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INTRODUCTION

The depth to which a projectile will penetrate a dense medium, such as
soil or water, with little or no material strength has been of interest for
more than a century. Euler and Poncelet are among the early investigators who
searnhed for correlations of penetration depth with striking velocity. Such
correlation fails, however, for projectiles that are unstable during
penetration because, as the yaw (angle between the projectile's axis of
symmetry and the instantaneous tangent to the trajectory) increases, the
resistance force (drag) increases and the depth of penetration becomos a
function of random initial conditions as well as projectile desigu.

Simultaneously flashed orthogonal radiographs provde a highly precise
means of ootaining the spatial location and angular orientation of a
projectile penetrating x-ray transparent media: gelatin, water, soil, snow,

etc. By arranging a sequence of such views (stations), one obtains the time
history of the projectile's motion. Unfortunately the number of stations that
can be juxtaposed to view the relatively short trajectory of the projectile is
too small to infer the continuous nature of the projectile's angular motion,
deceleration, and path. Yet, it is this continuous information that is needed
to extract the forces and moments exerted by the medium on the projectile as a
function of time and distance, in particular, the drag force, the lift force,
and the overturning moment. And, it is these fluid dynamic characteristics of
the projectile, when related to its physical properties, that are required to
build a solid data base for non-deforming projectile penetration of the media
of interest.

The technique described in this paper overcomes this raw data deficiency
by pooling the measurements of several projectile firings (three to five are
sufficient). Both the theoretical and experimental justification for this

methodology follow.

EXPERIMENTAL SET-UP

The instrumentation,. as shown in Figure 1, consisted of three spark
stations before and three after the gelatin block along with eight orthogonal
x-ray stations positioned to record the penetration event. The primary
purpose of the other instrumentation was to evaluate energy deposition in the
block, and those data are not germane to this paper.1 2 Although x-ray

stations could have been employed, the spark station triads were used to
measure projectile velocity entering and exiting the gelatin block because of
the higher precision they provide: at a velocity of 00 m/s the precision
would be 0.01% as compared to the 3% between consecutive x-ray stations. The
times of the flash radiographs are known to within 0.7 microsec; and tne
spatial coordinates of the projectile, to within 0.5mm. The yaw values
derived from the orthogonal x-ray images are believed to be known within
one-half to one degree precision for yaws between, say, 60 and 180 degrees.

'N
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YAW GROWTH

Experimentally we find that rounds impacting at the same nominal speed
will vary in depth of penetration before beginning to tumble due to
differences in strikin- yaw; however,.from the onset of rapid yaw growth to
yaws of 135 degrees or so, the growth of yaw with path length (penetration) is
the same foe' each round.

A. THEORETICAL BASIS

The author has previously developed the equation of motion that governs
the growth of yaw for gyroscopically unstable, non-deforming projectiles

penetrating a dense f'luid,3
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d2 a u Mcooasina (1)do 2

where a is the ballistic yaw (combined pitch and yaw) and s is the path
length. In this form M is expected to be independent of velocity for the
trajectory of a given test firing. The right hand side of Equation 1 is the
ratio of the overturning moment exerted by the fluid on the projectile to the
product of the transverse moment of inertia and the instantaneous velocity
squared. By dividing the overturning moment by the square of the velocity,
one obtains a term that is independent of the velocity change during
penetration as long as the flow is subsonic but fast enough to remain
cavitational. Thus, M is expected to be a function of a alone but a much
slower varying function of a than the cos a sin a factor in Equation 1.

B. APPLICATION TO EXPERIMENTAL DATA

To fit Equation 1 to the measured yaw versus distance data, M will be
treated as a constant and any departure from that assumption can be treated
empirically.

1. INITIAL TRAJECTORY - SMALL YAW

Since all the firings of the projectile resulted in small, but different,
striking yaws, we can assume small yaw during the inital penetration.
Equation 1 becomes:

d2d
d2(2)

"sinceamsin a, cus ac1. Equation 2 can be integrated in closed form to give a
equal to the vector sum of 01 exp[N/-)(s - so)] and a02 exp[-VrTMi (s - so)],

these two terms being, in general, out of phase. The second term van!shes so
rapidly, however, that the solution to Equation 2 can be written:

a O expi1OMMS g)] (3)

wherea 0 a 01  a at s = so . Since our measurements are of projectiles

starting at small yaws, a de&ree or two, we can use Equation 3 to provide one
of the two initial conditions required for solution of the general, large yaw
Equation 1 without introducing an arbitrary constant. Differentiating
Equation 3, we have:

