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PREFACE

The work described in this report was conducted between April of
1984 and July 1985 by personnel in the Radar Division of the Environ-
mental Research Institute of Michigan (éﬁIM). The work was supported
by Intera Environmental Consultants, Inc., as part of U.S. Geological
Survey Contract No. 14-08-0001-21748. The technical monitors for
this program were Messrs. Joseph Pearson (Intera) and John Jones
(USGS).

The principal investigator for this program was Mr. Eric S.
Kasischke. Mr. Richard W. Larson and Dr. Philip L. Jackson assisted
in the design and deployment of the calibration and geometric refer-

ence reflectors. Messrs. James Marks, Jack Losee and Robert Williams
processed the SAR data.
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USGS X-, C- AND L-BAND SAR DATA COLLECTION PROGRAM

1
INTRODUCTION

This report presents a summary of the multi-channel (i.e., multi-
frequency and multipolarization) synthetic aperture radar (SAR) data
set collected for the United States Geological Survey (USGS) during
the Side-Looking Airborne Radar (SLAR) Data Acquisition Program.
This report specifically discusses data collected over the North
Carolina Digital Project Area (NCDPA). This SAR data collection was
conducted between 8 and 10 April 1984 over four forested test sites
in central North Carolina (see Figures 1 through 3).

The objective of this data collection program was to provide USGS
scientists with a data set which could be used to determine whether
or not geologically-stressed, vegetated areas could be discriminated
using multi-channel SAR data. In order to achieve this goal, the
SAR data must have a high degree of radiometric and geometric fidel-
ity. To assist in obtaining this fidelity, a set of calibrated cor-
ner reflectors and a set of geometric reference reflectors were de-

X ployed near the four test sites.

During the data collection period, three SAR missions were flown,
with 22 passes of imagery being collected. Two missions (16 passes)
were flown with the SAR collecting X- and L-band data, and one mis-
sion (6 passes) was flown with the SAR collecting X- and C-band data.

There are five chapters in this report, including this introduc-
tion. Chapter 2 describes the ERIM/CCRS CV-580 SAR System used to
collect the data for this project. Chapter 3 documents the data col-
lection and processing performed, including: (1) coverage maps and
SAR system parameters; {(2) a discussion of the calibrated corner re-
flector array; (3) a discussion of the geometric reflectors; (4) a
discussion of the digitally-recorded data; and (5) an engineering
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assessment of the SAR data. Finally, Chapter 4 summarizes the prin-
cipal results of this program.

There are four appendices to this report. Appendix A discusses
the basic manner in which the X- and L-band SAR imagery collected
during this experiment may be calibrated. Appendix B describes the
dihedral reflectors deployed during the SAR data collection. Appen-
dix C describes the Hybrid Image Processing Facility used to digitize
the SAR data for this program. Appendix D discusses the formats of
the digitally-recorded SAR data set.
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E CV-580 SAR SYSTEM DESCRIPTION ::'
: -
h From 1978 through 1984, ERIM operated a multifrequency and multi- ‘
polarization SAR in conjunction with the Canada Center for Remote .
? Sensing (CCRS). This SAR was maintained through a leasing agreement ﬁ;
between ERIM and CCRS and is called the CV-580 SAR System. This fa- 23
cility was used extensively over the past six years in a variety of :?
oceanographic and terrestrial research programs. The leasing agree- _
ment between ERIM expired the end of CY84. At this time, the CV-~580 ﬁk
SAR System is not available for U.S. Government sponsored research ii
programs. Efforts are underway to transfer this system into a U.S.- ;E
owned aircraft (Shuchman, et al., 1984). ;
The CV-580 SAR System was essentially an X-band radar to which E'
an L-band and a C-band capability was added. Because of this config- -
uration, the X-band channels were always available, and, in addition, E;

one could operate either the L-band or the C-band channels simulta-

neously with the X-band channel. For each frequency band, two ortho-

gonal polarizations were available. The radar could transmit either
horizontal or vertical polarization and receive both the parallel »
and perpendicular-polarized returns, The radar antenna could be -

pointed so as to image on either side of the aircraft. Table 1 sum- :

marizes the relevant radar parameters for this system. i;
Figure 4 presents a functional diagram of the CV-580 SAR System. E;
The major components of the SAR are its antennas, the transmitters .
3 and receivers, the calibration signal generator, the optical film Ei
E. recorders, the digital tape recorder and the X-band real-time gl
i processor. ~
t' Figure 5 presents a more detailed diagram of the reference oscil- Ef
; lators, transmitters and receivers of the SAR system. This diagram -
shows how the L-band and C-band wavelengths are returned to X-band. o
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rigure 6 presents a diagram of the calibration signal generator

(CSG) system, which is used as a monitoring and reference source for L
e . . r
the periodic verification of the SAR's system transfer function. By

The calibration signal generator produces synthetic target signals
which are added into the radar receiver (Walker and Larson, 1981;
Larson, et al., 1981; 1982; 1985). The form of the synthetic target
corresponds to a given range, and the intensity is controlled by an
accurate calibrated R.F. attenuator. At specific times during the
imaging flight, the calibration signals are inserted into the re-
ceiver at the antenna terminals, so that the radar receiver detects
them as a radar return. Using a sequence of such signals wi*h dif- .
ferent intensities, along with the processed signals from the corner
reflectors, a calibration curve can be produced of output signal A
power versus radar cross section (oo). When combined with measure- -
ments of precision corner reflectors, CSG measurements can be used
to achieve absolute calibration of the SAR (see Walker and Larson,
1981; or Larson, et al., 1985). The synthetic targets from the (SG
can be recorded both optically and digitally, but only at X- and
L-band.

A RN

A
'

The three SARs which comprised the CV-580 SAR System are similar
in that they all use the synthetic aperture technique to produce
imagery with fine cross-range resolution. These SARs used pulse com-
pression to achieve fine resolution in the range dimension. Each
recording channel was adjusted to produce imagery of a selected swath -
parallel to the flight direction. The width of the imaged swath was
determined by the range increment of signals displayed on the record-
ing system. The displacement of the recorded swath from the flight {
line was adjustable by the radar operator. The CV-580 SAR System is
extensively described by Rawson, et al. (1975). e,

The SAR phase histories were recorded onboard the aircraft both
optically on 70 mm film and digitally on high density digital tape -
(HODT). The optical recording system recorded four data channels,

11
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while the digital system was restricted to recording only two of the
four data channels during data collection. In addition to the opti-
cal and digital recorders, a real-time digital SAR processor onboard
the CV-580 generated X-band imagery. The real-time imagery was not
intended to be of high quality, but provided "quick-look" data neces-
L sary for system performance evaluation and planning purposes during
data collection missions. It was also used to select digital data
S of interest for subsequent processing and analysis. Table 2 presents
the various data recording options available on the system. Figure
7 schematically illustrates the various SAR data recording and pro-
cessing options.
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3
DATA DESCRIPTION

-

2800
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This chapter contains a summary of all multi-channeil SAR data
collection missions conducted during the USGS North Carolina program,
as well as a description of all SAR data processing performed at
ERIM. This chapter also contains a description of the calibration
and geometric reflector arrays which were deployed, as well as a
description of the digital SAR image products which were generated.

3.1 SAR DATA

There were five test sites within the North Carolina Digital ps
Project Area (NCDPA). These sites are: Y

Cedar Rock/Coolers Rock Mountains -
Shepard/Caraway Mountains
Pilot Mountains 2

Bowlings Mountain

m O O w X

Daniels Mountain -

The locations of these sites are presented in Figures 1 through 3. "
Three SAR data collection missions were flown over these sites on 8 .
through 10 April 1984 with the CV-580 SAR System. A total of 22 7
passes of SAR imagery were collected. These missions are summarized i
in Table 3.

Juring the NCPDA data collection, the CV-580 SAR System was con-
figured in its two-frequency, narrow swath mode. In this mode, four
channels of SAR data were recorded optically on SAR signal film and
two channels recorded digitally on high density digital tape. Each N
optically-recorded channel has a slant-range swath width of 5.4 km -7
and each digital channel has a slant-range swath width of 6.1 km. R

In the two frequency, narrow swath mode, eitner horizontally (H)

or vertically (V) polarized microwave energy is transmitted in two

17
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frequencies (X- and L-band or X- and C-band). Both like (HH or VV)
. and cross (HV or VH) backscattered energy from each frequency is '
i recorded optically, resulting in four channels of data. Two of the
A four channels are recorded digitally.

