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SUMMARY -- -

The main ideas underlying the use of linear predictive
filtering as a spectrum analysis tool are developed in this
paper. Following this, detection and resolution performance

of the method compared with that of the DFT are examined by - "

the presentation of the results of a Monte Carlo experimentation.
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I INTRODUCTION

Modern airborne radars rely on spectral analysis for a variety of functions

including detection in clutter and velocity measurement. Also fine detail

in target spectral returns may give clues to target identity. Hence there

is great interest in spectral analysis techniques with improved detection
or resolution performance. An obvious candidate for the spectral analysis

Axe
is the well known and well proved Discrete Fourier Transform (DFT). The

fast implementation of this transform (FFT) is computationally efficient in

terms of the number of non-trivial arithmetic operations it must perform.

Moreover, in its unwindowed form the DFT provides a matched filter for

sinusoids in a white noise background and is therefore required for optimum

detection. However in radar systems the DFT seldom, if ever, can be used ..

in its unwindowed form. The existence of very large clutter signals would

limit the detection of small targets with a different Doppler frequency

unless steps are taken to avoid the high spectral sidelobe levels from the

clutter. A suitable window function is used to control these leakage " -

levels to an acceptable level. This however must be regarded as a

compromise because the windowed DFT is not a matched filter and losses in

detectability and resolution occur.

Over the last decade or so alternative techniques for spectrum estimation..

have been researched and published. In fact, there seem to be a large

variety of techniques based on the idea of Linear Predictive Filtering.

The techniques are reported to overcome the main difficulties associated

with the DFT of a time limited series, namely essentially zero or

repetitive extension of the known data. Removal of these unrealistic

constraints is claimed to improve resolution significantly. It is the

promise of improved resolution which has prompted this short study.

Although vast amounts of literature on these new techniques now exist, it

was found difficult to find sufficient quantitive information which

addressed the sort of questions which the radar engineer requires to be

answered before abandoning the faithful FFT. This paper makes a start at

answering some of the questions for one particular technique - the

Covariance Method of Linear Predictive Filtering (CMLPF). Although at

first sight this may seem restrictive, initial experience with this method

and with Burg's entropy method (MEM) and the maximum likelihood method " "'

(MLM) indicated that it had potentially higher resolution than MLM and did

not suffer some of the peculiarities of MEM. Also, because the techniques
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are similarly based, their performance will be similar in a large variety

of situations. It was felt therefore that CMLPF was representative of the

new techniques and would adequately indicate the trends.

II BASIS OF THE LINEAR PREDICTIVE FILTERING METHOD OF SPECTRAL ESTIMATION

Figure 1 is an example of a tapped delay line filter with an impulse given

by the weights, a,

a0 - a4

and delays, T,:

h(z) = a0 + alz-lT + az 2 T + a 3 z - 3 T + a 4 z - 4 T

where

-nT

is the z-transform representing a unit impulse delayed by nt.

The frequency response of the filter is the Fourier transform of the

impulse response which can most conveniently be found by replacing z by

ej

Suppose the waveform input to the filter is given. Then if we can find the

weights, a, which produce "white noise" at the output of the filter we know

that the frequency response of the filter is related to the spectrum of the

input. More specifically the power density spectrum of the output waveform

is the product of the power density spectrum of the input waveform and the

filter spectral response. If the output is "white" then the estimate of

the power spectrum of the input is

p(w) - E (2.1)
lFourier transf'm of filter impulse resp'se[2
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p(w) = E(2.2)
-2jwT -3jwT 4jwT. 2

la0 + a e + a2e +a3e + a4e

where E is the energy of the output sequence. ,'.

This gives us a method of estimating the spectrum of a signal which is

alternative to the DFT. .