7



...aL a~ao exp(1-/T3(S SO) (4~)

Therefore,

do (3 _ so)_ 477 o a • (5)
ds

Thus, instead of three unknowns: M, a. and dc/ds at a =so , we have two: M
and 0

0

2. COMPLETE TRAJECTORY

Using Equations 1 and 5, the radiographic measurements of yaw versus
distance can be fitted in the least squares sense to determine M and
Uo However, with only a few stations per firing and with yaws growing

from zero to 16 0egrees, the inherent system measurement error would result
in imprecise estimates of M, sufficiently imprecise that even the multiple
firings would provide less than satizfactory "average" estimate of M.
However, Equations 1 and 5 suggest a technique for pooling the data for the
multiple firings such that, when fitted by the least squares method, one value
of M and N a '3 are determined instead of N M's and NCL'a, N being the number

0a
of firings.

Experimentally we find that rounds Impacting 2t the same nominal speed
will vary in depth of penetration before beginning to tumble due to
differences in striking yaw; however, from the onset of rapid yaw growth to
yaws of 135 degrees or so, the growth of yaw with path length (penetration) is
the same for each round. Physically, this means that the overturning moment,
which determines the growth of yaw, is insensitive to the small changes in
velocity and spin among the rounds, but is a function only of the
instantaneous yaw. Mathematically, this means we can pool the yaw versus
penetration curves of the rounds by superposition, shifting the abscissa as
needed. Figure 2 shows the resulting curve of such a poolinx for one
projectile.

3.0 -180

2.5 0 0o160

140
2.0 120
.

q"ffMsheCOSedsds 801
. 60

0.5 -
40

20
0 L 0
0 4 8 12 16 20 24 28 32 36 40

PENETRATION (calibers)

FIGURE 2. Yaw versus Path Length of a Bullet in Gelatin.
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The data in Figure 2 is taken from earlier firings, the test set-up of
which differed from that of Figure 1, namely, four stations viewing a 15 cm
long block of gelatin rather than eight stations and a 30 cm block. Eight
rounds of one projectile design were fired at a nominal velocity of 870 m/s.
Each round provided three or four good yaw measurements for a total of 29
pooled data points. As jeen in Figure 2, a constant value for M for the
solution of Equations 1 and 5 is valid for a suprisingly large depth of
penetration and growth of yaw - to 135 degrees. Beyond that value (the base
forward zone) the projectile yaw increases at an even slower rate to a value
greater than 160 degrees but then begins a retreat toward a stable position of
90 degrees. It was impossible to obtain even this qualitative type of
information by examining each firing separately. Also plotted in Figure 2 is
the "small" yaw approximation given in Equation 3. It is seen that the
approximation is reasonable to 30 degrees of yaw, considering the precision of
measurements involved.

The results in Figure 2 are not an isolated situation. Fifteen other
sets of pooled data (twelve in the 15cm gelatin block and three in the 30cm
block) were analyzed according to the above method. There were fourteen
configurations in all, two of which were observed at two distinct nominal
striking velocities; and each produced results similar to that in Figure 2
with a precise estimate of its own M. Further, the author has successfully
applied the method to a set of three projectile firings through soil with
observed yaws reaching 35 degrees.

VELOCITY DECAY

Our aim now is to find a means of pooling the rounds with regard to
velocity loss. We obtain velocity versus penetration points for each round by
taking divided differer-es of the penetration-time data.

A. THEORETICAL BASIS

The decay of projectile velocity is traditionally expressed by:

dV - - D • V (6)
dis

where V is the instantaneous velocity and D is equal to the ratio of the drag
2force to the product of the projectile mass and V . Like M, D is expected to

be insensitive to the change in V during the penetration event because the
flow is cavitational and subsonic. D is, of course, highly sensitive to the
ballistic yaw, a. Thus, upon integration Equation 6 becomes:

V(o) M exp D(a) d
SO
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The right hand side of Equation 7 is independent of V; and, therefore, only a

dictates its behavior.

B. APPLICATION TO EXPERIMENTAL DATA

From the results in the YAW GROWTH section, we see that the same shifts
in s that permitted pooling a versus s data will serve here to pool the data
for plotting V versus s. For convenience, V(o) is chosen for each firing

T-o)
at that position where the onset of rapid yaw growth is established in the
pooled a versus s data.