X- and L-band SAR data were collected on 8 and 9 April 1984 and
X- and C-band data were collected on 10 April 1984. The frequency
and polarization combinations which were optically- and digitally-
recorded are also summarized in Table 3.

In the remainder of this section, we will discuss the SAR data
collected during each of the three missions. For each SAR mission,
a table summarizing the aircraft ground tracks and SAR parameters
are presented. Diagrams which present t“2 ground location of each
pass are also included, as are representative examples of SAR
- imagery.

ki
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3.1.1 USGS-1 (8 April 1984 - 13:06 to 16:24 EST)

The purpose of this mission was to collect multipolarization
X- and L-band SAR data over the NCDPA. Three passes of SAR imagery
were collected over a test area to verify the operational status of
the CV-580 SAR System. Six passes of SAR imagery were collected over
Test Sites A, and B and C, including one pass over the calibrated

corner reflector array.

The aircraft and SAR system parameters for the USGS-1 mission
are summarized in Table 4. [n Table 4, all latitudes and longitudes
represent the positions to the near edge of the swath. The locations

of the ground coverage during each SAR pass of the USGS-1 mission
are presented in Figures 8 through 15. Figure 16 presents optically-
processed X- and L-band SAR imagery of Pilot Mountain collected dur-
ing Pass 7. The SAR data collected during this mission was all of

exceilent quality.
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Figure 10. CV-580 SAR Ground Coverage During USGS-1, Pass 3
(after USGS Raleigh 1:250000 Quad Sheet) -
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(after USGS Raleigh 1:250000 Quad Sheet)
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Figure 12. CV- 580 SAR Ground Coverage Durlng USGS 1, Pass 5
(after USGS Raleigh 1:250000 Quad Sheet)
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0 1000 m

Figure 16. Optically-Processed X- and L-Band SAR Imagery of Pilot
Mountain (USGS-1, Pass 7, 8 April 1984)
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3.1.2 USGS-2 (9 April 1984 - 11:27 to 13:45 EST)

E Ik e il

The purpose of this mission was to collect multipolarization
X- and L-band SAR data over the NCDPA. Two passes of SAR imagery
were collected over a test area to verify the operational status of
the CV-580 SAR system. Five passes of SAR imagery were collected
over Test Sites A, B, C, D, and E including one pass over the cali-

[N i)

brated corner reflector array.

The aircraft and SAR system parameters for the USGS-2 mission
are summarized in Table 5. The locations of the ground coverage dur-
ing each SAR pass of the USGS-2 mission are presented in figures 17
through 21. The SAR data collected during this mission was all of
high quality.
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Figure 19. CV-580 SAR Ground Coverage During USGS-2, Pass 3
(after USGS Raleigh 1:250000 Quad Sheet)
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Figure 20. CV-580 SAR Ground Coverage During USGS-2, Passes 4 and §
(after USGS Raleigh 1:250000 Quad Sheet)
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(after USGS Greensboro 1:250000 Quad Sheet)
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3.1.3 USGS-3 (10 April 1984 - 15:59 to 17:58 EST)

The purpose of this mission was to collect multipolarization
X- and C-band SAR imagery over the NCDPA. One pass of SAR imagery
was collected over a test area to verify the operational status of
the CV-580 SAR System. Five passes of SAR imagery were collected
over Test Sites A, B, C, D, and E including one pass over the cali-
brated corner reflector array.

The aircraft and SAR system parameters for the USGS-3 mission
are summarized in Table 6. The locations of the ground coverage of
each pass of the USGS-3 mission are presented in Figures 22 through
25. Figure 26 presents optically-processed SAR imagery of Pilot
Mountain collected during Pass 4. The SAR data collected during this
mission was all of excellent quality.
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3.2 SAR CALIBRATION DATA

The data acquired during the USGS-NCDPA flights to assist in the
calibration of the SAR imagery are discussed in this section. These
data include images of a calibrated corner reflector array and images
internally-generated calibration signals. Appendix A to this report
discusses calibration of SAR imagery in detail.

The calibrated corner reflectors were located in two separate
arrays. These arrays were located at the Asheboro Municipal Airport
and at a site in the Duke Forest east of Durham, North Carolina.
The Tlocations of these two sites are presented in Figure 1. The
Asheboro Array was imaged during three passes, and the Duke Forest
Array during six passes.

A total of 31 precision corner reflectors and one active radar
calibrator (see Brunfelt and Ulaby, 1984} were deployed in the two
arrays. The types and sizes of these reflectors are summarized in
Table 7, and their placement within the two arrays illustrated in
Figures 27 and 28. Figure 29 is a photograph of typical reflectors
used to calibrate SAR imagery, and Figures 30 and 31 contain X-, C-
and L-band SAR images of these two arrays.

At specified times during the SAR flights, internal calibration
signals were recorded, which are used to calibrate the SAR imagery
(see discussion in Chapter 2). Figure 32 presents exanples of these
internal calibration signals collected at L-band.

3.3 GEOMETRIC REFERENCE REFLECTORS

One of the goals of the USGS-NCDPA data collection program was
to provide a multifrequency, multipolarization, digitized SAR data
set to evaluate the utility of multi-channel SAR data for the detec-
tion of stressed vegetation communities. Implicit in this goal is
the capability to merge the multi-channel SAR data.
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Asheboro airport calibration array
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Figure 27. Approximate Locations of Reference Reflectors Within the

Asheboro Calibration Array (see Table 7 for reflector
parameters)
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Duke forest calibration array
*34?0W) N
1

.
VB
? B
Ha i
N
v v v oS ‘
D H H H H :
o Key
M Acive radar calibrator
a Square trihedral
A\ Triangular trihedral
Figure 28. Approximate Locations of Reference Reflectors Within the Duke -
Forest Calibration Array (see Table 7 for reflector parameters) -
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0
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To assist in this latter objective, a set of specialized radar

reflectors were designed and deployed around test areas A and B.

N These reflectors, called dihedrals because of their design, reflect "]
the incident microwave radiation being transmitted by the SAR in such 3
a way that a return is detected by both the like- and cross-polarized
channels of the SAR system. The design and construction of these

SRR S

fllll

dihedral reflectors is discussed in more detail in Appendix B, which
contains an article which has been submitted for journal publication.

A total of thirteen (13) dihedral reflectors were deployed at .
nine different sites. Figure 33 presents a photograph of a dihedral
reflector, and Figure 34 presents the positions of the nine sites
where the dihedrals were deployed. Table 8 lists the latitude and
longitude of the positions of the dihedral reflectors. .

A review of the SAR imagery indicates that the dihedrals were Y
not detected every time they were within the SAR swath. For the X- o
band data, the reflectors were detected 72 percent of the time on
the like-polarized channel and 81 percent of the time on the cross- ;
polarized channel. For the C-band data, the reflectors were detected ﬁ
33 percent of the time on the like-polarized channel channel and 56
percent of the time on the cross-polarized channel. Finally, for ]
the L-band data, the dihedral reflectors were detected 22 percent of ’}
the time on the like-polarized channel and 57 percent of the time on :f
the cross-polarized channel. 2

3.4 DIGITIZED SAR DATA

The primary objective of this data collection program was to gen-
4 erate a multifrequency and multipolarization SAR data set in a digi-
tal format. To produce this data set, ERIM's Hybrid Image Processing
Facility was used (see Ausherman, et al., 1975, which is included as 2
Appendix C to this report). -
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Scientists from the USGS selected imagery from twelve separate
scenes to be digitized. The images were digitized using an aperture
with an equivalent ground size of 3 m by 3 m. The data were then
slant-to-ground range corrected and resampled to a pixel size of 3 m
by 3 m (see Section 3.4.1 below). A first-order radiometric correc-
tion was also applied to the data (see Section 3.4.2). The original
uncorrected data are archived at ERIM. The data were then tran-
scribed onto a set of 6 CCTs, with each CCT containing the six chan-
nels (X-, C- and L-band; VV and VH polarizations) of data from a
specific scene.

Table 9 summarizes the digitized SAR data set. Presented in
Table 9 are the CCT number, the file number, IPL tape number where
the original data is stored, the area of the scene, the mission and
pass of the scene, the frequencies and polarizations of the SAR data
for that scene, the number of lines per scene, and the number of
pixels per line for each scene. Appendix D presents the format of
the CCTs.