The link between the tapped delay line filter of figure 1 and linear

predictive filtering is made when the weights are selected to minimize the

output energy. In order to constrain the minimisation, we choose to fix

a0 - 1. (Note an unconstrained minimisation would simply result in all

a - 0.) We now redraw figure 1 as figure 2. Here we can see that a

current input sample is added to a filtered version of the previous four

input samples to form the output. Clearly, if y - -x then e = 0 and we can

think of the filter a, - a4 as predicting the next sample. Perfect . . ..

prediciton is not possible in the presence of noise and we settle for

minimum mean square difference between predicted and actual samples over

the data set available. 7

Obviously it is only possible to perform a predictive process if there is

some correlation between successive data samples. This occurs if the

signal input is the sum of a (finite) number of sinusoidal waveforms plus

noise. The correlation between data points is described by a covariance ' .

which can be statistically estimated from the data samples available.

The limitations of this method when the data sequence is short arise

because a short data set limits the accuracy to which the weights can be

estimated in the presence of noise. Also the number of weights is limited

by the data length (usually to somewhat less than half the number of data

samples) and this may be less than the number required to obtain the .

desired detail in the spectral estimate.

The remainder of this paper sets out to show how the weights, a, can be "

estimated from a short sample of data and how the limitations of the method

affect radar performance when compared with the DFT.



III ESTIMATING THE WEIGHTS

This section shows how the weights of a of the linear predictive filter can

be found from a covariance matrix which is itself estimated from the data.

The theoretical outline given below is simple, aiming only to give a

general understanding of the process. g

Referring to figure 2, at any time instant, j, the output e is a linear

combination of the input samples x.

4

ej xj +ExJ - iai (3.3)

i=1

Thus if we have a set of samples:

x0 to xT

we can write the filtering operation in matrix form as:

x4 x3 x2 xx 0  [I e 4

x5 x4 x3 x2 x1  a, e5

•4 [a3
-44

X T . . .a .a.a.a XT e

* or

X.a =e (3.4)

The optimum prediction filter is then defined as that filter which

minimises the output energy E. Now E is simply given by:

T

E e ei e .e

i=4

4



where * means complex conjugate and H is the Hermitian operator.

% ..

Differentiating with respect to a and equatiang to zero (for minimum) .

results in the so called Normal Equations which give the solutions we

require:

x 4 x 5 .... xT 4 x 3 x 2 x I x 1 " Emin

a, 1

x2 .... a2  0

Xi .... a3  0I "***"'"

x0  .... a4  0

xT . . . XT,. ,

or more compactly -

R *a - E(min)1

..... (3.5)

where the matrix R, which has the form of a covariance matrix, is defined

as:

XH. X

And E(min) is the energy of the residue. Using equation (3.5) the

prediction filter coefficients:

a, - a4

can be found by direct inversion of the matrix R. (Usually direct

inversion is avoided and more suitable methods used).

Strictly speaking, the covariance matrix is a matrix of expected values and

the matrix R, as defined above, is just one possible estimate given the

5



limited data set {x}. The difference in the procedure for estimating the

covariance matrix account for some of the variety of techniques. However

we do not wish to confuse the issue and this method for developing R will

be the only one used in this paper.

A few points are worthy of note:

a. Because E(min) > = 0 in equation (3.5) the matrix R is non-negative *...

definite. Indeed in most cases of interest where the signals are corrupted

by noise R will be guaranteed positive definite. (In physical terms this

means that the estimated power spectrum is positive or zero at all

frequencies.)

b. In general R is Hermitian but non-Toeplitz. Toeplitz covariance

matrices result from stationary statistics and although many of the

processes found in radar systems may be regarded as stationary, with a

limited data set we have found that R is significantly non-Toeplitz. It is

convenient to regard a short sample of data as converging to stationarity.

This implies that an estimate of the covariance matrix formed from such

data will converge to the Toeplitz form. It is interesting to note that

some methods, for example Burg's MEN, force R to be Toeplitz and this may

account for some of the peculiarities of the method.

c. If our signal consists of q complex exponentials (Phase and quadrature

sinusoids) in white noise then a filter of order p > = q is required to

leave a white noise residue. (By definition white noise is unpredictable!)

d. If our signal is coloured noise then the LPF still minimises the

output leaving a white noise residue.

e. R as defined above makes no assumptions about data which is not

available.

