
employed the describing function techniques to characterize the nonlinear
behavior of an aerodynamic surface. A majority of the work addressed freeplay
nonlinearities of the type shown in Figure 2. These nonlinearities are
representative of a deadband or "slop" in the root support structure of an
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aerodynamic surface with and without ¢ preload. The approach discussed in

Reference 5 is a procedure in the frequency domain which iteratively obtains a
consistent solution in terms of response amplitude and effective stiffness of
the nonlinear structural element.

The describing function approach, References 4 and 6, uses a one term
Fourier Series expansion of the force to account for the effect of the
nonlinear stiffness on aerodynamic surface response. This method yields
satisfactory results when the amplitude of displacement is greater than the
magnitude of the freeplay, Figure 2(a), or freeplay plus preload, Figure 2(b).
However, it was pointed out in References 4 and 6 that when the amplitude of
displacement is approximately equal to the magnitude of the nonlinearity,
significant error can occur as a result of neglecting the higher harmonics in
the series expansion of the force-displacement relationship.

An analytical study sponsored by AFOSR was undertaken, Reference 9, to
develop an improved technique for predicting limit cycle response of aero-
dynamic surfaces with discrete structural nonlinearities. This improved
technique was to retain the flexibility of the describing function approach
while providing greater accuracy and generality in modeling the nonlinear
system behavior. An asymptotic expansion method was developed to model the
nonlinear force-displacement relationship that results when nonlinearities of
the type shown in Figure 2 are introduced at the aerodynamic surface support.
The primary difference between the asymptotic method and the describing
function method is the capability of the asymptotic method to include higher
harmonics in the representation of the system nonlinearity. In this manner one
may obtain successively higher c.der approximations to the 1limit cycle
response.

Specifically, the problem investigated during the Reference 9 study was
the 1imit cycle response of an aerodynamic surface in a subsonic airstream,
Figure 3. The nonlinearities shown in Figure 2 were assumed to act at the root
support springs Ko and Kg of the structure. This problem is representative of

a control surface with a loose hinge and/or joint slippage in the surface
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support structure and/or control actuator. The aerodynamic forces acting on
the surface were modeled using steady state aerodynamic theory. This theory
assumes the lifting force is proportional to and in phase with the torsional
motion of the surface which is assumed to be sinusoidal. Simple aerodynamics
were assumed since the primary objective of this previous study was the
investigation of the influence of structural nonlinearities on aerodynamic

surface response. As discussed in Reference 6, use of a more sophisticated
aerodynamic theory can substantially change the linear flutter results
employed to predict nonlinear aeroelastic response, but has no impact on
interpretation of the system response behavior due to the presence of
structural nonlinearities.

During the Reference 9 study, numerical simulation results were used to
evaluate the adequacy of the asymptotic expansion technique. The "exact"
solutions for aerodynamic surface response were obtained via numerical
integration of the system nonlinear equations of motion. These "exact"

solutions were then compared with the asymptotic expansion predictions to
assess the accuracy of these predictions. The numerical simulation approach
employed during this previous investigation was based on a "simple" trape-
zoidal integration method, Reference 10.

It became apparent during the Reference 9 investigations that there were
situations when the trapezoidal simulation technique exhibited numerical
stability problems. Examples of the results observed during the Reference 9
study are shown in Figures 4 and 5. Here simulation results employing the
trapezoidal integration technique are compared with the asymptotic expansion
results of Reference 9. This example is for a flexible aerodynamic surface
having preload nonlinearities in both root degrees of freedom. The differences
in simulation results when compared to the approximate solution may be noted.
These differences indicate that the trend of simulation results do not
correspond to those of the asymptotic expansion technique. Due to the
"scatter" of the simulation results, the accuracy of these results was in
question,
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Thus, the present study was undertaken to evaluate these simulation
shortcomings. The objective of this study was to evaluate, on a comparative
basis, more refined numerical simulation techniques for predicting the
response of aerodynamic surfaces containing discrete structural nonlinear-
ities. During this study the suitability of three different type numerical
simulation techniques were compared in terms of predicting the large amplitude
Timit cycles oscillations of a nonlinear aerodynamic surface. The three
numerical techniques investigated were:

. Runge-Kutta

. Shanks

. Adams-Moulton

Details of these numerical integration techniques are presented in Section
2.0. This is followed, Section 3.0, by the numerical results obtained for the

three numerical procedures. These results are compared with both the data
obtained via the trapezoidal integration routine and the asymptotic expansion
;i- approach of Reference 9. Study conclusions are presented in Section 4.0.