As mentioned above, two corrections were applied to the SAR data
collected during the USGS-NCDCP. First, a siant-to-ground range cor-
rection algorithm was applied to the data. This was followed by an
empirical radiometric correction program to remove the effects of
the SAR antenna pattern, range fall-off and the illumination pattern
of the laser used during digitization of the SAR data. Each of these
corrections are discussed in a following section. For an in-depth
discussion of calibration of this data, the reader is referred to
Appendix A.

3.4.1 GEOMETRIC CORRECTION OF SAR DATA

Because of their sidelooking geometry, SARs produce imagery in
the slant range plane. The across-track position of an object in a
SAR 1image is determined by its slant range, the straight line dis-
tance of the object from the SAR platform. Ground range, the
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distance of the object from the ground track of the vehicle, is the
representation desired by most image interpreters and analysts.

Figure 35 illustrates the relationship between slant range and
ground range. In actuality, the earth's surface is curved, but from
aircraft altitudes, the curvature 1is small enough to be ignored.
However, from spacecraft altitudes, the earth's curvature must be
accounted for.

In this section, we will discuss the relationship between slant
and ground range on a flat, horizontal earth. The relationship be-
tween slant and ground range is non-linear, but simple. The trigono-
metric relationship for flat earth is

Rg = RS sin e , (1)

where e 1is the incidence angle, RS refers to slant range, and R

refers to ground range. The slant range is always smaller than
ground range and is highly dependent upon the angle at which the ter-
rain is viewed. However, the relationship between the change in
slant range to the change in ground range is

ARg = ARS/sin e . (2)

The relationship between Rg and RS determines the scale of
the image. Because this relationship differs at near range compared
to far range, the range scale of the slant range image is not con-
stant. This type of distortion is at its maximum when looking at
the nadir of the vehicle, where the incidence angle is 0°. Near the
nadir, a comparatively small change in slant range will prnduce a
large change in ground range. As the incidence angle is increased,
a smaller and smaller change will occur in ground range for every
change in slant range. At the limit when the incidence angle is 90°
(the radar beam is grazing the grounc and parallel to the ground),
there is no distortion, because the change 1n slant range is identi-
cal to the change in ground rance. Because of this continuous
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Imaging Radar System
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change in range scale across the image, only one range exists where
the slant range scale equals the along-track scale. At nearer range,
the map scale will be smaller, and at a farther range the map scale
will be larger in the slant range presentation of the image.

The slant-to-ground range distortion can be removed by digitally
resampling the data in the range direction. To do this, the slant-
ground range relationships can be rewritten as

R = 4RS - h°, (3)

for the flat earth or Tow-altitude case, where h is the platform
altitude.

Because the range and azimuth scales are not the same after the
slant-to-ground range conversion has been applied, the range dimen-
sion 1is usually resampled to match the azimuth line spacing. Two
types of resampling techniques are commonly used, depending upon the
type of scene, the required accuracy, and the acceptable cost for
the correction. The simplest and least expensive resampling tech-
nique is the nearest-neighbor method. In this method, a grid is set
up having equal intervals of ground range, ARg, beginning at the

nearest range sample, R That is, the ground range at grid point

go’
n is

Rgn = Rgo + nARg. (4)

The ground range spacing ARg is usually chosen to equal the dis-
tance between samples in the along-track direction, so that the image
will have unity aspect ratio when displayed on a device which has
pixel elements of equal size in both dimensions.

The resampling is then carried out by considering each value of
R n in turn, and computing the corresponding ground range from
Eq. (4). The input range sample nearest to this computed ground
range is then copied into the output data set. The maximum error in
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the location of any pixel using this method is one half of the ground
range distance between pixels. Usually, this is an acceptable error,
particularly if the scene reflectivity distribution is relatively
smooth.

Another method of resampling interpolates between samples to find
the data value at the required location. The same steps as described
above are carried out except that instead of choosing the input range
sample nearest to the computed slant range for the output pixel under
consideration, an interpolation formula is used which involves the
data values at several locations surrounding this pixel. Several
different interpolation formulas have been used, most of them varia-
tions or approximations of a sinc (i.e., {sin x]/x) function
(Shuchman, et al., 1977). This procedure results in a theoretically
more exact reconstruction of the image but is more difficult to im-
plement and requires more computer time for its operation.

The recorded altitude (h) of the CV-580 aircraft was determined
by an altimeter which calculates altitude by measuring the difference
in barometric pressure between the aircraft and a point on the
ground, usually the air field where the airplane takes off and lands.
Naturally occuring variations in atmospheric pressure can result in
variations in the actual altitude of the aircraft. Studies have
shown that these altitude variations are often as high as 50 m
(Lyden, 1983; Kasischke, et al., 1983), which can lead to errors in
ground range when calculated using Eq. (3).

Ouring the North Carolina data collection flights, several cold
fronts were moving through the area, resulting in an unstable atmo-
sphere. [t 1is therefore very likely that the barometric pressure
was variable, resulting in some variation in the recorded aircraft
alttitude. The slant-to-ground range corrections made on the data
used the recorded altitude, and thus some ground-range distortions
may be the result of altitude variation.
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Anmu—

If a higher degree of accuracy in the slant-to-ground range cor- z

rection is desired, the following method can be used to determine
the aircraft altitude (h).

LIRS W

AT A A

[f there are two points on a SAR image (see Figure 36) whose lo~
cation can be identified on a map, then we can easily calculate the
slant range distance to each point (R] and R2) and the ground
range distance (in the range direction) between the two points (G).

s The depression angle (eD) to the second point can be calculated
from the law of cosines as o

-1 - <
QD = COS (R% + GZ - Rg) (ZR]G) ] s (5) X

and the altitude can be calculated

h = R] sin e - (6)

Other geometric distortions will be introduced into the image
because Eq. (3) assumes a flat earth. Since there are elevation dif-

ferences within the scene, these will also lead to ground-range vari- B
- ations. These elevation-induced variations can be removed if the E‘
. SAR data are combined with elevation data (see Jackson, 1983). X

3.4.2 RADIOMETRIC CORRECTION

- A first-order radiometric correction was applied to the SAR data
- in order to produce an even illumination pattern across the imaged -
swath. [In this section, we will first discuss the sources of radio- -
metric variation in a SAR scene and then discuss how these variations

were normalized.

The intensity (PI) recorded on the SAR scene is a function of

the radar backscatter (o) for the area being illuminated and a vari- "y

; ety of radar parameters. Assuming that the SAR is operating within
its linear region, this relationship can be expressed as: -
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A

) h=R, Sin o
where
2, T2 2
Cos oy = R, +AB - R,
2R, AB
: Figure 36. Calculation of the Aircraft Altitude (h) From Two
Known Ground Locations (A and B)
. 65
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2 2
PG (8)a Hs°

P, = + P 7)
[ (4“)§R4 n (

where PT is the transmitted power,
G(e) is the antenna gain as a function of the incidence angle,
9,
A» is the radar wavelength,
H_ is the radar system transfer function or radar system
gain,
R is the slant-range distance to the target, and

Pn is the system noise.

Of interest in this discussion are the effects of range (R) and
tne antenna gain [G(e)]. If all other SAR parameters are constant,
a specific target or feature will have a lower PI the further out
in slant range the target is located because

p R
12 %

F—T EZ < 1. (8)
I 2

[f we assume that PI] has a value of 1, then the values of
PIZ/PI1 for increasing ranges are illustrated in Figure 37.

The antennas for the X-, C- and [-band SAR each have a unique
pattern, with a peak gain or intensity occuring at the center of the
antenna beam. The intensity or gain falls off as a function of the
angular distance away from the center of the beam, i.e., a target's
intensity will be lower at the outside of the beam's center than it
will be at the center of the beam.

For the most part, during the North Carolina data collection the
antennas' beams were centered at an incidence angle of 62°.
Figure 37 also illustrates the expected ratio of PIZ/PI1 as a
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Figure 37. Illustration of the Effects of Range Fa!l-off, X- and
L-Band Antenna Pattern, and Laser I1lumination Pattern
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function of o, where PI] is the intensity of a target at the
center of the antenna beam. We can see that the L-band antenna pat-
tern is fairly flat, whereas the X-band antenna fall-off is rather
dramatic. No antenna pattern 1is yet available for the C-band
antenna.

One more factor which will affect the radiometric fidelity of
the digital SAR data is the illumination pattern of the laser beam
which was used to optically-process SAR data in the HIPF. This pat-
tern is also shown in Figure 37.

