FORTRAN PROGRAM TO PREDICT RECTAL TEMPERATURE AND HEART RATE RESPONSE OF A (U) HUMAN ENGINEERING LAB ABERDEEN PROVING GROUND MD P G HARNDEN APR 86 HEL-TN-4-86

UNCLASSIFIED
Technical Note 4-86

FORTRAN PROGRAM TO PREDICT RECTAL TEMPERATURE
AND HEART RATE RESPONSE OF A PERSON WORKING IN MOPP-4

Phillip G. Harnden

April 1986

Approved for public release; distribution is unlimited.

U. S. ARMY HUMAN ENGINEERING LABORATORY
Aberdeen Proving Ground, Maryland
FORTRAN PROGRAM TO PREDICT RECTAL TEMPERATURE AND HEART RATE RESPONSE OF A PERSON WORKING IN MOPP-4

Phillip G. Harnden

Human Engineering Laboratory
Aberdeen Proving Ground, MD 21005-5001

Approved for public release; distribution is unlimited.

This FORTRAN program simulates multiple work and recovery cycles for a soldier wearing nuclear, biological, and chemical protective apparel (Mission-Oriented Protective Posture - Level 4 (MOPP-4)). The program predicts the soldier’s rectal temperature and heart rate response to work performed in MOPP-4 for various climatic scenarios using formulas developed from previous human use studies (Berlin, Stoschein, & Goldman, 1975). The climatic parameters and the work and recovery cycle durations are user
inputs to the model. These inputs may be changed to produce variations in the rectal temperature and heart rate of the soldier. The model can be used to examine the duration of work and recovery time cycles.
FORTRAN PROGRAM TO PREDICT RECTAL TEMPERATURE
AND HEART RATE RESPONSE OF A PERSON WORKING IN MOPP-4

Phillip G. Harnden

April 1986

APPROVED: John D. Weisz
Director
Human Engineering Laboratory

Approved for public release; distribution is unlimited.

HUMAN ENGINEERING LABORATORY
Aberdeen Proving Ground, Maryland 21005-5001
ACKNOWLEDGMENT

The author would like to thank Mr. Richard S. Camden for his supervision and guidance throughout the development of this program.
CONTENTS

INTRODUCTION 3
BACKGROUND 3
THERMAL STRESS LIMITS 3
PROGRAM DESCRIPTION 4
SIMULATION RESULTS 6
SUMMARY 6
REFERENCES 9
APPENDIXES 13
 A. Variable Values for Data Input Files 11
 B. Program Code and Variable Definitions ... 13
 C. Main Program 19

FIGURES

1. Two-Cycle Work and Recovery Test for a Soldier in MOPP-4. Climatic Parameters: Dry-Bulb Temperature is 77 °F. Relative Humidity is 75% 7
2. Three-Cycle Work and Recovery Test for a Soldier in MOPP-4. Climatic Parameters: Dry-Bulb Temperature is 95 °F. Relative humidity is 15% 8
INTRODUCTION

A computer program was developed to provide an analytical tool to assist in the structuring of work and recovery time cycles for a proposed Human Engineering Laboratory Forward Area Supply and Transfer (HELFAST) field study of ammunition handling operations to be conducted in Mission-Oriented Protective Posture - Level 4 (MOPP-4). The activities considered for investigation in this field study are those normally performed by a Direct Support Company operating an ammunition supply point (ASP). ASP operations are susceptible to degradation from extreme climatic conditions. This susceptibility may increase when handling operations are performed by personnel dressed in totally vapor-impermeable clothing (MOPP-4). This nuclear, biological, and chemical (NBC) protective uniform "poses a tolerance problem for the soldier for it encapsulates the wearer and interferes with the normal dissipation of body heat and can limit the time the wearer can work in a hot environment." (Goldman, 1963, p. 776)

BACKGROUND

From previous human use studies conducted at the U.S. Army Research Institute of Environmental Medicine, formulas have been developed to predict rectal temperature (Goldman & Givoni, 1972) and heart rate response (Goldman & Givoni, 1973) as a function of work, the environment, and the clothing properties of wearing apparel. Using these predictive formulas, Berlin, Stoschein, and Goldman (1975) developed a computer program for the HP-9810A programmable calculator which simulates rectal temperature and heart rate response based on a hypothetical situation of subjecting a nude man through a two-cycle work and recovery test. An analogous FORTRAN representation of their program, for use on the Human Engineering Laboratory's (HEL) VAX 11/780, was written for use by the Combat Service Support Directorate (CSSD) in preparation for field testing. Using the Berlin, Stoschein, and Goldman (1975) example as a standard, the FORTRAN program simulation predicts time patterns of rectal temperature and heart rate response that compare closely with it. The clothing insulation and evaporative impedance values demonstrated by Berlin, Stoschein, and Goldman (1975) have been changed to depict the same man dressed in NBC (MOPP-4) protective apparel.

THERMAL STRESS LIMITS

As a result of climatic chamber studies at Natick Laboratories, thermal stress limits were prescribed for the testing of human subjects (Iampietro & Goldman, 1965; Goldman, Green, & Iampietro, 1965). If, during testing, the rectal temperature equaled or exceeded 102.5 degrees Fahrenheit (°F), or the heart rate equaled or exceeded 180 beats per
minute (bpm), the subject was removed from the study. For the Berlin, Stoschein, and Goldman (1975) example, time lengths were assigned to each work and recovery cycle. These time lengths were used as the determinants for the cessation of work and recovery. Using their simulation design, under certain environmental and clothing conditions, the predicted rectal temperature and heart rate during work may surpass these thermal stress limits before the duration of the cycle has completed. Therefore, the FORTRAN program simulations described will use the thermal stress limits mentioned as the determinants for the cessation of work. That is, the subject's rectal temperature and heart rate will dictate the length of the work cycle. Similarly, rectal temperature and heart rate will also determine the duration of recovery.

