REPORT NUMBER 2
INVESTIGATIONS REGARDING ANESTHESIA DURING HYPOVOLUME CONDITIONS
ANNUAL SUMMARY REPORT
23 September 1982

DOCUMENT IDENTIFICATION

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited

DISTRIBUTION STATEMENT

ACCESSION FOR
NTIS
GRA & I
DTIC
TAB
UNANNOUNCED

JUSTIFICATION

DISTRIBUTION

AVAILABILITY CODES

DIST
A-1

DISTRIBUTION STAMP

DATE RECEIVED IN DTIC
06 6 5 084

DATE RETURNED

REGISTERED OR CERTIFIED NO.

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDAC

DTIC FORM 70A
DECEMBER 83

DOCUMENT PROCESSING SHEET
PREVIOUS EDITION MAY BE USED UNTIL STOCK IS EXHAUSTED.
REPORT NUMBER 2

"Investigations Regarding Anesthesia During Hypovolemic Conditions"

Annual Summary Report

Richard B. Weiskopf, M.D.

25 September 1982

Supported by

U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND
Fort Detrick, Frederick, Maryland 21701

Contract No. DAMD 17-80-C-0153

University of California
San Francisco, CA 94143

Approved for public release; distribution unlimited

The findings of this report are not to be construed as an
official Department of the Army position unless so designated
by other authorized documents.

(Unclassified)
Investigations regarding anesthesia during hypovolemic conditions.

Richard B. Weiskopf, M.D.

University of California
San Francisco, CA 94143

U.S. Army Medical Research and Development Command
Ft. Detrick, Frederick, MD 21701

U.S. Army Medical Research and Development Command

This research attempts to meet requirements in the physiological management of moderately and severely wounded soldiers, thereby (a) improving the return-to-duty rate of the combat-injured, (b) reducing morbidity and mortality of the combat-injured, and (c) reducing resource (primarily material and logistical support) utilization by Army medical field facilities. The research examines the interaction of anesthetic agents appropriate for use in a combat environment, with hemorrhage. In doing so, the physiology of

Combat casualty management
Hemorrhage
Anesthesia
Physiology cardiovascular
Renin-angiotensin
of hemorrhage the physiological processes that contribute to the differences among anesthetic agents for induction and maintenance of anesthesia during hemorrhage will be examined. Swine are used as the experimental model, examining the rationale and physiology of use of nitrous oxide, enflurane, isoflurane, halothane, thiopental, and ketamine for induction of anesthesia during the hypovolemic condition.

We have found swine to be an excellent laboratory model for the study of hemorrhage, and the interaction of anesthetic agents with hemorrhage. We have characterized the awake swine response to hemorrhage, and defined the swine's blood acid-base chemistry. During hypovolemia, induction of anesthesia with either ketamine or thiopental causes similar, important deterioration of cardiovascular compensation for moderate hemorrhage. Reductions in systemic vascular resistance, mean blood pressure, and cardiac output are not different in hypovolemic animals in whom anesthesia is induced with thiopental in comparison with those in whom anesthesia is induced with ketamine. Both agents also further exaggerate the lactic acidosis seen with hemorrhage. A potentially important difference between the two agents is the continued progressive lactic acidosis one half hour after induction seen in ketamine induced animals, but not in thiopental induced animals. We conclude that induction of anesthesia in hypovolemic condition with ketamine does not offer any advantage over induction of anesthesia with thiopental in a similar circumstance. Similarly, enflurane, halothane, and isoflurane when used for induction of anesthesia in hypovolemic swine all cause deterioration of cardiovascular compensation for hemorrhage. The decrease in systemic vascular resistance, cardiac output, and mean systemic blood pressure among the animals receiving the three inhalation agents are quite similar, as are the metabolic sequelae and increased acidosis. We have found that 10% hypovolemia decreases the minimal anesthetic requirement of ketamine and thiopental equivalently, approximately 35-40%. We have determined the minimal alveolar anesthetic concentration (MAC) in swine for halothane (1.25%) and nitrous oxide (27%)

The products of this project are important and meaningful data and recommendations to be provided USAWRC, AHS, and ultimately the user -- the anesthetist in a combat environment -- regarding the use (potential advantages and disadvantages) of anesthetic agents for acutely injured soldiers.
REPORT NUMBER 2

"Investigations Regarding Anesthesia During Hypovolemic Conditions"

Annual Summary Report

Richard B. Weiskopf, M.D.