To be able to guantitatively compare the intensity values within
a given scene or between the same scenes of different frequencies or
between the same area on different passes requires calibration of
the data. This procedure is discussed in Appendix A. We have ap-
plied a first order radiometric correction to the data which has es-
sentially eliminated any range fall-off which may exist in the data.
This does not imply the data have been calibrated.

The range variation within a scene was identiiied by averaging
approximately 200 pixels in azimuth and then plotting a running aver-
age (of approximately 30 pixels) of pixel intensity versus range.
This plot was further smoothed to remove any obvious deviations, and
a multiplicative correction value, Ci’ calculated as

S.
Ci =z (9)

where i is the pixel location in range, Si is the plot intensity
and Smax is the maximum intensity of the curve. A corrected value

for each pixel, PIi’ is then calculated as

P:. =C,P

Ii i Ii (10

Figure 38 illustrates an L-band image with fall-off in the range
dimension. Figure 39 shows the empirical radiometric correction
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Fiaure 38, Non-Corrected Hybrid-Digitized L-Band Data From USGS-2, Pass 5 .
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Figure 39. Radiometric Correction Applied to USGS-2, Pass 5
L-Band SAR Data
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curve generated for these data. Finally, Figure 40 shows the radio-
metrically and geometrically corrected data.

3.4.3 DIGITALLY-PROCESSED SAR DATA

Another method to obtain digital SAR image is to digitally pro-

cess the SAR signal histories recorded on the high density digital
tape (HDDT). During the USGS-NCDPA program, two channels of SAR data
were recorded on HDDT during each pass (see Table 3). These data

are presently archived at ERIM. Figures 41 to 43 present examples
of imagery generated from digitally-recorded data. These images are
all from the Duke Forest area surrounding the calibration array (see
Figure 30).

3.5 ENGINEERING ASSESSMENT

Immediately after optically processing the SAR imagery from a
data collection program, ERIM engineers and scientists perform an
engineering assessment on the data. These engineers and scientists
have extensive experience in SAR image interpretation and recognize
image characteristics which are indicative of SAR system malfunc-~
tions. During this engineering assessment, a rigorous set of guide-
lines is followed. The degree to which each image characteristic is
present is noted. The following rating criteria is used:

+ slight reduction in image quality,
*  moderate reduction in image quality, or
- severe reduction in image quality.

In addition to noting the types and severity of the characteris-
tics present in the imagery, the overall quality of each pass of
imagery is rated using the following categories:
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F1Gure 40, RADIOMETRICALLY AND GEOMETRICALLY CORRECTED
L-BanDp SAR Data From USGS-2, Pass 5
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Figure 41, Digitally-
Forest Cal

0 1000m

Processed X-Band SAR Data Collected Over the Duke
ibration Array (USGS 3, Pass 1, 10 April 1984)
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Figure 42. Digitally-Processed C-Band SAR Data Collected Over the Duke
Forest Calibration Array (USGS 3, Pass 1, 10 April 1984)

y %
< '1,,1.'(

74

e e g e 8]
I R |
-"ﬁ'!-:{‘"

.

£l

-

o

-

‘..'_- S, d P B . ‘.,
._‘.“-" S AR AN .




. .
rrs.

,"l

TIPS

! ‘ ERIM RADAR DIVISION

wl
b ‘o
) -
- “
- 5
~
5 Y
» “w
g ~ \
L
- -
rd B =
) -
. RS
: R
i)
N L
L s '
0 1000m 3
o
. )
iy 1
(2 '-:

Figure 43. Digitally-Processed L-Band SAR Data Collected Over the Duke p
Forest Calibration Array (USGS 2, Pass 2, 9 April 1984)
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7  Excellent imagery ot
E 6 o
5 Good imagery Ef

4 -

3 Fair imagery "

: 2 -
- 1 Poor imagery t
0 Data not recorded or of insufficient quality to be useful. =

A rating of excellent implies that the data are of the highest
y quality and require no additional precision processing. A rating of

3 good implies that there are slight or moderate image perturbations ;}

¥ present, which usually can be removed through precision processing ;
of the imagery. A rating of fair implies there is much useable data N

present, and that the moderate to severe image perturbations may be X
removed through precision processing. A rating of poor implies that ;;
the severe image perturbations generally cannot be removed through AL

precision processing. .

Only two image characteristics were noted during the engineering .
assessment of the USGS-NCDPA SAR data set, and these were noted only i

on the X-band data. These two characteristics were modulation inten- A
sity variations and film transpart runaways. ii
5 Excessive aircraft motion caused by areas of high turbulence i?
A during data collection sometimes create a range-oriented banded pat- fj
tern within the imagery. These bands are referred to as modulation #

intensity variations. This type of image characteristic is most :

often found in X-band data. Figure 44 presents an example of a set .

of modulation intensity variations from USGS-2, Pass 7. i
A periodic malfunction of the camera which recorded X-band data 3

resulted in gaps in the recorded SAR signal histories. These gaps ﬁ;

result in blank areas on the output imagery. Figure 44 presents an if
example of X-band imagery where this film-drive runaway occurred a
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A
during USGS-1, Pass 7. No data are lost due to these runaways, but
the optically processed imagery from passes where this problem oc-
curred will have to be mosaiced in order to produce a continuous

image.

The image characteristics noted on the X-band SAR imagery were
all slight in nature, and did not significantly reduce the utility
of the data set., Overall, the SAR data set collected over the NCDPA
was of extremely high quality. The average quality rating for the
X-band data was 6.2, for the L-band data, 7.0, and for the C-band
data, 7.0. No additional optical processing is required for this

data set.
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SUMMARY

Between 8 and 10 April, 1984, three SAR missions were flown over
the North Carolina Digital Project Area (NCDPA) by the ERIM/CCRS
Cv-580 SAR System in order to collect multifrequency and multi-
polarization SAR imagery over selected USGS test sites. A total of
22 SAR passes were collected over five different test sites. Approx-
imately 790 line kilometers (7900 square kilometers) of high quality
SAR data were collected.

These data were first optically processed into imagery. Copies
were provided to USGS personnel, who then selected twelve areas to
be digitized. A digitized SAR data set consisting of three frequen-
cies (X-, C- and L-bands) and two polarizations for each frequency
(VW and VH) was then produced on ERIM's Hybrid Image Processing Fa-
cility. First-order geometric and radiometric corrections were ap-
plied to the data. Thus, a data set has been generated to use in
the evaluation of SAR imagery for detection of geologically-stressed
vegetated areas.

In order to realize the full potential of the NCDPA SAR data set,
users should realize that sophisticated analysis may need to be em-
ployed. First, to draw quantitative conclusions from the changes in
radar backscatter from different passes, the SAR data must first be
calibrated. Calibration of the SAR data requires reduction of the
calibration array data and calibration signal data as well as fol-
lowing a careful set of procedures (see Appendix A or Larson, et al.,
1985).

Second, higher-order geometric corrections see Jackson, 1983)
may be applied to the original SAR data in order to reduce radar lay-
over and radar foreshortening. These higher-order geometric correc-
tions would not only make the data easier to merge, but also could
be used to account for scattering variations induced by changes in
the local angle of incidence.
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Finally, if analysis of the hybrid-digital data shows significant

X results, researchers should consider the use of digitally-processed 2
! SAR data. These data have a higher spatial resolution, lower noise l,
- ‘ il
‘ levels, and higher dynamic range than the hybrid-digital data. In .
addition, image speckle <can be reduced through multiple-look .

processing. -
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APPENDIX A
CALIBRATION OF SAR DATA

Calibration of SAR data is a relatively straight-forward concept
to understand in a theoretical sense, although the implementation of
a total calibration algorithm requires a careful, routinized proce-
dure in order to keep track of all the factors which can affect each
step in the algorithm. In this Appendix, we will discuss the funda-
mentals of SAR image calibration. For a more in-depth discussion of
calibration, the reader is referred to Walker and Larson (1981),
Larson, et al. (1982, 1985) and Larson and Maffett (1985). In our
discussion, we will use data collected during a SAR/ocean imaging
experiment conducted for the Office of Naval Research (see Kasischke,
et al., 1985) to jllustrate the basic concepts behind SAR image cali-
bration. Figure A-1 presents X- and L-band SAR data of internal wave
surface patterns.