,
"

-

d e .
2 A

L 4 P et
; e
. PR
AP

I
«

Lot ot

. r"'-n!

° . .oa
1

s
: i

N l“" et et

R PN

.“ \J'r ‘ AR

o 4
o

CHal L e ot
e R
4

> s
N
‘
‘

]
o,
L

%,

X

R

-'&J ;';.

S

)
P
n

2.G NUMERICAL INTEGRATION TECHNIQUES N

The objective of this present study was to evaluate, on a comparative
basis, different numerical simulation approaches for predicting limit cycle
response of aerodynamic surfaces containing discrete structural nonlinear-
ities. The nonlinear equations of motion of interest are of the form

MX +K(X) X=gqB X (1)
These system of equations govern the nonlinear aeroelastic response of the

aerodynamic surface configuration shown in Figure 1. The detailed elements of
Equation {1) are given as:

) : 1

lg Igo: ] Ke) o . ) ! J

e o B Bre
log lo . ¢ 0 K(¢), j® ' ®
Tl FETETE [ T bmm—= = Lmemb = Q femmtm— ] el (2)
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For this study, and the previous investigations of References 4, 6 and 9,
¢ baseline aerodynamic surface was assumed for evaluating the coefficients of
Equation (2). This baseline configuration was based on the Harpoon Anti-Ship
missile quick-attach contral surface. Details of this aerodynamic surface may
be found in Appendix A.

Three numerical integration techniques were chosen for evaluation during
this study. These were: (1) a fourth-order Runge-Kutta method, (2) an
eighth-order Shanks method, and (3) a fourth-order Adams-Moulton predictor-
corrector method. Each method was used to obtain time history solutions for
the equations of motion. Equation (1), of an aerodynamic surface containing
discrete structural nonlinearities.
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A1l three methods required that the second order equations of Equation (1)
be transformed to first order equations using an appropriate state variable
transformation. Thus, Equation (1) was expressed as:

Y+ D(Y)Y=QY (3)

where

l: (4)

and

where [ is the identity matrix and the remaining terms correspond to elements
of Equation (1).

The following notation is used to present the specific form of each
numerical integration technique. For the initial value problem

Y o= f(Y, t), Y(tg) = Yq (7)
at any step n in the calculation, the available quantities are

th, Yp and Y, = f(Yn, tn) (8)
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Referring to Equation (3) the gquantity f(Yp, tp) 1s defined as
f(Yn, th) = Q Yy - D(Yy) Yq (9)

For an integration step size set equal to h we have

th+1 = th t h (10}
and the numerical integration procedure computes a value for Yp4]. The
guantity

Yn+l = f(Ynels tn+l) (11)

is then calculated and the integration cycle is repeated.

Each of the three numerical integration procedures used during this study
are described in detail in the following sections.

2.1 Fourth-Order Runge-Kutta

The Runge-Kutta integration method, Reference 11, was selected for this
study because it is a basic, widely used constant step integration technique.
This method uses the following procedure to compute Yp+1. First, the sequence
of computations given below are performed:

Yy = Yo+ (h/2) Yy
Yo = f(Ya, ty + h/2)

= ¥y + (h/2) Ya (12)

-<
xR
|

Yg = f (Yg, tp + h/2)
Yo = Yy + hVg

Yo = FlYe, to + h)
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Then Yp4+1 at time tpy) 1s defined as:
Yool = Yo * (N/6) (Y + 2Vp + 2Yg + V) (13)

2.2 Eighth-Order Shanks

The eighth-order Shanks constant step integration approach, Reference 12,
was selected as a means to incorporate a higher order method of the Runge-Kutta
type approach in the simulation. This was of interest to study the effects of
reducing the truncation error inherent to these integration methods. To obtain
an estimate of Yp4+1, first the following sequence of calculations are made:

Y, + (h/9) Y,

-
>
1"

Yo = £(Ya, tn * h/9)

Vg = Yn + (h/24) (Yn + 3¥4)

Yg = f(¥g, ty *+ h/b)