25 September 1982

Supported by

U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND
Fort Detrick, Frederick, Maryland 21701

Contract No. DAMD 17-80-C-0153

University of California
San Francisco, CA 94143

Approved for public release; distribution unlimited

The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

(Unclassified)
This research attends to unmet requirements in the physiological management of moderately and severely wounded soldiers, thereby (a) improving the return-to-duty rate of the combat-injured, (b) reducing morbidity and mortality of the combat-injured, and (c) reducing resource (primarily material and logistical support) utilization by Army medical field facilities. The research examines the interaction of anesthetic agents appropriate for use in a combat environment, with hemorrhage. In doing so, the physiology of hemorrhage and the physiological processes that contribute to the differences among anesthetic agents for induction and maintenance of anesthesia during hemorrhage will be examined. Swine are used as the experimental model, examining the rationale and physiology of use of nitrous oxide, enflurane, isoflurane, halothane, thiopental and ketamine for induction of anesthesia during the hypovolemic condition.

We have found swine to be an excellent laboratory model for the study of hemorrhage, and the interaction of anesthetic agents with hemorrhage. We have characterized the awake swine response to hemorrhage, and defined the swine's blood acid-base chemistry. During hypovolemia, induction of anesthesia with either ketamine or thiopental causes similar, important deterioration of cardiovascular compensation for moderate hemorrhage. Reductions in systemic vascular resistance, mean blood pressure, and cardiac output are not different in hypovolemic animals in whom anesthesia is induced with thiopental in comparison with those in whom anesthesia is induced with ketamine. Both agents also further exaggerate the lactic acidosis seen with hemorrhage. A potentially important difference between the two agents is the continued progressive lactic acidosis one half hour after induction seen in ketamine induced animals, but not in thiopental induced animals. We conclude that induction of anesthesia in hypovolemic condition with ketamine does not offer any advantage over induction of anesthesia with thiopental in a similar circumstance. Similarly, enfurane, halothane, and isoflurane when used for induction of anesthesia in hypovolemic swine all cause deterioration of cardiovascular compensation for hemorrhage. The decrease in systemic vascular resistance, cardiac output, and mean systemic blood pressure among the animals receiving the three inhalation agents are quite similar, as are the metabolic sequelae and increased acidosis. We have found that 30% hypovolemia decreases the minimal anesthetic requirement of ketamine and thiopental equivalently, approximately 35-40%. We have determined the minimal alveolar anesthetic concentration (MAC) in swine for halothane (1.25%) and nitrous oxide (27%).

The products of this project are important and meaningful data and recommendations to be provided USAMRIC, AHS, and ultimately the user—the anesthesiologist in a combat environment—regarding the use (potential advantages and disadvantages) of anesthetic agents for acutely injured soldiers.
In conducting the research described in this report, the investigator adhered to the "Guide for Laboratory Animal Facilities and Care" as promulgated by the Committee on the Guide for Laboratory Animal Resources, National Academy of Sciences-National Research Council.
5. Table of Contents

<table>
<thead>
<tr>
<th></th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DD Form 1473, Document Control Data - R & D</td>
</tr>
<tr>
<td>2</td>
<td>Title Page ...</td>
</tr>
<tr>
<td>3</td>
<td>Summary ..</td>
</tr>
<tr>
<td>4</td>
<td>Foreward ...</td>
</tr>
<tr>
<td>5</td>
<td>Table of Contents ...</td>
</tr>
<tr>
<td>6</td>
<td>List of Tables and Figures</td>
</tr>
<tr>
<td>7</td>
<td>Body of Report</td>
</tr>
<tr>
<td></td>
<td>A. Background ..</td>
</tr>
<tr>
<td></td>
<td>B. Approach ..</td>
</tr>
<tr>
<td></td>
<td>C. Results ...</td>
</tr>
<tr>
<td></td>
<td>D. Discussion ..</td>
</tr>
<tr>
<td></td>
<td>E. Conclusions ..</td>
</tr>
<tr>
<td></td>
<td>F. Recommendations ...</td>
</tr>
<tr>
<td>8</td>
<td>Literature Cited ..</td>
</tr>
<tr>
<td>9</td>
<td>Tables and Figures ...</td>
</tr>
<tr>
<td>10</td>
<td>Publications Supported by this Contract</td>
</tr>
<tr>
<td>11</td>
<td>List of Personnel Receiving Support for this Contract</td>
</tr>
<tr>
<td>12</td>
<td>Addenda</td>
</tr>
<tr>
<td></td>
<td>A. Problems ...</td>
</tr>
<tr>
<td></td>
<td>B. Publications Supported, Copies of</td>
</tr>
<tr>
<td>13</td>
<td>Appendix: Manuscripts in Preparation</td>
</tr>
</tbody>
</table>
6. List of Tables and Figures