PROGRAM DESCRIPTION

Input Data

Two formatted data input files are used with the execution of the program. They are:

INITIAL.DAT, which contains values for program variables that describe the subject, the rest, work, and recovery environments, and the clothing characteristics of the NBC protective uniform. The parametric values are identical to Berlin's except for the clothing parameters used to describe the NBC uniform. These parametric values remain unchanged for an entire test simulation. This file also contains values for the thermal stress limits, rectal temperature and heart rate, and determinant values for the cessation of recovery. (For an example, see Appendix A.)

CYCLE.DAT, which contains values for the program variables that identify the subject's metabolic rate and the environmental parameters, dry-bulb temperature and the relative humidity, for each cycle. (Appendix A)

Program

The computer program is written in FORTRAN 77 and runs on HEL's VAX 11/780. Program variable definitions are listed with the program code in Appendix B. The main program is in Appendix C.

The program simulates a multiple cycle work and recovery test for a hypothesized soldier wearing NBC protective apparel (MOPP-4). The length of the simulation test, or the number of work and recovery cycles simulated during program execution, is contingent on the data in CYCLE.DAT. At the start of the program run and before simulation of the test begins, the data in CYCLE.DAT is read and stored in the arrays MET, BULB, and HUMD. The arrays hold values for the soldier's metabolic rate (MET), the dry-bulb temperature (BULB), and the relative humidity (HUMD) present during each of the rest, work, and recovery time cycles. Before entering an activity cycle, either rest, work, or recovery, an element from each array is passed
to the subroutine ENVIRN(MET,BULB,HUMD) which establishes the environment for the soldier throughout the duration of a cycle. The soldier's metabolic rate (MET) and the environmental parameters (BULB) and (HUMD) for the rest, work, and recovery activities may be varied by changing the data in CYCLE.DAT; although, variations of the metabolic rate are dependent on parametric data listed in INITIAL.DAT. For the simulation examples described herein, the metabolic rate for work is an estimate of the rate expended for activities familiar to an ASP and were computed using the formula for the total metabolic rate (M) presented by Berlin, Stoschein, and Goldman (1975).

The predictive formulas for rectal temperature and heart rate for the rest, work, and recovery activities are located in separate subroutines. Rectal temperature, heart rate, cycle time, and simulation time are computed and printed every minute.

At the start of the simulation, the soldier is modeled as resting. The subroutine ENVIRN is called to set the environment for this rest period using elements from the array variables MET, BULB, and HUMD. This initial rest cycle lasts 30 minutes and acclimatizes the soldier to the testing environment. After this initial rest period, the soldier enters the first work cycle. At this time, situational parameters are changed to reflect the working posture and environment.

The work cycle continues until the soldier's predicted rectal temperature or heart rate reaches a thermal stress limit of 102.5 °F or 180 bpm. At this point, the program places the soldier into a recovery cycle. Again, situational parameters are changed to reflect the recovery posture, sitting or standing at ease, and environment. The soldier's metabolic rate, the dry-bulb temperature and relative humidity for this recovery cycle are passed to the subroutine ENVIRN where the recovery condition is computed. The test simulation continues, and the soldier remains in this recovery cycle until the predicted rectal temperature has fallen to 101 °F or the predicted heart rate has fallen to 100 bpm. At this point, the soldier begins the second work cycle. The test continues in this alternating work and recovery pattern. The duration of the simulation test is dependent on input from CYCLE.DAT and must conclude with a recovery period. The thermal stress limits and the cessation determinants for recovery listed in INITIAL.DAT are adjustable.

A rectal temperature of 101 °F as a determinant for the end of a recovery period has been demonstrated in a previous investigation with human subjects using an analogous test design (Goldman, 1963). A heart rate of 100 bpm as a determinant for the cessation of recovery was a subjective choice whose validity has not been demonstrated in past tolerance studies. It was chosen because during example test simulations, as predicted by this program, it produced the optimal work time (in percent) with respect to the total testing time.

The cessation of the recovery periods is determined by the response pattern of the preceding work cycle. If, during work, the predicted rectal temperature reaches 102.5 °F before the predicted heart rate reaches
180 bpm, the following recovery cycle will continue until the predicted rectal temperature has fallen to 101 °F (Goldman, 1963). Similarly, if during work, the soldier's predicted heart rate reaches the thermal stress limit of 180 bpm before the predicted rectal temperature reaches 102.5 °F, the program places the soldier into a recovery posture until the predicted heart rate has fallen to 100 bpm.\(^1\)

SIMULATION RESULTS

Two example test simulations are presented. Both simulated tests depict the rectal temperature and heart rate response for a person working in MOPP-4. The resulting response patterns are graphically displayed.

The first example is of a two-cycle work and recovery test. The test is simulated in an environment where the dry-bulb temperature is 77 °F, and the relative humidity is 75 percent. (Figure 1)

The second simulation is of a three-cycle work and recovery test. The test simulation occurs within an environment where the present dry-bulb temperature is 95 °F, and the relative humidity is 15 percent. (Figure 2)

SUMMARY

The purpose for developing this program was to find an analytical method that would assist the HELFAST Team of the Combat Service Support Directorate in the structuring of work and recovery time cycles for testing ammunition handling tasks of soldiers in MOPP-4. The replication of Berlin's test simulation example using this FORTRAN program was achieved, that is, agreement was demonstrated between the resulting predicted response patterns from Berlin and the predicted response patterns yielded from this program's simulation of his example. However, the reliability or validity of the predicted response patterns resulting from example simulations presented in this document is not intended to be conclusive. This program demonstrates an analytical procedure that allows the user to obtain data on the expected time constraints for work performed wearing such vapor-impermeable apparel.