The goal of the calibration algorithm is to relate the measured

intensity, PI’ from a processed SAR image to radar cross-section

(¢). Assuming the SAR is operating within its linear region, this
relationship can be expressed as

PTGZ(G)AZH g
—_— S 4 p
(4")3R4 n

PI =

transmitted power,

antenna gain as a function of the incidence angle,

radar wavelength

radar system transfer function or radar system

slant-range distance to the target, and

system noise.
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Using SAR imagery of calibrated reflectors of known radar cross-

section (o) and internal calibration signals, the basic calibration
approach used at ERIM is as follows:

1. Inspect the candidate SAR imagery for artifacts and satura-
tion to determine its potential for calibration,

2. Digitally process the SAR data set,

3. Calculate Hs and P for the scene to be calibrated using
the calibration signals for that scene and the calibration
reflector scene, and

4. Calculate o for the image scene using PI from that scene
and the specific parameters for that scene (e.g., a new PT
and G(e) and R).

Figure A-2 outlines the overall procedure used to calibrate SAR
imagery. The first two steps (inspection and processing of the SAR
data) appear to be straightforward, but in fact are crucial steps in
the analysis and calibration process. The importance of this step
cannot be overemphasized.

In selection of a SAR data set to address a specific analysis
topic, it is necessary to determine if the SAR signatures are within
the linear response region of the SAR system as well as determine
whether or not the calibration signals are adequate for use in deter-
mining the SAR system gain. Once these two questions have been ad-
dressed, the SAR data can be processed into imagery and the calibra-
tion procedure begun,

Figure A-3 presents image intensity scans through the internal
wave surface patterns present in Figure A-2. The scan was made in
the range direction, with the ship present in the image being the
center of the scan. The scan was generated by averaging 100 lines
in azimuth and 20 elements in range. It is these intensity values
which will be used to i1llustrate the calibration process.
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An examination of the intensities of the SAR signal histories
will indicate whether the SAR system is operating in the linear re-
gion in the area of interest, i.e., whether the signals are saturated
or not. To do so requires comparing the signals from an area of
interest to a curve of the intensities from the calibration signals,
some of which are saturated. The intensities of the SAR signal his-
tories are illustrated in Figure A-4, which presents a curve gener- iy
ated from the internal calibration signals along with the location '
of the intensities of the ship, background level and brightest inter- :
nal wave value. -

The second step in the calibration procedure is to calculate each
of the factors in Eq. (A-1). This includes using the SAR imagery of
the set of calibrated reflectors. Once the SAR images of the re-
flectors are processed, an intensity, P, is extracted for each corner l}
reflector in the scene. This intensity is calculated as

n m
2
P=3 3 X3 (A-2)
i:] J:]
where xij is the power of a pixel,
i is the line number, and

J is the element number.

It is then necessary to calculate the background clutter for the
area where the reflectors have been deployed. Once this clutter
value (C) nas been calculated and normalized to the same area as the
area used for the reflector, then PI is calculated

P, =P -C (A-3)

it

[t should be noted that the same number of elements (i) and lines

(j) should be used to calculate P, for each reflector. Figure A-5

I
presents the P; vs. 5 curves generated for the calibration array

imaged during the ONR experiment.
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Through the establishment of a linear relationship between ¢ and ;i
: PI, we can now arrange Eq. (A-1) to calculate HS for the cali- ,%
. brated reflector array. Specifically &
; '
) P (an)R? ) !
s PTGz(e)xZo g
N
Table A-1 1lists the various factors to calculate HS for the o
] calibration array. .
: The next step in the calibration algorithm is to calculate the E?
system gain, Hs’ for the imaged scene. This is accomplished 5
through measurement of the calibration signals generated before or .
. after each pass of SAR imagery. These signals are measured in much Ky
y the same manner as the reflector images using Eq. (A-3). However, .
E instead of measuring a clutter factor, a system noise factor is cal- i'
: culated and subtracted from the power value (see Lyzenga and 4
Shuchman, 1984). These power values are then plotted against the .
input power used to generate the signal. A curve is generated using N
both sets of calibration signals (for the calibration array and the ;‘
SAR image to be calibrated). The difference between the linear por- \)
. tions of these curves (k) is the system gain difference between the >4
i two passes. The calibration signal curve at X-band for the two ONR 'ﬂ
) data sets are presented in Figure A-6. The system gain for the image ;j
scene, H¢ calculated from Eq. (A-~4), is thus calculated by adding ’i
: or subtracting k from Hs' For our example, k equals 18.0 dB at X
: L-band and 18.5 dB at X-band. -
. Finally, a radar cross section for any pixel in the image scene
- can be calculated
‘ (P, - P )(am) R N
o = 5 5 (A=5)
: PG () Hg :
. 91 n
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TABLE A-1

SAR SYSTEM PARAMETERS USED TO CALIBRATE E
SAR IMAGERY N,
K,
.V
a.) Parameters for Calculation of Hg for Calibration Reflectors 1
y from SARSEX 4, Pass 12 .
™ >
N Parameter X-Band L-Band A
° P - P %
-LT;-—Q 76,504 5,248
A 0.032 m 0.24 m -
R 9,666 m 9,516 m "
2 S
G%(e) 48.6 dB 28.2 d8 S
for e = 5
PT 1,741 W 5,650 W
H 1.0301 x 10'7 W' 3.9974 x 107 W %
- b.) Parameters for calculation of o values for SARSEX-4, Pass 5 [?
. -\
Pn 11,442 204 N
A 0.032 m 0.28 m .
R 7,675 to 11,785 m 7,675 to 11,785 m -
o 29° to 55° 29° to 55°
o, (Peak) 62° 62°
Gz(e) Variable Dependent on 9 and el(Peak)
-
P 1,700 W 5,452 W N
.‘ »
He 7.2923 x 100 y~! 2.5222 x 102 W7 N
»
h 6696 6696
9?2
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Pass 5
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Figure A-6. X-Band System Response Curves Generated From
Calibration Signals for SARSEX-4, Passes 5 and 12
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where PT if the transmitted power and Pn is the system noise for
that scene, and R and G(e) are calculated specifically for that

pixel.

Using Eq. (A-5), a radar cross-section can be calculated for any
pixel or area of the imaged scene. Figure A-7 presents the cali-
brated radar cross-section curves for the ONR SAR imagery.
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Figure A-7. Calibrated X- and L-Band Radar Cross Sections Obtained
From SARSEX-4, Pass 5 Data
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APPENDIX B

Dihedral Reflectors For Cross-Polarized Radar Imagery
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DIHEDRAL REFLECTORS FOR CROSS-POLARIZED RADAR IMAGERY
n
4
P.L. Jackson e
R.W. Larson 7
£.S. Kasischke A

Radar Division

Environmental Research Institute of Michigan (ERIM) o
P.0. Box 8618 it
Ann Arbor, M1 48107 b
Abstract - Dihedral reflectors can be used for both cross- and N

like-polarized radar backscatter to calibrate intensity and provide
locational accuracy for image registration. They can be economically
constructed so that a large number can be used for calibration pur-
poses across an imaging radar swath. Both rotating platform and SAR g
data demonstrated the dihedral's partitioning of reflected energy -
between cross- and like-polarization.

1. INTRODUCTION

Research in the uses of synthetic aperture radar (SAR) data is
focusing more and more on measuring absolute and relative radar back-
scatter as well as merging multi-frequency and multi-polarization
SAR data collected during different SAR overflights. Calibration of Y
SAR data requires the use of calibrated reference reflectors and in- .
ternal calibration signals [1]. Merging of multiple SAR data sets ‘3

i3 aided by using reference reflectors whose positions are known. R

Most SAR calibration experiments to date have used precision <
trinearas (corner) reflectors wnose cross-section has either been
caiculated or measured. Recently, 8runfeldt and Ulaby have developed

an active radar calibrator {ARC) which is essentiaily a transponder

e e,
| A

(2]. The ARC can be mac2 to agenerate either like- or cross-poiarized

returns or both simultanesusiy. &
-
N
S
.‘ *
.
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An increasing amount of research is now being conducted on the

analysis of cross-polarized SAR imagery. Trihedral reflectors do

a e

L SR

) not return cross-polarized waves and thus cannot be used as a cali-

: bration source. ARCs can be used, but since it is necessary to have
a large number of different sized calibration reflectors to generate
a proper calibration curve, it would be quite costly to deploy a suf-
ficient number for calibration purposes.