<table>
<thead>
<tr>
<th>Table/Figure Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Response of swine to 30% blood loss</td>
<td>54</td>
</tr>
<tr>
<td>2. Response of swine to induction of anesthesia with ketamine or thiopental during 30% hypovolemia</td>
<td>55-6</td>
</tr>
<tr>
<td>3. Response of swine to induction of anesthesia with enflurane, halothane, or isoflurane during 30% hypovolemia</td>
<td>57</td>
</tr>
<tr>
<td>4. Swine blood acid-base data</td>
<td>58</td>
</tr>
<tr>
<td>5. Swine blood acid-base curve nomogram</td>
<td>59</td>
</tr>
<tr>
<td>6. Comparison of swine acid-base curve nomogram with similar curves for human and canine blood</td>
<td>60</td>
</tr>
<tr>
<td>7. Swine blood acid-base alignment nomogram</td>
<td>61</td>
</tr>
<tr>
<td>8. Minimal anesthetic dose of ketamine and thiopental in swine during normovolemia and after hemorrhage</td>
<td>62</td>
</tr>
</tbody>
</table>
A. Background:

1. Overall Objectives:

 The long-term objectives of this research project are to improve the physiological management of moderately and severely injured soldiers, and thereby (a) improve the return-to-duty rate of the combat-injured, and (b) reduce morbidity and mortality of the combat-injured. Certain portions of the project also focus on attempts to reduce resource (primarily material and logistical support) utilization required for accomplishment of (a) and (b) above.

 This research examines the interaction of anesthetic agents, appropriate for use in a combat environment, with hemorrhage. In doing so, we also attempt to define the physiological processes that contribute to the differences among anesthetic agents during hemorrhage and the differences between the physiological effects of anesthetics during normovolemia and during hypovolemia. It is hoped that improved management will result from such an understanding.

2. Introduction:

 Further advances for forward resuscitation and in management of the combat-wounded will depend, in part, on the acquisition and application of physiological principles and understanding of the interaction of anesthetic agents and techniques with physiology and pathophysiology.

 Within the past twenty years, there has been a vast proliferation of research in anesthesia and anesthesia-related fields. Despite the information gained, the paucity of knowledge upon which anesthesiologists must base crucial, life-determining decisions regarding the anesthetic care of the acutely wounded soldier is distressingly evident in the chapter on "Anesthesia and Analgesia" of the First US Revision of the Emergency War Surgery NATO Handbook (2). The NATO handbook quite accurately reflects, "In the wounded who require surgery, the most significant alterations in physiology involve the circulatory and respiratory systems." The anesthesiologist in a combat environment, in order to be able to make the intelligent, informed decisions for the proper care of his patient, must have the knowledge of the appropriate normal physiology, abnormal pathophysiology, and how both are altered by the drugs, agents, and techniques he may utilize.