\(^1\)From preceding paragraph.
Figure 1. Two-cycle work and recovery test for a soldier in MOPP-4. Climatic parameters: Dry-bulb temperature is 77 °F. Relative humidity is 75%.

Rectal Temperature (°F)
Figure 2. Three-cycle work and recovery test for a soldier in MOPP-4. Climatic parameters: Dry-bulb temperature is 95 °F. Relative humidity is 15%.
REFERENCES

Berlin, H. M., Stoschein, L., & Goldman, R. F. (1975). A computer program to predict energy cost, rectal temperature, and heart rate response to work, clothing, and environment (Edgewood Arsenal Special Publication (ED-SP-75011)).

APPENDIX A

VARIALE VALUES FOR DATA INPUT FILES
VARIABLE VALUES FOR DATA INPUT FILES

Example input data for INITIAL.DAT

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT</td>
<td>Subject's height, (cm)</td>
<td>171.45 cm</td>
</tr>
<tr>
<td>WT</td>
<td>Subject's weight including MOPP-4 ensemble, (kg)</td>
<td>68.04 kg</td>
</tr>
<tr>
<td>TOTSK</td>
<td>Total skin area, (sq m)</td>
<td>1.80 sq meters</td>
</tr>
<tr>
<td>EFFSK</td>
<td>Effective skin area, (sq m)</td>
<td>1.80 sq meters</td>
</tr>
<tr>
<td>IREC</td>
<td>Initial rectal temperature, (°C)</td>
<td>37.00 °C</td>
</tr>
<tr>
<td>IHR</td>
<td>Initial heart rate, (bpm)</td>
<td>65.00 bpm</td>
</tr>
<tr>
<td>SKTP</td>
<td>Skin temperature, (°C)</td>
<td>36.00 °C</td>
</tr>
<tr>
<td>HEAT</td>
<td>Days in heat</td>
<td>0.00 days</td>
</tr>
<tr>
<td>LOAD</td>
<td>Load, (kg)</td>
<td>0.00 kg</td>
</tr>
<tr>
<td>WALK</td>
<td>Walk speed, (m/s)</td>
<td>1.50 meters/second</td>
</tr>
<tr>
<td>GRADE</td>
<td>% grade</td>
<td>0.00 percent</td>
</tr>
<tr>
<td>TERR</td>
<td>Terrain coefficient</td>
<td>1.10</td>
</tr>
<tr>
<td>CLO</td>
<td>Clothing insulation coefficient</td>
<td>2.40</td>
</tr>
<tr>
<td>IMCLO</td>
<td>Permeability index ratio</td>
<td>0.15</td>
</tr>
<tr>
<td>VELMOD</td>
<td>Velocity modifier</td>
<td>0.20</td>
</tr>
<tr>
<td>WIND</td>
<td>Wind speed, (m/s)</td>
<td>1.50 meters/second</td>
</tr>
<tr>
<td>IREST</td>
<td>Duration of initial rest/acclimatization period, (min)</td>
<td>30.00 min</td>
</tr>
<tr>
<td>HIGH</td>
<td>Thermal stress limit, rectal temperature, (°F)</td>
<td>102.50 °F</td>
</tr>
<tr>
<td>LOW</td>
<td>Recovery cessation determinant, rectal temperature, (°F)</td>
<td>101.00 °F</td>
</tr>
<tr>
<td>HRTHI</td>
<td>Thermal stress limit, heart rate, (bpm)</td>
<td>180.00 bpm</td>
</tr>
<tr>
<td>HRTLOW</td>
<td>Recovery cessation determinant, heart rate, (bpm)</td>
<td>100.00 bpm</td>
</tr>
</tbody>
</table>

Example input of a two-cycle work and recovery test for CYCLE.DAT. Input data stored in array variables, MET, BULB, HUMD.

<table>
<thead>
<tr>
<th>Cycle</th>
<th>MET(1)</th>
<th>BULB(1)</th>
<th>HUMD(1)</th>
<th>MET(2)</th>
<th>BULB(2)</th>
<th>HUMD(2)</th>
<th>MET(3)</th>
<th>BULB(3)</th>
<th>HUMD(3)</th>
<th>MET(4)</th>
<th>BULB(4)</th>
<th>HUMD(4)</th>
<th>MET(5)</th>
<th>BULB(5)</th>
<th>HUMD(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest period</td>
<td>105.</td>
<td>30.</td>
<td>.40</td>
<td>368.00</td>
<td>30.</td>
<td>.40</td>
<td>105.</td>
<td>30.</td>
<td>.40</td>
<td>368.00</td>
<td>30.</td>
<td>.40</td>
<td>105.</td>
<td>30.</td>
<td>.40</td>
</tr>
<tr>
<td>1st work</td>
<td></td>
</tr>
<tr>
<td>1st recovery</td>
<td></td>
</tr>
<tr>
<td>2nd work</td>
<td></td>
</tr>
<tr>
<td>2nd recovery</td>
<td></td>
</tr>
</tbody>
</table>

APPENDIX B

PROGRAM CODE AND VARIABLE DEFINITIONS
PROGRAM MOPP-4

Variable Definitions

Elements of array variable ENVIRN:

MET = an array which stores the subject's metabolic rate (watts) for each cycle

BULB = an array which stores the ambient dry-bulb temperature (°C) present during each cycle

HUMD = an array which stores the percentage saturation of the ambient air (relative humidity) present during each cycle (%)

Other array variables

TR = an array which stores a cycle time and the expected time lag for an induced rectal temperature change due to the transformation from one cycle to another (min)

TD = an array which stores the expected time lag for either a work or recovery induced rectal temperature change due to the transformation from one cycle to another (min)