:.- ***.

f. The LPF method does not window the data, that is there is no weighting .--...

of the available samples.

6
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IV SPECTRUM ANALYSIS

The last section has shown that given a data set

{x i : i - 0, T.

then a p'th order filter, a, can be found which minimises the output energy

from the filter. In particular, if {x} consists of q complex exponentials

in white noise, then if p > - q the output residue will be white. Because

of this property the inverse of the power response of the filter is an

estimate of the signal power density spectrum. ie

p(f)-emin/l Fourier transform(a)1 2  (4.1)

Notice that the resulting spectral estimate is a continuous function of

frequency. In practice only a sampled version of the continuous transform

is produced by forming a DFT on the vector a; the number of spectral

samples determining how finely the spectrum is sampled. The required size

of the DFT is an interesting question which will be discussed later.

What order of filter is needed for a given data set? The lack of a priori

information makes this also a matter of compromise. There are methods for

estimating the best filter order from the data (13], [4]). However we have

found them entirely unsatisfactory especially at high signal to noise

ratio. Instead we are interested in finding what (if any) compromise is .

incurred when we fix the filter order at a relatively high value (to give

capability on as many sinusoids as possible), for example at one quarter of

the number of data samples. This is a much higher relative order than is

found in much of the literature.

To summarise, a spectral estimate is created by the following steps

a. Form the p x p covariance matrix estimate (R) from the data.

b. Invert R to solve for E(min) and filter weights a.

(Matrix inversion is avoided at this step).

c. Form the spectral estimate p(w) using equation (4.1) or (2.2).
'I ". .
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It is clear from above that the required processing is considerably

increased over a straight DFT particularly when it is realised that parts

of the processing should be done at high accuracy and dynamic range (eg 36

bit floating point arithmetic.) From a systems engineering point of view

then the process must show considerable improvement over the DFT if is is

to be a practical alternative. The following sections describe some work S_'.

which attempts to find where and when the process might be seriously

* considered.

V STATISTICS OF SPECTRAL NOISE

Of considerable interest to the radar engineer is the behaviour of the

spectral estimator when stimulated by "white" receiver noise. It is this

situation which determines the system detection threshold (by consideration

of false alarms) and therefore ultimately the detection performance of the

radar.

In order to find the properties of the spectral estimator with noise input

we presented white Gaussian noise to a program running the spectrum

analysis. In all cases single precision (36 bit) floating point complex

arithmetic was used and in the main 64 complex data samples were used. To

some extent predicting the outcome, the statistics were performed on the

log power spectrum. Using this, the pdf of the noise spectrum was

"" generated for a wide variety of filter orders.

Figure 3 shows some examples of the resultant pdf's for p = 4, 8, 16. It

can be seen that they look generally "normal" with a mode which decreases

and variance which increases with increasing p. Perhaps of more interest

is the cumulative distribution function. Figure 4 plots some examples of

the pfa (probability of false alarm). For small values of P these curves

exhibit Gaussian behaviour. However for P > 8 and small values of pfa the

behaviour is non Gaussian. The curves indicate that although the main body

of the distribution appears Gaussian it has considerably more area in the

tails.

It was mentioned earlier that solutions to the normal equations can be

found which avoid the necessity to invert the matrix R. On such method is

an iterative method developed by Morf [1]. A byproduct of this method is

the production of a backward solution as well as a forward solution. The

. ... • • • am •8
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backward soluton is simply the optimum filter with the data set running

backward in time. It is possible therefore to generate a pair of spectra

from the data set: one corresponding to the forward predictor and the other -

to the backward. Observation of the behaviour of these spectra led us to

believe that there might be some benefit from averaging the two log power

spectra. This was done and the resulting pfa curves shown in figure 5. It

can be seen that for low order filters and for high pfa the curves are very 177.

similar. However at high order P and low pfa the tails of the distribution

seem much better controlled. The agreement with normality (represented by .-

the circled points) now seems very good over the range of parameters

measured. These plots were used in subsequent work to estimate suitable

thresholds for false alarm control.

