
(0
lAD

00 US ARMY< MATERIEL

COMAND TECHNICAL REPORT BRL-TR-2722

RADIAL EXPANSION OF CAVITIES PRODUCED
BY THE AXISYMMETRIC STEADY

PENETRATION OF HYPERVELOCITY RODS

Brian R. Scott D I
-LECTEK

April 1986 JUNO03 W6 8

APPROVE FOR PUUUC RELEASE; OISTRUUTION UNUMMTD.

US ARMY BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

LUj

.86 6 2 072

.- . . . ........



SECURITY CLASSIFICATION OF THIS PAGE (Whmi Dote Entend)

REPORT DOCUMENTATION PAGE REA~DISRCTIONS

1.REPORT NUMBER 2. GOVT ACCESSION NO. 3. RaCIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT A PERIOD COVERED

Radial Expansion of cavities Produced by the Technical Report
Axisynmmetric Steady Penetration of Hypervelocity _______________

Rods 6. PaRFORMING ORG. REPORT NUMBER

7. AUTHOR(a) 11. CONTRACT OR GRANT NUMSER(a)

Brian R. Scott

9. PERFORMN ORGANIZATION NAME AND ADDRESS I.PORMEEET RJC.TS

UAry Ballistic Ressearch LaboratoryARAWOKUINUBS

RDTE 1L,162618AH80
Aberdeen Proving Ground, MD 21005-5066

bSqTO*nJFJ fE AND "1DDRE9S 12. REPORT DATS

~~~~e a..oratory Ar118
ATTN: SLCBRDD-TIS. NUMBER OF PAGES

Aberdeen Proving Ground, MD 21005-5066 112
14. MONITORING AGENCY NAME A ADDRESS(f 41flerent inim Conirei~na Ofice~) IS. SECURITY CLASS. (of ados ropord)

UNCLASSIFIEfl

ISA. DECLASSI FICATION/ DOWNGRADING
SCHEDULE

if. DISTRIBUTION STATEMENT Col &do. Xips

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (.1 te obstrat ed tered in Block"2. IIfiemwernt bivo Riesot)

* III. SUPPLEMENTARY NOTES

19. KEY WORDS (Conin*ue anl reverees ide If neosar and ldeatII& by Nlock mmbwhe)
,hole growth -ballistic impact, -hypervelocity pa,~
bole volume plasticity . -haped charge jet
cýratersl elastipity kinetic energy penetrator

* ~cavities visco-~plastic '

penetration initial value problems,
2S.ARA?4t irwm I eem dLtf 7boknbr

A model for the expansion of a cavity created during the penetration
of high-speed rods is presented. This model was formulated by making several

* assumptions as to the behavior of the deforming target material during the
cavity expansion process. The assumptions are supported by previous experi-
mental and finite difference investigations. Upon specification of the match-
ing conditions at the boundaries of the plastic deformation regions, the
governing system of nonlinear field equations reduces to simpler ordinary

DDO F, OM 1473 EDITION oF 1 Nov es is oSsoLETE

SECURIITY CLASSIFICATION OF THISl PAGE (When Dote Entered)

*5~.i. - . , . * * . * ..%



SECURITY CLASSIICATION OF THIS PAGE(Wbn Ad"t DAUMO

L ifferential equations. Initial conditions are estimated and the resulting
initial value problems are solved with a standard Runge-Kutta technique.
Parametric trends are subsequently established and the model predictions comn-
pare quantitatively veil with experimental observations. It is concluded
that the model accurately predicts the proper behavior but the accuracy of
results depends significantly upon the precision with which the initial con-
ditions and the target material characteristics may be specified.

A~ ~ i,~ r, P!,

2)

SCCUITYCLASIFCATIN O THS PGE(Wen ateEntred



TABLE OF CONTENTS

Page

LIST OF ILLUSTRATIONS ....................... 5

I. INTRODUCTION AND STATEMENT OF THE PROBLEM . . . . . . . ... . . 7

A. Statement of the Problem ........... *... .. . 10

II. FORMULATION OF THE PROBLEM .......... .... ......... 12

A. Breakdown Into Regions of Different Deformations ........ 20

B. The Elastic Region IV ........ 20

C. The Plane Plastic Region IIl ................ 22

D. The Three Dimensional Plastic RegionlI ............ 27

E. The Rod Inversion Region I ................... 38

F. The Boundary Coupling of Regions I-IV Yielding the
Governing Differential Equations .... . 9.. . ... 41

G. The Determination of the Initial Conditions .......... 44

III. SOLUTION OF THE INITIAL VALUE PROBLEM ............... 54

A. Runge-Kutta Solutions to the Complete System . . ........ 54
p"

B. Reduction to Quadrature via Additional Approximations . . . . . 57

IV. PARAMETRIC DEPENDENCE AND COMPARISON WITH EXPERIMENTS . . . . . . . 60

A. Dependence of the Initial Conditions (K, ao, b ) ........ 60

B. Dependence upon Impact Velocity and Static Target Strength . . . 65

C. Dependence upon the Viscosity . . . . . . . . . . . . . 73

D. Dependence upon Penetrator Radius . . ............. 75

E. Comparison Between Semi-infiuite and Finite Lateral Boundaries . 77

F. Comparison with Entrance Hole Data ............... 79

V. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH .......... 80

ACKNOWLEDGMENTS * . . . . . . . 82 .. .

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . 83

REFERENCES . . ... . . .. . . ...... 87 Codes

;~ •.,, Jd/or
S3 Di~t '5-': c~d

f :.:E



TABLE OF CONTENTS (cont)

Page

APPENDIX A - DERIVATION OF THE STEADY PENETRATION RATE . . . . . .. 99

APPENDIX B - THE YIELD STRESS DURING BALLISTIC IMPACT . . . . . . .103

APPENDIX C - THE SOLUTION OF THE AXIAL VELOCITY DISTRIBUTION . . . . 107

APPENDIX D - DESCRIPTION OF THE SOLUTION PROCEDURE . . . . . . . . . 109

DISTRIBUTION LIST . . . . . . . . . . . . . . .I1

4

V, . .* . V. . . ."" . . .. . -. * a, *



LIST OF ILLUSTRATIONS

Figure Page

1. Three Impact Configurations, Before and After the Event. . . . . . . 8

2. The Four Phases of High-Velocity Penetration, Christman [24] . . . . 9

3. The Deep Penetration of Hypervelocity Rods ............. 11

4. Flash X-ray Photograph of a Metallic Jet Penetrating a
Seai-infinite Target (Courtesy of Dr. William de Rosset, USABRL) . . 14

5. Framing Camera Photograph of a Metallic Jet Penetrating
Polymethyl Methacrylate, Supersonic (U>c ) (Courtesy of
George Hauver, USABRL) .. . . .... . .. ........... 15

6. Framing Camera Photograph of a Metallic Jet Penetrating
Glass, Subsonic (U<c ) (Courtesy of George Hauver, USABRL) . . . . . 16

7. Schematic Description of the Deep Penetration Process for
Both High and Low Sound Speed Target Materials o . o ..0. . . . . . 17

8. Deformation Fields During the Penetration Event .a. . . . . . . . . 19

9. Sketch of the Separation of the Target into Regions of
Different Deformations (Subsonic Flow) . . . . . .. .. . . .. . 21

10. Test Configuration for the Observation of the Final
,' Deformation Field . .o. .o o ... . . . . . . . . ..0. .. .... 29

11. Sketch and Photograph of the Banded Structure Exposed by
Etching in Plate Two, After Penetration by a Metallic Jet, 50X . . . 30

12. The Experimentally Measured Shear Strain Distribution . . . o . . . 35

13. The Penetrator Interaction Surface and Control Volume, c . . o o .. 38

14. Schematic Description of the Interaction "Bulb". .e. . . . . . . . . 45

15. Mechanical Work per Unit Volume Plotted as a Function of
the Square of the Penetration Velocity, Eichelberger (61] . . . . . 47

16. Blunt-nosed Cylinder in a Uniform Flow .. . . . . . . . . . . . . . 49

17. The Velocity and Pressure Distributions upon the Surface
of a Sphere (Kaplan (1171) .o. .o a ..a. . .. .. .0. . . . . .. 50

18. Parametric Dependence of the Initial Condition Constant,
K for Impact Velocity, 4.4 km/s . .9. . . . . . . . . . . . . . . . 62

19. Parametric Dependence of the Initial Condition Constant,
K for Impact Velocity, 3.3 km/s . .. .. . . . . . . . . . . .. 63

5- 5

• '• •'4..- *C - *C , • , *, .,. .. . '. -,, -. . .- • . . d ' '. ' ' ' ' ". ,' " . - - , ' - " . ' ", '- " " " "."*



4!

LIST OF ILLUSTRATIONS (cont)

Figure Page

20. Radial and Circumferential Stress Distributions at 0, 1 and 5
Microseconds for V - 3.3 km/s .0. . . . . . . . . . . . . . . . . 64

21. The Normalized Cavity Dimension Variation with Respect to
Impact Velocity and Target Strength for Tungsten Rods
and Steel Targets . . . . . . . .................. 66

22. The Normalized Cavity Dimension Variation with Respect to
Impact Velocity and Target Strength for Steel Rods
and Steel Targets . * . ..9. . . . . . . ..*. .. ..*. . . ..*. 67

23. Radial Cavity Growth for Steel Rods Penetrating Steel Targets . . . 69

24. Radial Cavity Growth for Steel Rods Penetrating Aluminum Targets . . 71

25. The Normalized Cavity Dimension Variation with Respect to
Impact Velocity for Steel Rods and Aluminum Targets ........ 72

26. Parametric Dependence of the Viscosity Coefficient, •,
Upon the Cavity Growth Behavior .. .. .. ............ 74

27. Parametric Dependence of the Penetrator Radius, r upon
the Cavity Growth Behavior ........... ' ......... 76

28. Comparison Between Semi-infinite and Finite Lateral Boundaries . . . 78

29. Comparison Between Entrance Surface Cavity Growth and the
Radial Growth of Cavities Deep Within the Target .......... 81

Al. The Penetration of a Semi-infinite Target with a Long Penetrator . . 99

BI. Variation of Viscosity Coefficient with Rate of
Strain, Walters [125] .................. .. . 105

6



I. INTRODUCTION AND STATEMENT OF THE PROBLEM

The collision of high speed projectiles with solid targets has been a
subject of considerable interest to military, industrial and academic
communities for the past four decaaes. World War II stimulated analytic
research oriented towards improving armor and warhead designs. The advent of
the space program in the late fifties created a need for the protection of
spacecraft from meteorite impact. Industrial applications of impact and
penetration processes include mining operations, oil well stimulation, plate,
cable and pipe cutting, demolitions and many others.

The subject of impact mechanics is quite broad. It incorporates such
classical fields as fluid mechanics, solid mechanics, solid state physics,
mathematics and materials science into the analytical and experimental
treatments of complex, practical problems. Several general reference texts
are available that review the many Impact type applications as well as the
research techniques developed and applied with relative success (Backman [11,
Billington [2), Goldsmith [3], Johnson [41, Kinslow [51, Zukas [61, etc.).
Review articles dealing primarily with spacecraft protection can be found in
the Proceedings of the Hypervelocity Impact Symposia [7], held during the
early sixties (Allison [81, Cook [91, Hopkins [101, etc.) and in the open
literature (Backman [11], Bjork [121, Cook [13], Eichelberger [14], Herrmann
(15, 161, Prater [17], Vinson [181, etc.). Review articles concerned with
military armor applications can be found in government publications (Bethe
[19], Perez [201, Wright [21], etc.) as well as in the open literature
(Byrnside [221, Christman [23, 24], Eichelberger [25], Gehring [26], Jonas
[27], Sagamonyan [28), etc.). Both of the aforementioned categories involve
the penetration of high speed projectiles into target materials (armor or
shields). The space application (conventionally termed hypervelocity impact)
typically involves geometrically compact projectiles (meteorites) with impact
velocities ranging from I to 80 km/s and targets configured from thin metallic
plates. Military armor on the other hand is considerably more massive often
involving metal target thicknesses on the order of hundreds of centimeters.
The projectiles, which these armors are designed to stop, usually have long
cylindrical geometries and impact velocities significantly less (1-12 km/s)
than the meteor class. In both categories (hypervelocity impact and armor
penetration) however, the penetrator velocities are sufficiently great to
produce impact stresses much greater than the resisting strength of the target
materials. Consequently, a crater forms within the target in a time frame of
the order of microseconds. The penetrator may disintegrate if the impact
velocity approaches the 12 km/s range; it will certainly deform within the
range of 1-12 km/s, the extent of which will depend on the relative magnitudes
of the impact stresses and characteristic strengths. Hypervelocity, within
the impact mechanics community, is usually defined as a projectile velocity
which exceeds the longitudinal wave speed of the target material. Most metals
have wave speeds between 2 and 7 kl/s. Therefore, depending on the target,
some typical impact velocities may be less than the hypervelocity definition.
However, within the context of this report, hypervelocity will define a
velocity sufficient to both deform the penetrator and produce a target cavity.
For most conventional metallic penetrators, an impact velocity greater than 1
km/s will be considered hypervelocity.

Figure 1 depicts three typical situations involving the impact of
representative projectiles upon thin and thick targets. The projectile
trajectories are normal to the target surfaces.

7

.................



A C

t.

Figure 1. Three Impact Configurations, Before and After the Elent

Configurations A and B represent the hypervelocity, meteorite Impact
category. As noted in the already referenced papers, these configurations
have been extensively studied experimentally (Cook [9], Prater [17], Abbott
[29], Holloway [30], Johnson [31], Keys [32], Kineke [331, Pond (34], Turpin
[35], Yuan [361, etc.), analytically using engineering models (Davids [37],
Fuchs [381, Opik [39], Rae [40], Rand [41], Rostoker [42], Seizew (43],
Silberstein [441, Scott [45], Taylor [461, Whitesides [47], Zald [481, etc.)
and numerically via finite difference/finite element methods (Bjork [12],
Hardage [49], Riney [50, 51, 521, Sedgewick[ 5 3 ], Wilkins [54], etc.). The
problem is very complex; wave propagation, unknown dynamic material
properties, phase changes, fracture, time-dependent boundary conditions,
nonequilibrium thermodynamics, etc., all combine to prevent a general
analytic solution. Knowledge is gleaned from the many analyses of results
using varying degrees of approximation. Fortunately, most of the above
sources of analytic difficulty have been investigated either independently or
in specific combinations making the hypervelocity impact category of problems
rather well understood. Such is not the case for the configuration C of
Figure 1.

While much of the behavior evident in the two other configurations occurs
also in long penetrator/thick armor applications, the problem Is considerably
different. Most obvious is the shape of the resulting crater, which appears
almost hemispherical in B but becomes more cylindrical as the length of the
penetrator increases. Also, the process of cavity enlargement, completed
rather quickly in A and B, will take considerably longer when the length of
the penetrator increases. Indeed, it is this extra time of interest that
hinders the application of the finite difference techniques to the deep
penetration problem. Only a few numerical studies have been published (Harlow
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[55], Kucher [56, 571, etc.) and consequently much less is understood,
especially with respect to individual problem parameter dependence. This deep
penetration problem has, however, been of considerable interest to the defense
community for many years. Protective armors of tanks and armored personnel
carriers have in the past been designed with understanding gained from
combined experimental and engineering model research approaches. The
experiments (Birkhoff [58], Boyle [59], Brooks [601, Cook [13], Eichelberger
[61, 621, Fugelso [63], Glass [64], Hauver [651, Hohler [66], Johnson [67],
Moss [681, Perez [20], Pond [691, Pritchard [70], Summers [711, Weihrauch [72,
731, White [74], etc.) identify physical behaviors and trends that allow for
subsequent analytic approximations. Perhaps the single most important
parameter in the eyes of the armor designer is the depth to which a projectile
will penetrate. Indeed, most of the analytic studies to date have
concentrated on the penetration rate behavior (the rate at which the
penetrator/target interface moves along the penetration trajectory).
Christman [241 describes the penetration process in terms of four phases:
transient, primary, secondary and recovery. Figure 2 shows, schematically,
these four phases in terms of pressure-time behavior.

I I I
I I I

- I I " I

primary f
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TI... "

Figure 2. The Four Phases of High-Velocity Penetration,
Christman [241
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Upon initial impact, shock waves form, optical flashes are observed and
the pressures measured are quite high. The shocks spread into the target
ahead of the penetrator with diminishing intensity due to both geometrical
divergence and material effects (Mok [751, Rae [401, Torvik [761, etc.). If
the penetrator has sufficient length, then the penetration process enters a
quasi-steady phase where pressures, less than the transient case, and along
the penetration trajectory are almost constant. An interaction zone,
encompassing the penetrator/target interface, moves with a constant
characteristic velocity deeper into the target, eroding penetrator material as
it progresses. Eventually, the rear of the penetrator enters this moving
interaction zone and upon being eroded, the process enters the secondary
phase. The penetrator is no longer important, the momentum imparted to the
target by the first two phases is gradually reduced by irreversible mechanisms
until the static strength properties of the target predominate, allowing for
reversible recovery to occur. This overall process has been observed
experimentally (Boyle [59], Christman [24], Eichelberger [77]) and in finite
difference calculations (Harlow [55], Kucher 157]). The extent and relative
importance of each individual phase depends upon both the penetrator and
target characteristics. For meteorite impact problems, the primary or
quasi-steady phase never materializes while for very long penetrators, this
particular phase accounts for the majority of the penetration process. The
most serious threat to ballistic armor involves both long rods (fired from

*' propellant driven guns, .5-3 km/s) and very long metallic jets (2-12 km/s),
"produced by the detonation of shaped charge warheads. Under the presumption
that the pressures generated greatly exceed the material strength of the
target, the theory for deep steady penetration was developed during the World
War II era. A one-dimensional, incompressible, streamline analogy yielded
estimates for the penetration rate and final penetration depth. The
derivation and subsequent verification (experimental and computational) along
with a review of some of the assumption relaxations of this model are
presented in Appendix A. Many analytic efforts have considered the
penetration behavior along the penetration trajectory (Alekseevskii [78],
Birkhoff [58], Hill [79], Majerus [80], Perez [81], Sagamonyan [821, Tate [83,
84], Wright [85] and others), but precious few have considered the behavior
orthogonal to the penetration path. Wright [211 points out the many
limitations associated with the penetration model and notes the need to
consider the dynamics of hole growth !n the formulation of a more realistic
penetration theory. The growth of the target cavity, along directions
orthogonal to the penetration trajectory, deep within thick targets is the
subject of this report.

The subject of this report involves the deep penetration of long rods (or
