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o . Alan E. Gelfand
Yl
oy ::n
o l. Introduction
-
7# For the usual regression model with fixed regressors,
* vy = - 2
8 Y XB + €, YnXl’ anp full rank, Bpxl and €ax1 (0,0%1),
'*ﬁ there 1s considerable literature devoted to alternatives to
5 . -
s the ordinary least squares estimator, BOLS of 8. From work
Vﬁ originally dating to Stein (1956) and James and Stein (1961)
o when € is normally distributed and p > 3, B, ¢ 1s inadmissible
- a -
Y under loss (B-B)TQ(B-B), Q an unrestricted positive definite
;i' matrix. Thus, much of this extant discussion focuses on the
)
(A
4 development of bilased estimators with small "variances" which
‘ achleve a smaller'expected loss either uniformly over p-dimen-
E sional Euclidean Space.or at least in the vicinity of some speci-
X .
%; fied 8%, Two "classes" of such reduced variance regression
o
t) estimators are particularly well discussed - ridge estimators
A= .
y
gg and Stein-type estimators. Either directly or upon orthogonal
ﬁé transformation these estimators take the form
& .
s . -
oL = - *
o 3
®:
s where C is a diagonal matrix, usually data dependent. They may q
~E also be seen to be Bayes or "Empirical" Bayes procedures as well, ?
5 ]
ar The review paper by Draper and Van Nostrand (1979) provides an i
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 §; excellent summary of both the theoretical and simulated effort
§§ in thils area.. In the context of cross-validation, i.e. of

;?1 ) examining the performance of an estimat?r obtained in one

¢E sample in prediction in a second independent sample, the work
‘f?. of Stone (1974) leads to estimators of the form in (1) as well.
:§ Herelin we consider the simplest such cross-validation

gi problem. At a new vector of predictor values, Xo» We seek to

estimate xgs. We take as loss function (6(Y)-xgs)2 for an

estimator 8(Y) and we assume henceforth that € is normally dis-

3

'$E tributed with o? unknown. Our problem differs from that of

i '

‘¢ estimating the vector B8 since the results of Cohen (1965) show
"] -~

> that angOLS is an admissible estimator of Xg8 for 0 < a < 1,

T

i.e. the UMVU estimator is admissible. (In fact, §(Y) of the

ALLL

form y'Y is admissible for xgs 1.1.1.

Cy-x(xTx)"2x )T (2v-x(xT)7x ) « xGxTx)71x,.)  Nonetheless,

‘(

if we have some confidence in B*, 1.e. that B* is near the true:

. PR
N [ B R

‘ PR M L
‘. .- A. '.'.‘ v

> value B, then 1t makes sense to attempt to improve upon xgEOLS
3§ in the "vicinity of B*" using estimators of the form (1). More
?S specifically, how well dé the “"classes” of ridge estimators and
?Q of Stein-type éstimators perform in this prediction? Can we

3:5 make a "best“ cholce within these classes for a particular

,ﬁ prediction? '

"' The problem of prediction of an independent observation YO
:g at X, using the loss (6(Y)~-Y0)2 1s equivalent to that of pre-
&y

T 2 _ .2 WwTor2
‘ dicting X,8, 1.e. EB(G(Y)-YO) = 0 + EB(G(Y)-,(OB) .

-
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For an estimator of the form Xga, the expected loss be-

comes .

(2) Eq(8-8)"XoXq(8-8) = sstzxmiﬁi—si)]z :

In the sequel we take the generalized ridge estimator ER to be
(3) ER - (XTX;A)-I(XTYMB*')-

where A 1s p.d. symmetric and possibly dependent on Y. We take

the general Stein-type estimator ES to be
(1) .  Bg = (1~ c/Q)By g + ¢/Q B*

where Q = (EOLS-B*)TXTX(§OLS—B*) and ¢ may depend on Y. In
practice c¢/Q is usually replaced by min(c/Q, 1).

In section 2 we calculate the risk (2), of the estimators
(3) and (4) when A, ¢ are constant. We then investigate "best"
choices for A, ¢c. Since these cholces will be functions of g
and g2 as well as xo, A and ¢ must be estimated from Y. 1In section
3 we summarize a simulation study which compares the performance
of versions of (3) and (4) which are discussed for the estimation
of B along with others motivated by work in section 2. In section

8 we offer concluding remarks in particular with regard to

multiple prediction.
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2. Theoretical Results

We first note that for SOLS (2) becomes
(5) o?Xg(x"x)7!
We now claim that
Theorem 1: For ER as in (3), (é) becomes .