The results of one such pooling, firings into the 30 cm block of gelatin
at a nominal striking velocity of 590 m/s, are given in Figure 3.

I.9.

.7-

V
V(O) 0 - 13068, So a 0

.5 A - 13070, So -- 3.9
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FIGURE 3. Normalized Velocity versus Path Length.

1. DRAG COEFFICIENT IN GELATIN

The curve in Figure 3 can be numerically differentiated to provide CD
versus s since:

PCD - D - ds(8)

2a

where p is the density of the gelatin, A is the cross-sectional area of the
projectile and m is the mass of the projectile. Although we have CD versus s,

10



we know that CD is exhibiting its dependence on a. Hence, using the pooled a

versus s curve, similar to that in Figure 2, we can construct C versus C.
D

This is done in Figure 4 for the velocity decay data shown in Figure 3. The
maximum value of CD agrees with that of cavitational cross flow for cylinders.

2.8

2.4

2.0-

1.6

j CD
" 1.2

.8

LII

0 40 80 120 160
YAW (DEG.)

FIGURE 4. Drag Coefficient versus Yaw.

2. OBSERVATIONS I SNOW

Two of the projectiles tested in gelatin were also measured for velocity
loss through various thicknesses of packed snow. Pooling the V versus s

data resulted in a velocity decay curve similar to that in gelatin. Using the
values of M determined for gelatin, the values for M in snow were estimated
since M is directly proportional to the fluid density. The results suggest a
yaw growth in snow that agreed with the gelatin prediction.

11



PATH DEFLECTION

To complete the understanding of unstable motion of projectiles in
cavitational flow, one needs to measure the deviation of the penetration path
from a straight line, often called swerve.

A. THEORETICAL BASIS

Again, we are intereeted only in the motion in the plane of the ballistic
yaw, not in the history of the orientation of that plane, which is controlled
by the projectile spin. For the short duration of the penetration process
gravity can be ignored, and the equation for swerving motion is:

d2r . L sin a co92a (9)

dS
2

where r is the radial displacement from the initial straight line path
(cylindrical coordinates r, e, s). L is equal to the ratio of the lift force

to the product of the projectile mass and V2 and, like M, is expected to be
independent of V during the penetration. The integration of Equation 9

results in:

r L sin a cos2 adsds . (10)
s0 is O

There are no explicit constants of integration since they serve only to define
the initial straight line path and r is defined as the displacement from that
path. L, like M, is expected to be constant for a good portion of the yaw
growth; and, since a has an approximately exponential growth with s until,
perhaps, 30 degrees, r will grow exponentially with s until about 20 degrees.
This results from comparison of a with the integrands of yaw growth (sin a

cos a) and swerve ( sina cos2 a).

Consequently, it is expected that a marked increase in r will take place
when a rapid increase in yaw growth begins, and r will be dependent only upon
a. Hence, the poo2ing technique can be applied to path measurements. The
measurements from several rounds can be superposed upon each other provided
that first the spatial axes are rotated to align the individual initial
straight line paths and then the rounds are shifted individually along the now
common initial straight line path until the growths in r coincide.

12



B. APPLICATION TO EXPERIMENAL DATA

Although flash radiography does provide measurements of the three spatial
coordinates of the center of mass of the projectile, such data have not been
analyzed at this time. However, the trajectory traces left behind by two
unstable projectiles penetrating clay were analyzed by this pooling technique
for each of the two striking velocitiez. The results for one pooling are
given in Figure 5.

70-

60

0 - Rd 7. 0* OBLIQUITY, 587m/$
E 0 Rd 8, 0* OBLIQUITY, 598mA

40-

>30/

In 20

10

0 50 100 150 200 250 300 350 400 450 500
PENETRATION DEPTH (P) cm)

FIGURE 5. Swerve versus Penetration

CONCLUSION

The equations of motion governing the growth of ballistic yaw, the

velocity decay, and the deviation of the trajectory from a straight line have
beea identified.

A methodology consisting of pooling flash radiographic (or other)

measurements from several firings of projectiles penetrating gelatin, soil,
snow, etc., has been developed with the result that precise experimental
solutions to the above equations can be obtained.

The resulting drag force, lift force, and overturning moment qata form

the best empirical data base for unstable projectile/motion in dense media.
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