TDREC = an array which stores the time lag of recovery (min)

Subject, Environmental, and Clothing attributes:

M = total metabolic rate (watts)

HT = height of subject (cm)

WT = weight of subject (kg)

TOTSK = total surface skin area of subject (sq meters)

EFFSK = effective skin area of subject (sq meters)

IREC = initial rectal temperature of subject (°C)

IHR = initial heart rate of subject (bpm)

SKTP = skin temperature of subject (°C)
HEAT = days in heat
LOAD = load (kg)
WALK = walk speed (meters/second)
GRADE = percent grade (%)
TERR = terrain coefficient
CLO = clothing insulation coefficient
IMCLO = permeability index ratio
VELMOD = velocity modifier (meters/second)
WIND = air speed (meters/second)

Variables used to describe rest, work, and recovery environments:
VEFF = effective air speed (meters/second)
CLO$ = effective clothing insulation coefficient
IMCLO$ = effective permeability index ratio
EREG = required evaporative cooling (watts)
PW = saturated vapor pressure of water at ambient air temperature (atmospheres)
EMAX = maximum evaporative capacity (watts)
TDX = time lag work induced (hr)
TDREC = time lag recovery (hr)

Clocks:
RECTIM = clock used in the prediction of rectal temperature response (min)
CYCTIM = clock used in the prediction of heart rate response (min)

Time Constants:
ALPHA = recovery time constant (hr)
TAU = work time constant (°C/hr)
Program flags and increments:

FIRST = variable used to designate a cycle change (logical)
NCYC = cycle number (integer)
INTV = time increment (min)
MODE = variable used to designate which limiting value has been reached (integer)
LIMIT = variable used to determine which rectal temperature and heart rate formulas are in use (logical)
CHANGE = variable used to designate the last heart rate prediction of a cycle (logical)
HLAST = variable used to signal heart rate as the cessation determinant for a recovery cycle (logical)
HIGH = thermal stress limit for rectal temperature (°F)
LOW = cessation determinant for recovery (°F)
HRTHI = thermal stress limit for heart rate (bpm)
HRTLOW = cessation determinant for recovery (bpm)

Variables pertaining to rectal temperature formulas:

TREF = the final equilibrium rectal temperature (°C)
TRET = a predicted rectal temperature (°C)
TREI = the initial rectal temperature at the beginning of a cycle (°C)
TREW = the rectal temperature at the beginning of decrease during a recovery cycle (°C)
TRER = the equilibrium resting rectal temperature during the recovery cycle (°C)
TDELTA = the difference of the final equilibrium rectal temperature (TREF) and the initial rectal temperature (TREI) found at the beginning of a cycle (°C)
Variables pertaining to heart rate formulas:

HRINDX = heart rate index

HRATE = a predicted heart rate (bpm)

HRDELT = the difference of the equilibrium heart rate for partially acclimatized subjects and the initial heart rate found at the beginning of a cycle (bpm)

HRIW = subject's heart rate at the beginning of work (bpm)

HRW = subject's heart rate at the end of work (bpm)

HRF = the equilibrium heart rate for fully acclimatized subjects due to the heart rate index (bpm)

HRFN = the equilibrium heart rate for partially acclimatized subjects (bpm)

HRACCL = heart rate response due to the acclimatization process (bpm)
APPENDIX C

MAIN PROGRAM
MAIN PROGRAM

VARIABLE DECLARATION

IMPLICIT REAL (A-Z)
REAL MET(30), BULB(30), HUMD(30), TR(30), TDREC(30)
INTEGERNCYC, MODE, FIRST, LIMIT, CHANGE, HLAST
COMMON /INIT/ HT, WT, TOTSK, EFFSK, IREC, IHR, SKIP, HEAT, LOAD
1 WALK, GRADE, TERR, CLO, IMCLO, VELMOD, WIND, TDX, TDREC, CP
COMMON /TIMES/ TIME, RECTIM, CYCTIM, TR, TD, IREST
COMMON /FLAGS/ NCYC, FIRST, INTLIV, LIMIT, CHANGE, MODE, LAST
COMMON /TEMPS/ TRET, TREI, TREW, TRER, TREF, TDELTA, TEMP
COMMON /CONST/ TATJ, ALPHA
COMMON /HEART/ HRINDX, HRATE, HREL T, EM, RW, H1, K, J, HRF
COMMON /ELMNTS/ MET, BULB, HUMD
COMMON /LIMITS/ HIGH, LOW, HRHI, HRLOW, HLAST

Assign output file for predicted rectal temperature and heart rate.

CALL ASSIGN(1,'MOPP.OUT')

Read 'INITAL.DAT'. This file contains the initial values for the subject, environment, and clothing attributes.

OPEN (UNIT=7, FILE='INITAL.DAT', STATUS='OLD')
10 READ(7,20,END=30) HT, WT, TOTSK, EFFSK, IREC, IHR, SKIP, HEAT, LOAD,
1 WALK, GRADE, TERR, CLO, IMCLO, VELMOD, WIND, IREST, HIGH, LOW, HRHI,
1 HRLOW
20 FORMAT(F8.4)
GO TO 10
30 REWIND 7

Read 'CYCLE.DAT'. This file contains the metabolic rate, dry bulb temperature, and the relative humidity for each time cycle.

OPEN (UNIT=8, FILE='CYCLE.DAT', STATUS='OLD')
NCYC = 0
31 READ(8,40,END=41) A, B, C
40 FORMAT(F8.4)
NCYC = NCYC + 1
MET(NCYC) = A
BULB(NCYC) = B
HUMD(NCYC) = C
GO TO 31
41 REWIND 8

LAST = NCYC
Set time lags for work and recovery cycles.