Ozxg(XTX+A)-1 xTx(xTx+a)~1

(€)
+ Xg(XTx+a) "t ce-8%) (8-8*)Ta(xTx +a)71x

Proof: We transform to principal components form. Let R be

nonsingular such that RX'XR® = I, RART = D, D a diagonal matrix

with diagonal entries di' For any point B8 in p-dimensional

-l)T

Euclidean space, let a = (R 8. Then

"~

-1,T2 -17 -1
ap = (R"") 8, = (I+4D) SoLs * (I+4D) “Dat* ,

R

1.e. of the form (1) with C = (I+D)"l. 1In terms of a, (2)

becomes Ea(u-a)wowg(a-a), W, = RX. Since a ~ N(a,02I), this

expectation 1is readily calculated to be

0w T.2 T _ _nk ek T _ .
oC Yo + wo(I C)(a-a*)(a-a®*) (I C)w0

and C yields (6).

Substitution for a, L

---------------- - - - > - - » ™ "
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D : T T T
poots
Y 5
3% Note: Normality 1i1s not employed in this calculation.

n

!
[ In (3) A.ls usually taken to be diagonal and, in fact,

L)
) the class of ridge (as opposed to generalized ridge) estimators
¥
;; sets A = al, a > 0. The case where either by design or trans-
155

b formation XIX = I reduces (5) to 02£X2 and reduces (6), for

‘3 generalized ridge estimators (a1 are the diagonal elements of
o

3 the diagonal matrix A) to

P

o

252 1 Xy 21 2

(1+a,) i

o

>,
! Investigatlion of this expression reveals that an optimal
;ﬁ choice for the a, to minimize (7) needn't exist although local
ﬁ minima can be found. In the case of ridge estimation, i.e.
L all a, = a, a unique minimum can be found. This occurs at

-

r:' = 2. -2.,T

A (8) a, oy XOXO

“i ' where Yy = Xg(B—B*). Note that a, > 0 and finite provided g-g*
)

) .

.: isn't orthogonal to XO. The associated minimum equals
&\'

S 2_2,T

v oY XoXg

L '72+02Xz 0

= '

jﬁ When B8 is such that 8-8% 1s orthogonal to xo, then xge* predicts
i

N perfectly. For such B's we can obtaln zero expected loss and
4
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6

would want no weight attached to EOLS’ i.e. would want a = =,
In fact, it 1§ clear that for XO,S fixed there wlli be a set
of 8' 's which predict Xg perfectly and that B' needn't be
close to B8 in Euclidean distance. Thus the appropriate pseudo-
metric for the prediction problem is (81—82)TX0X3(81-82). This
pseudometric clariflies the earlier notion of "vicinity of Bg*"
and under this distance the further B* is from B the closer a
is to 0, i.e. the more weight is placed on EOLS’ the closer g%
is to B the larger a becomes, 1.e. the more weight is placed
on-B*, As would be expected, ag is invariant to scaling of XO,
aithough the risk clearly isn't.

Using (8) our estimator of ng is

- (1 -1,Ta -1 T
'1'ao (1+a0) xoBOLS + (1+ao) aOXOB*

and, in fact, for any fixed a > O, Ta improves upon ng

OLS
-1

2
whenever y < oza (2+a).

From (8) a convenient estimator of a, is:

(9) ag ¢y xoxo

2

when 0~ 1s the usual UMVU estimator of o? and y = xg(BOLS-s!).

2

The fact that Ey € doesn't exist suggests that a. will be very

0

unstable and that T; will perform poorly. We return to this
. 0 P
point in the discussion of the simulation study. Since 02 is

..... A P e e el A e AR P B P
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7
independent of BOLS and ag depends on BOLS only through x 8

0 0oLS?
we may compute the expected loss for Ti . If t2 = o2xgx0, then
- 0

2 ~2,T

Y - N(Y,tz) and, with t° = ¢ xoxo, (2) for Ta becomes
0

2 2 2

2,72.,2
(10) E(TJ—&'—YY) =T+E (1 (T)+2T =21 (x ) )

y2+12 (v2+ 2)2

The equality (10) is seen using the identity E f(y)(y Y)