 In addition to ensuring adequate ventilation and gas exchange, the anesthesiologist must also be concerned with optimizing cardiovascular function and selecting agents and techniques that will provide the appropriate alterations in cardiac output, peripheral vascular resistance, total body oxygen consumption, systemic blood pressure, myocardial work, myocardial oxygen consumption, and pulmonary vascular resistance. Lacking the ability to create appropriate alterations, he should, at the worst, have the ability to select the agents and techniques that will do the least harm. Myocardial, cerebral, and peripheral tissue blood flow must be maintained at levels sufficient for aerobic metabolism.
All anesthetic agents have profound influence on all the variables listed above. Halothane, fluoroxyne, diethyl ether, and cyclopropane, in normal, healthy, young male human volunteers, all elevate mean right atrial pressure, increase skin blood flow and decrease oxygen consumption and base excess (3-11). Ether, fluoroxyne, and cyclopropane cause minimal or no decrease in cardiac output, stroke volume, left-ventricular work, stroke work, and mean arterial pressure (5). Halothane, fluoroxyne, and ether decrease total peripheral resistance, while cyclopropane significantly increases it. Unlike other anesthetic agents, deep fluoroxyne anesthesia causes a rise in mean arterial pressure (3-5) as a result of increased central sympathetic outflow (12).

Enflurane during spontaneous ventilation results in increased \(P_{aCO_2} \), greatly decreased systemic vascular resistance, reduced mean arterial blood pressure and stroke volume, but an increased heart rate and cardiac output (13). The investigators attributed the latter to be a result of "beta-sympathetic-like-stimulation" in response to elevated arterial \(PCO_2 \) concentrations. When ventilation is controlled so that \(PCO_2 \) is normal, cardiac output decreases in comparison with the awake state.

Isoflurane, a relatively new inhalational agent, which has been released recently by the FDA for noninvestigational use, has been shown in unpremedicated, healthy young male volunteers to preserve cardiac output unchanged, decrease stroke volume, arterial pressure, peripheral resistance, \(VO_2 \) and left-ventricular work, while increasing right atrial pressure and \(Q/VO_2 \) during constant \(P_{aCO_2} \), maintained by controlled ventilation (14). During spontaneous ventilation, cardiac output and heart rate rise further as a result of rise in \(P_{aCO_2} \), despite the blunting of the cardiovascular response to \(CO_2 \) by isoflurane (15).

Nitrous oxide, first prepared by Priestly in 1772, and first demonstrated to have anesthetic properties by Sir Humphrey Davy in 1800, is not sufficiently potent for sole use as an anesthetic agent. Hyperbaric studies have demonstrated that at normal barometric pressure approximately 10% \(N_2O \) would be required to produce anesthesia. Nevertheless, \(N_2O \) is almost universally added to other inhalation agents to reduce the concentration of the other inhalation anesthetic. The rationale for this practice was originally related to the now-discarded belief that \(N_2O \), beyond its analgesic/anesthetic properties, had no other pharmacological actions. Within the past 10-15 years, information has been gathered regarding cardiovascular actions of \(N_2O \) in experimental animals as well as in man. Because of the wide variations in experimental designs, the results are not clear. Many variables appear to influence greatly the cardiovascular action of \(N_2O \), e.g., type of ventilation, prior administration of drugs, background anesthetic agent, duration of administration of \(N_2O \) prior to measurement, patient age, and patient physical status. Smith et al (16) also suggested (without supporting evidence or citation of any references) that the "extent of ... trauma or blood loss" probably influences the cardiovascular action of \(N_2O \). When added to halothane, \(N_2O \) appears to result in cardiovascular stimulation in normal man (17,18), in cardiac patients (19), and in the normal dog (20-22), although Hill et al (23) noted cardiovascular depression with the addition of \(N_2O \) to halothane in patients with heart disease (for operation for aortic or mitral valve replacement or coronary artery bypass graft), and Brower and Merin (24) failed to note significant cardiovascular action of \(N_2O \) upon its addition to halothane anesthesia in swine. Stimulation is seen in man with the addition of nitrous
oxide to fluoxene (25), diethyl ether (26), and isofluorane (27) anesthesia. In contrast, Smith et al (16) recently observed minimal cardiovascular changes with the addition of N₂O to enflurane anesthesia. With the addition of N₂O to a background of narcotic anesthesia, cardiovascular depression is frequently noted in man (28,29) and in dogs (30).

Cardiovascular stimulation in man by the addition of N₂O to all inhalation anesthetic agents except enflurane is likely an indirect effect. Nitrous oxide was previously thought to spare the myocardium of depression and cause a minimal peripheral vasoconstriction (31-33), probably through an increase in sympathetic activity (32). Recent work has demonstrated a direct decrease in myocardial contractile force by 50% N₂O (34). This is not as great a reduction as caused by an equipotent anesthetic concentration of halothane (34,35). In in vivo studies, the stimulation of sympathetic nervous activity by N₂O would tend to antagonize the direct myocardial depression (36,37).