Yo = Y + (h/16) (Y, + 3Yg)

Yo = f(Yga ty + h/4) (14)
Yp = Yp + (h/500) (29Y, + 33Yg - 12¥¢)

Yp = f(¥p, tp + h/10)

Vg = Yp + (h/972) (33Y, + 4Y¢ + 125Yp)

Ve = £(Yg, tp + h/6)
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Yp = ¥, + (h/36) (-21Y, + 76Y( + 125¥p - 162Yg)
Yg = f(Yp, t, + h/2)
Yg = Yp *+ (n/243) (-30Y, - 32Yc + 125Yp + 99YF)
Yo = f(Yg, ty + 2h/3)
Yy = Y, + (h/324) (1175Y, - 3456Y¢ - 6250Yp
+ 8424Yp + 242Yp - 27Yg)
Yy = F(Y4, ty + h/3)
Y] = Y, + (h/328) (293, - 852Yc - 1375Yp + 1836V
- 118YF + 162Yg + 324Yy) (14)
_ CONTINUED
Y[ = F(Y][, tg, + 5h/6)
Yj = ¥, + (h/1620) (1303Y, - 4260Y¢ - 6875Vp
+ 9990YF + 1030Y¢ + 162Y1)
Yy = £(Y3, ty *+ 5h/6)
Yg = Y, + (h/8428) (-8595Y, + 30720Yc + 48750V

- 66096Yp + 378YF - 729Yg - 1984Yy - 1296Y[ + 3240Y)

Yk = f{ Yk, tp *+ h)




The value for Yp+] at a time tp41 is then obtained from:

Ynel = Yn + (h/840) (41Y, + 216Yp + 272Yf (15)

+ 27Vg + 27¥y + 36Y[ + 180YJ + 41¥y)

2.3 Fourth-Order Adams-Moulton

The Adams-Moulton integration technique, Reference 11, was also included

in this study.

This technique was selected since it is a predictor-corrector

procedure and thus computationally very different from the previous two

methods.

The Adams-Moulton procedure uses the following sequence of computa-

tions to calculate Yp+). The predicted value at tp4p is

Prsl = Yn *+ (h/24) (55Y, - 59Vp_1 + 37V;.5 - 9Vp.3) (16)

The corrected value at tp4] is then given as

Crel = Yn * (h/28) (9Ppeq + 19¥g - 5,1 + Ypop) (17)

where

Pne1 = T(Ppels tpel)
and
Yael = Cpsp *+ (19/270) (Ppyj - Cpep)

The predicted and corrected values are used to
indicator defined as

REURUS RS SRS RS DR
En = max[min(IPy - Cnl, I(Py - Cn)/Cnl)]

for i =1, 2, 3,

15

(19)

evaluate an accuracy

(20)
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- In Equation (20), N is the total number of integrated variables and i denotes
;:{, the ith integrated variable.

The parameter £, is then compared to two constants, Eyipn and Epay. and h
is varied as follows:

(1) If En—j < Epin (3 =0, 1, 2, or 3}; h is doubled and the integration
is restarted.

(2) If Epin < En < Epax» h is left unchanged.
(3) If Ep > Epaxs h is halved and the integration is restarted.

For these studies Epip was set at 5 x 1079 and Epay at 5 x 1070, These values
were selected based on information provided in Reference 13.

As can be seen from Equations (16) and (17), the Adams-Moulton method is
not self-starting. Each time the integration is started (restarted), the
Runge-Kutta technique 1is used to compute the first three points. The
Adams-Moultdon procedure is then used until a restart becomes necessary.

16
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3.0 NUMERICAL SIMULATION RESULTS

Numerical simulation results were obtained for the aerodynamic surface
nonlinear equations of motion, Equation (1), for each of the three integration
techniques discussed in Section 2.0. The results from each numerical approach,
for a uniform set of physical parameters, were compared with each other to
evaluate the relative accuracy in predicting the system steady state limit
cycle response. These numerical solutions were obtained for both a rigid and a
flexible aerodynamic surface. However, a majority of the study effort was
directed toward a flexible aerodynamic surface with two preload nonlinear-
ities. This configuration was of primary interest since the results of
References 4 and 9 concluded that the poorest correlation between the
approximate solutions and simulation results was observed for this case.