DO 200 I = 1, NCYC
 CALL ENVIRN(MET(I),BULB(I),HUMD(I))
 TD(I) = IFIX(TDX * 60.)
 TDREC(I) = IFIX(TDREC * 60.)
200 CONTINUE

Store time lags into TD.

DO 300 I = 3, NCYC, 2
 TD(I) = TDREC(I)
300 CONTINUE

Call INIT for variable initialization.

CALL INIT
 CALL ENVIRN(MET(NYC),BULB(NYC),HUMD(NYC))
 CALL HEADING
 TRET = IREC

Last predictions of the test simulation?

400 IF(NCYC.EQ.LAST.AND.TEMP.LE.LOW.AND.
 1 MODE.EQ.1.OR.
 1 NCYC.EQ.LAST.AND.HRATE.LE.HRTLOW.AND.
 1 MODE.EQ.1) GOTO 999

Is the environment safe for work?

IF(CP.LE.0.) GOTO 998

First predictions of new cycle?

IF(FIRST)THEN
 CALL ENVIRN(MET(NCYC),BULB(NCYC),HUMD(NCYC))
 CALL HART
 TDELTA = TREF - TRET
 TAU = 0.5 + 1.5*EXP(-0.3*DELTA)
 TRER = TREF
 TREI = TRET
 TREW = TRET
 FIRST = FALSE
ENDIF

Which cycle?

IF(NCYC.EQ.1)CALL REST
IF(NCYC.GT.1.AND.MOD(NCYC,2).EQ.0)THEN
 CALL WORK
ELSE IF (NCYC.GT.1)THEN
 CALL RECOVR
ENDIF
Print rectal temperature, heart rate, and time.

\[\text{TEMP} = (9. / 5. \times \text{TRET}) + 32. \]

WRITE(1,60) TRET,TEMP,HRATE,CYCTIM,TIME

60 FORMAT(11X,F6.2,8X,F6.2,7X,F5.1,7X,F7.2,11X,F7.2)

Check if rectal temperature or heart rate has reached a stress limit?

IF (LIMIT) THEN
 IF (TEMP .GE. HIGH. AND. MODE .EQ. 1) THEN
 TR(NCYC) = TIME + TD(NCYC+1)
 LIMIT = .FALSE.
 CHANGE = .TRUE.
 MODE = 2
 ELSE IF (HRATE .GE. HRTHI) THEN
 TR(NCYC) = TIME + TD(NCYC+1)
 LIMIT = .FALSE.
 CHANGE = .TRUE.
 MODE = 3
 HLAST = .TRUE.
 ENDIF
ENDIF

Has recovery ended?

ELSE IF (TEMP .LE. LOW. AND. MODE .EQ. 2) THEN
 TR(NCYC) = TIME + TD(NCYC+1)
 LIMIT = .FALSE.
 CHANGE = .TRUE.
 MODE = 1
ELSE IF (HRATE .LE. HRTLW. AND. MODE .EQ. 3) THEN
 TR(NCYC) = TIME + TD(NCYC+1)
 LIMIT = .FALSE.
 CHANGE = .TRUE.
 MODE = 1
ENDIF
ENDIF

Increment clocks.

CYCTIM = CYCTIM + INTV
RECTIM = RECTIM + INTV
TIME = TIME + INTV

If TIME has passed time lag, increment NCYC to initiate rectal temperature response to change in cycle.

IF (ABS(TIME-TR(NCYC)).LT.INTV/2.) THEN
 RECTIM = IFIX(TD(NCYC+1))
 NCYC = NCYC + 1
 FIRST = .TRUE.
 LIMIT = .TRUE.
ENDIF

GOTO 400
Do not work in this environment!

```
WRITE(1,45) CP
FORMAT(2x,'********** WARNING **********',/2x,
1 'The effective cooling power of the ',
1 'environment is ',f6.2,'.',/3x,'This environment',
1 'will not allow the body temperature to collapse.',/3x,
1 'That is, once the body temperature starts to rise it ',
1 'will',/3x,'continue to rise even through recovery cycles',/
999 STOP
END
```

SUBROUTINE ENVIRN (MET,BULB,HUMD)

This subroutine sets up the environmental conditions for each time cycle.

```
IMPLICIT REAL (A-Z)
COMMON /INIT/ HT,WT,TOLSK,EFFSK,IREC,IHR,SKTP,HEAT,LOAD,
WALK,GRADE,TERM,IMCLO,VELMOD,WIND,TDX,TDRECX,CP
COMMON /TEMPS/ TRET,TRI,TREW,TREF,TDELTA
COMMON /CONST/ TAU,ALPHA
COMMON /HEART/ HRINDX,HRATE,HRDEL,TMAX,HRW,K,J,HRF

DATA A,B,C,D /3.2437814, 5.86826E-3, 1.1702379E-8, 2.1878462E-3/

VEFF = WIND + 0.004*(MET-105.)
CLOS = CLO*VEFF**(-VELMOD)
IMCLOS = IMCLO*VEFF**VEMOD
EREQ = MET + ((6.47*TOTISK)/(CLOS))*(BULB-SKTP)

T = BULB + 273.16
X = 647.27 - T
XP = (X/T)*((A/(B*X)+C*(X**3.))/(1.+D*X))
PW = (218.167*(10**(-XP))) * 760.
EMAX = (14.2 * TOTISK) * (IMCLOS) * (44. - (HUMD * PW))
TREF = 36.75 + 0.004*MET + ((0.014*TOTISK)/(CLOS))*(BULB-SKTP)+
0.8*EXP(0.0047*( EREQ-EMAX))

TDX = 58./MET
CP = 0.15*TOTISK*IMCLOS*(44. - (HUMD*PW)) + ((0.097*TOTISK)/CLOS)*
(SKTP-BULB)-1.57
ALPHA = 1.5*(1.0-EXP(-1.5*CP))
TDRECX = .25*EXP(-0.5*CP)

The heart rate index is computed here

HRINDX = 0.4*MET+(1.39*TOTISK/CLOS)*(BULB-SKTP)
+80.**EXP(.0047*(EREQ-EMAX))
```

RETURN
END

23
SUBROUTINE INIT

This subroutine is called for variable initialization.