We wish to describe a dihedral reflector which returns both
like- and cross-polarized EM waves. The dihedral reflector is rela-
tively easy to construct and deploy, and cost-effective for a large
number of emplacements. This type of reflector can be used to cali-
brate both like- and cross-polarized SAR imagery as well as to serve
as a position reference to merge multiple-date SAR data sets,

I1. DESIGN AND EMPLACEMENT i

A polarized wave striking a conducting surface at a given angle =
¢ will, upon reflection, be rotated in polarity by this angle. Two "
successive reflections, such as occur from a dihedral reflector, will i
cause the polarity to rotate by 2¢. If the dihedral is oriented so o
that the intersection of the plates is ¢ = 22 1/2° with respect to
the direction of the polarity and is perpendicular to the propagation o
direction of an incident radar beam, the polarity'of the reflected
beam will be rotated by 45°. Since a 45° rotation has equal compo- s
nents of like- and cross-polarizations, both polarizations can be
sensed in the radar return.

Figure 1 schematicaily illustrates a dihedral reflector, which
consists of two joined, perpendicular sheets of reflecting material
with dimensions a and b. The proper orientation of the dihedral with
respect to the polarity of the radar wave can be maintained by ad-
justing the heights of its front and back corners above a flat sur-
face. These heights (see Figure 1) are adjusted as follows:
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Let

A = (a//2) sin e ,

and

B = (a/"2) cos e sin ¢ ,

where a is the dimension of the dihedral plate as shown in Figure 1,
e is the radar depression angle, and ¢ is half the angle of the de-
sired polarity rotation upon reflection.

Then, for e > ¢

and for o < ¢

H
~n
ps

where the heights h,, h2, and h,_ are shown in Figure 1. The

b

dimensions h] and h2 can be interchanged with the amount of rota-

tion remaining constant but the direction being reversed. The back-
scatter cross-section of such a dihedral [3] is

_ 8«32b2 .
“max ~ A2

where " max 1s the maximum cross-section, and x is the radar

ohi

~aveiength,
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The dihedrals can be constructed of sheet aluminum attached to a
wooden frame, as shown in Figure 2. This dihedral (3 ft (0.9 m) x 4
ft (1.2m) has a o of 566 % for L-band and 34,700 m°

X-band. It is readily emplaced with proper orientation in the field

for

by tying the corners to construction stakes. To aid in field em~
placement the proper heights of the dihedral corners can be listed
in a table of SAR depression angles.

Prior to deployment of the dihedral reflector shown in Figure 2,
laboratory measurements were obtained. A rotating platform in the
field of a fixed antenna was used for this test [4]. Figure 3 illus-
trates polarity-partitioned radar returns from a dihedral reflector
oriented at 22.5° with respect to the incident polarity when the
dihedral faces the transmitter. The dihedral was rotated in the
field of a transmit-receive antenna, and like- and cross-polarized
radar returns plotted. The angle-dependent returns from both polari-
zations are equal or very similar in value within a rotating platform
angle of 7° on either side of the maximum return.

[11. FIELD TEST

A set of dihedral reflectors was deployed during a SAR data col-
lection program conducted for the U.S. Geological survey in north-
central North Carolina in April 1984. The ERIM-CCRS X-C-L SAR [5]
was used for this purpose. X-band (3.2 c¢cm) and L-band (23.5 cm) data

.collected over the Duke University Forest near Durham, North

Carolina, demonstrated the effectiveness of these dihedrals for sens-
ing both like- and cross-polarized radar backscatter. Figure 4 shows
a portion of this imagery in both like- and cross-polarized SAR
images. The dihedral reflector shown in Figure 2 was located near
the center of each image, and is evident in both like- and cross-

polarized images at both wavelengths.

Note that the 'mage of the dihedral is stronger on the cross-

nolarized than on the like-polazarized image, indicating that
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the dihedral reflector was deployed at an angle greater than 22.5°
with respect to the incident polarity direction at the actual SAR
depression angle. Note also that the large (8300 mz) trihedral
reflectors, which return only like-polarized waves, are just visible
on the X-band cross-polarized image. These reflectors produced such
large like-polarized returns that they were detected across the -23
dB isolation between the like- and cross-polarized channels.
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FIGURES

Schematic illustration of a dihedral reflector.
Field emplacement of dihedral reflector.

Like-Polarized (Solid Line) and cross-polarized (Dashed Line)
backscatter vs angle of incidence. Rotating platform in field
of fixed X-band antenna. Aluminum dihedral (a = 6 in, b = 12
in) positioned for 22.5° angle between incident angle and line
of dihedral plate intersection.

L-Band and X-Band SAR data collected over Duke University Forest
in April, 1984, Dihedral reflector is evident on all four like-
and cross-polarized images. Small corner reflectors, located
above and below the dihedral reflectors are evident on the like-
polarized X-band image. ‘
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RADAR DATA PROCESSING AND EXPLOITATION FACILITY

D.A. Ausherman

w.D.

Hall

J. N, Latta

J. S.

Zeleaka

Radar and Optics Division
Environmental Research Institute of Michigan
P.U. Box 618, Ann Arbor, Michigan 48107

ABSTRACT

A system is described which is dedicated to the
signal proces<ing and image exploitation aspects of
synthetic aperture radar (SAR). The systemutilizes
coherent optical, hybrid optical-digital, and wholly
digital approaches to SAR data processing. The sub-
svstems using each one of these processing media
are brieflv reported. Examples of processed ima-
gery are included and an application to radar remote
sensing of the earth’s surface is given as an
example of one use of the facility.

INTRCDUCTION

A svstem has been developed which is Jedicated
to the sigral processing and inage exploitation
aspects of svnthetic aperture radar (SAR). The
overall system is capable of utilizing coherent op-
tical, hwbrid optical-dizital, and wholly dizital
pracessing technclogles in the generaticn, enhance-
ment, and subsequent display of radar imagerv. The
ERIM Radar Data Processing and Exploitation Facil-
itv has proven applicabilitv in many imaging radar
applications, including the remote sensing of
earth's resources.

The concept of Svnthetic Aperture Radar is well
documented|1-3]. The most common SAR utilizes the
sidelooking radar configuration shown in Figure 1.
The cbiective of such a system is to generate a
twa-4imensional continuous image of the terrain
strip illuminated bv a microwave beam as the radar
venizle moves in the azimuth falong-track) direc-
tisn at a constant velocity. Range (cross-track)
sosalution is obtained by transmitting dispersed
~ulses and applving pulse compression techniques
to the returned signals. Azimuth resolution is
sbrtained bv reccrding the Doppler freguency shifts
associated with the returns from poinr scalterers
a5 thew migrate through the antenna hogm.  Xnow=
ledge of the Doppler freguencw ws. time relation-
ship for a peint scatterer at a 2iven rance allows
sne to precisely locate the scatferer in azimuth
in a monner analogous to the dulse compress.:n
applied in the range direscticn. The uncampressed
radar echoes are usually recorded anug subsequent
two-dimensional signal processinz is apolied to
form an image. The signal storage medium is usuaily
optical aralogz (om film) or digital, dependine on
the processing medium to be used for si nal lame
sressicn.  The svstem described herein also 1ll-ows
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optical recording and subsequent digital processing
of the signal histories.

For coherent optical signal compression, film
is the usual storage medium. The radar re:urns are
coherently mixed to video frequencies and used to
modulate the intemsity of a CRT spct as its image
is swept across a photographic film at a constant
velocity. The video signal maintains « small car-
rier frequency to avoid any spectral folding, and
it is recorded about a D.C. bias level to enable
the proper recording of bipolar signals. The re-
sultant film recording is a linear correspondence
between slant-range (time-delay) and the spatial
dimension across the film. Subsequent pulses are
recorded side-by~side along the film as the film
is moved past the CRT at a rate proportional to the
radar vehicle velocity. The spatial dimension
along the signal film is therefore linearly velated
to the azimuth dimension of the terrain. The de-
veloped film forms the input to the optical pro-
cessor.

OPTICAL RADAR SIGNAL PROCESSING

The optical processor acts as a two-dimensicnal
filter matched to the signal generated by a peint

Region {i.uminateq at 2

Terrauwn 3trip to be Umaged Given {nstant o T.me

FIGURE 1.

Schematic Representation of 3trip-ilay
Mode Imawving Radar.
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scatterer. Thus, the required two-dimensional pulse
compression can be viewed as the convolution of an
appropriate reference function with the recorded
radar signal. In the optical processor this convo-
lution is performed by configuring the lenses such
that the impulse response of the processor is iden-
tical to the desired reference function. The pri-
mary advantage of the optical approach is the nearly
instantaneous processing capability for two-dimen-
sional signals with very high information content.

The optical processing facility usually utilizes
a configuration known as the tilted plane optical
processor. This optical system has been previously
reported [4] and will not be described in detail
herein. r a brief description consider the sche-
matic diazram of the processor shown in Figure 2.