jets) into massive targets. Figure 3 shows the essential elements of such a
problem.
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Figure 3. The Deep Penetration of Hypervelocity Rods

A hypervelocity penetrator, characterized by its length (assumed many
times greater than its lateral dimension, D ), density and velocity, V,

p
strikes and subsequently penetrates a massive target characterized by its
density, strength properties and lateral dimension. A cavity, described by
its diameter, D , at specific depths within the target forms behind a

translating interaction surface moving with a characteristic velocity, U. It
is the objective of this report to:

a. Develop a model of the dynamic growth of the cavity dimension, D , and
its final value. c

b. Determine appropriate initial and/or boundary conditions and solve the
system for specific problems.

c. Determine the model's parametric dependence, limits of applicability
and predictive accuracy.

d. Improve the fundamental understanding of the penetrator/target
interaction.

11
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II. FORMULATION OF THE PROBLEM

The overall objective of this report is to develop a model for the cavity
expansion behavior orthogonal to the penetration path and subsequently apply
this model to practical impact configurations. Parametric dependencies and
model accuracies need to be determined. The analysis may proceed along three
different approaches: empirical data correlation, approximate analytical
methods, or multidimensional finite difference/finite element computer codes.
The empirical approach requires extensive experimental data bases, the
dimensionless groupings of important problem parameters are not always obvious
and the understanding of the material behavior and physical processes involved
is not significantly improved by the effort.- Examples of this approach can be
found in the review article by Backman and Goldsmith (111. At the opposite
extreme is the numerical approach. The direct approximation of the complete
equations of continuum physics, while allowing for the treatment of more
general problems, has the disadvantage of obscuring the effects of individual
problem parameters. Parametric studies require the repetition of expensive,
time-consuming calculations and often the resolution is sacrificed in an
attempt to reduce the overall cost. The accuracy of the numerical solutions
depends not only on the discretization errors inherent in the method but is
severely dependent on the accuracy to which the material behavior may be
described. Zukas, et al. [6, 271 review the many contemporary codes, their
respective successes and limitations. The intermediate approach, approximate
analysis, employs simplifying assumptions which reduce the general field
equations to more analytically tractable forms. The most important physical
and material behaviors are explicitly retained while less significant
behaviors are neglected. Approximations and simplifications should be
supported by experimental, theoretical or numerical arguments so that the
results may retain reasonable accuracy when compared with the actual complex
problem.

This report will follow the analytical modeling approach in hopes of
discerning the most significant problem parameters and their influence upon
the cavity growth behavior.

The formulation may be considerably simplified from the onset by the
application of the assumptions; material isotropy and axial symmetry. In

addition to the obvious analytic advantage gained, these approximations
simplify the experimental determination of material properties. From a
physical viewpoint, both conditions are quite appropriate for the stated
problem. Material isotropy is conventionally assumed for homogeneous,
amorphous and polycrystalline solids. In the latter case, isotropic
properties can be interpreted as averages, taken over continuum samples
encompassing many randomly oriented grains, of locally anisotropic properties
of individual grains. Since most practical armors are configured with steel
or aluminum elements, material isotropy will be assumed throughout the
remainder of this report. Subjects involving fiber reinforced materials,
composite penetrators or target materials that exhibit significant processing
induced anisotropy are, therefore, precluded from further study. The second
major approximation, axial symmetry, is quite appropriate for the study of
deep penetration. Nearly all practical penetrators have cylindrical geome-
tries and are designed to impact a target end on (cylinder axis and trajectory
are coincident with the target surface normal). For instances where the
penetrator axis is not normal to the target surface (oblique impact), the
geometry near the entrance surface of the target invalidates the symmetry

12



assumption, however, it has been observed both experimentally (Weihrauch [72,
731) and computationally (Kucher [861) that for depths greater than several
rod diameters below the oblique entrance surface, the penetration process
appears axially symmetric. Thin plates and behavior near oblique free
surfaces will, however, not be considered. The lateral boundaries of the
target will be assumed to be either infinite in dimension or finite with
cylindrical geometry. Actual targets usually use rectangular plates but the
lateral dimensions are so large when compared with the final cavity dimension
that the infinite approximation is valid.

Cylindrical, Eulerian coordinates are selected with the origin located at
the point of initial impact upon the target tbp surface. A cylindrical rod
(or jet) will penetrate the target along the axis of symmetry (z axis)
imparting to elements of mass at each axial plane, an amount of radial momenta
sufficient to produce cavity expansion. The penetrator feeds into a
translating interaction region (characteristic mushroom shape) where it
subsequently inverts and flows parallel to the expanding cavity surface. As
noted in the Introduction and as derived in Appendix A, the translating
surface moves through the target with an approximately constant rate.
Utilization of pulsed x-ray photographic techniques (Weihrauch [72, 731,
Fugelso [63], and much unpublished US Army Ballistic Research Laboratory
evidence) enables observation of this interaction region during the penetra-
tion process. Figure 4 is an example of such an observation. The contrast
due to differences in material density allows the identification of the pene-
trator, cavity and the interaction regions. While the fundamental understand
ing of the shape and extent of the interaction surface is not quantitatilely
developed, the experimental results qualitatively describe it as somewhat
hemispherical in shape with dimension greater than the penetrator diameter.
The experimental results disclose that not only does this surface propagate
according to the steady penetration theory but also the shape and extent of
the interaction surface appear steady as the penetration process proceeds.
This is confirmed by the finite difference calculations of Harlow [551 and
Kucher [56, 571. The results of impact experiments using transparent
materials (glass, PMMA, etc.) show that preceding the penetrator "bulb" are
observable waves. If the penetration rate, U, exceeds the local sound speed,
Co, of the target material, then the wave resembles a bow shock associated

with supersonic flow about a blunt body of revolution. Figure 5 is an example
of such a case where the target material is PMMA (sound speed, 2.7 km/s) and
the penetrator is a metallic jet moving with a penetration rate of 4.5 km/s.
Figure 6 is an example of essentially the same configuration except that the
target material is glass. Here the characteristic wave speed exceeds the
penetration rate and the leading wave is spherical in shape, appears to have
originated at the point of initial contact and is diverging as it outruns the
penetrator. These observations are described in the experimental papers
(Boyle [591, Cook [91, Keys [321, etc.) and confirmed once again in the finite
difference calculations of Hardage [49], Harlow [551, Kucher [56, 57] and
others. The important point to note is that in either case (subsonic or
supersonic) the material ahead of the penetrator has already been accelerated
to some unknown degree by the time the penetrator/target interface arrives at L

a specific axial plane. Figure 7 is a sketch that identifies these character-
istics of the subsonic and supersonic penetration cases (c represents the

elastic wave speed). It will be assumed that this behavior exists also in
*. optically opaque targets, specifically metals. The two most commonly used

target metals (steel and aluminum) have elastic wave speeds on the order of 6

13
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Figure 4. Flash X-ray Photograph of a Metallic Jet Penetrating a
Semi-infinite Target (Courtesy of Dr. William de Rosset, USABRL)
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Figure 5. Framing Camera Photograph of a Metallic Jet Penetrating
Polymethyl Methacrylate, Supersonic (U!c 0 (Courtesy of

George Hauver, USABRL
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Figure 6. Framing Camera Photograph of a Metallic Jet Penetrating

Glass, Subsonic Mec (Courtesy of George Hauver, USABRL)
0

16

P% e 

... * ~..



S • Interaction "balb"

cavity

diverginga

region of elastl/plastlc

,e ,accelerated flow wave

A. Subseole pometratleo (U<C. )

/00/
.010,

$ 7-l

regien of 10
ac oloralted flewwdetac ed bshoo

pon otrster/targot 
*bulb'

a. SuprsoiUlo penetratieo (U> C*)

Figure 7. Schematic Description of the Deep Penetration Process

for Both High and Low Sound Speed Target Materials
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Skm/s, making the subsonic case likely for most practical applications. 'The
nature and behavior of these impact generated waves in solids has been the
subject of considerable research and falls within the general category of wave
propagation (Backman [87], Cristescu [881, Davids [37], von Karman [89], Koehler
[901, Kolsky [91], Lipkin [92], Mok [75], Wilkins [54], etc.). The subject
will be addressed later in this text when boundary conditions are considered.

Up to this point, little has been said about the nature of the material
flow within the target that ultimately determines the crater surface.
Experiments utilizing wax and plasticine (Frazier [93], Holloway [30], Johnson
[67]) and those using metals (Dong [94], Glass [64], Pond [69], Weihrauch [72,
73]) have approached this topic by studying postmortem deformation fields.
The embedding of material tracers within the target or the layering of
dissimilar plates allows the measurement of displacements and subsequent
calculations of finite strain tensors and Invariants to be performed. The
observations from these experiments may be summarized as follows:

a. Target mass remains essentially constant throughout the penetration
process. Some mass is ejected during the initial transient phase as a shear
lip forms but as the depth of the cavity increases, this fraction of the total
mass becomes negligible.

b. The target density, before and after penetration, varies only slightly
(on the order of one percent or less).

c. The target material between the cavity surface and a radial surface
slightly larger undergoes finite radial and axial displacements (shear
deformation).

d. Beyond this unspecified radius, the deformation appears to be pure
radial expansion. The degree of deformation decreases with increasing radial
coordinate.

e. For certain polycrystalline targets it is sometimes possible to
discern a maximum radius of permanent grain reorganization (limit of plastic
deformation).

f. The deformation field is symmetric with respect to the penetration
axis.

The above observations Involve only the final deformation field. However,
Weihrauch [72], using a target composed of copper plates, was able to
sequentially observe the penetration of a copper rod during the event. Figure
8A is a sketch of these observations. The surfaces of the individual plates
appear to deform in a parallel fashion. Once again, the finite difference
calculations of Kucher [56], Figure 8B, agree qualitatively well with these
experiments.
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A. Breakdown into Regions of Different Deformations

With the support of both experimental and numerical evidence, the
following situation will be assumed: the deformation of a target being
penetrated by a long, axially aligned rod, separates into four distinct but
interacting spatial regions. Figure 9 identifies these four regions, ordered
according to their relative radial dimensions. The regions are separated by
boundaries that translate in time along axial planes (z - constant) as the
cavity expands. The wave that precedes the penetrator "bulb" is described as
an elastic/plastic wave which propagates with a characteristic wave speed. It
separates quiescent target material from that which has been affected in
varying degrees by the passing of this wave. The stress distribution within
this affected zone, although not quantitatively defined, is expected to vary
from negligible magnitudes at the larger radii to the stagnation pressure at
the symmetry axis. At some radius, b, the stresses should be sufficient to
meet or exceed standard plastic yield criteria. Region IV then represents the
part of the target, upon a specific axial plane, that can be appropriately
modeled with elasticity theory. Region III, bounded by the radii a' and b,
represents target material that undergoes plane radial deformations under
stresses greater than the elastic range. Region II involves plastic
deformation in both radial and axial directions. It is bounded by the radius,
a', and the cavity wall, a. Between the cavity and the axis of symmetry,
Region I, the penetrator enters the translating interaction region, inverts
and flows alonr the target cavity. In each individual region, the nature of
the deformations will determine the appropriate formulations. The four
regions will be ultimately coupled by the requirement of continuity at each of
the boundaries. For any specified axial coordinate, the cavity expansion
process begins when the penetrator/target "bulb" passes this axial plane and
ends when the stresses in the target decay to the point where material
strength halts further deformation.

B. The Elastic Region IV

From the principle of linear momentum, the equations of motion in
differential tensor form may be written:

Dtajj,j + bi - 0 D U (1)

where Ut represents the components of the velocity vector, ajf is the stress
D

tensor, b is the body force vector, p is the density and the operator ., is

the material derivative operator. Cylindrical Eulerian coordinates have
already been selected and with the assumption of plane axisymmetric
deformation, the radial equation of motion is:

S+ Orr + 0 br - P0  U (2)
ar r D 2

where arr and a'# are the radial and circumferential stresses, respectively,

which are also principal in this configuration. If inertia forces are assumed
negligible throughout this region (they certainly are smaller than those in
Regions II and III), then in absence of applied body forces, equation (2)
simplifies to the plane strain equation of equilibrium:
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aarr Orr-aOe

ar r (3)

which is appropriate for the elastic loading of a long, thick tube by uniform
internal pressure. The solution to this problem is well known (Timoshenko
[95]). The stress distribution is of the form:

K1
Orr = r + KO

-Kl
Cee U + Ko (4)

ozz = 2**0K

where v is Poisson's ratio, K and K are constants determined by application

of the boundary conditions and the axial stress, a is not zero in general.

If the target has relatively large lateral dimension such that the
semi-infinite approximation is valid, then it may be assumed that the radial
stress vanishes for large radial coordinates. The constant, K0 , must

therefore be zero and the stress distribution for the semi-infinite target is
given by: K1  ,•

rr r2

ae -KI (5)e =r2(5

azz -o
If the lateral boundary has a finite dimension, c, the condition that the

radial stress vanishes at this boundary yields a slightly different form:

0 rr 0 (1

agee K0 (1 + S2) (6)
r2

azz 2Kov

The remaining undetermined constant, for either case, requires that
another boundary condition be specified. This will be accomplished once the
formulation in Region III is completed and stress continuity at the
elastic/plastic boundary, b, is imposed.

C. The Plane Plastic Region III

The elastic Region IV utilized the assumptions of axisymmetric plane
deformation, negligible inertia effects and small displacements in order to
determine the internal stress distributions. The last two approximations are
perhaps only accurate for large radial positions, sufficiently far from the
penetrator/target interaction "bulb." Region III encompasses material of
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significantly smaller radii, thereby precluding the use of the same set of
assumptions. Experimental evidence supports the contention of a region of
axisymmetric planar flow, but also categorizes the deformation as finite and
irreversible. The experiments additionally observe that the flow process does
not include substantial permanent density change. The numerical studies show
that compressibility effects, while not completely negligible, are usually
spacially localized around shock surfaces which eventually diverge with time
and distance. It is expected that strains as well as strain rates will be
large within this region but it will be assumed that throughout the process,
incompressibility will apply. The analysis will be limited to plastic, radial
deformations.

Let Ui (r, z, 6, t) be the instantaneous velocity components of

plastically flowing target material at any given Eulerian coordinate point (r,
6, z). The axial symmetry of the problem requires that the tangential
velocity component, U., vanish and the presumption of plane flow eliminates

the axial component, Uz. Then with respect to a specific axial plane, only

the radial velocity, U remains. The continuity equation for an
incompressible flow is:

aUr Ur- + -- -0 ( 7 )
ar r

where U varies with radial position, r, and time. The solution to this
requation is:

Ur - (8)ir
where 0(t) represents an arbitrary but differentiable function of time. The

tensor equations of motion, in terms of the stress tensor, aj, the scalar

density, p , the coordinates, x,, velocity vector, UP, and body force vector,

bi, may be written:

,u1  auj- a~j

\at j ix j axj (9)

In the absence of body forces, the radial equation of motion for plane

axisymmetric flow simplifies with -e, rz uz o) to:

p ~~Ur5 ) r -+ __ur +u Ur r e (10)

As in the plane elastic Region IV, the stresses are also principal in this
configuration. Substicution of equation (8) into equation (10) yields:

-_ 2 + (11)( r3/ 3r + r

where the dots denote differentiation with respect to time and the stress is
described by the principle stress vector. Equation (11) is identical to the
governing equation of motion derived by Hill, et al. [79] and later by Appelby