Power Spectral Density (PSD) analysis studies were also performed to
determine the frequency content of the time history simulation results. This
frequency content information is of interest when interpreting the numerical
simulation results. As discussed in Section 3.2, review of the frequency
information provided insight into the changing nature of the nonlinear system
response as a function of varying dynamic pressure.

3.1 Rigid Aerodynamic Surface

Results of the numerical simulations for the rigid aerodynamic surface are
shown in Figure 6 and 7. Shown here are the numerically predicted 1imit cycle
amplitudes of response as a function of dynamic pressure. For both cases, it
was assumed that the uncoupled root roll frequency (wg) was 60 Hz and the pitch
frequency (wg ) was 215 Hz. The results in Figure 6 are for a preload
nonlinearity in the root roll degree of freedom, while Figure 7 results are for
a root pitch preload nonlinearity. In each case the nonlinearity was defined
by a deadspace (S) of 0.2 degrees and a preload (P) of 0.1 degrees. Thus the
S over P ratio, see Figure 2, was two for both cases.




0 RIGID AERODYNAMIC SURFACE
0 ROLL PRELOAD NONLINEARITY

Sg = 0.2 deg
Pg = 0.1 deg
0  UNCOUPLED FREQUENCIES
wcb = 215 Hz
we = 60 Hz
DYNAMIC AMPLITUDE RATIO (S/A)
PRESSURE
(psi) RUNGE-KUTTA SHANKS ADAMS -MOULTON
40 0.34357 0.34357 0.34357
60 .31363 .31363 .31363
80 .31139 .31139 .31139
90 .11181 .11181 .11181
95 .05171 .05165 .05164

FIGURE 6 SIMULATION RESULTS FOR RIGID AERODYNAMIC SURFACE WITH
ROOT ROLL PRELOAD NONLINEARITY
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0 RIGID AERODYNAMIC SURFACE
o PITCH PRELOAD NONLINEARITY

S¢ © 0.2 deg
Py = 0.1 deg
0  UNCOUPLED FREQUENCIES

w(b = 215 Hz

we = 60 Hz
DYNAMIC AMPLITUDE RATIO (S/A)

PRESSURE

(psi) RUNGE -KUTTA SHANKS ADAMS -MOULTON
40 0.35331 0.35295 0.35295
50 .27660 .27682 .27682
70 .15124 .15131 .15243
90 .02935 .02940 .02944

FIGURE 7 SIMULATION RESULTS FOR RIGID AERODYNAMIC SURFACE WITH
ROOT PITCH PRELOAD NONLINEARITY
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o As can be seen by the data presented in Figures 6 and 7, the results from
: the three integration procedures compared very well with each other and yield
essentially identical results. It should be noted that the computational time
was quite different for the three methods. This point is discussed in more
o detail in Section 4.0.

L 3.2 Flexible Aerodynamic Surface

The numerical simulation results for a flexible aerodynamic surface are

presented in Figures 8 and 9. These simulation results, amplitude ratio versus

[\ dynamic pressure, are also compared to asymptotic expansion results of

. Reference 9. The Reference 9 simulation results, employing the trapazoidal
procedure are also shown for comparative purposes.

L] The results presented in these figures correspond to an aerodynamic
;L surface with preload nonlinearities in both root degrees of freedom. In each
case the deadspace (S) is 0.2 degrees and the preload (P) is 0.1 degrees. Thus
the preload ratio (S/P) is two for both nonlinearities. In addition, the
{ uncoupled root roll frequency (wg) was 60 Hz and the pitch frequency (we) was
e 215 Hz.

Several points are evident from the data shown in Figure 8 and 9. First,

) the three integration techniques yield similar magnitudes of limit cycle
. amplitude ratios for a given set of physical parameters. Additionally, this
i{t‘ similarity of results is consistent over a wide range of dynamic pressures and
associated large range of limit cycle response amplitudes. In general the
!! results obtained with the refined simulation techniques show improved cor-
.j{- relation with the asymptotic expansion results when compared to the results
- obtained via the trapezoidal integration scheme.
A’. However, there remain regions where the comparison between the refined
E}% numerical simulations and approximate solutions is inconclusive. To more
'*L’ fully evaluate these regions of inconsistent results, frequency analyses were
".ﬁ
&
-
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. 0 FLEXIBLE AERODYNAMIC SURFACE
0 TWO PRELOAD NONLINEARITIES
S¢ = Sg = 0.2 deg
SO Py = Pg = 0.1 deg
*:, 0  UNCOUPLED FREQUENCIES
= 215 Hz

o Yo
:*:\' we = 60 Hz

0.5

0 RUNGE-T(UTTA

O SHANKS

by
0.4

ADAMS TON

S /A
b

TRAPEZPIDAL

x

0.3

0.2

N

AMPLITUDE RATIC

0.!