A spherical telescope, usually of unitv magnifica-
ticn, is comprised of spherical lenses L, and L,

A cvlindrical telescope of variable magnificatida,
consisting of lenses L, and L is in tandem. The
signal-film transparency S is *illuminated with col-
limated, monochromatic (laser) light by utilization
of a point source P and collimator L The desired
image forms at the output plane I, wRe'e it can be
viewed directlv or recorded on photographic film.
Frequency plane filtering can easily be accomplished
bv placing the appropriate slits and weighting masxs
in plane F, which is the spatial two-dimensional
Fourier transform of the input data. Such filtering
is used primarilv to limit the passband of the pro-
cessor. Fcr certain forms of coded radar pulses

the Jesired matched filtering occurs as a conse-
quence of the lens action and free space transforma-
tisns associated with the optical configuration.

If the ranging signal transmitted by the radar
is a linear frequency modulated (chirp) pulse, the
siant-ranze image is formed near the signal fiim
H the propagatiocn effects between the film and
<2. This is analogous tc the formaticn of a
phic imaze. This image is then re-imaged via
erical telescope to the output plane I. The
historv is a true microwave holo-

s an image, usuallv in a differ-

O

4 11

3f different magnification than the
ranze imaze. By ad;usting the maxnification and the
: ¢ the cvlindrical telescope (with ne
Tanee imager, the range and azimuth
23n be Brought into coincidence with
t plane I. For proecessing of long
oth input and output films must be
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translated through the processor in synchronism,
forming a continuous convolution in the azimuth di~
rection.

The above processing method is complicated in
that the azimuth image plane is tilted with respect
to the signal film while the range image is parallel
to the signal film™. The solution is to tilt the
input and output planes the proper anount to bring
the planes to a common focus [4]. When the input
plane is rotated abour the azimuth coordina:e, the
slant range image formed by the unitv telescope ro-
tates the same amount. The azimuth image, however,
is demagnified by the cylindrical telescope and
therefore rotates a proportionally lesser amount. A
tilt angle usually exists which brings the two image
planes into focus.

Frequency plane filtering is reguired in the
processor to remove the conjugate (the negative
quency band) and undifiracted (D.C.) wavefronts
which result from the holographic signal tecording.
A frequency plane slit {s used to insure that these
signal components Jo not corrupt the final image.

In addition, aperture weighting masks ¢an be in-
serted in the frequency plane to provide the desired
processor impulse response.

The use of film as the hardcopy image storage
medium limits the output dynamic range of the svstem
to approximately 25 dB. The next section will de~
scribe a hybrid optical-digital svstem capable of
providing direct digitization of the output image
with increased dvnamic range.

ire-

HYBRID OPTICAL-DIGITAL RADAR SIGNAL PROCESSING

The image dissector and digitization (IDD) ¢
lity consists of a coherent optical processor i
faced to a computer system which provides digit
tion, recording, and iisplav of processor outpu
The hybrid zoncept =ffectivelv combines the po
and speed of coherent optical data processing with
the flexibility and precision of digital proc i
methods. The system can be used for Jdigitiza

aci-
nter-
Za-

i
2
-

s

*The azimuth image plane is tilted due to
fact that the Doppler frequency vs., acimuthz posi-
ion relaticnship is a functicon of H
the scatterer. This in turn impli
muth holeosraphic signals have focea
varv linearly with ruange.
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ne o range o7
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of film-recorded SAR signal histories or of opti-
cally processed imagery having a dvnamic range of

up to 40 dB. If the digital phase histories are
digitally processed into imagery, it can result in

a very large dynamic range (50 to 60 dB) previously
only available as a light distribution in the output
plane of an optical processor. Such imagery is
ideal for subsequent exploitation processing. The
unique design paramerers for this system were dyna-
mic range response, resolution, linearity, and total
system stability.

A block diagram of the hybrid facility is shown
in Figure 3. The key to the optical-digital inter-
face is the image dissector camera manufactured by
ITT Aerospace/Optical Division. The image dissec-
ter has been described as a photomultiplier with a
small electronically movable photocathode area, thus
acting as an all-electronic, low~inertia microphoto-
meter. The dissector camera is positioned such that
the output image of the optical processor is focused
upon the photocathode. Electrons are emitted from
the back of the photocathode, forming an electronic
image with current densicy modulated according to
the image input. The electron image, focused by
magnetic deflection, falls upon an aperture plane
at the other end of the drift tube. The aperture
samples the image by allowing only a small, well
defined area of the electron image to pass through
to the electron multiplier, which then multiplies
the sampled p?otoelectrons by a factor of approxi-
mately 5 x 107. The entire electron image is de-
flected, allowing the aperture to sample different
points in the input imaze.

In the IDD svstem the aperture is "scanned" only
in the range direction. The aperture is effectively
displacedq in the azirmuth direction as the input filnm
15 translated between successive range scans. The
dissector aperture used 1s rectangular, medsuring
0.0! mm in the range directicn and 0.5 mm in the
azimuth direction. The effective width of the
azimuth aperture can be reduced by placing a slit of
the desired width in the output plane of the optical
processor and then re-imaging the output on the dis-
secter photocathode surface. The spatial frequency
response of the dissector exhibits approximately 407
modulation at 30 line pairs per millimeter.

As shown in Figure 3 the dissector svstem with
irs associated control electronics is interfaced to

£ minicomputer. This computer buffers a

the PD0P-3.E
s-an line of data fromthe dissector interface and

————
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Image Dissector and Digitization (IDD)
Facility
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writes the data on a 9-track, computer compatible
tape system, one line at a time. The PDP-8/E also
has the ability to perform a real-time photonormal-
ization on each scan line of data for removal of the
nonuniform response characteristic of the photo-
cathode (typically +11% variation). The correction
to be applied is automatically determined from data
collected in a special calibration mode of operation.

The images are digitized to 8 bits, giving 256
image intensity levels. An alternate circuit is
selectable which square roots the video prior to
digitization. In this manner 256 levels of image
amplitude information is obtainable. The dvnamic
range achievable with the IDD is approximately 40
dB, compared with a 20 dB dynamic range typically
achievable if the image were recorded directly on
film.

The control electronics enable the user to se-
lect the number of picture elements (pixels) digi-
tized per scan line up to a maximum of 3000 per 30
mm scan length. In addition, the scan length can be
selected by setting thumb switches to the desired
scan start and scan stop address or by adjusting
the dissector deflection voltages. The integration
time per pixel is selectable in increments of 10
usecs from 10 psecs to 990 usecs. (Integration is
required to filter out electron shot noise intro-
duced in the multiplier stages.) Finally, a point-
skip control allows the user to vary the scan line
resolution by skipping up to ten pixels between Ji-
gitizations. Azimuth sample spacing is determined
by the speed of the precision film drive used to
translate the input film. The gﬁlm drive unit has
a long-term stability of 5 x 10 per cent and a
short-term jitter of less than one micron.

The IDD system is capable of beth har
softcopy displav of the digitized daza.
provided with a 70 mm CRT film recorder while sof
copy is accomplished with a PEP-400 analog scan
converter image display interfaced to a PDP-11-/40
control computer.

The hardcopy CRT film recorder is interfaced to
the PDP-8/E and used for displaving digitized data
stored on the magnetic tape unit. The CRT is a
fiber optics direct coupled line scan recorder
capable of recording images up to 3000 elements in
range and virtually any length in azimuth (limited
by film length). The recording spot size is ap-
proximately 20 microns in diameter and recording
linearity is +0.1 per cent in range and * 1 per
cent in azimuth. Although not as accurate as the
digitization process, this display technique is
useful for hardcopy visual presentation of dixmi-
tized imagery.

The softcopy displav consists of a PEP-<00
Conrac display interfaced to a PDP-11,40 minicom-
puter which receives scan data via the PDP-S. E con-
trol computer. The PEP-400 is an analog scan con-
verter which utilizes a silicon dioxide image sto-
rage tube. The storage tube is capable of holdins
a 1024 x 1024 image matrix for 15 minutc, before it
fades and has available 32 shades of grev tor dis-
play. The Conrac TV monitor is a 1229 line Jisplav
svnchronized to the PDP-400 controller. In addi-
tion %o the conventiopal contrast ane drishtness
control, the PEP-400 centroller has a zocm control
and selective X-Y image position contral which pro-
vides meore detailed image examination.