23

... •. ............ ••- .,- ,...........,...,......j.,..•......... ........... •, ••....'..".-....... ,."-.,-..
..................................................................................... 

.%.?



.'6 -r 'k. ', -L -k- IT .. --

[96] and Al-Hassani [971 for a thick walled, incompressible axially
constrained tube under uniform internal pressure. Appelby's formulation
assumed plane strain deformation, stress free outer boundaries, Tresca yield
behavior and a visco-plastic flow rule. Expansion histories of the inner
surface were prescribed and the internal pressure, necessary to produce such,
was calculated. A comparison was made of the individual contributions of
"inertia, viscosity and perfect plasticity to this time dependent pressure.
The inverse problem of specifying the pressure history and then solving for
"the velocity and deformation fields was not attempted. An earlier Russian
effort, Agagabian 198], considered the same geometrical configuration and very
similar relations for plastic yield and flow but allowed only small
displacements. The radial equation of motion derived by this author was:

Lar , r'aO
.. (12)

r 3r r

which differs from equation (11) in the acceleratior term, lacking the
contribution of the convective term. With identical boundary conditions as
Appelby, Agagabian obtained an exact solution for the stress components
"(spatial and temporal). Agagabian also considered the case of a very thick
tube such that the entire tube was not undergoing plastic deformation. The
boundary separating elastic and plastic deformations was assumed continuous
with respect to displacements and radial stress. The pressure was applied in
a Heaviside step fashion with arbitrary magnitude. Stress distributions as
well as the propagation behavior of the elastic/plastic interface were
analytically determined. However, the chief limitations of this analysis,
when considering the cavity expansion problem, are the small displacement
approximAtion and the specification of unknown pressure history. Since this
report is concerned with large radial displacements, the formulation will
follow an approach parallel with the work of Hill, Appelby and Al-Hassani.

Returning to equation (11), the term furthest to the right hand side
"involves the difference of the two principle stresses, ar and a0" The

Tresca-Mohr yield criterion (condition of constant maximum shear stress)
presumes that the greatest difference between the principle stress components
equals twice the inherent materiil shear strength, 1, (or the uniaxial yield
strength in simple tension, Cy) if the body is deforming plastically. Within

y
the plane deformation regions of this problem, this criterion may be stated
as:

10r-'o I 2T (13)

or

I~-z s 2r (14)

or
"C" I~ - a e l 9 2 T 1 5

where all of the inequalities hold for the elastic state but only one or two
equalities hold while the material is in the yield state. The selection of
the Tresca-Mohr criterion over the commonly used Mlses-Hencky criterion is
typically based upon the ease to which either criterion may be applied to a
specific problem. Both are usually regarded as equally valid and the
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differences observed are, for the most part, insignificant. Over the past
years, the Tresca-Mohr hypothesis has been found to agree reasonably well with
experimental evidence and to satisfactorily characterize the yield state. Due
to its conceptual simplicity and ease of application to this problem, the
Tresca-Mohr condition will be assumed throughout the remainder of this report.

It is necessary to determine which equality (13-15) is applicable for
target material in the yield state. The maximum shear stress is half of the
difference of the greatest and least principal stresses; the intermediate
principal stress does not influence the yield state. An ordering of the three
principal stresses, therefore, determines the appropriate equality (13-15).
Reference to the equilibrium stress distributions of thick-walled tubes
subject to internal pressures sufficient to produce plastic deformation (Allen
and Sopwith [991, Bethe [191, Cook [1001, Hill, Lee and Tupper [101], Kachanov
[1021, Nadai [1031, etc.) provides, perhaps, insight for the dynamic problem.
In all of these references, the radial and circumferential stress distribu-
tions are essentially the same but the axial stresses differ according to the
assumptions chosen to allow solution. Kachanov notes that the axial stress is
half the sum of the radial and circumferential principal stresses for both the
elastic state and the pure plastic state of a thin-walled tube. Nadai and
subsequently Cook proposed that indeed this relationship should be a very good
approximation for the plastic state of a thick-walled cylinder. Hill, et al.,
using a finite difference technique to solve the boundary value problem of
pressure applied on the inner surface and a traction free exterior boundary,
found that as plastic flow develops (in terms of increasing deformation), the
axial stress approaches the mean of the two other stresses, especially for
elements closest to the inside tube surface. Allen and Sopwith, after
reviewing the solutions available at their time, compared the independent
predictions with particular reference to the exterior boundary expansion and
concluded that Cook's approximation of the axial stress relationship leads to
only insignificant errors. Additionally, Bethe pointed out that plastic flow
in the outer regions has already been assumed to be axially independent, the
greatest stress difference is, therefore, 1 r- 701. This is consistent with

Cook's assumption and has been qualitatively confirmed for the dynamic case by
the finite difference calculations of Wagner [104]. The equality (13) will
then represent the condition of plastic flow:

Ior-Oe a -
0y (16)

It would be quite convenient at this point that the yield strength, •y, be
a material property independent of the strain history, temperature,
hydrostatic pressure, etc. Unfortunately, this is not the case for most
situations involving impact dynamics. Appendix B gives a brief review of same
experiments and modeling efforts concerned with the variation of this yield
strength during impact initiated deformation. One of the most obvious

dependencies of the yield strength is upon the rate of strain (as several
models reflect). Perhaps one of the more widely utilized models, especially
within the Russian literature (Agagabian [981, Godunov [105, 1061, etc.) is
the viscoplastic flow law originally proposed by Hohenemser and Prager [107].
It can be written in the following forms (ex. Prager [108]):

P <F> (17)'-.1o£--" ( 7

i 30ij
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where i represents the components of the plastic strain rate tensor, a is

the stress tensor, IL is the constant coefficient of viscosity and F is the
yield function defined as:

F - 101-21 - oy

and <F> -0 if F <0 (18)

<F> - F if F > 0

where cI and a2 are the maximum and minimum principal stress components

respectively. Following the convention that tensile stresses are positive and
recognizing from the equilibrium solutions that 00>r, the yield function (18)

and equation (16) yield:
F = ae-r-y (19)

with this specific yield function, equation (17) reduces to two nonvanishing

components of plastic strain rate:

"r " r-aOe+y (20)

and

Upe - (ar'e+Oy). (21)

As is typically assumed in incremental plasticity (ex. Fung [1091), the
rate of deformation tensor may be decomposed into elastic and plastic
components:

P ek+e (22)ii i ij

and for most problems Involving large plastic deformations, which this
report subject is certainly one, the elastic contribution is assumed
negligible, therefore,

C -C (23)ij ii

The nonzero components of the rate of deformation tensor for plane
axisymmetric flow can be written as:

;rr au (24)

;6 Ur.

re -- (25)
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Differentiating and substituting equation (8) into equations (24) and (25) and
combining the results with equations (23), (20) and (21) yields the following
relation:

r2  •-6ar-y • (26)

Substitution of this equation into equation (11) then produces an expression
relating the radial stress gradient and the function 0 (t):

Pa i ¶(t) a2(t) +0(27)
-- " r r3 r Y+r(27

which may be directly integrated with respect to r, between the limits of the

radial coordinate, r' (a' < r' < b) and the elastic/plastic boundary, b.

Or(r')-ar(b) - J00+co Zn !:+ .1 (0 2-.U )1L - (28)I l (0 1)(r b
The circumferential stress, from equation (26) is similarly written:

W) - cyOr(b) + En 1 p j 2 (1 + (29)

The instantaneous stress distribution is thereby determined for time, t', and
any position within Region III if the instantaneous position of b(t') and the
values O(t'), O(tW), O(t') are known. At this point, O(t) remains
undetermined.

D. The Three Dimensional Plastic Region II

In the introductory portion of this chapter, observations of final target
deformations from experimental and numerical investigations were summarized.
This region of the target, nearest to the cavity surface, exhibits axial and
radial deformation. The degree of deformation is great and it is also
expected that the deformation rates are large. Since the irreversible
deformations are so much greater than elastic magnitude, plastic behavior
should dominate. Glass [64] and Pond [691 experimentally determined the first
strain invariant within the region adjacent to cavities in steel targets.
Even at the cavity surface, where strains are maximum, the final compression
was less than one percent. Similar observations were made by Holloway [301
who considered a much more compressible material, wax. Therefore, in addition
to the approximations of axial symmetry and material isotropy, the plastically
deforming target material in Region II will be assumed incompressible. Since
the deformations are not restricted to axial planes, shear stress and shear
flow are likely to some unknown degree in the r-z plane.

The differential equations of motion for axisymmetric flow in Eulerian
coordinates may be written:

aUr Lur + Ur 3 arr +rree acarz
-+ ++ratrar az 3r az (30)
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at" r •z (31)
9 ia r az( 3r r 1

ue - 0 (32)

where Ur, u9 , and u are the Instantaneous components of velocity, p Is the

target density and a j are the nonzero components of the instantaneous stress

tensor. The Incompressible continuity equation is:

aUr Ur 3uz
-- +--:+-- - 0. (33)ar r az

The system of nonlinear partial differential equations (30 - 33) Is
Indeterminate. Either additional independent equations must be supplied or
assumptions that reduce the number of dependent variables must be imposed in
order to obtain solutions. Most contemporary finite difference approaches
utilize the former method. The incompressibility condition is relaxed, an
energy conservation equation is formulated, constitutive equations are assumed
and the resulting more complex system of nonlinear partial differential
equations are approximated with a set of algebraic difference equations which
are then solved on the computer in a variety of ways. Alder [1101 describes
some of these and presents examples of their relative accuracies.
Unfortunately, this general approach is not without difficulties. In addition
to the errors introduced by the differencing approximation, the formulation of
the energy equation, the choice of the most appropriate constitutive model and
the treatment of boundary conditions and shock singularities all involve
varying degrees of approximation. Cost is often a limitation, especially when
high resolution and minimal errors are desired. The alternate approach to the
solution of the system of field equations is to reduce the original set
"(30-33) to simpler analytic form by suitable approximations. These
"simplifications should be supported by experimental evidence or theoretical
argument.

The experiments of Glass [641, Moss [1111 and Pond [34, 691 utilized some
metallographic techniques to study the deformation fields of the target near
hypervelocity Impact cavities. While Pond and Glass embedded markers in the
undeformed target to trace point displacements, Moss recognized that the
microstructure typical of quenched and tempered, hardenable, low-carbon steel
plate could serve as a reference grid from which shear strains can be
calculated. Bands of plane chemical inhomogeneities that had been spread
through the plate as it was rolled from an ingot are initially parallel with
the top and bottom surfaces of the target plate. These reference bands are
deformed as the penetrator perforates a given axial plane. Measurements of
the slopes of the reference bands then determine the shear strain
distribution. Moss investigated the nature of adiabatic shear bands by shear
plugging plates with explosively driven punches. He estimates the shear
strain rates and temperatures within these extremely small regions (on the

order of 10-3 cm) which run orthogonal to the metallographic reference bands.
Immediately adjacent to these shear bands is a region which resembles the
deformation fields observed by Weihrauch [72] and Johnson [671 and calculated
by Kucher [56). The process of shear plugging is considerably different from
long rod penetration. Consequently, an experiment was proposed and performed
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utilizing the metallographic technique of Moss, but applied to the steady,
deep penetration problem. Figure 10 shows the experimental configuration
designed to exhibit the deformation field in Region II.

warhead

seotiom removed
for 400 high speed metlli lojet

motalloero Ohio

Inspectloo

/ stask of four
3, thick steel
armor plates

Vq

Figure 10. Test Configuration for the. Observation of the Final
Deformation Field

The detonation of a shaped charge device produces an axially aligned,
continuous, metallic jet with a velocity range typically between 2-8 km/s.
The top target plate was located close enough to the warhead so that the jet
penetrated the target in a continuous state (at great distances the jet
particulates due to the inherent axial velocity gradient). The warhead was
selected so that the target would be completely penetrated. According to
Christman [23], upon initial impact with the top surface, the jet begins the
transient penetration phase which quickly disappears and then enters the
primary or quasi-steady penetration mode as described in Appendix A. After
the event was completed, the perforated plates were recovered and inspected.
Plate number two was selected for further study since it involved only the
quasi-steady phase and the jet would still be completely continuous at this
distance. This plate was then sawed in two along the axis of the hole, a
section (see Figure 10) was removed, polished and macroetched with
Oberhoeffer's etch. Figure 11 includes a sketch and photograph of the exposed
banded structure after the penetration event, as observed under the
microscope. The fibrous-like banded structure of alternating layers of
ferrite and pearlite originally aligned along axial planes, deforms into
directions parallel to the penetration trajectory near the cavity surface.
The surfaces appear practically parallel to each other, especially as the
distance from the cavity increases. The shear strain, Yrz' is defined as:
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Yrz \ar r z (34)

where U and - represent the final displacements. If stretching in the axial
r z

direction is neglected (pure shear deformation in the r-z plane) then the
axial gradient vanishes and equation (34) reduces to a relationship between
the shear strain and the measured deflection angle, 91:

S(U3 15)
Yrz w2 ar = tan 11

Several reference bands were selected for different axial planes through
the thickness of plate number two. Deflection angles were measured along each
of these bands for radial positions close to the cavity surface. Figure 12
gives the calculated shear strain distribution with respect to the radial
coordinate. All of the reference bands yield distributions that fall within
the shaded region, decay to negligible magnitudes at about the same radial
coordinate, and exhibit no consistent variation with respect to axial
position.

The observation of these reference band surfaces as well as the
experimental evidence of Weihrauch [72] and the numerical calculations of
Kucher [56] all suggest the assumption of parallel flow. The axial gradients
of displacements and velocities, therefore, vanish in Region II. The
approximation does not require that either the shear stress, •rz' or shear

strain, yrz equal zero, al.hough they vanish by definition in Regions III and

IV. Equations (30-33) simplify to:

I ur+ au r aarr arr-aee azr
a r r az (36)

L 2 j 2-zr uZr "zz
U 3t r ar ar r +z (37)

3Ur ur
a-- + -= 0  

' 

(38)3 rr

Equation (38) is identical to the incompressible continuity equation
applicable to the plane deformation Region III. The radial velocity is,
therefore:

Ur fzt) (39)Ur r

but the parallel flow restriction eliminates the axial dependence and the
radial velocity then has identical form as in Region III:

0(t) (40)
ur r
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where 4(t) is an arbitrary, differentiable function of time. Equation (36)
includes the axial gradient of the shear stress, wzr" This shear stress is

given for the case of a Newtonian flow (which is perhaps appropriate in this
region where deformations and rates are greatest):

0 zr ( � (3 + au•) (41)

where p is the viscosity coefficient as described in the formulation of the
viscoplastic flow of Region III. The assumption of parallel flow once again
eliminates the axial gradient of the radial velocity and upon differentiation
with respect to z, equation (41) becomes:

aazr auz (•- z 1A• • • (4 2 )
az az 3r

The axial velocity field is assumed to be piece-wise continuous, thereby
allowing the interchange of the partial derivatives and therefore:

.0zr ar z .0 (43)

Combining equations (36), (37), (40), (41) and (43) yields:

r r 3  a-r+ (44)

!,U--z- Z~uzau

where because the shear stress, 6z'Is not necessarily zero, the stresses

e'rr' Wee and wZZ are not principal. The axial velocity distribution (U (r,t))

is undefined at this point, but does not appear explicitly in equation (44).
With the exception that the stresses are not exactly principal, equation (44)
has the identical form of the radial equation of motion developed in Region
III. The stresses in Region III are principally due to the assumption of
plane deformation. The Tresca yield condition and the Bingham-like flow rule
of Hohenemser and Prager [107] were selected because of their analytic
simplicity and because they accurately model behavior of metal deformations
typical of impact and penetration problems (see Appendix B). In order to
continue the formulation of Region II along the same approach as in Region
III, the relative magnitudes of the stress components must be discerned.

Equation (41) suggests that the plastically flowing target material