= 12EYf'(y) (Stein (1973)) valid provided E |f(y)| < = which,

as the following calculations show, is the case). Now

y 11 ~ Xi, Y /21 independent of 12/ 2 2 Hence

P
(y 2+12) 2P L-ed 2R, 2B ynere L - Po(y2/212). The expectation

of each term in (10) can thus be evaluated and (10) becomes

(1) «*(Lt(n-p)E(n-ps21+3) [ {RREEHAAL) _ nop-2lily,

If we divide (11) by 12, i.e. consider the risk relative
to that of xgEOLS’ then this relative risk is a function of
yzltz. Hence we set rz = 1 and examine the simpler estimator
(y +1)” -12 3 which may be thought of as an "empirical" Bayes esﬁimator
against a normal prior centered at 0, adjusted to have no singularitiq

in Rl. The risk of this estimator is readily obtained to be

1 + EY(Y +1)-2(37 -2) by an argument similar to that leading to

.v-
9- +

(10). This risk (symmetric about 0) is graphed in Figure 1 against

-
A

Y > 0 to illustrate what may be expected, up to scaling, if (11)

I 2n Fae]
FR
POAALLIN,

AR

is evaluated. Note that the risk is bounded and considerably
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less than 1 for y small. Because (y +1)'273 has singularities
in the complex plane it is not admlssible.
If we restore XTX, not necessarily diagonal, our estimator

~ T
in (3) has A = a XTX or a X X according to (8) or (9).

0 0

Theorem 2: For Bg as in (4) with p > 2, (2) becomes

: é T, ,T,.-1 T T, .-1 2 2 2
(12) o xo(x X) Xg * ;O(X X) xo[(c +hco )rllc -2cr2]

where
r. = g 2L+1 r. = E 1
1 (p+e(L+M)) (p+2(LtM)-2) > 2 pto(L+M)-2
with
L ~ Po(A) , A= YZ/Zazxg(xTX)‘lxo
(13) | '
M - Po(8) , &= (Axg(xTx)‘lxo-yz)/2ozxg(xTX)'lxo

where L,M independent and & = (B-B*)TX X(8-8*).

Proof: As in Theorem 1, let R be nonsingular such that

RXTXRT =1 and let o = (R-I)T(BOLS-B*). Then a ~ N(a,czl) with

a = (R_I)T(B—B*), Q= ;T;, and (2) becomes

..........................

-

q
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(14) Ea[(l - %)w ; - wTu]2

T

where w = RX,. (and ww = XE(XTX)’lxo);

0
If we expand (l4) we obtain

N . AMA TA ~
(15) Ec(wT(a-u))2+c23(wTa)2/(aTh)2-2chi¥T%l wl(a-a) .
aaQ

The last term may be written as -2c2wiEuf(;)(;1—ai) where

Ama

£(a) = (ata) Y(wla). Using the Stein identity,
(625 afgu)
3ai

= Eaf(u)(a ), which is valid here), on this

17%

expression, after manipulation (15) becomes

(16) cszw + (c2+uc02)Ea(w ;)2/(;T;)2 - 2c02wTwEa(l/aT;).

T2 Ama ~\2
Finally if we let U = LETEl_ s V = nTa - SETgl— , then
C WW W W
UL - x2__. with L as 1in (13)
Ll T
Lom - xP with M as in (13)
g p-1+2M

1+2L p-1+2M

and given L and M, ﬁgv ~ Be( 5 5 ) independent of
U+v 2 -
—;3 ~ xp+2(L+M)' Hence
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1' l,
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P e Bt
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rﬁﬁfﬁ

T .2
-~ {(w a) T . U T
E === = w W& E(- {L,M) = w wE LL.( [L,M)E(+w |L,M))
Q(aTu)z a (U+V) U+V U+V
_ wTw E 2L+1 1 - wqw r
o2 (p+2(L*M)) p+2(L+M)-2 2 1
and similarly
1 1
E (<) = =T
a uTu c2 2

Making these substitutions
(12). 0

Note:

The proof reveals that the expected loss, (2)

into (16) and restoring X

, for more

0 we obtain

general
estimators of the form (l—h(Q))BOLS+h(Q)8* can be developed. 1In
fact, 1if
EB BE(Q)I < o
98oLs, 1
the loss is
T >~
(17) o?xg (M0 " 1x g+ n? (@) 2-20%x] (xTx) 72 X Egh(Q)-40°E h' ()2
Inspection of (12) reveals that the unique best ¢ is
N r
(18) c. = 02(~g - 2)
0 Fl
Since A,8 are invariant to scaling of XO so 1s e It is
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4% aprarent that for Xo fixed as a - 0, I‘2/rl - p, 1l.e.
AT
gc ¢y * 02(p-2)., Hence if we belleve B8* is close to 8 the
= "usual" constant, oz(p-2), may be employed. Using this constant,
= . .
) Tﬂ Tl\
:: if 4 is near 0, the relative risk of xOBS to XOBOLS will, from