IMPLICIT REAL (A-Z)
INTEGER NCYC, MODE, FIRST, LIMIT, CHANGE
REAL MET(30), BULB(30), HUMD(30), TR(30), TD(30), TDREC(30)
COMMON /TIMES/ TIME, RECTIM, CYCTIM, TR, TD, IREST
COMMON /FLAGS/ NCYC, FIRST, INTV, LIMIT, CHANGE, MODE

Initialize clocks, flags, and time increments.

RECTIM = 0
CYCTIM = 0
NCYC = 1
TIME = 0
INTV = 1.0
FIRST = .TRUE.
LIMIT = .FALSE.
CHANGE = .FALSE.
MODE = 1

TR(1) = IREST + TD(2)

RETURN
END

SUBROUTINE REST

This subroutine is called when the subject is in the rest cycle and is called through the time lag for a work induced rectal temperature response.

IMPLICIT REAL (A-Z)
REAL MET(30), BULB(30), HUMD(30), TR(30), TDREC(30)
INTEGER NCYC
COMMON /INIT/ HT, WT, TOTSK, EFSK, IREC, IHR, SKIP, HEAT, LOAD,
1 WALK, GRADE, TERR, CLO, IMCLO, VELMOD, WIND, TDX, TDRECX, CP
COMMON /TIMES/ TIME, RECTIM, CYCTIM, TR, TD, IREST
COMMON /FLAGS/ NCYC, FIRST, INTV, LIMIT, CHANGE, MODE
COMMON /TEMPS/ TRET, TREV, TREV, TREF, TDELT
COMMON /HEART/ HRINDEX, HRHATE, HRDELT, EMAX, HRIN, HRW, K, J, HRF
COMMON /ELMINTS/ MET, BULB, HUMD

Rest equation for rectal temperature prediction

TRET = IREC + TDELT * ((0.1)**((0.4**(RECTIM/60.))))
Heart rate prediction -

IF(RECTIM.LT.IREST) THEN

While resting

HRATE = IHR + HRDELT*(1-EXP(-3.*CYCTIM/60.))

ELSE IF(RECTIM.EQ.IREST) THEN

this is the last heart rate prediction of the rest cycle

HRATE = IHR + HRDELT*(1-EXP(-3.*CYCTIM/60.))
HRIW = HRATE
IHR = HRATE
CYCTIM = 0.

the subject is now entering the first work cycle

CALL ENVIR(MET(2C+1)), BULB(NOC+1), HUMD(NOC+1)
CALL HART
CALL HEADNG

ELSE

and while working we use the work equation for heart rate prediction

HRATE = HRIW + HRDELT*(1-EXP(-1*(6-.03*HRDELT)*CYCTIM/60.))

ENDIF

RETURN
END

SUBROUTINE WORK

This subroutine is called when the subject is in one of the work cycles and is called through the time lag for a recovery induced rectal temperature response.

IMPLICIT REAL (A-Z)
INTEGER NCYC, MODE, FIRST, LIMIT, CHANGE
REAL MET(30), BULB(30), HUMD(30), TR(30), TD(30), TDREC(30)
COMMON /INIT/ HT, WT, TOTSK, EFFSK, IREC, IHR, SKIP, HEAT, LOAD,
1 WALK, GRADE, TERR, CLO, INCLO, VELMOD, WIND, TDX, TDREC, CP
COMMON /TIMES/ TLME, RECTI, CYCTIM, TR, TD, IREST
COMMON /FLAGS/ NCYC, FIRST, INTV, LIMIT, CHANGE, MODE
COMMON /TEMPS/ TRET, TREW, TRER, TREF, TDELTA
COMMON /CONST/ TAU, ALPHA
COMMON /HEART/ HRINDX, HRATE, HRDELT, EMAX, HRIW, HRW, K, J, HRF
COMMON /ELMNTS/ MET, BULB, HUMD

25
Equations for rectal temperature prediction -

IF(LIMIT) THEN

work cycle here

TRET = TREI + TDELTA*(1-EXP(TAU*(TD(NCYC)/60.-RECTIM/60.)))
TLAST = TRET
ELSE

recovery cycle here

TRET=TREI+(TDELTA*(1-EXP(TAU*(TD(NCYC)/60.-RECTIM/60.))))/2.

TMP = TREI + TDELTA*(1-EXP(TAU*(TD(NCYC)/60.-RECTIM/60.)))
TRET = TLAST + (TMP - TLAST)/2.

ENDIF

Heart rate prediction -

IF(LIMIT) THEN

while working

HRATE = HRIW + HRDELT* 1
 (1-(.8*EXP(-1*((6-.03*HRDELT)*CYCTIM/60.)))

ELSE IF(CHANGE) THEN

the last heart rate prediction during a work cycle is computed here.

HRATE = HRIW + HRDELT* 1
 (1-(.8*EXP(-1*((6-.03*HRDELT)*CYCTIM/60.)))

HRW = HRATE
IHR = HRATE
CYCTIM = 0

The subject is now entering a recovery cycle......

CALL EVIRN(MET(NCYC+1),BULB(NCYC+1),HUMD(NCYC+1))
CALL HART
CALL HEADING
K = 2-0.01*(HRW-HRF)
J = 2 + 12*(1-EXP(-0.3*CP))

CHANGE = .FALSE.