behaves much like a viscous fluid. The solid nature of the target has been
implicitly assumed negligible in comparison with the viscous stresses that
develop because of the very large deformation rates within this region.
Suppose that the stress tensor may be described in more general form by:
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/ij aj 0 + (aO-+ auk (46)
ajc 1 +i yj ax ±)3x + 0 3xk6jj

where 1L and Xo0 represent the conventional fluid viscosity coefficients, tj0

represents the rate independent components of the solid stress tensor and x

are the cylindrical coordinates. Incompressibility (aUk/aXk - 0), axial

symmetry(h , U - 0) and parallel flow (aUr/az aU z/az - 0) simplify equation
(46) to:

0 3 Ur 0 Uz

arr G + 2Orza + irr Tr rz -r

0 Ur

aee - + 2i r O Or = 0 (47)

0

azz Oz ae • z 0

Utilizing equation (40), the nonzero components can be written:

a r o 2p• a o 0+ u-

rr rr r2 0z9

oe a~ a o(48)
0 0Z

aee aeo + 2p•" -r zz az

and further assuming that the rate dependent contributions predominate over
the static terms during the time when rates of deformation are great, the
components are approximately given as:

arr -2p 0 auz
r2 rz ~ a

(49)

r2azz 0
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The maximum possible shear stresses can be deduced from the relations of Mohr
for different plane systems:

(a r ) 2 1/22 au )21 1/2 (0
(r-z planes), Trz 2 ÷ r 1 (50)

(r-O planes), Tr2 U (arr-a0O = 2ji (51

(9-z planes), 19 z 2 } (52)

Depending on the magnitude of the radial gradient of the axial velocity,
the maximum shear stress appears upon either axial (r-0) planes or planes
including the symmetry axis (r-z). If it is assumed that the shear strain at
any coordinate develops continuously over the time Interval dt during which
incremental deformations occur, the shear strain rate Is then related to the
shear strain by:

az d t
Yrz = " F kr - / (53)

or in other words, the velocity and deformation gradients possess identical
spatial functional forms. Figure 12 exhibits an observed shear strain
distribution. The shear strain rate may be approximated with:

auz ~ (54)
-U - K exp (r-a)(

where K, the maximum possible shear rate, can be estimated by the presumption
of slip at the target cavity when the shear strength of the target is
exceeded.

ar 2ui (55)

*2
The term 0/r represents u r/r. Within Region II, the radii are small

(relative to the target dimension) and the radial velocities are maximum.

Therefore, it will be assumed that throughout Region II that 0/r2 > au lar and

S< r <rz r0" Assuming this to be the case, then the greatest shear stress

is likely upon axial (r-0) planes. If, however, the radial gradient of axial
.2

velocity is of the same order as O/r then, shear deformation is equally

likely upon both (r-z) and (r-0) planes.
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Figure 12. The Experimentally Measured Shear Strain Distribution

35:

... ... ... ..-----------------------------. i

. . . . . . . . ..~. . .

. . . . . . . . p q -



The Tresca yield criterion was applied within the formulation of Region
MIT. The criterion considers the differences of the principal stresses, and

as already noted, the hoop and radial stresses in Region II are not
necessarily principal. They are principal if the radial gradient of axial
velocity is completely negligible. However, the results depicted in Figure 12
and the argument leading to equation (54) suggest that this is not the case.

If the gradient term is of the same order as i/r2 everywhere within this
region (actually this is perhaps a worst case situation) then the principal
stress state will be different in general from the actual stress state. As a
measure of how different, let

auz
ar r2 (56)

The approximate viscous stress state, equations (49) with equation (56) are
related to the principal stress state, Si, by the following relationship:

-2-s 0 1

0 2-s 0 .1 0  (57)

1 0 -s

The solution to the resulting cubic, algebraic equation yields three real,
distinct roots that represent the components of the principal stress vector.
The components are:

s1 +2.0p

+0.41p L (58)

53 - -2.4111 -

The largest difference between any two principal stress components is:

I si-s 31 - 4.4p L (59)

The difference between the radial and circumferential stresses is:

Iorr.aOele 4.0p r_ (60)
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Accepting the approximate stress state (49) and estimating the shear
strain rate (auz/ar) from experimental measurement (Ofz/ar) yields the

observation that expressions (59) and (60) are not significantly different.
They differ on the order of ten percent or less depending upon the relative
magnitude of the shear strain rate. In Region III, the principal and general
stress states are identical by definition (aU z/ar - au z/ar - 0). In Region

II, however, the axial deformation is nonzero but as just mentioned, the
distinction between the expressions (59) and (60) is perhaps not significant
for practical purposes. Radial flow is likely to predominate in both regions.
This statement is once again supported by experimental and numerical evidence
(Glass [64], Pond [691, Wagner [104], etc.). It should also be noted that the
yield strength, presumed in the yield criterion, of target materials subject
to ballistic impact is only crudely known. The errors associated with the
estimation of a precise value most likely exceed any error introduced by the
equivalencing of the principal and general stress vectors. With this in mind,
the stress difference term in equation (44) will be approximated with a
principal stress difference and subsequently the Tresca yield criterion and
the Hohenemser-Prager flow rule will be applied in the same manner as in
Region III. The resulting radial and circumferential stress distributions in
Region II are:

Orr(r) = Orr(a) + {p+oy Zn s + ( ) -6

aee(r) - arr(r) + a + JA 0 (62)

for a < r < a'.

The static contributions of the general stress tensor are assumed
negligible since the deformation rates and viscous stress components are
estimated as large. The assumption of parallel flow eliminateS the axial
gradients of the velocity. The axial stress component is, therefore,
negligible. The shear stress componentuzr, is however, finite and is related

to the axial velocity distribution by:

Ozr 3r (63)

where the gradient term may have the same form as the experimentally observed
shear strain distribution. In order to more precisely determine the axial
velocity distribution, equation (45) is recalled and the axial gradient of the
axial stress is ignored:

-a2Uz iUz (64)
at 9r•r2 r 3rý

Equation (54) crudely estimates the radial gradient of the axial velocity
distribution to be of exponential form, with a decay coefficient, A1 and

maximum shear rate, K. The radial derivative of this distribution will also

be of the same exponential form. It is assumed that the last term in equation
(64) will dominate the right-hand side of the equation and, therefore,
equation (64) is approximated as:
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au z au z P _ t ( 5at r 3r (65)

Providing that (t) is independently determined, equation (65) is separable
and can be solved with standard methods. Its solution is given in Appendix C.
With this distribution in hand, the complete but approximate stress dis-
tribution is specified in terms of the undetermined differentiable function,

E. The Rod Inversion Region I

The steady penetration theory, as described In Appendix A, presumed that
the penetrator/target interaction surface moves along the symmetry axis with
constant velocity, U. If a coordinate frame of reference is attached to the
intersection point of this surface with the symmetry axis (stagnation point),
then penetrator material approaches this point with a relative velocity,
S - V - U, where V is the penetrator velocity in the laboratory frame and
target material approaches from the opposite direction with a relative
velocity, U. In this translating coordinate frame, the axial penetration
process appears steady. The interaction surface has a characteristic mushroom
shape that remains constant throughout the steady penetration process. Figure
13 is a schematic description of this surface along with a hypothesized
control volume, c.

A, 4A

$I tS

Figure 13. The Penetrator Interaction Surface and

Control Volume, c

The penetrator, characterized by its circular cross section, A1, density,

p, and velocity, V, upon reaching the stagnation region, inverts and flows

along the expanding target cavity, through the incremental control volume, c.
As in the plastic deformation regions of the target, incompressibility is
assumed, material enters the control volume through surface, A2 , and exits the

control volume through A3 . Assuming that the flow is steady (no acceleration)

during the angular deflection, d0, the target must supply a force F,
determined by the relation:
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FJ 0p~ • dA (6

c.s. (66)

which is a statement of the conservation of linear momentum. The inner
surface may be interpreted as a free stream surface, upon which the pressure %

is zero and from Bernoulli's equation, the speed i0§ must be constant. If

mass flows through surfaces, AI, A2 and A3 only and the flow velocity, S is

uniform over each of these, then the incompressible continuity equation
requires that:

Pp'lSAli -plpIA 2 - OpiS IA3 - constant (67)

and, therefore, equation (66) becomes:

F - pp' 2Al sin d0 • (68)

2
Cross section, A1 , is given by rr 2 where r is the penetrator radius. The

p ,p
pressure within this incremental control volume may be estimated as the force
acting upon the outer surface over the area of this outer surface:

F
P = 2irRd0 (69)

where R is the radius of curvature of the outer surface, d0 is the angular
deviation of the velocity vector S and r is the radial position of the
midpoint of the outer surface. Substituting equation (68) Into (69) yields:

1 rpl•1 sin dO
P 2 ip rRd d (70)

where for small deflection angles, d0 - sin d0 and then

P Pp r 2 (71)

p 2rR

The steady penetration theory requires stress continuity at the stagnation

point, thereby relating ISI and U:

PpIsl 2 - PU2  (72)

where P is the target density. Equation (71) may then be alternatively
written:

2 U2

P = or p (73)

From differential geometry, the radius of curvature is related to the
instantaneous surface slope and its derivative:
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1 = Idr2U
R [1+ Idz 21 3 / 2  (74)

L drJ
Pe

22
In order to evaluate the terms dz/dr and d z/dr2, the steady penetration
theory is once again recalled. The time rate of change of the axial position
of the stagnation point is defined as:

dz V
dt+ (75)

If z-z(t(r)) where t(r) has a unique inverse, r(t) and dr/dt 0 0, then:
dz dzdt dt

dr dt dr dr
(76)

d 2 z d (U t U d 2 t

dr 2  dr \ dr dr 2

The inverse functions are given by the rules of differentiation,

dt _fdr 1

dr - dtj

d2 r

d2 t dt 2  (77)

dr 2  
(dr)
\dtj

and when combined with equation (76) and written in more compact form yield:

dz U
dr r

and (78)
d 2 z -Ui

dr 2  i3

Substituting expressions (78) into equation (73) then couples the pressure in
the incremental control volume with the kanematic properties of the outer
surface (r, r, i) at any particular time, upon any axial plane:

P(t) = Orp 2 U3 / 23/2 " (79)

In other words, if the radial acceleration process of the target cavity
relative to a fixed axial plane is known a priori, then the time variation of
the pressure in the penetrator at the axial coordinate can be determined.
However, it is this acceleration process that is the desired solution, thereby
suggesting the coupling between Regions I and II.
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F. The Boundary Coupling of Regions I-IV Yielding the GoverningDifferential Equations

As noted in Section IIA, the problem is divided Into separate regions of
different deformation behaviors to allow an analytic formulation. The
formulation of Region I produces a relationship between the pressure within
the reversed flow penetrator and flow properties of a point of intersection of
the penetrator interaction surface and a particular axial plane. Regions II,
III and IV yield the stress distributions on constant z planes as a function
of radial position and the function 0(t). Regions III and IV presume
negligible axial deformations while Region II, obeying the parallel flow
constraint, allows for axial velocity, axial displacement and shear stress in
the r-z plane. Before the stress distributions can be quantitatively
described, the function 0(t) must be determined. Indeed, once this function
is known, then the displacement and velocity fields as well as the stress
fields will be determined.

In order to determine the function 0(t), the radial stress equations in
Regions II, III and IV will be utilized. The boundaries, whether real or
imaginary, separate these Regions. From the continuity equation applicable
for the plastic flow Regions, the relation for the radial velocity Is:

Ur (80)

r
If the velocity of a particle at position r, at time t Is expressed as dr/dt,
then upon integration of equation (80), the position of a particle originally
located at r Is given by:

r - [ro2 + 20(t)]l/2 (81)

for any time t. This expression may be twice differentiated to obtain the

acceleration at a given radial position and time:

r E~
r r3 (82)

The positions of the boundaries may be similarly described:

a(t) - [ao 2 + 20(t)] 1 / 2

(83)
a'(t) - [ao 2 + 20(t)]l/2

b(t) - [b 0
2 + 20(t)] 1 / 2 .

The outer boundary, c(t) can be considered constant If the target is
assumed semi-infinite, i.e.:

C(t) - [c02 + 20(t )1 1/2

(84)
but Ico21 >> 101, so

c(t) Co.
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If the lateral dimension is finite and the outer boundary is likely to
permanently deform, then the elastic Region IV vanishes and a traction free
boundary condition can be applied directly to b(t).

The magnitude of the penetration rate determines the nature of the
matching conditions at these boundaries. As noted in the introduction,
framing camera experiments involving optically transparent materials suggest
that shock waves are likely if the penetration rate equals or exceeds the
local sound speed of the target. If the penetration is "subsonic," shock
waves are less likely and the stress and velocity distributions are then
continuous across the boundaries. This has been both experimentally and
numerically confirmed. Pritchard [701 considered subsonic conditions and made
measurements at-gage locations on the penetration trajectory. He found that
as the penetrator interface approached the gage, the stress and strain field
increased rapidly (but continuously) from zero to the stagnation value without
any evidence of shock discontinuities. The computational work of Wagner [104]
recognizes the same behavior, even during the initial transient phase. For
most conventional armor applications, the sound speed in metallic target
materials is typically greater than the penetration rates of both kinetic
energy penetrators and shaped-charge jets. For these situations, stress as
well as velocity continuity will be enforced.

The radial stress variation is identical In both Regions II and III.
Stress continuity at boundary, a', then allows these two Regions to be
considered as one. This combined plastic Region then has an inner boundary,
a, and an elastic/plastic outer boundary, b (for the semi-infinite problem).
The radial stress at any radial position r, a<r<b is then given by equation
(61) of Region II:

arr(r) - arr(a) I n• + Ky £n + . {P2. U (l r (85)

The condition of stress continuity on the inner boundary is:

arr(a) - -P(t) (86)

where P(t) is determined from the control volume analysis of Region I.
Combining (86), (85), (83) and equation (79) of Region I yields:

Grr~r) a I fro + [0 J1/2 2( a2+20 (87)+L4 a2 + 20 +• 02 - r oZ;21 o;€ (

where

3o' + u2- (ao2 +2
j2u
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I"
0(t) is the undetermined function of time, r and a the initial radial[" 0 0

positions of the point r(t) and the cavity wall respectively. If the stress,

arr (r),is known at a point r for all time, then equation (87) becomes a second

order nonlinear ordinary differential equation in 0(t). Three cases in which
this stress boundary condition can be determined are now considered.

The first case involves penetration into metallic cylinders of small
radial dimension. The penetration process is subsonic; stress and velocity
continuity is assumed throughout and the lateral target boundary is
unconstrained. This situation suggests both the neglect of the elastic region
altogether and the traction-free condition on the outer boundary. Given
crr(b) - 0, for all time, equation (87) then becomes:

bo+ ay In + 20 + 1 ao

+ 1 prI 2U3  (ao2 + 20)1/2 - j2 (ao2 + 20Y 1/2 1

2 p3( + u2 (ao2_+ 20)3/2

The second case involves the penetration Into very massive metallic
targets. The penetration process is subsonic; stress and velocity continuity
is assumed, but the target is semi-infinite or of very large lateral
dimension. An elastic region bounds the plastic deformation region. Stress
continuity at the elastic/plastic boundary, b(t) requires that:

yrrp(b) W 'rre(b) (for all time). (89)

Recalling the Hohenemser-Prager flow condition (equation (26) Section
III), applied to the elastic boundary point, b,

I~ +eor - y 0 (90)

and remembering that in the elastic region, a,0 (r) (r), then

Orr(b) I • y b2 (91)

Equation (87) then becomes:

ra 2 + 20] /2
n 12 ao2-20 bo2--21
y1  +L +20 2 102 b- 2+2

(92)

10 (ao2 + 20)1/2 -2 (ao2 + 20)1/2(9
T* prU3 3 + U2 (a0

2 + 2!0)3/2 2~ b2-j3 ( 1 + j2

The third and final case involves deep penetration into low sound speed
materials. The penetration is supersonic; a shock wave representing a
discontinuity in stress and particle velocity separates quiescent material
from plastically flowing material. If the wave is assumed to be a radially
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diverging cylindrical wave that follows the experimentally observed linear
relationship between particle and wave velocities, then the radial stress may
be estimated from the one-dimensional Rankine-lugoniot relations:

Orr " OCUp (93)

where the stress is proportional to the wave speed C, the particle velocity u
and the undeformed density, P. The aforementioned relationship between wave P
and particle velocities is given by:

C M Co 0 +Up (94)

where the material constants are available in tabular form from several shock
property compendia [112, 113, 1141. Combining equations (93) and (94) with
the particle velocity expression (80) at shock position, b(t), yields:

arr(b) - p ~Co + X (95)

and upon combination with equation (87) the governing ordinary differential
equation becomes:

ra0 + 201, r(
L o (+20)+. -, b022 22- +o•

1 p I*2(a o2 + 20) 1/2 _ 02 (ao2 + 20)1/212

2 prp +U U2 (ao 2 + 20))3/2 (6

P 0 bo_•0) 1 )/2 - Co (bo2+20)I/ 2 "

G. The Determination of the Initial Conditions

The previous section coupled the deformation Regions by applying