/

o SECOND ORDER _/ X
el ASYMPTOTIC
n SOLUTION

-‘ ..

v ! o |
o %0 40 50 60 70
. DYNAMIC PRESSURE - PSI

80

e FIGURE 8 ROOT ROLL SIMULATION RESULTS FOR A FLEXIBLE AERQDYNAMIC
R SURFACE WITH TWO PRELOAD NONLINEARITIES

21




0
0

0

FLEXIBLE AERODYNAMIC SURFACE
TWC PRELOAD NONLINEARITIES

S¢ = SQ = 0.2 deg
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FIGURE 9 ROOT PITCH SIMULATION RESULTS FOR A FLEXIBLE AERODYNAMIC
SURFACE WITH TWO PRELOAD NONL INEARITIES
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performed on the simulation developed time history response data. This was
done in an attempt to more completely define the mechanism of aerodynamic
1 surface dynamic response in these regions.

These investigations of response frequency content were done by first
performing PSD analyses of the root degrees of freedom displacement data. As an
1: example, time history data for the root degrees of freedom and a dynamic
;:f pressure of 50 psi are shown in Figure 10. The corresponding roll response PSD,
' (radians2/Hz versus Hz) is shown in Figure 11.

{‘ From data such as shown in Figure 11, the frequency content of the system
response was obtained. This was accomplished by noting the frequencies
associated with the peak or highest values of PSD. A summary of these results
is given in Figure 12 for response in the root roll degree of freedom over a

" q ;-ﬁ . f, N

wide range of dynamic pressures. The highest two frequency components remain

';;\ essentially constant over the range of dynamic pressures evaluated. As may be
E{E seen from Figure 12, there is significant change in the lowest two frequencies
N with changing dynamic pressure. Time history information from which the data
{ presented in Figure 12 were derived are presented in Appendix B.

) These lowest two frequencies are plotted as a function of dynamic pressure
.;;f in Figure 13. Note that these frequencies are the average values for the root
@) pitch and root roll response. There was some slight difference in the
ﬂ;i frequencies obtained from the roll and pitch PSD's. The trend shown in Figure
o 13 is similar to the classic frequency coalescence of a linear system flutter
;ﬁ analysis.

g

»gﬂ It is of interest to note that there is a change in the nature of the limit
:*3 cycle response as the dynamic pressure approaches the linear system flutter
a;h boundary. This change in response characteristics may be seen by comparing the
° results shown in Figures 14 and 15, for a dynamic pressure of 70 psi, with that
:%j of Figures 10 and 11 for a dynamic pressure of 50 psi. As can been seen in
if Figure 14, the root displacement has developed a beat type characteristic.
ﬁ;' This is further manifested by the PSD results of Figure 15. From the data in
.
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Ek: o FLEXIBLE AERODYNAMIC SURFACE
::E:: 0 TWO PRELOAD NONLINEARITIES
t‘.—‘ S¢ = Se = 0.2 deg
o] UNCOUPLED FREQUENCIES
we = 215 H2z
u)e = 60 Hz
8
o
PITCH
S
S
a
<
2| |
o]
o
wn
o
8
o
8 H
?. T L) LE Li Ll
0.00 0.02 0.04 0.06 0.08 0.10 0.12
TIME (SEC)
S
o
ROLL
3
o
o
<
xg
o]
a.
w
O
o
?.4
S
?’ L] Li v LS v
0.00 0.02 0.04 0.06 0.08 0.i0 0.12
TIME (SEC)

FIGURE 10 AERODYNAMIC SURFACE RESPONSE FOR A DYNAMIC PRESSuRE oF 50 PSI
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o FLEXIBLE AERODYNAMIC SURFACE
0 TWO PRELOAD NONLINEARITIES
S¢ = Sg = 0.2 deg
P¢ = Pg = 0.1 deg
0  UNCOUPLED FREQUENCIES
we * 215 Hz
wg = 60 Hz