[0
R0 (12), be near 2/p, as it is in the case of estimating 8. As in
\ ~

\: remarks after (10), if 02 is the usual estimator of 02 independent
:u} - -~ -~ 1
i of BoLg We may compute (2) for Bg as in (4) with' ¢ = oz(p-z).
i: We obtain
k3 :
.- : 2,T,, T,y ~1 2 -1 2
ﬂé (19) o Xp(X7X) X0{1+rl(p -4+2(n-p) “(p-2) )-2r2(p—2)}.

¥
L
~§q Expressions similar to (19) can be obtained for instances
;; of the more general estimators mentioned above (17). This suggests
N that the risk (2) may be calculated for commonly used (adaptive)
;? ridge estimators, e.g. those considered in section 3. However,
l& without restrictions on the design matrix X, these estimators
C) often fall to either provide a in closed form or to define
.L’ .
;;ﬁ a as a function of Q.

-" -

’ﬁ Since to a first order approximation o t 02(2x+1) 1(p—2+2(6-x))
ﬁ; we may estimate c0 by

-

2
?:: -~ ) A2 ~ -1 A A

[ (20) ' Cg = o© (2a+1) (p-2+2(&-1))

L

:':':: A A ) N ~

j: where 1,6 are the expressions in (13) with B replaced by BOLS'
’. -
P We would truncate c, to the interval (0,Q). Since Ex~Y doesn't
X

:
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exist o will be very unstable (as with a, in (9)) suggesting
that the resulting predictor will perform poorly. Again we

return to this point in the next section.

3. A Simulation Study

A simulation was conducted to compare the use of the OLS
predictor with the predictors discussed in the previous section
and wit@ predictors arising from other estimators of g which
have been discussed in the literature. For convenience we set
o® = 1 and take X'X = I, 1.e. By o - N(8,I).2 Without loss of
generality we set B* = 0 and Xg 0o~ l. Under this setup r;dge
estimators become (1+;)-1§0LS and Stein estimators become

(1 - ?/BOLSBOLS) Bors: In addition t? BoLs *e conslider the
following six estimators of g (4 ridge type, 2 Stein type).

(1) aHK" arising from ; = p/ggLSEOLS. The ridge estimators
discussed by Hoerl and Kennard (1970), Hoerl, Kennard
and Baldwin (1975) and, in fact, Lawless and Wang (1976)
reduce to EHK in our setup.

(11) ERM - arising from a =-p/(§gLSEOLS-p) with (1+a)~t = o
ir EOLS§OLS < p. The RIDGM and STEINM estimators discussed

by Dempster, Shatzoff, and Wermuth (1977) reduce to aRM'

~ 172 A -
BoLs) P/8o1sBoLs

with (142)-1 =0 if EgLSSOLS < p. The ridge estimator

(111) Bug arising from a = (1 - p/eOLS (1-(1-

of McDonald and Galarneau (1975) reduces to B, .
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‘¢f, (iv) B; -~ arising from ;0 given in (9).
, -l - 0 .

221 (v) Bp_2 - afising from ¢ = p-2, i.e; the "usual" Stein

f&. estimator.

?T' (vi) E- ~ arising from ;0 given 1in (20), truncated to [0,=).

ir. o
ol :
:é? "Positive part" restrictions were applied to all "shrinkages"
ne in (v) and (vi).
‘243 We note that under the above assumptions the risks in (3)
;Ei "and (4) and, in fact, of the predictors arising from (1) - (vi)
;%r depend on XO and 8 only through (xge)z and BTB. Since (xgs)2
522 ='rBT8, 0 <r <1, we may summarize the results in terms of
:;E . 8T8 and r. We consider p = 3,6,10. For a given p we generated
e sets of 2p independent uniform random variables on the interval
:;z {-1,1]. 1In each case we considered the first p observations as
tﬁ; _ a p vector, standardized to lenéth 1l and designated it as an Xo.
:); Similarly the second p observations are considered as a B vector
E&% wilth scaling by .1,1,10. Hence we have large BTB, i.e. BIg = 100,
-EEE moderate BTB, i.e. BTB = 1 and small BTB, i.e. BTB = ,01. For
ﬁgi each XO,B pair 1000 EOLS'S were generated from N(g8,I) and uéing
iﬁ xo each of the seven predictors were calculated for each of the
f; 1000 replications. Bias, variance and mean square error (MSE)
;%; were estimated...A large number of XO,B pairs (approximately U400)
§§E werg investigated enabling a wide ra?ge of r's. Table 1 provides
e a brief summary indicating the best B for prediction over ranges