appropriate matching conditions at the boundaries of the plastic Regions II
and III. The resulting ordinary differential equations, while highly
nonlinear are certainly simpler to solve than the original non-linear
partial differential equations. Equations (88), (92) and (96) are not likely
to yield exact solutions in their full form. Either additional approximations
must be applied to reduce these to more tractable analytic form or the
equations could be approximately solved with many standard numerical
techniques. However, before either approach may be pursued, two initial
conditions on 0(t) and the initial values a and b must be independently

0 0

specified to make the system determinant. The target density, P, the
penetrator dimension, rp, the steady penetration rate, U, the target yield

* strength, y the target viscosity, p, and the shock properties C and X are
y 0

problem parameters which must also be known before a solution is obtained.
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The cavity expansion process begins when the penetrator/target interface
arrives at a particular z-plane of Interest. The penetrator interface
proceeds through the remainder of the target in a steady fashion but the
trailing cavity expands radially through an unsteady process. It Is this
acceleration of the cavity wall in the radial direction that is the heart of
this report. Both experiments and higher-order numerical solutions have shown
that there is a region which preceeds this moving interface that accelerates
the originally quiescent target material to some undetermined velocity and
stress configuration. Figure 14 shows the essential characteristics necessary
to establish the initial conditions.

I%

L

U

Figure 14. Schematic Description of the Interaction "Bulb"

The first initial condition has already been Implicitly defined. The
current position of an element, a(t), displaced frou its original position,
a0, was determined from the incompressible continuity equation as:

a(t) - [a 0 2 + 20(t)]1/2 (97)

By definition, therefore:

0(0) 0O. (98)
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The initial radial velocity of the cavity wall at this initial radial position
has also been determined: ;(0)

a(O) - (99)

but at this point, its value is undetermined. It is known that the value
should be finite and positive. Expression (99) along with the requirement
that the initial radial velocity be finite precludes the possibility of a

equaling zero. Indeed the stress distributions would also be singular upon
the axis of symmetry (r-0) if this were allowed, a is, therefore, slightly
offset from this axis. 0

Hill [79] and Eichelberger [611 recognized the necessity of determining
the radial velocity behavior so that the penetration process might be more
completely understood. Hill assumed that the cavity wall initially maintains
contact with a symuetrical ovoid shaped penetrator "bulb" and that the radial
velocity is proportional to the steady penetration velocity and the
instantaneous slope of the interaction surface described by:

lz
a - A sin 2 L (100)

The radial velocity is then defined:

Uda
ddz (101)

or

SU -u Ccos ( 2 (102)

For the initial value, z-0 and,therefore:

"-(o) r U U (103)

but the ratio A/L is not necessarily known a priori. If the surface is
hemispherical in shape, the ratio A/L is unity.

Eichelberger [61], in an attempt to verify the proportionality between
a(O) and U, performed instrumented jet penetration experiments. Considering a
steel jet penetrating a steel target, a jet collection technique together with
a rotating mirror camera and a film switch/oscillograph method was used to
simultaneously determine the jet velocity (V), penetration velocity (U) and
mass (M) as a function of time. The incremental mechanical work (dK) done by
the jet in displacing an incremental volume, dr, was derived as:

dK. dM
dK UV- - (104)

2
The experimental values of the above expression were plotted against U and
the result is presented in Figure 15. In an earlier theoretical effort, Bethe
[19] derived an expression for the work required to expand a cylindrical hole
to a volume, 1. In differential form this relationship was given:

dK dMd- UV A + B U2dT " v (105)
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where A represents an average flow stress during plastic deformation and b was

given as .455p (i) where i is the radial velocity. By measuring the slopes
from Figure 15 directly, i(O) (the initial radial velocity) can be estimated.

5For penetration velocities greater than 2.5x10 cm/s, the radial velocity is

given by:

1(O) - 1.4-U (106)

and for penetration velocities below 2.5x105 , it appears that:

i(0) - .43U (107)

is more appropriate. Opik (39] developed an approximate hydrodynamic theory
for the motion of cavities produced by the impact of meteorites. By assuming
that resistance in the axial and radial directions is of the same form, he
applied the steady Bernoulli equation and obtained the following value for the
cavity's initial radial velocity:

i(O) U (108)

where Pp is the penetrator density. For similar target and penetrator

materials:

2 (109)

Considering the level of approximations invoked to obtain the above
expressions, the precise value of the Initial radial velocity is still
unavailable. To at least narrow the limits within which a(O) may vary, an
analogy can be made to the theory of compressible axisymmetric stagnation
flow. White [1151 discusses the case of fluid flow past bodies of revolution
of finite dimension, D, and approach velocity, U. The value of the local
velocity gradient j at the stagnation point and the distance, x, from this
point determine the velocity of the flow field on the edge of the boundary,
Us, as:

e (110)

The velocity gradient K depends upon D and U and to a lesser extent, upon the
body shape and approach Mach number. For subsonic fluid flow (Mach number
<1), the Rayleigh-Janzen procedure can be used to estimate the velocity
gradient R. Two body shapes, presented by White, are suitable for further
"investigation. They are the flatnosed cylinder and the sphere. Experiments
conducted by Fugelso [631 and Weihrauch [731 consider the penetration of high
speed metallic rods (V - 1-2 km/s) into thick finite targets. The shapes of
the interaction surface are observed with flash x-ray photography. The
"surfaces nearest to the stagnation region appear to be somewhat between flat
and hemispherical. At higher velocities, shaped charge jets have been
radiographed (unpublished Ballistic Research Laboratory experiments) while
penetrating into homogeneous targets. The penetrator interaction surfaces
have similar shapes as those of the constant velocity rod experiments. Finite
difference calculations of Harlow [55] and Kucher [56] further support these
observations.
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Throughout this report, it has been assumed that the penetration process
is steady when considering the axial penetration rate. The accuracy has been
experimentally and numerically confirmed. In addition to the rate being

steady, the shape of the Interaction surface Is assumed to remain unchanging
as the penetration proceeds. The validity of this approximation is .6

qualitatively confirmed by the experiments just mentioned. If the target
material behaves like a fluid in this stagnation region, then the expressions
for the sphere and blunt-nosed cylinder, presented by White [115], determine
the initial radial velocity of the cavity wall near the axis of symmetry.
Recalling equation (110) the radial velocity, i(0) is related to the
stagnation gradient, K and the initial radial position, a by:

0

j(o) - iao" (111)

If the initial radial velocity a(0) occurs at the point where surface
curvature begins (up to this point the surface Is flat) then the blunt-nosed
cylinder configuration, Figure 16, is plausible. White notes that while the
compressible stagnation gradient, T is not known for this configuration, it
should be less than the incompressible spherical and greater than the

supersonic blunt-nose measurement = .15a of Trimmer [116]. White

determines an incompressible value of w/4- , equation (111) then becomes:ao

1(0) - U. (112)

e "'e

Figure 16. Blunt-nosed Cylinder man Uniform Flow

4.
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If the interaction surface geometry is more hemispherical near the axis of

symmetry and the flow is subsonic WU<6 Co), then the Rayleigh-Janzeu

procedure may be applied to estimate the stagnation velocity gradient. Kaplan

1171 considers a sphere Inan uniform compressible flow. The incompressible

solution. is epanded in powers of 
the Mach number, and the resulting velocity

and pressure distributions are presented for a sphere of diameter, D and flow

velocity, U. 
-

1.2
1.4 -1.e •

0"

.4 IL .4

.2

• 2O 40 410 610 0 20 40 s0

theta (degrees) theta (degre*.)

Figure 17. The Velocity and Pressure Distributions upon the

Surface of a Sphere (Kaplan 117])

Near the stagnation point (0-0) the velocity varies linearly with radial

position and the pressure varies only slightly for angles less than ten

degrees. White [1151 determined the stagnation velocity gradient for this

case:
3 (1 - 0.252Mo 2 " 0.175Mo 4 + • .) (113)

U
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where the .Mach number M is defined as the ratio of the velocity U to the

characteristic wave speed, C . From radiographic evidence it can be observed
that the diameter of the interaction region is typically less than four times

the penetrator radius, r p, or
D < 4 rp (114)

and upon combination with equations (111) and (113) yields,
3 ao

10O) a 0p U (i - 0.252Mo2 - 0.175Mo4 + .

This inequality is valid only for penetration rates less than .6 C . As
0

an example of its utility, however, consider the case of a kinetic energy
penetrator perforating a steel target at 2 km/s (V - 3.5 km/s). The sound
speed is approximately 6 km/s and the Mach number is, therefore, .33. The
difference between the incompressible and compressible estimates is only three
percent. This difference will become greater as the impact velocities increase.
The ratio a /r is as of yet undetermined but should be of the order of unity

0op
if the limit (115) is to agree reasonably with the earlier estimates of Opik,
Eichelberger and White (blunt-nosed cylinder). The investigations above
suggest the following approximation:

ao M KU (116)

where the constant K is between 0.4 and - for geometries somewhere between
flatnosed and hemispherical and for all penetration velocities (compressible
or not). If the constant K can be presumed to be known, then two initial
parameters, a and bo, still remain to be determined before the cavity growth

equation (87) may be integrated.

The two initial conditions, 0(0) and 4(0) are restated:

0(0)- 0 (117)

and from equations (99) and (116):

j(0) - aoKU (118)

The maximum pressure, Po, occurs at the moving stagnation point along the

symmetry axis. Kaplan [117], considering subsonic flow around a sphere,
observes that the pressure varies only slightly from the stagnation value for
angles up to approximately ten degrees from the symmetry axis. Therefore, for
initial cavity positions close to the symmetry axis, the pressure is given
approximately by the Bernoulli equation (Appendix A) as:

Po 2 P U (119)

where the density is the ambient target density and U represents the steady
penetration velocity. The pressure in the penetration Region I was derived
as:

P 1 -2 3 lia 2/alP(t) p rp2U3 • " --•b32""

5 3(1 + u2 a2 )3 / 2  
(120)
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The value of P at time, t 0 Is determined by substituting (98) and (118)
into expression (120) and upon equating this value with equation (119), the
following relation results:

100 - K2 U2 1 = [1 + K2 13/2-U 2  (121)
rp2

where o represents the initial value of i(t). The absolute value character
0

of (121) can be eliminated by the following argument. The expression for the
radial acceleration of a point on the cavity surface was determined as:

0(t) _ 2(t)
7(t) a(t) a(t) 3  (122)

Its initial value at the radius a0 , with the assumed initial conditions is:

a0 . i [to - K2 U2 ] (123)

From inspection of the shape of the interaction region during steady
penetration, the curvature requires that a be negative. Since a is finite

0 0
and positive, equations (123) and (121) then require that

Sio "K2 - [1 + K2] 3/2 a° U2. (124)

The radial equation of motion along with the condition of stress
continuity at the cavity, at time t - 0 is:

Po + ay) In + . pK2U2 - u ( - U22. -

for the subsonic, finite lateral dimension case,

Poo + iy In a0  I ±02 ( + KU I P -
bo 2+ ao b°2/2 Y bo/ 2

(126)

for the subsonic, semi-infinite lateral dimension problem and

b0 Lo+. 2 2  tK U !0o2 ) (co+ KU)Pio + a Y bn o 2+ U a--o• bo2/ 0 TO KU oC 0 b o KU2-
(127)

for the case of supersonic penetration.

Combining equations (124), (125) and (126) dividing through both sides by2 2
PU2 and neglecting the small terms, /PO and (ao/bo) yields:
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K2. i+ 2a 0 °2• 1 K2 - uK

K2 rp12 poa•0ao 2 (128)

which is approximately true for all three cases. If further,

u/KpaoU << 1 (129)

an assumption which may be verified by applying the material constants p, p,
the penetration velocity, U and recognizing that a 0O(r then equation
(128) reduces to: o p

K2 - [1 + K2] 3 / 2 a02 in o (1 + K2).130)rp2

For the first boundary case considered, the outer boundary, bo, is known

and equation (130) relates a with the estimated value of K. For the other

cases, however, the boundary location, bo, is not necessarily known a priori.

In order to determine a and b for these two cases, a control volume is
o o

proposed, centered on the radial position, b0 , moving with the boundary

velocity b . Ignoring the negligible curvature as the radius increases, the
one dimensional conservation of radial momentum requires that:

ar(bo)A b o bods , 0 b2A

*c. S.
or (131)

ar(bo) -pK
2 U2 ~~

Equating (131) with the stress on the elastic/plastic interface,

oK2 U2 (bo % (y + • b2) • y + ' (132)

and once again recognizing that a /b <<I then,

a o ( o / 2 0U 2 ) I/ 2

a0 _ (133)
bo K

Combining equations (133) and (130) establishes a relationship between the
initial cavity radius and the initial cavity velocity coefficient, K:

K2 -_[1 + K2] 3/2 a02 t (Gv/2pU2) 1/2 (I + K2 ). (134)
rp 2  in K 2
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Given a value of K, the initial radius, ao, the initial plastic boundary, b°

and the initial condition i(0) can be estimated. This estimate may be
Improved by relaxing the approximation (129) and iteratively adjusting a
until equation (128) is satisfied to the desired accuracy. 0

III. SOLUTION OF THE INITIAL VALUE PROBLEM

The preceding chapter established an iterative method for determining the
initial conditions necessary for integration of the governing equations;
either exactly or numerically. The method required that the initial radial
stress equal the stagnation pressure at an initial radius slightly displaced
from the symmetry axis and that the radial stress at the plastic boundary be
initially given by the one dimensional momentum jump condition. The cavity
then radially expands in a decelerating fashion until the stresses in the
plastic regions reach values of the order of the static yield strength. When
this happens, the problem is for practical purposes completed. It is quite
likely, however, that elastic deformations will continue until the stresses
vanish completely; but due to their relative magnitudes, they may be
practically neglected. The problem will be assumed complete when the stresses
everywhere in the plastic regions reach the static elastic range.

A. Runge-Kutta Solutions to the Complete System

The integration of ordinary differential equations by numerical techniques
is well established. Choice of the specific method is usually based upon the
ease of application as well as the type of equation considered. In general,
equations of second or higher order can be reduced to systems of first order
equations, e.g.,

- f(x, y, y) can be written as
Y z
z - f(x, y, z),

a pair of simultaneous first order equations. One of the most common methods
used to solve this system of first order equations is the process of Gill
[118]. It differs slightly from the fourth order accurate method originally
proposed by Runge [119] in the precise values of the expansion parameters
(Cohen [1201 compares the two methods). A FORTRAN program of Gill's method is
given as an appendix in the text by White [115] and reproduced here (Tables I
and 2) with the programming logic appropriate to this problem.

The logic located between statements 10 and 20 are expressions for the
system of first order differential equations representing the second order
differential equation in 0(t) for the subsonic, semi-infinite target case
(92). The input parameters are described in order of the occurrence:

X - initial problem time (zero for this problem)
XLIM - maximum problem time (limits actual computer run time)

H - time step (constant for this problem, but not restricted)
M - an index which must be set to zero by the programmer
N - number of first order differential equations (2 for this program)

2
SIGY - inviscid target yield strength (dynes/cm2)

CO - bulk sound speed of the target (cm/s)
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* Table 1. Runge-Kutta Program

PROGRAM SCOT T(IM PUT# OUTPUT# TAPE SoINPUT# TAP16oOUTPUT I

C 4TH ORDER RUNGE KUTTA SOLUTION I GILL'S METHOD I
C

DIMENSION 1(43,941
REAL NU, LAMDA

4 FORNAT13F10.&eZZSP
5 PORMAT(GF1O%3)
9 FORMATIZ1@I,*X *p2,EO3v8SXLtN. *,E1O.*3,'H IsE1Oo3p215)

11 FORMATIZIPMTIEs *.E10.3v*PIIIDOTo s,f1O.3.'PHIG *,110.3#$Aa OpE1O.
13v'PCHSCK. NOEID031

33 PORMATISEl@.3i

REAO(5.53SIBTCO*mIIOT. 9,,RPRDU.LAROA
4EA*3v13,3)1vV,( 2),SOvA@
VRITE(6#9$1,XLIN*HNDNN
VWRITRI ,3)SI6T.CCO,.4TNUNt P.LANOAUT(1,Vl(2),SQAO
JFLAGsG
ZR.,..

* PIFI-XLIN)6e.?
6 CALL RUNGE1MsV.PgXvHgN.K1

60 TO (1O#2010K
10 £lmA@*2*z**x*Ttz)

LASORT(All

66S@RT0111

CsALOSIAISI

72.1 (RNOT'Y(1)'*2. 3-NU'VIII))A312.
T).O*9*(SZST*MU*Y( 1) i11
T4wSISY*C

PZw1.I(A*Y11f'A21
PCNECKOO*( P1-PZ)
IPCJFLA6.lS.O) PCNfKsaO.SRNOT*U**Z.
JPLA"aI
POAD IPCHICK1 4

P(13.(TZ*T3STG9)ITO,
MP(T(f.ett0s) 60 TO 7

40 TO 6
20 ZwSORT(AG**2.**.*V12)1

ZZzz.z.
1PRZINT81000.
tF(ZiEG.@.I 60 TO 23

15 VRITE(S.33)1,A#ololA.I.LAJT@,TI
WRITE(4,233T2,TI.T*.P(1PF (21P@P1,FIPZ
VQITf(6elIpTIfv(1 )1(*pZ*FCNECK

so TO a
7 STOP
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3RHOT - target density (g/cm3)

MU - target viscosity (dyne- s/cm2)
RP - penetrator radius (cm)
U - steady penetration rate (cm/s)

LAMDA - slope of the US-UP data (nondimensional)
2Y(1) - i(O) initial condition (cm /s)

Y(2) - 0(0) initial condition (cm 2 ) •
BO - initial position of plastic boundary (cm)
AO - initial position of cavity surface (cm).

Table 2. Subroutine Runge

C GILL'S NITHOD-RUNG1 KUTTA

C SUiROUTINE RUMS!(N.?vF.EWqgc 
"

DIMENSION yT4mop 418(43

40 To 11940503071PH
1 0(30.2tGO

Ae..,
go TO I

go To IQ1.

Y(ZIu. II.ANeO. Iq.41
S *( •I[ul.SNSUI.1~.A~Z

9| K[|el' )A* O-@(|