VI SINGLE SIGNAL DETECTABILITY

The primary advantage of the new methods is generally one of enhanced

resolution. However in the current radar context detectability cannot be

ignored. There are many reports which suggest that improved resolution can

only be achieved at high signal to noise ratios without being specific as

to how high. It is the purpose of this section to try to supply some ',

quantitative answers to questions about the effect of signal to noise ratios.

Unlike the case of noise alone, detectability of a single sinusoid in white

noise is affected by the transform size used to sample the continuous

spectrum. This is because extremely narrow peaks can be produced in the

spectrum (particularly at high signal to noise ratios). Clearly if the

sampling interval of the spectrum is too large then peaks can be missed.

The approach taken here to decide on how large a transform size is needed

was a follows. At each (rdndom) trial the frequency and phase of the

sinusoid were chosen randomly and single look detection probabilities were

derived for a variety of transform sizes. Throughout the trials the

amplitude of the signal was held at unity and the input noise power varied

to span a range of different signal to noise ratios.

Before examing the detection results it is worth looking at figure 6. This

shows some log-power spectra for a particular case. In this example a

single high signal to noise ratio sinusoid was subjected to spectrum

analysis by unwindowed FFT, windowed FFT and the LPF techniques under

consideration here. There were 64 complex data samples and the same data

7i Lz-



was used xor each technique. The sinusoid had half a cycle in the data set

(of size 64). It is not necessary to examine the results in great detail

to recognise why the modern methods are appealing. The linear prediction

method has a very sharp peak at the correct frequency and shows no sign of

leakage. (Only the first 37 points of the 256 point spectrum are shown.)

It is also clear why under-sampling of the spectrum could result in

complete loss of a signal.

To date the simulations of detectabililty have been limited in number. One

particular example is shown in figure 7. The data set consists of 64

complex samples. A fixed prediction filter length of 16 and a fixed

thresholds was used (derived from the pfa curves given earlier). The

figure corresponds to a transform size of 256 and each figure shows the

single look detectability as a function of the ideal signal to noise ratio.

(The ideal signal to noise ratio, SNR, here is defined as 64 times the

input SNR which would be achievable by perfect coherent integration). The

leftmost curve is derived from Meyer and Meyer [21, the middle curve is the

result of the averaged forward and backward spectra and the rightmost is

that of a single direction predictor. Points to note are:

a. The effective loss in SNR for the averaged process over the optimum

linear detector is about 2dB. This is the same order of loss as might be

expected from a windowed DFT.

b. The single direction predictor seems to suffer a further loss of about

3dB.

Reducing the transform size to 128 increased the loss of the "averaging"

case by 0.3dB and the other by 1.5dB. Increasing the transform size to 512

made no difference to the "averaging case" and .4dB improvement in the

other. It can be seen therefore that averaging reduces the sensitivity to

transform size, indicating that averaging broadens the spectral peaks.

These results are very encouraging for the averaged version technique. A

natural conclusion to draw is that, because the peaks are less sharp in the

averaged spe,..rum, the resolution might be inferior. However it is our

experience that the sharpness of the peaks gives little indication of the

achievable resolution which is much less that might be expected. Indeed
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the sharpness of the peaks seems an embarrassment and in a practical system

the probability of every obtaining the actual peak is quite small.