ELSE
......and while in recovery this equation is used for heart rate prediction.

\[
HRATE = HW - (HRW-HRF) \times (1-\exp(-K\times J \times CYCTIM/60.))
\]

ENDIF
RETURN
END

SUBROUTINE RECOVR

This subroutine is called when the subject is in one of the recovery cycles and is called through the time lag for a work induced rectal temperature response.

IMPLICIT REAL (A-Z)
INTEGER NCYC, MODE, FIRST, LIMIT, CHANGE
REAL MET(30), BULB(30), HUMD(30), TR(30), TD(30), TDREC(30)
COMMON /INIT/ HT, WT, TOTSK, EFFSK, IREC, IHR, SKTP, HEAT, LOAD,
1 WALK, GRADE, TERR, CLO, INCLO, VELMD, WIND, TDX, TDRECX, CP
COMMON /TIMES/ TIME, RECTIM, CYCTIM, TR, TD, IREST
COMMON /FLAGS/ NCYC, FIRST, INTV, LIMIT, CHANGE, MODE, LAST
COMMON /TEMPS/ TRET, TREI, TREW, TRER, TREF, TDELTA
COMMON /CONST/ TAU, ALPHA
COMMON /HEART/ HRINDX, HRATE, HRDELT, EMAX, HRW, HW, K, J, HRF
COMMON /ELMNTS/ MET, BULB, HUMD

Recovery equation for rectal temperature prediction.

\[
TRET = TREI - (TREI-TREW) \times (1-\exp(ALPHA \times (TD(NCYC)/60.-RECTIM/60.)))
\]

Equations for heart rate prediction -

IF(LIMIT)THEN

the subject is in recovery here

\[
HRATE = HW - (HRW-HRF) \times (1-\exp(-K\times J \times CYCTIM/60.))
\]

has the end of the last recovery period of the test been reached?

ELSE IF(CHANGE.AND.NCYC.EQ.LAST)THEN
RETURN
ELSE IF(CHANGE)THEN
this is the last heart rate prediction of this recovery because ...

\[
\text{HRATE} = \text{HRW} - (\text{HRW} - \text{HRF}) \times (1 - \exp(-K \times J \times \text{CYCTIM}/60.))
\]

\[
\text{HRW} = \text{HRATE}
\]

\[
\text{IHR} = \text{HRATE}
\]

\[
\text{CYCTIM} = 0
\]

.....the subject is entering a work cycle here

\[
\text{CALL ENVIRN(MET(NCYC+1),BULB(NCYC+1),HUMD(NCYC+1))}
\]

\[
\text{CALL HART}
\]

\[
\text{CALL HEADNG}
\]

\[
\text{CHANGE} = \text{.FALSE.}
\]

ELSE

and while working we use this equation for heart rate prediction

\[
\text{HRATE} = \text{HRW} + \text{HRDELT} \times \left(1 - (0.8 \times \exp(-1 \times (6 - 0.03 \times \text{HRDELT}) \times \text{CYCTIM}/60.)) \right)
\]

ENDIF

RETURN

END

SUBROUTINE HART

This subroutine computes parametric values used in the formulas for heart rate prediction.

IMPLICIT REAL (A-Z)

COMMON /INIT/ HT,WT,TOTSK,EPPSK,IREC,IHR,SKTP,HEAT,LOAD,

COMMON /HEART/ HRINDEX, HRATE, HRDELT, EMAX, HRW, HR, K, J, HRF

HEAT=0.

IF(HRINDEX.LE.225.)THEN

HRF=65.+35.*(HRINDEX-25.)

HRACCL= 40.*(-1-EXP(.04*(IHR-HRF)))*(1-EXP(-.005*EMAX))

HRFN= HRF+HRACCL*EXP(-.3*HEAT)

HRDELT = HRFN-IHR

ELSE

HRF= 135.+42.*(-1-EXP(225.-HRINDEX))

HRACCL= 40.*(-1-EXP(.04*(IHR-HRF)))*(1-EXP(-.005*EMAX))

HRFN= HRF+HRACCL*EXP(-.3*HEAT)

HRDELT = HRFN-IHR

ENDIF

RETURN

END
SUBROUTINE HEADNG

This subroutine prints out program variables which describe subject, work, clothing, and environmental conditions.

IMPLICIT REAL (A-Z)
INTEGER NCYC, MODE, HLAST
REAL MET(30), BULB(30), HUMD(30), TR(30), TD(30), TDRBC(30)
COMMON /INIT/ HT, WT, TOTSK, EFFSK, IREC, IHR, SKTP, HEAT, LOAD,
1 WALK, GRADE, TERR, CLO, IMCLO, VELMD, WIND, TDX, TDREX, CP
COMMON /HEART/ HRINDEX, HRATE, HRDELT, EMAX, HRW, HRK, J, HRF
COMMON /TIMES/ TIME, RECTIM, CYCTIM, TR, TD, IREST
COMMON /FLAGS/ NCYC, FIRST, INTV, LIMIT, CHANGE, MODE
COMMON /ELMNTS/ MET, BULB, HUMD
COMMON /TEMPS/ TRET, TREI, TREW, TRER, TREF, TDELTA, TEMP
COMMON /LIMITS/ HIGI, LOA, HRTHI, HRTLOW, HLAST

IF(TIME.EQ.0.)THEN
WRITE(1,47)
47 FORMAT(/5x,'Predicted rectal temperature and heart rate',
1 'response to work, clothing, ',/2x,'and environment',
1 'during various rest, work, and recovery time cycles.' ,/)

TBULB = (9./5.* BULB(NCYC)) + 32.
TIREC = (9./5.* IREC) + 32.
TSKTP = (9./5.* SKTP) + 32.