The softcopy display provides a capability for
real-time operator interactive processing. Special
interactive processing techniques such as coherent
optical spatial filtering are possible on a real~-
time basis. The principle modes of operation are:
(1) Direct display of data during digitization;

(2) direct display of Fourier transformed data
during digitization; (3) data plots of FFTs of
image data for initial set up and system perfor-
mance evaluation; and (4) data tape verification
after digitization.

Examples of SAR imagery processed and digitized
on the hybrid IDD facility are shown in Figure 4.
The images were produced with the ERIM four channel
multiplexed radar system [5,6] which on a single
pass produces phase histories at two wavelengths
(3.2 and 23 cm) with two polarization configura-
tions for each wavelength (horizontal transmit,
horizontal receive and horizontal transmit, verti-
cal receive). The phase histories were prbdcessed

¢) 23 c¢»m Horizontal-Horizontal Polarization

d) 23 cm Horizontal-Vertical Polarization
FIGURE +. Sar Imagery Opticallv Processed, Digi-
tized and Displayed using the Hybrid
IDD Facilitv.
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to 30 ft resolution in both range and azimuth and
were digitized with 6.67 ft sample spacing in both
coordinates. The images were then reconstructed on
the CRT hardcopv film recorder. The area image?d
was a portion of the NASA soil moisture test site
near Phoenix, Arizona.

DIGITAL SAR SIGNAL PROCESSING AND IMAGE EXPLOITA-
TION

Digitized phase histories and images, including
those generated on the hybrid IDD system serve as
inputs to the digital radar data processing and ex-
ploitation facility. The goal of this facility is
twofold: (1) the development of two-dimensional
digital signal processing techniques applied to
SAR image formation; and (2) the development of
manual and automatic exploitation techniques, which
will dmprove the practicability of imaging radars
in various applications. The facility comprises a
minicomputer based system of specialized hardware
in a multi-user operating environment. The svstem
has been specifically tailored for efficient SAR
processing and image exploitation.

A block diagram of the digital facility appears
in Figure 5. The basic component of the system is
a Digital Equipment Corporation PDP-11/45 central
processing unit which utilizes 262,144 bvtes of
on-line memory through the use of memory manage-
ment hardware. An advanced operating system (RSX-
11D) allows multiple real-time tasks to run con-
currently on the machine, with a single task ad-
dressing up to 65,536 bvtes of memorv. Intertasx
communication is permitted, which implies that
several tasks could potentially be working on a
single processing problem. Several computer ter-
minals are proviled so that several users can to
utilizing the facility simultaneously.

Special provisions have been made for oifline
storage. Due to the vast amounts of data associ-
ated with SAR phase histories or images, a 116
million byte random access disk unit has been in-
cluded in addition to a DEC RKOS disk unit (2.4
million bytes) used for operating svstem and user
program storage. The magnetic tape svstem consists
of two 9-track and one 7-track dual density type
drives, allowing tape-to-tape processing in formats
compatible with virtually all industry standards,
except the newer 6250 bpi format.

To aid in implementing SAR digital processing
algorithms a hardwired FFT processor has been in-
cluded in the svstem. The FFT processor (Time Data,
Inc. FPE4) can perferm a 1024 point complex FFT in
200 msec. The data frame size for the FFT is con-
trollable from 4 complex points up to +096 complex
points in powers of 2. 1Ia addition to real and
complex, direct and inverse transforms, the troce
sor can perform frequency domain Hanning il
as well as auto and cross spectrum averagzing.
ware has been generated which uses the FFT p
to perform a large arrav two-dimensicnai FFT

1024 x 1024 complex points).

An interactive digital image displav is current-
ly being integrated into the digital facilitv. The
RAMTEK displav, which has a solid-state shif: re-
gister refresh memorv, is capable of displaving
digital imagerv in two modes (1) 512 x 5i2 x » bits
on a black and white TV monitor; and (I} 250 x 15n
on @ color TV monitor with & bits each controliling
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the red, green and blue intensities for each pic-
ture element. Overlay channels are provided 8o
that graphical information such as object outlines
or annotation data can be superimposed on the dis-
plaved images without destroying the contents of
the display memory..- In addition, a trackball con-
trolled cursor allows the user to extract position-
al information from the displayed images. A dia-
gram of the interactive displav system is shown in
Figure 6.

An additional feature of the display are the
programmable table-lookup memories installed be-~
tween the display memory and D/A converters which
provide the video intensities. Under program con-
trol these memories can be loaded with intensity
transfer functions which are then applied to the
images on a point-by-point basis in real time as
they are displayed. The transfer function can be
constructed to provide contrast enhancement, thres-
holding, image intensitv inversion, pseudo-color
encoding or any of a number of single point image
manipulations, the results of which are nearly
instantanecusly visible to the operator. The dis-
play will be used to view digitally processed SAR
imagery and to examine image exploitation techni-
ques.
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FIGURE 5. Digital Radar Data Processing and
Exploitation Facilicy

SAR digital processing consists primarils: of
two-dimensional pulse compression techniques
applied to-digital signal histories. The digizal
facility serves as a general purpose tool for
examining such techniques. The 2-D pulse compres-
sion is generally implemented as two one-dimensi:n-
al digital martched filtering operations in zon::
tion with range and azimuch prefiltering sveratians
analogous to the frequency plane filtering used in
the optical processing technique previouslv de-
scribed. The FFT hardware is useful for performing
the various tynes of digital filtering operatiors.
The digital facility has been structured for nighly
controlled experimental processing rather than em-
phasizing real-time applications.

Once digital SAR imagery is available, exploi-
tation processing can be applied. Such techniques
are directed towards either improving manual inter-
pretation or implementing machine autcrated inter-
pretation of the imagery. The digital facilitv is
applicable to both types of analysis.

The goal of processing for manual interpreta-
tion is to increase the flow of information from
display to observer. Most conventional image pro-
cessing techniques are applicable here, ranging
from interactive extraction of mensuration data
using the cursor, to spatial frequency filtering
for image enhancement. Emphasis is being placed
on single pcint operations to take full advantage
of the real-time, programmable enhancement cava-
bility of the image display.

Automated interpretation involves the use of
pattern recognition algorithms on features ex-~
tracted from the radar imagery. Applications in-
clude automatic target identification
fication of land use or conditions on
multi-channel radar returns. For ewarmz:
images shown in Figure 4 are beinas anaivzed ol
effort to determine soil moisture contenr, suriace
roughness characteristics, and vegetation twpe
associated with the field patterns in the imaze.
The four channels have been digitallv rezisterwd
and multivariate discriminate analvsis is being
applied to derive decision rules based sn tne {-ur
radar returns for each picture element [7]. Iin
addition, texture analvsis [8] is beina applici =o
individual images in an effort to determine fh.o
relationship hetween each surface condizion and
the spatial characteristics of the radar reiurns.

SUMMARY

A system has been described which is
specifically for signal processing and
ploitation of SAR data. The total fac
lizes coherent optical, hybrid optical-digizal,
and wholly dizital processing techn locies oo
generate and effectively displav S$aR { v
optical system uses a state-of-the-irt
processor to process oprically recorded
histories into imagerv. The hvbrid fac
use of an image Jdissector device as a b
tween the optical-analog and digital re
effectively combine the speed and power of coheren:
optical processing with the flexibilizv and rrew i-

sion of digital techniques. A upigue 4i. Losvas
tem which includes a hardwired FET proce:
an interactive digital image Jdispliav oan tnem b

ased Lo investizate disital SAR procoessins o2
manual and sut-mated incerpretation to
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FIGURE 6. RAMTEK Digital Image Display Block Diagram
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APPENDIX D
DATA TAPE FORMAT

The following is a description of ERIM digital data tape format
{SAR IPL data):

1. Each CCT (Computer Compatible Tape) has been recorded on 9
track tape at a density of 6250 BPI.

2. There are 8 files on each tape, with 2 end of volume marks
immediately following the last file.

3. The first record of each file contains a header record from
the original data. The first 96 bytes of this record are
used to store the following information:

A. Data type number
B. File number

C. Flight date

0. Band

E. Polarization
F. Bite

G. File size (prior to geometric correction)
H. Resolution in meters (range)

[ Data Compression method (square root)

J. Processing date

All header data is in an ASCII Convention.

4. Processed SAR data (beginning with record 2 of each file)
consist of fixed length unformatted records. The SAR data
is in a byte convention (quantized to 8 bits, one byte per
image element). Information on the number of records and
record length in bytes of each file has been included, as
well as an example of header information.
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