- TN e T e T

q = 50 psi

OISP.(RAD2)/HZ ,
100" o0"10"'Y0'¥0 0" 000 0% 0

T 1T 1T 01 %77 ] 1 § |G B RRA ' | § v Ul'l'lll , 1 v T VIuVvE
o "o W 0

FREOUENCY (HZ)

"o

FIGURE 11 ROOT ROLL PSD FOR A DYNAMIC PRESSURE OF 50 PSI
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o FLEXIBLE AERODYNAMIC SURFACE
o TWO PRELOAD NONLINEARITIES
:... S¢ = Se = 0.2 deg
e Po = Pg = 0.1 deg
0  UNCOUPLED FREQUENCIES
t‘ wg = 215 Hz
o wg = 60 Hz
-
t. Dynamic Frequency Components (Hz)
- Pressure
- (psi) Ist 2nd  3rd  4th
t- 40 55 140 350 500
o 45 65 140 350 500
N
= 50 70 140 350 500
-
' 55 70 130 350 500
60 72130 350 500
65 80 110 340 500
70 ' 100 100 340 500
.- 75 ! 110 110 350 500

FIGURE 12 FREQUENCY CONTENT OF ROOT ROLL RESPONSE VERSUS DYNAMIC PRESSURE
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FIGURE 13 LOWEST TWO FREQUENCY COMPONENTS AS A FUNCTION OF DYNAMIC PRESSURE
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P-;' 0 FLEXIBLE AERODYNAMIC SURFACE
Eﬁﬁ 0 TWO PRELOAD NONLINEARITIES
ﬁ Sp = Sp = 0.2 deg
o Py = Pg = 0.1 deg
t 0  UNCOUPLED FREQUENCIES
»_.7 (U¢ = 215 HZ
o
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FIGURE 14 AERODYNAMIC SURFACE RESPONSE FOR A DYNAMIC PRESSURE OF 70 PSI
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o FLEXIBLE AERODYNAMIC SURFACE
0 TWO PRELOAD NONLINEARITIES
S = S © 0.2 deg
P¢ = Pg = 0.1 deg
0  UNCOUPLED FREQUENCIES
215 Hz
60 Hz

"
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FIGURE 15 ROOT ROLL PSD FOR A DYNAMIC PRESSURE OF 70 PSI
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this figure it appears that the lower two frequencies are merging toward a

single value within the accuracy of the PSD plot. This is in fact the result
which is indicated by the plot in Figure 13.

Referring to Figure 9, it is noted that the comparison between the three
numerical simulation techniques and the approximate solution is inconclusive
in the dynamic pressure range of 55 to 65 psi. In fact, the numerical results
indicate a constant amplitude ratio, or "flat spot", over this range of dynamic
pressures. This region of dynamic pressures precedes the changing of the
response characteristics to that of a beat phenomenon. The implication of this
response characteristic is discussed in Section 4.0.
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4.0 CONCLUSIONS

gl The objective of this study was to evaluate, on a comparative basis,
2 several different type numerical simulation techniques for predicting the
1imit cycle response of an aerodynamic surface with structural nonlinearities.
This objective was of interest since earlier studies, Reference 9, uncovered
shortcomings with a "simple" trapezoidal integration scheme. Numerical data
obtained with this trapezoidal approach were used for comparison with and
evaluation of approximate solutions to the nonlinear problem. Based on these
previous results, it was felt that the application of more refined integration
techniques for nonlinear aerodynamic surfaces needed to be evaluated. Thus the
present study was undertaken.

The objective of this study has beenmet. Limit cycle response predictions
were obtained for the aerodynamic surface including discrete structural
nonlinearities shown in Figure 1. These predictions were made emplioying the
following three, quite different numerical integration schemes:

. Runge-Kutta ‘

. Shanks

. Adams-Moulton
The results of the three simulation techniques compared well with each other.
Thus it is concluded that any one of the numerical techniques is appropriate
for the class of nonlinear problems associated with predicting limit cycle
response of aerodynamic surfaces containing discrete structural nonlinear-
ities. A second conclusion of this study is that the more refined numerical
simulations yielded improved correlation with the approximate solution of

Reference 9, when compared with the trapezoidal integration scheme.