WRITE(1,48) HT, WT, TOTSK, EFFSK, IREC, IHR, SKTP, HEAT, LOAD, WALK,
1 GRADE, TERR, CLO, IMCLO, VELMD, WIND, EMAX, CP, TBULB, HUMD(NCYC)

48 FORMAT(/2X,
1 'INITIAL VARIABLE ASSIGNMENTS:',/2X,
1 'Subject height = ',F6.2,' cm.',/2X,
1 'Subject weight = ',F6.2,' kg.',/2X,
1 'Total skin area = ',F6.2,' sq. meters',/2X,
1 'Effective skin area = ',F6.2,' sq. meters',/2X,
1 'Initial rectal temperature = ',F6.2,' deg. fahrenheit',/2X,
1 'Initial heart rate = ',F6.2,' bpm.',/2X,
1 'Skin temperature = ',F6.2,' deg. fahrenheit',/2X,
1 'Days in heat = ',F6.2,/2X,
1 'Load = ',F6.2,' kg.',/2X,
1 'Walk speed = ',F6.2,' meters/second',/2X,
1 '% grade = ',F6.2,/2X,
1 'Terrain coefficient = ',F6.2,/2X,
1 'Clothing insulation coefficient = ',F6.2,/2X,
1 'Permeability index ratio = ',F6.2,/2X,
1 'Velocity modifier = ',F6.2,/2X,
1 'Wind speed = ',F6.2,' meters/second',/2X,
1 'Maximum evaporative capacity = ',F6.2,/2X,
1 'Effective cooling power of the environment = ',F6.2,/2X,
1 'Dry bulb temperature = ',F6.2,' deg. fahrenheit',/2X,
1 'Relative humidity = ',F6.2,/2X,
1 '--',/)
WRITE(1,49) IREST, MET(NCYC)

49 FORMAT(2X,
 1 'Initial rest cycle = ','F6.2,' min.','/2X,
 1 'metabolic rate = ','F6.2,' watts','/,
 1 '/11X,'TEMP(C)',6X,'TEMP(F)',
 1 5X,'HEART RATE',4X,'CYCLE TIME',4X,
 1 'SIMULATION TIME',/38X,'(bpm)',10X,'(min)',12X,'(min)')

ENDIF

TBULB = (9./5. * BULB(NCYC+1)) + 32.

IF(TIME.GT.0.)THEN
 IF(NCYC.EQ.1)THEN
 WRITE(1,80)
 ELSE
 IF(M:id(NCY,2).EQ.0)THEN
 IF(TEM1P.GE.HIGH)THEN
 WRITE(1,60) HIGH
 ELSE
 WRITE(1,61) HRH1
 ENDIF
 ELSE IF(NCYC.GT.1)THEN
 IF(HLAST)THEN
 WRITE(1,63) HRTLOW
 HLAST = .FALSE.
 ELSE IF(TEM1P.LE.LOW)THEN
 WRITE(1,62) LOW
 ENDIF
 ENDIF
 ENDIF

80 FORMAT(/2X,
 1 '****** cycle change ********',/2X,
 1 'End of acclimatization period',///2X,
 1 'WORK CYCLE')

WRITE(1,50) TEMP, HRATE, MET(NCYC+1), TBULB, HMD(NCYC+1),
1 WIND,CP,EMAX

ELSE IF(MOD(NCYC,2).EQ.0)THEN
 IF(TEMP.GE.HIGH)THEN
 WRITE(1,60) HIGH
 ELSE
 WRITE(1,61) HRH1
 ENDIF

81 FORMAT(/2X,
 1 'RECOVERY CYCLE ')

WRITE(1,50) TEMP, HRATE, MET(NCYC+1), TBULB, HMD(NCYC+1),
1 WIND,CP,EMAX

ELSE IF(NCYC.GT.1)THEN
 IF(HLAST)THEN
 WRITE(1,63) HRTLOW
 HLAST = .FALSE.
 ELSE IF(TEMP.LE.LOW)THEN
 WRITE(1,62) LOW
 ENDIF

ENDIF
WRITE(1,82)
82 FORMAT(/2X,
 'WORK CYCLE ')

WRITE(1,50) TEMP,HRATE,MET(NCYC+1),TBULB,HUMD(NCYC+1),
 WIND,CP,EMAX

ENDIF
ENDIF

50 FORMAT(/2X,
 1 'rectal temperature = ',F6.2,' deg. fahrenheit',/2X,
 1 'heart rate = ',F6.1,' bpm',/2X,
 1 'metabolic rate = ',F6.2,' watts',/2X,
 1 'Dry bulb temperature = ',F6.2,' deg. fahrenheit',/2X,
 1 'Relative humidity = ',F6.2,/2X,
 1 'Wind speed = ',F6.2,' meters/second',/2X,
 1 'Effective cooling power of the environment = ',F6.2,/2X,
 1 'Maximum evaporative capacity = ',F6.2,
 //11X,'TEMP(C)',6X,'TEMP(F)',
 5X,'HEART RATE',4X,'CYCLE TIME',4X,
 1 'SIMULATION TIME',/38X,'(bpm)',10X,'(min)',12X,'(min)'
)

60 FORMAT(/2X,
 1 '****** cycle change ********',/2X,
 1 'Rectal temperature has reached a thermal stress limit, ',
 1 F6.2,2X)

61 FORMAT(/2X,
 1 '****** cycle change ********',/2X,
 1 'Heart rate has reached a thermal stress limit, ',F6.1,2X)

62 FORMAT(/2X,
 1 '****** cycle change ********',/2X,
 1 'Rectal temperature has reached a lower limit, ',F6.2,2X)

63 FORMAT(/2X,
 1 '****** cycle change ********',/2X,
 1 'Heart rate has reached a lower limit, ',F6.1,2X)

RETURN
END
END

DTIC

7-86