10 UTUF9

? SO 0 I.1,1N'-
O TgRIeV([I)*pp(IXOo€•IS..;,.

GO TO 10 .

10 mInTiN
END

i"-

The case of subsonic penetration into a target with small lateral dimension
can be considered by setting the program variable, T3, to zero throughout the
calculation. The program then solves equation (88) which was derived by
applying a traction free boundary condition to this lateral surface. The
supersonic penetration case can be similarly considered by substituting the
expression for T3 with,

T3 - RHOT*(Y(1)/B)*(C0 + LAMDA*Y(1)/B)

which represents the jump stress at the shock surface (also the
elastic/plastic boundary) derived from the one-dimensional Rankine-Hugoniot
relations.

The material properties, SIGY, CO, RHOT, LAMDA and MU must be supplied
since no default values are included. The first three may be found in con- .
ventional material handbooks. The viscosity coefficient, MU, may be estimated
in many cases from the literature review of Walters [125], as described in
Appendix B; otherwise, an independent experiment is required to determine this
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parameter. The design parameters, RP and U, must also be specified before the
calculations may proceed. In the case of a kinetic energy projectile, RP is
the design value, but for high velocity jets, a precise value is not usually
known. Estimates can be made from flash x-ray photographs taken of the jet
before and after it interacts with a particular target element. The pene-
tration velocity, U, can either be determined experimentally or calculated
from the one dimensional steady model (Appendix A).

The initial conditions, Y(i), Y(2), AO and BO are entered as input andmust be determined by the method described in the preceding chapter. The

remaining input parameters, X, XLIM, H, M and N are related to the solution
execution. The initial time, X, is zero. The solution proceeds out to the
time specified, XLIM, or to the point where the velocities drop to zero (all
stresses are of elastic magnitude). M and N should be set to zero and two
respectively. The time step, H, is constant throughout the calculation. Its
value must be selected with care. The characteristic time of most cavity
"expansion processes is of the order of microseconds, consequently H must be of
an order less than this to insure temporal resolution as well as numerical
convergence. Since the length of the calculation depends inversely upon the
step size, an infinitesimally small value is prohibitive. A suggestion for
the determination of an appropriate step size is that one selects a reasonably

small value, say 10.9 seconds and allows the program to run its course. Then
select an order of magnitude smaller value and let the program run once again.
The difference between the two calculations should be very small and the
solutions should converge as the step size is progressively diminished. The
choice of the final step size will then be limited between a value that
ensures numerical convergence and a value that is reasonable from a cost
(computer time) viewpoint. For the range of problems considered in this

-10report, a value of 10 seconds is appropriate.

B. Re4uction to Quadrature via Additional Approximations

The equations developed in Section II represent the cavity growth
behavior, stress distributions and velocity distributions that can be expected
during deep steady penetration. Approximations concerning the nature of the
behavior were made after reviewing experimental and computational evidence.
The governing equations of motion were subsequently reduced to single, second
order, ordinary differential equations which, unfortunately, are highly
nonlinear, thereby making their exact solution very difficult, if not
impossible. In Section lilA a Runge-Kutta technique is described which can be
utilized to solve the full equations numerically. In this section, additional
approximations are imposed to simplify the equations so that an exact solution
is possible.

Suppose the viscosity is negligible and the pressure at the Inner boundary
vanishes quickly so that the cavity expansion process involves only the
initial momenta and stress distributions, then equation (92) reduces to:

I b 2 a2 b2 2 -y. (135)

The plastic boundary, b, is typically much greater than the cavity dimension,
a, thereby suggesting the approximation:
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4I1

(a 2 b 2,/a 2  
(136)

If further it is assumed that the logarithmic term does not vary significantly
during the expansion process, !,-0

tn I n -- "K1
b bo (137)

then equation (135) simplifies to:

+2 (ao2 +20) 12K1 (

Define the new variables,
y1 [(ao2 + 20) - n(ao2 + 20)

y - 2n0

y - 2n4

then (138) becomes:

*22nAly = yy + =
2n (139)

Let "d -- d _dP

dt dt dt dt dy

then (139) becomes:

dP P+ 2

2nly YP• + 2 (140)

Let z P2 then y-y 2P ýyy and (140) becomes:
dy dy

d;
- dy + ny (141)

d; "
dz -Z

Let m - with T - - and then (141) becomes:
ny dy n 2

dn

4nAt - ny d + n; + i'
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or rearranged as: dm

Y 4nA1  ;(n + 1) (142)

Integrating both sides yields:

or yC L4nAj - (n+l); + - nCltny t1~ A (143)

or n

n+l

n
4nA1 - (yC1) (144)
m n+1 

'
-t Z mlad v Pyields:

Performing the Inverse transformation ndt

/~~ (2n+1" ~/
dt M - 4nAly - C - Y dy. (145)

The problem has been, therefore, reduced to numerical quadrature. A function,
t - f(y) will result. The inverse of this expression, y = f(t) then
determines 0(t) through the inverse transform:

0(t) " 1/2(n- ao2). (146)

The advantage of this approach over the numerical solution of the full
equations is not obvious. While the quadrature may be performed by hand, a
more accurate and timely approach would be to utilize a computer. The
difference in computer running cost between a Runge-Kutta solution and a
finely p-rtitloned Integration algorithm is most likely negligible.
Furthermore, the accuracy of the quadrature solution is limited by the
approximations invoked to reduce the governing equations to the form (138);
these approximation errors typically exceed any error introduced by the fourth
order Runge-Kutta algorithm.

Alternate sets of approximations can be applied to the full equations
(88), (92) and (96) reducing them to varying forms, some of which may have
analytic solutions. The overwhelming limitation to this approach, however, is
in the ability to estimate the errors introduced by each approximation.
Therefore, for the remainder of this report, the numerical solution to the
full equations will be pursued.
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IV. PARAMETRIC DEPENDENCE AND COMPARISON WITH EXPERIMENTS

Section II dealt with the formulation of the cavity expansion problem.
The generally complex system of governing field equations was reduced to
initial value problems by applying approximations suggested by experiments and
previous numerical investigations. Appropriate initial conditions were
determined from problem parameters by specification of the boundary stress
conditions. Section III dealt with possible solutions of the initial value
problems. A Runge-Kutta technique was proposed to solve the full equations
(88), (92) and (96) with properly specified initial conditions. The full
equations were reduced to a simpler form only after additional approximations,
consequently the accuracy of the simplified solution was in question and the
advantage to be gained by the simplification was reduced. This section will
present Runge-Kutta solutions to the full equations as developed in Section
IIF.

The governing equations and initial conditions involve the previously
defined problem parameters: p, At, 0 , , Co, U, rp, K, a and b . The impact

y 0 p 0 0

velocity, penetrator density and penetrator strength characteristics are
implicitly included within the penetration velocity, U (as described in
Appendix A). The functional influence of these parameters on the growth
behavior of the target cavity appears explicitly in equations (88), (92) and
(96) but the relative importance of each parameter for the prediction of the
final cavity dimension or the instantaneous growth rate has not yet been
determined. Within the following several sections, the parametric
dependencies will be presented. The particular examples selected are those
that have been studied experimentally, thereby allowing a comparison between
the model's predictions and actual measurements. Unfortunately, the growth
rate cannot be observed experimentally. However, the time-integrated final
value can and will be utilized.

A. Dependence of the Initial Conditions (K, a bo)
00

As already noted in Section IIG, the precise value of the initial radial
velocity, a(O) is not known. Estimates are available from different models
and the range within which a (0) is expected to vary is O.4U < i(O) < 1.4U.
If K is known, then a and b are determined by the iterative-method-described

0 0

in Section IIG. Therefore, K will be chosen between these limits, a and bo

will be subsequently determined and the growth behavior will be predicted for
the following situation.

Silsby [121] and Blanks [122] performed experiments that involved the
normal impact and penetration of long tungsten alloy rods into armor steel
targets. Impact velocities were varied between 2 and 4.5 km/s and the final
hole diameters were measured. The resulting cavities were cylindrical in
shape and the quoted final cavity diameters represented averages of the
diameter at several depths. The lateral dimensions of the steel plate were
quite-large and the sound speed in steel is approximately 6 km/s, therefore
equation (92), the subsonic, semi-infinite case is selected to model this
problem. The following values are assumed:
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p M 17.3 g/cm (measured)

p - 7.85 g/cm3 (measured)

r - 0.39 cm (measured)
y- I x 1010 dynes/cm 2 (Goldsmith [31)

y 5V - 4.4 x 10 cm/s (two measured values

V - 3.3 x 105 cm/s are selected for study)

and the viscosity, •, is given by Harlow and Pracht [55] as

- 2 x 104 poise (fit to the data of Walsh, et al.

[123]).

The penetration velocity is then determined by equation (A.3) for the two
chosen impact velocities. Representative values for the constant X are
selected and corresponding ao'S and b 's are determined. Figure 18 presents

0

the Runge-Kutta solutions for the 4.4 cm/s impact velocity and the following
initial condition parameters:

selected values values iteratively determined

K - 1.400 a - .205 cm b - 3.180 cmo 0

K - .780 a - .132 ca b - 1.150 cmo o

K - .700 a - .112 cm b - .838 cmo 0

Values of K less than -. 70 were unable to satisfy equation (128) for any
Initial cavity dimension. Therefore, the correct solution should lie
somewhere between the predictions corresponding to K - 1.4 and K - .70. The
value, .78, represents the incompressible blunt cylinder configuration
presented by White [115). The predicted final cavity radius for this value
agrees quite well with the experimental measurement of Silsby [121]. The
final hole dimension does not scale linearly with the constant K, although the
magnitude increases as K increases. The time required for the stresses to
decay to elastic magnitude increases with increasing K.

Figure 19 presents the Runge-Kutta solutions for the 3.3 km/s impact
velocity with the following initial condition parameters:

selected values values iteratively determined

K - 1.400 a° a .200 cm b - 2.220 cm
0

K - .780 a - .119 cm b - .732 cm0 0

Once again the value of K - .78 yields a final cavity dimension that agrees
reasonably well with the independent experiment for V - 3.3 km/s. Comparing
Figure 18 and 19 for the same K, the diameter of the'cavity and the time
required to reach the final value increase with increasing Impact velocity.
Additional comparisons with experiments for variable impact velocities will be
given in the next section. In addition to the cavity growth curves, the
stress distributions, r and a,,, are presented in Figure 20 for three times
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after the penetrator surface passes the particular axial plane. Both radial
and circumferential stresses are initially compressive near the cavity, the
circumferential stress is less than the radial stress by the amount,

2
(a + p0/r ) and is tensile near the elastic/plastic boundary. As time
progresses, both stresses decay in magnitude and at 5 microseconds, the radial
stress is compressive while the circumferential stress is completely tensile.
The spatial gradients of both stress components decay very quickly. At 5
microseconds, the stress distributions appear almost spatially flat, but their
difference still exceeds the static yield stress; therefore plastic flow will
continue until the yield criterion is no longer met. This occurs at
approximately 23 microseconds (Figure 19).

The selected value of K significantly influences the final cavity
dimension, the time to reach this value and the instantaneous velocity at any
radial coordinate. For the case just considered, the estimate based upon the
incompressible flow over a blunt cylinder yields an accurate prediction of the
final cavity dimension for both impact velocities. A value of K - .78 will,
therefore, be assumed for the remaining parametric calculations.

B. Dependence upon Impact Velocity and Static Target Strength

The previous section presented cavity growth solutions to equation (92)
for the case of a tungsten alloy rod penetrating armor plate. The solutions
were observed to depend upon the initial condition parameter, K, which relates
the initial radial velocity with the steady penetration velocity, U. A value
of K - .78 produced reasonable agreement between the calculation and the
experiments of Silsby [121]. Hohler and Stilp [66] performed experiments with
both steel and tungsten alloy rods at several impact velocities with targets
composed of different strength steels. Figure 21 summarizes their results for
the tungsten rods (1.5 < V < 4 kim/s) for steels with hardnesses of 180 BHN

9 2 9 2( ý- 5 x 10 dynes/cm and 300 BHN (a -9 x 10 dynes/cm ). As isy y0

physically expected, the normalized final cavity dimension decreases with
increasing target hardness (or flow stress> and increases with increasing
impact velocity. The two isolated points represent the calculation results

from the previous section for an assumed static strength of (1 x 1010
2dynes/cm ) and a slightly larger penetrator dimension (rp - .39 cm). The

experimental data do not identify the dependence of penetrator strength and
density or target density, but the calculations assume a dependence of the
form:

U- I + v7

so as the penetrator density is decreased, the penetration rate will decrease
and one should then observe a decrease in the cavity dimension for the same
impact velocity. This trend is observed by comparing the experimental data
presented In Figure 22 with Figure 21. The results for the high hardness
steel (300 BHN) show negligible penetrator density influence but for the lower
hardness alloy (180 BHN) the effect is more pronounced and follows the
predicted trend. The four separate points on Figure 22 represent the model's
final cavity predictions for the following parameter values:
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Figure 21. The Normalized Cavity Dimension Variation with Respect to

Impact Velocity and Target Strength for Tungsten Rods and

Steel Targets.

66

i 
, /



Y-T I. lu N, %' .I.- i- - I Ln

f.

I

SHN Igo

4J

5 kbor

SHM 300

. @6.8 kbar

3-

-- p
2.0 0 kbor

1.a 2.4 2;.O 3!9 4.1

Impact velocity - km/o

Figure 22. The Normalized Cavity Dimension Variation with Respect to
Impact Velocity and Target Strength for Steel Rods and
Steel Targets-.

67

'p......-** . -p*.7p~.. . -- .~-:~ *-p.



*Y1 C- -- V V - - - V --y -V

p.!

3 m
P M 7.8 g/cm3 (measured)

P - 7.8 g/cm (measured)

r .27 cm (measured)
P4
# . 2 x 10 poise (from section 4-1)

y - 5 x 109 dynes/cm 2(estimated)

to I X1 dynescm2 (estimated)

V - 3.5 x 105 cm/s
5and 1.18 x 10 cm/s

K = .78.

Once again the initial values of a and b must be estimated such that the
initial radial stress at a equals the stagnation pressure. The following

values were used:

V - 3.5 km/s - 5 x 109 dynes/cm a -. 090cm b M.692cm

S- 8.8 x 109 dynes/cm2 a = .082 cm b - .473 cm
y 9 2 0 0

V-2.4 km/s y 5 x 10 dynes/cm a° .080 cm b -. 350cm

1.0 x 10 dynes/cm2  a .090 cm b - .350 cm
yo o

and the growth curves are presented in Figure 23. The variation of the final
cavity dimension with respect to both the static yield strength and impact
velocity qualitatively agrees with the experimental trend. Quantitatively,
the agreement is good for the lower strength alloy but the calculations
overestimate the high strength alloy in Figure 22 and underpredict the high
strength alloy in Figure 21. Part of this discrepancy is undoubtedly
attributable to the uncertainty of the static yield strength. Hohler and
Stilp [66] note an observed range of measured hardness for the high strength
alloy between 260 and 330 BHN. The quoted yield strength varies between 8.8 x

109 and 1.08 x 1010 dynes/cm2 . The growth rate model is concerned with the

flow stress; the static yield strength is only one component of this property
and material viscosity influences the instantaneous value. Therefore, the two
parameters, 9y and A must be more precisely defined in order to improve the

agreement. Eichelberger [14] presents a relationship between the target
Brinell hardness and an "average flow stress" defined by the proportionality
of crater volume and penetrator kinetic energy. The relationship for this

flow stress, v, is: a - 2.6 x 108 x (BHN). Therefore, the expected flow
stress for the high strength alloy (BHN - 300) should be of the order, 8 x
110 ynsc 2

lO1 dynes/cm2. This value is an order of magnitude higher than the static

yield strength, a - 9 x 109 dynes/cm . The Hohenemser-Prager yield
assumption relateX the flow stress with the static yield stress in the

following way:

Cy + (147)

r2
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and with the initial values, 0(o) - 1.12 x 104 cm/s and r(o) - a 0 .082 cm0

for the high strength alloy case. As shown in Figure 23, the influence of the

viscosity coefficient is clear. In this case, a - 9 x 109 + A(1.66x 10 )

2 4"dynes/cm . A value of iL - 2 x 10 was determined by Harlow [55] and used in
these calculations. Initially, when the velocities (rates of strain) are
greatest, the viscous contributions predominate the flow stress. The sensi-
tivity of the calculations to the viscosity coefficient will be investigated
In the next section. Leave it to say that the flow stress has a pronounced
"effect upon the final cavity dimension but, unfortunately, a precise value for
this parameter is not available in general.

As an additional check of the overall model, calculations of cavity growth
in aluminum targets are presented. Perez [81] published the results of impact
tests involving steel rod penetrators into 2024 aluminum targets with
velocities ranging between 2 and 4 km/s. Perez assumes the static yield

9 2
strength for this aluminum alloy as 2 x 10 dynes/cm . The Metals Handbook