~,
g
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for r along with the typical percentage reduction in risk

(using the best predictor over that rang;e), 100(MSE X
- MSE xgﬁ)/nss x1g

TA
oBoLs

ofoLs*

Several comments are appropriate:

(1)

(11)

(111)

(iv)

(v)

or seventh, doing well only when BTB large and r ver&

‘The cross-over points in Table 1 are approximate, but

‘in the vicinity of the cross-over competing predictors are

indistinguishable with respect to MSE.
It is not surprising that regardless of 8, if BTE large
and r large, the OLS predictor is best. Iﬁ fact, if BIB larged
and .01 < r < .5, the percent improvement of the best
predictor over OLS 1s never greater than 5%.
As expected, EA ’ E. performed very badly, alwayé sixth
0 20

small (regardless of p). However, in such cases, improve-
ments will be substantial, increasing as r decreases, while
the other five predictors are indistingdishable. Near r = 0]
B 1s best; much below .01, B. is best.

20 o

~

Bp_2 is likely the best overall choice always amongst
the two or three best apart from cases in (1ii) above.
T ~ ~ ~» ~

When-a B is small or moderate, BRM’ BHK’ Bp_2 and BMG

‘Wwere always the best four. When sTB is small and p = 3,
Byg 15 close in performance to 8 . When BTB is small
and p = 6, BRM and BMG split for second best. When BTB

is small and p = 10, Bp_ 1s second with BMG third.
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f; (vi) Wnhen r is large ;0 is almost always <0 whence E- z aOLS'
. 0
:' Table 1 reveals that in many cases substantial reduction
.%E in squared error loss over the OLS predictor can be achieved.
:&; It further suggests the possibility of selecting the predictér
1; -according to BTB and r. However, finely detailed selection,
i%E e.g. according to Xo, will be unsuccessfﬁl as thelpgrfogmance q
_f; of E, and E. reveals. In practice we will have A/c° instead of 8T {
o a9 .

?g; a?d r = (AX%(XTX)-IXO)-IYZ, and we might define estimators
?%; _ A,r with s replaced by EOLS’ o replaced by g°. We may calculate
i ! E(A) 3 (pt+A) whence A’ = n:% Z-p is UMVU for A. By an argu-
i? ment similar to that contained in Theorem 2, we may show
é{ ‘ E(r) = E(p+2(L+M)) 1(2041) = r+(1-rp) {(p+a) " +(p+8)7 324} where
- L,M are distributed as in (13). For individual predictions,
%g preliminary calculation of Z' and ; should enable a judicious
ti choice of predictor.
fi* As Thisted and Morris (1980, p. 19) observe, the poorest
'gk estimation case for ridge procedures occurs when (with XTX‘= I,
:{3 g* = Q) 3T = (31,0,0,...,0) with g, large. This is also the
?& poorest estimétion case for. Stein type procedures in the gense
séé that the first coordinate will account for about half of the
Q;E total risk and all coordinate risks would decrease if El was
:; excluded (see Baranchik (1964)). For prediction this implies
Ez A large and r = x2 /XOXO Hence this 1s the poorest case for
it prediction as well, i.e. depending upon xOl’ improvement will
y: be small or, in faét, the OLS predictor will be better.
3

I Ry 23 L S A R T s




TR T O PO T OR TUR PO O e b Yy
.

16

lHow will multicollinearity in XTX affect prediction?