The conclusion to be drawn from this section is that the averaging process s

is beneficial not only because detectability is improved but also because

the continuous spectrum need not be sampled as often.

vII MULTIPLE SIGNAL RESOLUTION

Finding a metric which adequately describes resolving power on multiple

signal detectability is always difficult as it can depend on many

parameters. In this paper, we avoid to some extent this complicated

problem. The approach taken is once again based on Monte Carlo simulation

where the M signals (each of arbitrary phase but constant amplitude) are

scattered throughout the spectrum in a statistically uniformly distributed -

manner. We then compute the probabilities of detecting zero to M targets.

When the individual target signal to noise ratios are high enough to give

unity detection probability then losses is detectablity can only be

attributed to targets merging through poor resolving power.

Basically we wish to compare the performance of windowed DFT with two LPF .-.:-.;,£~..,

techniques. Although we have not done exhaustive tests the work done so - -

far has indicated that there is no significant different in the resolution

of the two LPF techniques. We therefore focus our attention on the results

of the averaging technique in comparison to the (windowed) DFT.

Equal Amplitude Signal Pairs

In this particular experiment we again took 64 data samples and fixed the

filter order at 16. For both the processes a 256 point DFT was used to

form the spectrum. The thresholds were set to produce a pfa of 7 in 1000 per

data sample. Single signal detectability was then checked at an ideal

output SNR of 10dB. With these particular parameters the LPF method proved

to be a marginally better detector. Taking this difference into account the

effective resolutions are roughly equivalent up to 10dB SNR. As the SNR is

increased the resolution of the LPF method improves over the DFT. At 30dB

SNR the LPF is about two and a half times better and at 50dB SNR about

three and a half times better. At this latter SNR the LPF method produced

a correct signal pair on 98% of the trials and on the windowed DFT on 93.

1 I .- ,.'



Sixteen Equal Amplitude Signals

The analysis of signal pairs does suggest that the LPF method provides

superior resolution. In order to check how this improvement might reflect

on the multiple signal situation the same approach was used for sixteen

randomly positioned and phased signals. The results shown in figures 8, 9

and 10 indicate that the 10dB S/N ratio the DFT and LPF behave similarly

whilst at 20dBs and above the LPF is significantly better than the DFT, the

latter not improving with S/N ratio.

Unequal Signal Pairs

One of the main criticisms of the DFT method is the requirement to window ..c

the data to reduce spectral leakage to an acceptable level. The LPF method

uses no such window and it is therefore worthwhile to observe the effects

when a large and small signal coexist. Leaving all other parameters the

same two targets, one of 10dB and the other of 50dB SNR were subject to the

previously described Monte-Carlo tests with a uniform random distribution $-

of frequencies over the band. If the large target had represented clutter

then we are interested in the loss of detectability of the small target

through its merging into the clutter on the random occasions that they were

close together and not resolved. The results showed that detectability of

the small target was reduced to 90% (of the value without the large target)

using the windowed DFT and 93% using the LPF method. The DFT method

suffered a small increase in false alarms whilst the LPF method enjoyed a

small decrease in false alarms. These results are convincing evidence that

windowing is not required for the LPF method and also that spurious signal

generation is not evident.

VIII CONCLUSIONS

. This work, though not exhaustive, has given some useful perspective on the

* performance of spectral analysis (for pure sinusoids in white noise) using

the Covariance Method of linear predictive filtering. In particular it has

been found significantly advantageous to take the geometric mean of the

power spectra produced from the forward and backward filters. Given this

approach, the LPF method can match the detection performance of a windowed :-

DFT for a single sinusoid in white noise. Moreover, in all the work done



so far there is no evidence of spurious peak production. That is to say,

the false alarm probability does not increase above the noise only case b.-

when signals are introduced. Above about 10dB SNR improvements in

resolution over a windowed DFT are observable and are small factor

improvements rather than order of magnitude.

The main conclusion must be that at high SNR significant improvements in

multiple signal detectability can be expected from the LPF method. However

this conclusion must be tempered with a full realisation of the rather

large computational increase over the DFT methods. It will not be until

the full cost of reducing word lengths are understood that the method is

likely to be used for real time spectrum analysis.
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