Based on computational efficiency, the Runge-Kutta integration approach

e 2l e o am
A

P

appears most attractive for these type problems. The normalized cost of the

- three techniques (CPU time, connect time, etc.) are shown in Figure 16. As can
Eﬁ be seen, the Runge-Kutta approach is the most efficient technigue. The Shanks
;?? technique is higher order than the Runge-Kiutta method and requires signifi-
ié cantly more calculations per time step. The Adams-Moulton procedure is a

31

. D
- . Co e -

P R AT P T S SH DE U S NP 1,1 e T NP I AT S IP U S0 S .05, ¥ Tt YT o,




Integration Cost
Technique Ratio

Runge-Kutta ‘ 1.0
Shanks 2.7

Adams-Moulton 5.0

FIGURE 16 COMPARISON OF COMPUTATIONAL EFFICIENCY FOR
NUMERICAL INTEGRATION TECHNIQUES
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predictor-corrector scheme and spends a great deal of time "stopping and
starting."

In spite of the improved correlation obtained with the refined integration
schemes, there remained regions where comparisons between the numerical
simulation results and the approximate solutions were inconsistent. These
inconsistencies were most apparent for a flexible aerodynamic control surface
containing two root spring preload nonlinearities. Additionally, these
inconsistencies appeared in limited regions of the nonlinear system response.
This latter point is illustrated by the data presented in Figure 17. The trend
in simulation results does not agree with the second order approximate solution
in the region of dynamic pressure between 55 and 65 psi. As discussed in
eariier paragraphs, limited analysis of the simulation results indicate that
there appears to be a change in the nature of the limit cycle response in this

region,

The mechanism of the nonlinear system response described in the preceeding
paragraph is not thoroughly understood. This indicates the need for additional
research to provide an understanding of this nonlinear response phenomenon.
Study activities are needed to provide explanations for the prediction
inconsistencies noted in this study. Additional numerical simulations should
be performed for regions deemed of interest, such as the "flat spot" noted in
Figure 17. The influence of various parameters on the interpretation of these
simulation results need to be evaluated. Significance of parameters such as
simulation run time, initial condition magnitude and combination, and RMS
amplitude determination need additional evaluation. In addition, detailed
inalyses of the frequency content of the numerically predicted system response
are of interest. These activities will develop an improved understanding of
the noniinear response characteristics of an aerodynamic surface containing

diccrete strictural nonlinearities.
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APPENDIX A
AERODYNAMIC SURFACE CONFIGURATICN

Properties of the Harpoon missile guick-attach control surface were used
to define the aerodynamic surface configuration used throughout this study.
The geometric configuration of the aerodynamic surface is shown in Figure Al.
The structural nonlinearities that were investigated are associated with root
support structure. Presented in Figure AZ are the inertia properties of the
aerodynamic surface. These are the specific terms of the inertia matrix of

~ Equation (2). The first two rows and columns of the inertia matrix are

associated with rigid root roll and pitch motions while the last two diagonal
elements are the generalized masses of the aerodynamic surface modes. The off-
diagonal terms, the PF quantities, represent the inertia coupling between
rigid and flexible motions. The mode shapes associated with the first two
aerodynamic surface cantilever modes are given in Figure A3. These modal data
were used when investigating a flexible surface configuration.
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PFg2 ~1.014 x 10=3 |p.sec?
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L4 FIGURE A3 AERODYNAMIC SURFACE CANTILEVER MODES
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S APPENDIX B

S SIMULATION RESULTS FOR FLEXIBLE AERODYNAMIC SURFACE

- Presented on the following pages are plots of the root roll and root pitch
{;?Z response obtained from the numerical simulation for the flexible aerodynamic
ﬁli: surface. These results were obtained for a surface having two preload
! nonlinearities with the following characteristics:

- S¢ = Se
P = Po

0.2 deg
0.1 deg

In addition, the uncoupled root roll frequency (we) was 60 Hz and the pitch
L frequency (w¢) was 215 Hz for these simulation cases. The plots on the

i following pages formed the basis for obtaining the results presented in Figures
¢ 12 and 13.
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- DYNAMIC PRESSURE OF 45 PSI
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