9 2(1241 gives the tensile strength as 4 x 10 dynes/cm ; therefore, both values
will be independently assumed and the calculation results will be compared
with the data of Perez. Figure 24 presents the calculated growth curves for
the following problem parameters:

P - 7.8 g/cm
3

p
P - 2.7 g/cm3

r U .15 cm

- 2 x 109 dynes/cm2ey92

4 x 109 dynes/cm2

V- 2.5 x 105 cm/s

4.0 x 105 cm/s

K - .78

and A, - 5 x 10 poise (Walters [125]).

The initial condition parameters are:

V 2.5 km/s w = 2 x 109 dynes/cm2 a .050 cm b - .281 cmyo 0
W y -4 x 109 dynes/cm2  a - .044cm b - .186 cm

2 09 dynes/cm2

V 4.0 km/s , = 2 x 1a .057 cm b ° .551 cm

q- 4 x 10 dynes/cm a - .052 cm b - .340 cm.

The trends are similar to those observed in the steel targets with the
exception that the times required for cavity arrest are consistently shorter
In the aluminum target. The difference is most likely due to the relative
magnitudes of the radial momentum distributions. The data of Perez [81] is
reproduced in Figure 25 along with the four calculated final cavity
dimensions. The model predictions again qualitatively agree with the
experiment but since the flow stress (or 0y and p parameters) are not

"precisely known, a quantitative comparison should not be attempted.
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Figure 25. The Normalized Cavity Dimension Variation with Respect to
Impact Velocity for Steel Rods and Aluminum Targets.
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C. Dependence upon the Viscosity

As noted in Appendix B, the neglect of viscosity effects within impact and
penetration problems is not justifiable in general. In the previous section
it was observed that the flow stress has an important role in determining the
final cavity dimension and that both the static yield strength, ay and the

target viscosity, pL, influence the specific value of this flow stress. This
section will be concerned with the viscous contribution only. No experiments
have been performed that isolate the material viscosity parameter and its
influence upon the target cavity dimension. A parametric variation of the
viscosity coefficient will yield a variation in the predicted growth behavior.
A particular case of study is chosen to compare with the finite difference
calculation of Kucher [56] and the problem parameters are:

p -8.9 g/cm
3

P - 7.8 g/cm3

r -0.1 cm
p 10 2S1.36 x 10 dynes/cm
y 5
V -7.6 x 10 cm/s

K .78

and th% target vis~osities considered are, in poise, A - I x 100, 1 x 102,
I x 10 and I x 10

The initial conditions for the first three viscosities are determined from
equation (130) and for the last viscosity from equation (128) since the
approximation (129) is not appropriate for this order of magnitude. The
initial values are:

1L~1 0  2 4
A 1 x 100, 1 x 102, 1 x 10 a a° .036 cm b° M .368 cm

L 1 x 10 5  a - .045 cm b -. 461 cmO O

and the resulting calculations are presented along with the calculation of
Kucher [56] in Figure 26.4 The effect of viscosity is not significant until
values of the order of 10 poise or greater are selected. For viscosities

4.greater than - I x 10 poise, the influence is not linear. An order of
magnitude variance of the viscosity coefficient produces a reduction of only
approximately 30% of the final cavity dimension. Therefore, reasonable
estimates should be expected as long as the viscosity coefficient can be
determined to within the correct order of magnitude. Walters [125] notes that
given the current state of understanding, an order of magnitude estimate is
perhaps as good as one might expect. The relative importance of the viscosity
coefficient can be observed explicitly in the relation for the flow stress,
equation (147). Depending on the magnitude of the static yield strength, the
local radial velocity, 0/r and the radial position, the coefficient may or may
not affect this flow stress. For the range of these parameters encountered in

this example, viscosity on the order of 104 poise or greater will contribute
significantly to the value of the flow stress.
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The finite difference calculation of Kucher [561 utilized an Eulerian,
compressible and explicitly inviscid formulation but the computational method
introduced an implicit, effective viscosity of undetermined magnitude;
although it is known to have the form

',effective = 1/2P--Ux

where Ax represents the characteristic mesh dimension and U is the local mean
fluid speed* Assuming the results of Kucher are accurate, the value of A, - 2

x 104 poise (determined by Harlow [551) yields the growth model solution with
the same final cavity dimension. However, it should be pointed out that the
two differ slightly in the early time growth rates.

D. Dependence upon Penetraýtor Radius

The governing equations (88, 92, and 96) include the penetrator dimension,
rp, as a problem parameter. One would expect that the target cavity would

increase if the penetrator diameter were increased (all other parameters held
constant). This is reflected In the normalized data published by Hohler and
Stilp [66] and Perez [811 which assert a linear scaling between penetrator and
cavity dimensions. Frequently, the penetrator dimension is not known
precisely, especially for shaped-charge jets. For these situations a range of
values is typically assumed and predictions are similarly determined. As an
example of the growth model's ability to handle such a problem, the following
parameters are assumed:

p M 8.9 g/cm
3

- 7.8 g/cm 3

r - 0.15, 0.2, 0.3 cm

V - 6.9 x 105 cm/s

K - 0.78

y I x 1010 dynes/cm2

and IL 2 x 10 poise.

This case represents typical high speed jet penetration. Dipersio, et al.
(1261 radiographically measured jet velocities and dimensions at selected
times after charge detonation. The jet was copper and had a linear velocity
distribution that varied between 8.3 and 1.0 km/s. At three inches deep
within the target, the jet was eroded to an incoming velocity of 6.9 km/s and
the jet radius was estimated to be between .15 and 0.3 cm in dimension. The
Initial condition parameters can be iteratively determined and are:

r - 0.15 cm a - .056 cm b - .601 cmp 0 0

r -0.2 cm a -. 074 cm b - .80 cmp o o

r - 0.3 cm a - .112 cm b - 1.20 cm
p 0 0

Figure 27 presents the calculated growth curves for the specified input
parameters. The measurements [126] were taken at three inches deep into the
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target (where steady conditions would be likely) and represent several test
shots for the same configuration. The cross section of the hole at each axial
position is not perfectly circular, therefore measurements were made for the
greatest and the least diameter at each axial plane. The cavity growth model
predictions for final cavity radius identify the linear dependence upon the
penetrator dimension. The time required to reach the final cavity dimension
also exhibits a linear dependence upon this parameter. The experimental
measurements lie within the range of the calculated predictions for the
estimated range of jet radii.

E. Comparison Between Semi-infinite and Finite Lateral Boundaries

The preceding sections compare postmortem measurements with the model
predictions for ranges of the problem parameters. All cases have assumed that
the target dimension in the plane of the entrance surface is large in
comparison with the penetrator diameter or cavity dimension. This
configuration is typically the case in practice but occasionally the question
arises; if the lateral dimension is not overwhelmingly large, what will be the
effect upon the growth behavior prediction? The formulation of the governing
equations includes this possibility. Equation (88) was derived under the
presumption that the lateral boundary is circular in cross section and is
relatively small in dimension. The radial stress is assumed to vanish at this
surface. As an example of how the behavior will change if the lateral
boundary is small, the aluminum target case of section IVB will be recalled.
The following parameters are assumed:

P - 7.8 g/cm
3

P 3
p - 2.7 g/cm

r - 0.15 cm
p5
V - 4.0 x 10 cm/s

X -0.78

- 2 x 109 dynes/cm2

3and A - 5 x 10 poise.

The initial condition parameters were iteratively determined for the
semi-infinite case from equation (134) but if the lateral boundary is known
and the radial stress is set to zero upon this surface, then equation (128)
must be utilized. The boundary, b , will be assumed to be 0.4 cm; the Initial

o

cavity position is then iteratively determined to be 0.050. The calculated
result for this finite boundary problem is presented along with the

semi-infinite solution in Figure 28. Initially (t < 5 As) the two curves are
similar but as time proceeds, a difference develops. The semi-infinite
target curve exhibits a gradual deceleration of the cavity until the motion is
arrested due to the diminishing plastic stresses. Once the yield criterion is
no longer met, the problem is terminated since only elastic displacements
could continue. The plastic region is always bounded by an elastic region of
infinite mass.

The finite lateral boundary problem exhibits noticably different behavior.
The deceleration for times greater than 5 microseconds is less than that for
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the semi-infinite case. It is, however, not zero so the problem will continue
for a much longer time. At 40 microseconds, the difference between a and b0

Is .03 cm at a radius of 2.3 cm. The target then appears as a thin, expanding
cylinder. The strain experienced by the tube material may be estimated by

Ur r - 2.3

ro ro 0.05 . 46 at t - 40 ps.

It is, therefore, likely that fracture or instabilities would have set in
by this time in an actual problem and that the original plasticity assumption
may not even apply. It would be difficult to perform an experimental
measurement of the final "tube" dimension if it could even be recovered
intact. Perhaps a more suitable measurement to compare with this calculation
would be to measure the outer surface velocity in an average manner with the
use of a high speed framing camera. At this point, such an experiment has not
been performed. From the calculation results alone, it can be qualitatively
stated that decreasing the lateral boundary dimension will increase the cavity
dimension.

F. Comparison with Entrance Hole Data

Throughout this chapter the calculated final cavity dimensions were
compared with experimental data. Experiments have not been published that
measure the growth behavior during the expansion process deep within the
target. However, radial cavity growth at the Initial impact surface has been
observed radiographically [14, 351 and at least the shapes of the experimental
curves are similar to the shapes of the predicted curves for the steady
penetration problem. In order to compare, qualitatively, the initial
transient growth behavior with the deep, steady growth behavior, the following
configuration will be assumed. Eichelberger [14] considered the entrance hole
expansion in an aluminum (1100F) target block resulting from the impact of a
short steel disc, V - 5 km/s. If instead, the disc thickness Is assumed many
times longer, then a steady penetration condition should occur and the
equations In Section IIF should then apply. The experiment Involving the
transient entrance surface [141 can then be compared with the predicted
behavior that would result if the penetrator had greater length. The problem
parameters are:

3o

p - 7.8 g/cm3

P - 2.7 g/cm3

r - 0.4 cm
p
V -5.0 x 105 cm/s

S2 x 10 dynes/cm (assumed)

K .78 (assumed)

and A 5 x 103 (as in Section IVB).

The initial condition parameters are Iteratively determined as: a .151
0

cm, b - 1.928 cm and the penetration velocity, U is calculated from the
0 5

steady penetration model (Appendix A) as 3.15 x 10 cm/s. This value is less
than the elastic wave speed in aluminum. Therefore, equation (92), the
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subsonic, semi-infinite case, will be utilized. Figure 29 presents both the
experimental measurement for the entrance surface and the calculated
prediction for axial planes deep within the target. The two curves are
considerably different in terms of both final dimension and instantaneous
slope (velocity). The isolated sources of the discrepancy (ignoring the
uncertainty of the values of yield strength and viscosity) are the difference
in the axial boundary conditions, the length of the penetrator and the degree
of transient axial behavior. If the free surface boundary condition were the
only variable involved, it would be expected that the final cavity dimension
for the steady problem be less than the final dimension for the entrance
surface. The transient penetration rate lies between the impact velocity and
steady penetration rate; consequently the initial condition on radial velocity
would be greater and, therefore, it would be expected that the entrance cavity
be larger than the cavity at some depth into the target. However, the results
show just the opposite behavior. This is attributable to the difference in
penetrator length. Eichelberger fired a steel disc (radius - 0.4 cm, length =

0.05 cm) end on at the semi-infinite aluminum target. Steady axial behavior
was never achieved and due to the very short length, relaxation from the rear
penetrator surface reduced the time over which the penetrator could interact
with the target. Subsequently, less radial impulse is imparted to the
entrance plane material than would be if the penetrator length were increased.
Therefore, in order to study the effects of the transient nature of the free
surface boundary of the entrance cavity, the length of the penetrator must be
increased and the experiment must be repeated (keeping all other parameters
fixed). The model predictions will then show the deviation associated with
the transient, free boundary condition, alone.

V. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

The primary intent of this report was to develop a model for the expansion
of a cavity created during the penetration of hypervelocity rods and apply it
by predicting parametric trends for problems of practical interest. The model
was formulated by making several assumptions as to the behavior of the flowing
target material during the cavity expansion process. These approximations are
supported by experimental evidence and the qualitative results of finite
difference calculations. By specifying stress conditions at the boundaries of
the plastic regions, the governing system of nonlinear field equations was
reduced to simpler ordinary differential equations. Upon estimation of the
initial conditions, the initial value problems were solved numerically for
several situations where experimental results were available. The following
conclusions can therefore be stated:

a. The calculated predictions of the final radial cavity dimension show
the same parametric variation as the experiments.

b. The time dependent growth of the cavity agrees qualitatively well with
the finite difference calculations of Kucher [56] but is significantly
different from the experimentally observed entrance hole behavior of short
disc impact [14].
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c. The accuracy of the model predictions depends upon the accuracy with
which the initial conditions (V, r p, K, U) and the target material

characteristics (qy, •) may be determined.

d. The analogy with the incompressible fluid flow over a blunt cylinder
yields an estimation for the initial conditions that consistently results in
close agreement with the experiments.

e. The Hohenemser-Prager visco-plastic flow assumption predicts initial
flow stress values within the range of those published by Eichelberger [14]
from independent experiments.

f. The analysis is applicable to cavity growth resulting from both
kinetic energy penetrators (I km/s < V < 4 km/s) and shaped charge jets (2
km/s < V < 10 km/s) as long as the physical characteristics of each is known
to sufficient accuracy and the steady penetration presumption is valid.

The formulation required axial symmetry, material isotropy, plastic
incompressibility and steady penetration. If any of these approximations is
violated, a new formulation must be performed. As already noted in Appendix
A, the steady penetration theory may not be applicable to material
combinations with substantially different compressibilities or when the
hydrodynamic pressure is of the order of the target strength or less.
Similarly, the radial cavity expansion model is limited to problems where

hydrodynamic penetration is applicable (V > I km/s for vy - 1 x 109
2Y

dynes/cm 2). The model is limited also by the requirement for input values

that may not be easily determined, i.e., A, ay, rp, etc. Additionally,

materials that do not exhibit plastic flow prior to rupture or fracture cannot
be Investigated since the plastic characteristics have implicitly been assumed
to predominate the cavity expansion process.

Beyond the obvious requirement for further research of material
characterization during ballistic impact, an alternate formulation of the
completely transient, initial impact problem for long rod penetrators should
be pursued and be compared with the results from this report. An experimental
observation of the growth of the cavity, deep within the target, or stress
measurements (similar to those of Pritchard [70]) at points displaced from the
penetration trajectory, taken during the early expansion times, are also very
much needed.
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LIST OF SYMBOLS
(Units According to CGS Convention)

a(t) - radial position of the cavity surface

a0 - initial value of a

a'(t) - radial position of the boundary that separates Regions II and III

A - radius of penetrator bulb, equation (100)

A - Bethe's flow stress parameter, equation (105)

A1  - transform variable un Section (IIIB)

Ai - cross sectional areas

b(t) - radial position of the elastic/plastic boundary

bo - initial value of b

bi - body force vector

B - Bethe's radial pressure parameter

c(t) - radial position of the target lateral dimension

c - wave speed

Sc - elastic wave speed

cI - integration constant in Section (IIIB)

dK - incremental mechanical work

dr - incremental cavity volume

do - incremental control volume deflection angle

D - body of revolution diameter

D - cavity diameter
c

D - penetrator diameter
p

eij - strain rate tensor

*e.e - elastic component of strain rate tensor
ii

- plastic component of strain rate tensor
it

F - yield function

- 83
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F - target resistance force

K - initial condition parameter, equation (116)

K - elastic boundary constant

K - elastic boundary constant

K - transform constant in Section (IIIB)

K - stagnation velocity gradient

K - maximum shear rate

L - length of penetrator bulb

M - transform variable in Section (IIIB)

M - penetrator mass

M - local Mach number

n - transform variable in Section (IIIB)

P - pressure in the penetrator control volume