Let XTX =D, a diagonal matrix with diagonal-eleménts d1 and

1 <4

is usually measured in terms of how close d1 is to 0. Although

assume d 5 L e < dp. Then the extent of multicollinearity
ridge methods have been advocated for improved estimation when
d1 1s quite small, particularly relative to the other di’ Thisted
and Morris (p. 21) and others have established that in this case
optimal ridge as well as Steiln-~type estimators will produce
inconsequential improvement over BOLS' For prediction (with
2 T,,\2 2 2

# = = = .

8 0),'A Id B, and r = (X;8)°/(LX{,/d,-1d,8(). Bingham and
Larntz (1977, p. 102) observe that (in this notation) the worst
case for ridge estimation occurs when large 81 are assoclated

with small di' This tells us little about the magnitude of A. How-
ever for fixed Xo and B as XTX becomes more severely multicollinear
var(ngOLS) = ngi/d1 will grow larger and r will become smaller.
As the simulation suggests when r is small, using an appropriate

predictor, we can expect significant imprdvement over the OLS

predictor.

§, Multiple Prediction

In concluding we offer several comments regarding multiple

or simultaneous prediction. Suppose we wish to make r predictions

'
"
e

defined by X;,X,,...,X, and we set X* = (Xy5.--5X.). For

P!

Y, kg,

convenience we assume the X1 are a linearly independent set whence

&

rank (X*) = r < p. What is an appropriate loss to employ? One

SR

L

o

"’\
,
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% choice is unweighted sum of squared error loss, i.e.

5 £(x1(8-8))° = (8-8)T6,(8-8) with 6, = x*x»T. A second choice
f ‘ arises from the joint distribution of the x1§OLS’ i.e.

3 *T8ors ~ NOT8 020" (X0 k) Y) suggests (3-81T6,(5-8)

zﬂ where G, = X'(X'T(XTX)'IX*)-IX’T. Others may be envisioned as
iﬁ | well, If r < p, Gl,G are positive semi-definite whence, as

?ﬁ noted earlier for individual prediction, we may have loss equal
:§ to 0 but 8 not close to B. Nonetheless, .it 1s well-known that
25 if P s any positive definite matrix X*TEOLS 1s admissible for )
;& x*T8 under loss (E-B)TX*PXfT(E-B) if p < 2, inadmissible if

,:: P 2 3. 1In fact, work done by Berger (1976), Bhattacharya (1966),
Eé Bock (1975), Casella (1977), Efron and Morris (1976) and

’a; Strawderman (1978) leads to explicit minimax predictors which

L improve upon X¥ EOLS‘ These predictors will be generalized

s adaptive ridge of the form

2 TR A2..,T, T -1,,T2 '

%ﬁ (I + A(X*78,; 5,0 ,X* (X7X)™ 1xs »P)) "X*°8, o, (see e.g. Strawderman,
i; _ Theorem 6, p. 626, for a family of such predictors), parelleling,
S . in a sense, the individual predictors xgﬁ. and xgﬁ. .
?%i a, o

G As Strawderman notes (p. 626) there is no one predictor
%f which will dominate the OLS predictor for all P. For P = I ({.e.
?E; Gl) a very simple procedure 1s to use estimates of 4 and r to
{El select a good predictor for each Xi. If we are not prepared to
, specify P the simulation study suggests that using B -2 (1.e.
b* c = o (p-2) in (4)) regardless of X1 is a simple but perhaps
* adequate choice.
‘
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Tootnetes

{ 1. A possible refinerent to using the predictor defined by
e Bs with ¢ = 0"(p-2) would employ the "limited translation"

-.',.n .

iﬁ approach as discussed in Efron and Morris (1972, p. 136).

tf Limiting the amount of shift for each coordinate of aOLS

:§3 toward the corresponding coordinate of §S using a relevance

-“..‘. ~
::ﬁ function, p, leaés to an estimator Bp and resulting predictor
. " -

‘ ngp. We also note that the estimator, BS’ resulting fronm

e ) _ |
AN James and Stein (1961, p. 366) sets ¢ = o%(p-2)(n-p+2) 1(n-p). |
o With this ¢ (19) becomes
.'-J .

[ o?x5 (XTX) X {1+ (n-p+2) " (n-p) (p%-1)T | -2 (n-p+2) " (n-2) (p-2) T, ).

Ei 2. We recognize that these simplifying assumptions diminish the
<
I utility of the simulation study. 1In particular, certain
.i{ estimators which differ in a more general model become

5
afi equivalent. The study 1s only intended to be illustrative
:)‘ and suggestive. Certainly a more elaborate one might be
3§$f undertaken. We also recognize that with these simplificaticn
,‘:-f,'
Ugl expressions for the exact risks of some of the predictors
Q. below (ignoring restrictions) may be obtained using (17).
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