P - transform variable in Section (IIIB)

P - stagnation pre!sure

P(tF) - penetration depth in Appendix A

r - radial coordinate

r - penetrator radius
p

R - radius of curvature

S - relative velocity scalar

S - also root to principle stress determinant

S- relative velocity vector

S - principle stress vectoriI

U - penetration rate

U - velocity at the edge of the boundary layer
e

U, - velocity vector

U - particle velocity
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S- local mean fluid speed

Ui - displacement vector ,

V - impact velocity
x - distance from stagnation point

xi - coordinate vector

y - transform variable in Section (IIIB) •.

z - axial coordinate

z - transform variable in Section (IIIB)

7rz - shear strain in the r-z plane ••

S8ij ~- Kronecker delta•,,

r Ax - characteristic mesh dimension ,

0 - circumferential coordinate ./

E) - angular displacement from symm~etry axis "

81 - deflection angle of microstructure bands

X - slope of the Us - Up data

:' A - bulk viscosity coefficient, equation (46) r

AI - empirical fitting parameter, equation (54)

) - shear viscosity coefficient '

V - Poisson's ratio'•

- 3.14

P - target density "

Pp -penetrator density •

Pt -target density"!

S- average flow stress during high strain, strain rate deformation

•y -target yield strength in uniaxial tension, measured

quasi-statically

9iJ - stress tensor
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Ol0 - rate independent components of the stress tensor
ij

r - target shear strength

0 -undetermined function of time

J.m
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APPENDIX A

DERIVATION OF THE STEADY PENETRATION RATE

The theory describing the penetration of high speed rods and jets was
developed during World War 1I [58, 79, 127 - 129] presumably to allow the
design of armor and anti-armor warheads. Working independently, Hill, Mott
and Pack (79] (England, 1944) and Pugh [127] (U.S.A., 1944) considered

essentially the same configuration, as shown in Figure Al,

0 '

Figure Al. The Penetration of a Semi-Infinite Target with a Long Penetrator.

where Ap represents the pepetrator cross sectional p and p p the tarRet and
penetrator densities, respectively. V represents the velocity of the
penetrator with respect to a stationary frame, A represents the crossection of
the target over which the penetrator interacts and the surface W - W' "
represents a shock surface (if the velocity is sufficient). The interface is
presumed to translate to the right at a constant velocity, U. If the frame of
reference is attached to the intersection point of penetrator surface and the
symmetry axis, moving with a constant speed U, then the axial flow in this
moving frame appears steady. Surface A is bombarded on one side by the
penetrator moving with a relative velocity (V - U) and on the other side by
target material moving in the opposite direction with relative velocity U.
Within this system of translating coordinates, the incoming penetrator is
sprayed out radially upon impact, losing its axial momentum. Therefore, the
forces on both sides of A must be equal and opposite. Pugh, thereby obtained:

P Ap(V - U)2 - PAU.

and upon solving for U,
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U=n V
VU p 

(A.2)

Equation (A.2) oan be further simplified by assuming that A = Ap, then:

.p (A.3)

Hill obtained the same relationship for the penetration velocity by

applying the theory of free streamlines. Upon the translating stagnation

point, the pressures (given by the Bernoulli equation) must equal in both the
target and penetrator. For the incompressible case,

1/2P (V-U) 2 a 1/2pU2 (A.4)

and equation A.3 then follows. Both Hill and Pugh recognized that
compressibility of either the penetrator or target would influence the value
of the pressure on either side of the stagnation point, i.e.,

PO-

So 0P0  (A-5)

The effects of compressibility were subsequently studied by Allison and
Vitali (130), Harlow and Pracht [55], Haugstad and Dullum (131, 132] and Flis
and Chou (133]. Considering metal targets, Allison concludes that the
incompressible approximation is sufficiently accurate for practical problems.
Harlow, using a stiffened-gas equation of state for steel and aluminum with a
multidimensional Eulerian, finite difference technique, concludes that both
the steady and incompressible assumptions are quite appropriate. The works of
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Haugstad and Flis, however, show that for materials with significantly
different compressibilities, the error resulting from the application of the
incompressible assumption to the determination of the pressure and hence
penetration velocity could be on the order of 30%.

The presumption that the materials behave like fluids is based on the
argument that the inherent strength of the target and penetrator materials is
much less than the hydrodynamic pressure. For lesser impact velocities, this
presumption is not valid and equation (A.4) is usually modified to include
strength-like terms and a pressure variation term, y

(A.S)
9 U 2 2P P(V -U) 2 .+ (A.6)

With an estimate of the *resistance stress," a and a guess as to the value
ofy, 1<7/<2 (Eichelberger [62J, Allen and Rogers [134J) the penetration
velocity can be determined once again. The depth at which the penetration
ceases can be estimated by assuming that the process ends when the trailing
end of the penetrator reaches the stagnation point. Integrating the
penetration velocity with respect to time yields the depth, V

it)F

P(t)r P 2U dt' / (V -'U)dt S (Ao7)

0 0

where L represents the constant penetrator length. Eichelberger [62]
performed an experimental test of this theory for the case of metallic jets.
The major distinction between a jet and a hypervelocity rod is that the jet
has a variable velocity along its length. This casts doubt on the steady
approximation and it would appear that the above equations might not be
applicable to these types of penetrators. However, Eichelberger concludes
that the hydrodynamic approximations are surprisingly accurate when compared
with experimental evidence. This accuracy should diminish with decreasing
impact velocity where the solid strength characteristics predominate.
However, Christman and Gehring [24] compared the steady penetration theory
with experimental data for high speed (1-6 km/a) rods and concluded that
within the range of variables considered, the target strength had negligible
influence on the penetration rate. This is also confirmed by the finite
difference calculation of Van Thiel [135]. In review of the many experimen-
tal observations and analytic predictions, it can be assumed that the steady,
incompressible penetration model produces a sufficiently accurate estimate of
the penetration rate of long penetrators into semi-infinite metallic targets.
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APPENDIX B

THE YIELD STRESS DURING BALLISTIC IMPACT

Perhaps one of the first researchers to be concerned wit1 the effect of
the yield stress variation upon the ability of a penetrator to perforate armor
was R. A. Bethe [191 who published in 1941. In the formulation of his armor
penetration model, he introduced the Tresca/Mohr yield criterion, which
supposes that the target material exhibits an observable elastic-plastic
transition stress, cy. This yield stress-determined the magnitudes of the S

resistance stresses within the armor and consequently became an important
problem parameter. Bethe recognized that previous theoretical works, (Becker
[1361 who published in 1926 and Orowan 1137] who published in 1935) although
not nearly complete, had predicted through statistical mechanics arguments
that the yield stress at high rates of strain should be much greater than the
yield stress observed in quasi-static testing. In this pioneering paper,
Bethe included a review of the early experimental observations of Hopkinson
[1381, Elam [139], Davis [1401 and Manjoine and Nadai [1411 which all
confirmed, at least qualitatively, the aforementioned theoretical trend. The
experiments of Elam and Davis showed that even though the yield stress
increased up to about one hundred sixty percent of the static value (limited
by the speed of the testing machine), it did so with practically no strain
hardening. The observations allowed Bethe to select an analytically tractable P
form for subsequent calculations. Interest in discerning the behavior of
materials undergoing simultaneous large strains and rates of strain seemed to A.

escalate during the years following; many experimental studies were published
and many constitutive equations were proposed. Reviews of these works can be
found in several current texts (Cristescu [881, Billington and Tate 12],
Johnson (4], Zukas, et.al. (61). The conclusion reached in all instances is
that the dynamic yield stress is not a characteristic constant of the
material, its value depends upon the rate of loading as well as the form of
the constitutive equation used for a considered material. Quoting Cristescu,
"the mechanism by which the loading rate influences the static stress-strAin
curve is not yet clearly understood." This is still true today and can be
observed by comparing the research papers of the rate-independent, strain
hardening proponents (Bell (142, 143]) with those of the rate-dependent
community (Malvern [1441, Perzyna [1451, Gillis [1461, Klahn 11471, etc. and
the numerous Russian workers reviewed by Walters [1251). From dynamic wave

propagation experiments, Bell proposes that the following stress-strain
function has "wide and remarkable generality" for strain rates up to 10-1 0
sec

r /2

((O-)B Ioe
(B.1)

where G(0) is the static, isotropic, linear elastic, shear modulus, r* is an
integer index, and B is a universal dimensionless constant. The rate ofo

strain does not appear explicitly within this expression. This is in
contradiction to the many dynamic yield experiments performed by many
researchers over many years (Alder and Phillips [1481, Butcher and Karnes
[1491, Campbell [150, 1511, Hawkyard [1521, Recker [1531, Malvern 1441,
Taylor [1541, Whiffen [1551, Wilkins [156], White (1571, Zener [1581 and many
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others). Alder and Phillips [(18) performed experiments on aluminum, steel-1
and copper with strain rates up to 40 sec and found they could best fit the
data with a power law form:

on0 0 6 (B.2)

where a and n are experimentally determined constants. Ludwik [1592 proposed
0

the following logarithmic equation:

0P (B.3)

where a and a are constants, and the plastic strain rate is normalized with
0

respect to the quasi-static strain rate. Malvern [1441 extended this to
include work-hardening, a z f(e),

9 z f(e) + atn(1 + beP). (B.1)

Hohenemser and Prager (107], and later Kotliarevsklil [1602 and'Perzyna [(152
assumed that rate sensitive plastic materials could be modeled with a Bingham
type constitutive form,

a * 2y +A(P.,AT)i (B.5)

where the first term is the rate independent yield stress and that the second
term represents the viscous contribution of the yield stress dependent on the
material viscosity, which most likely varies with the current state of the
material. Mny Russian researchers (see Walters [125)) have utilizied this
last equation for the yield stress dependence on strain rate. Godunov, et.
al. [1052 reviews both the experimental evidence and the Russian modeling
philosophy for many materials including the typical metals. Godunov [106], in
a later report, notes the variation of the experimentally determined viscosity
coefficient with different rates of deformation (strain rates) and concludes,
as in Figure Bl, that the viscosity coefficient has only weak dependence on

'4
the rate of strain if the strain rate is sufficiently great, i.e. e > 10.
This then simplifies equation (B.5) considerably. If the viscosity
coefficient can be independently determined, given of course the expected
temperature and pressure regime, then the dynamic yield stress (or flow stress
as it is alternately referred to) is a linear function of the rate of strain
for a specific range of this rate. The coefficient of viscosity, being
approximately constant, would change when passing from one range to another.
Perzyna [1452, recognizing the insignificance of strain hardening in mild
steel (Campbell (150, 1512), generalized the constitutive equations of
Hohenemser and Prager [107) to general states of stress,
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Figure Bi. Variation of Viscosity Coefficient with Rate of Strain,
Walters [125).
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itj 4 +i y (F) j For F > 0

4ij
ij = •For F < 0

(B.6)

A ii

where F is the static yield function, Sij denote the components of stress

deviation, e i the components of strain deviation and the elastic constants, G

and K, as well as the function v•(F) must be determined experimentally.

The influence of viscosity upon the impact and penetration problem has
been investigated theoretically by several authors. Riney [51, 52],
MacCormack [161), Walsh [162) using multidimensional, explicit, finite
difference techniques conoluded that viscous effects are quite significant
especially when characteristic dimensions are small. The analytic models of
Seizew [43], Whitesides [47) and Ravid and Bodner [163] recognize that viscous
effects predominate the flow in the later stages of cavity development.
During the later stages, the cavity approaches its final state and the effects
of the initial hydrodynamic impact stage are minimal. The neglect of rate
dependence is, therefore, difficult to Justify in general. The National
Materials Advisory Board of the National Academy of Sciences published a
summary report [1641 that resulted from an extensive review of current consti-
tutive modeling efforts oriented towards utilization within the modern
numerical finite difference methods. It was concluded that the sophisticated
numerical methods are ultimately limited by the current uncertainty in
material response descriptions. A relatively poor understanding of the
micromechanical mechanisms of dynamic plastic deformation forces the use of ,..s
simple, phenomenalogical continuum models. The assumption of perfect
plasticity with a constant flow stress has been found to yield "excellent
agreement for a number of ordnance designs and is almost always used in
ordnance calculations at present," even though the actual problems are
characterized by geometric and material complexities. The flow stress is
always different from the statically determined value, but its precise value
is not well established. The flow stress may have explicit dependence on
temperature, strain, strain rate, or pressure in a variety of functional
forms.

Equations (B.1 - B.6) represent only a partial sampling of the
constitutive equations that have been assumed in order to solve actual
problems involving impact and the resulting plastic deformation. The
behaviors Of specific materials are often best modeled by only one of the
above equations, and even then, only after judicious choice of the
undetermined constants. The ultimate decision of which constitutive equation
to use is usually based on considerations of analytic tractability,
reproduction of experimental evidence and compatibility with theoretical
arguments. The material constants must also be available if quantitative
comparisons are desired in addition to the parametric dependencies. It should
be noted at this point that errors resulting from the approximation of the
material behavior will most likely manifest themselves as discrepencies
between analytic predictions and experimental observations. With this in
mind, review of past modeling efforts and their respective successes should be
completed before selection of a particular constitutive model for a specific
problem.
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APPENDIX C

THE SOLUTION OF THE AXIAL VELOCITY DISTRIBUTION S

The formulation of Region II involved approximations to the three
dimensional flow field that were both experimentally and numerically
supported. Equation (65) originates from the axial momentum equation and
couples the temporal and spatial behavior of the axial velocity component as:

U *U

where 0(t) is the ultimate solution function determined by solving the initial
value problems of Section II.F. Suppose that the axial velocity -can be
represented by:

U z T(t)R(r) (C.2)

S.-

where T and R represent functions of time and radial coordinate respectively.
Then equation (C.1) becomes:

' APPENDIX'C s

at r ax' LR gý t (C-3)

Following arguments standard to the method Of separation of variables,

Ij 7- zd constant 2
dt r dr (C.4)

the partial differential equation (C.1) has been reduced to two ordinary
differential equations (C.i). Integratingoboth of these equations (C.an)
yields

ST exp + (• * (t (C.5)

and

R exp (L+ (C.6)
2-2
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Therefore, via equation (C.2) the axial velocity may be determined:

,Uz C ex~p W2 ( t - 0(t) +• r+ C_) (C.-7)

2

0(t) must be independently determined, C is determined by the application
of the initial condition,

U z(r : a0, 0) U U

0(0) - 0

and equation (C.7) then becomes:

U a Uxpl . 2 (.t + 0(t) . r 2  a 2) (C.8)

The eigen value * remains undetermined but could be empirically deduced from
the experimental data presented in Section II.D.
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APPENDIX D

DESCRIPTION OF THE SOLUTION PROCEDURE

1. Determine the problem parameters,

r A, p, pp,, a , CV A, V
p p y 0

2. Calculate the penetration rate, U, from equation (A.3)

3. Determine the appropriate case: supersonic penetration, subsonic
penetration and semi-infinite lateral dimension or subsonic penetration
and finite lateral dimensions.

4. Select a value of K (K . T,/4 Is suggested) and determine the remaining
initial values, a and b by the procedure outlined in Section II.G (for

0 0 e
example: equation (134)).

5. Select the appropriate governing equation presented in Section II.F:
supersonic, (96)

F2 11/22a 0 +23 (a22 2
22 b22 j

Lin b _221J -o _1 La"r

i2
sb/2f t - 1/2 e 8
((a2+290 (a3e20) v -

2 2 1/2 a A 2 1/2
3/2U (ba 22 )( +20)0

subsonic -finite lateral dimension, a (88)

i2 !

a 212412 1

+ I 2 2 - 2 r U
* 0 - .

/2 a~ 2/ 12 +ý

00

2 le'" -n0(a .0) -(a'+.20)

j3 2 3/2
+ U (a +20)

-2J
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subsonic - semi-infinite lateral dimension, (92)

1 2 +01/2

0b , .2 ] a 2 20 b2 0/2 2P
bo+2 0 0

2 ii 2 2 1/2(a 291 a 220) 1/2

++ 4
33/ 2:.)

Ca3.2 32j b

The equation (92) is included in the FORTRAN program in Table 1. The
other two cases can be considered with the programming modifications
outlined in Section III.A.

6. Input all the necessary terms, in CGS units, and choose an initial time
-10increment of 10 seconds. After the calculation is complete, check the

solution's first cycle such that the initial' pressure is that of the
stagnation approximation. Adjust the time increment to confirm
convergence.

V1
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