Despite the stimulation seen, it appears that N₂O does not enhance the overall margin of safety of inhalation anesthetic agents with respect to the amount of agent required to produce respiratory or cardiac arrest (38). Nevertheless, N₂O continues to be used ubiquitously unless the patient physiologically requires very high concentrations of inspired oxygen.

The stimulatory response requires a system capable of providing a relatively intact sympathetic response. This may be neither true nor desirable during hypovolemia. This consideration does not appear to have been tested.

With the introduction of thiopental, induction of anesthesia by intravenous anesthetics became popular. With the entry of the U.S. into World War II, much debate, based on anecdotal experience, arose regarding the wisdom of the use of thiopental in a military setting (39-50). The predominant opinion appears to have been that thiopental should not be used for induction of anesthesia in cases of severe trauma or shock (43,45). However, anesthetic practice today differs greatly from that employed in the early 1940's. At that time, supplemental oxygen was not administered to all patients; nor was it even available on a routine basis. Patients breathed spontaneously. The doses of thiopental that were employed (minimum of 0.5 grams; most often several grams) are by today's standards, grossly excessive, especially for patients with abnormal hemodynamics.

Although thiopental did become the subject of research centered on its hemodynamic properties indicating myocardial depression (51) and reduction of vasomotor tone (52), its use for induction during hypovolemia has not been studied systematically.

More recently, a relatively new agent, ketamine, has been advocated for use in hypovolemic shock (53). In doses of 2 mg/kg IV, given to fit patients without premedication, ketamine has been shown to increase heart rate 36%, systolic blood pressure 45%, diastolic blood pressure 40%, mean arterial pressure 57%, and stroke volume 22% (34,35). This effect is probably mediated through vagolytic activity through baroreceptor blockade (36-38) and central adrenergic stimulation with peripheral alpha effect (39,59-62). Low doses (1-2 mg/kg IV) result in a variable positive inotropic effect (63,64), whereas high doses are negatively inotropic (65-67). Unfortunately, ketamine is relatively short-acting (20-30 minutes), and repeat injections have been reported to have less or no pressor response (54,68,69).
Premedication with atropine attenuates the cardiovascular response to ketamine (70-73). When ketamine is given during general anesthesia, a depressor response is elicited (74-76).

Ketamine has been used as an induction agent for hypovolemic shock. In dogs, Virtue et al (67) noted a modest (4%) increase in blood pressure, and Gassner et al (77) noted an increase in blood pressure and heart rate in hypertensive cats on induction with ketamine. These studies, however, did not quantitate the degree of hypovolemia. In 30 humans in "hemorrhagic shock", Corssen et al (78) reported a 17% increase in systolic blood pressure upon induction with an unspecified dose of ketamine. Chasapakis et al (79) noted a similar response in 13 similar patients premedicated with atropine and given 2 mg/kg IV and pancuronium 4 mg IV for induction. Unfortunately, none of these quantitated the degree of hypovolemia not commented upon continued intraoperative course; nor did they compare ketamine with other agents. Most of this literature regarding ketamine has been of less than good quality.

With the exceptions noted, the pharmacology described above was learned from anesthetizing either normal animals or normal, young, healthy men. It is inappropriate to attempt to translate these pharmacological findings from normal man to hypovolemic man. Many of the indirect but important cardiovascular actions of anesthetic agents, especially those of enflurane, isoflurane, nitrous oxide, and ketamine, require an intact sympathetic response. Hemorrhage results in sympathetic discharge (90). Further sympathetic outflow may be neither possible nor desirable.

Only two studies have compared anesthetic agents during hemorrhage (81, 92). Theye et al (81) compared survival times during removal of 0-40 ml/kg of blood from dogs with intact spleens, ventilated and anesthetized with cyclopropane, halothane, or isoflurane. Prior to blood loss, cyclopropane resulted in higher cardiac output and mean arterial blood pressure than either halothane or isoflurane, presumably as a result of higher arterial epinephrine concentration. With hemorrhage, cardiac output and mean arterial blood pressure fell more rapidly with cyclopropane than with either inhalation agent; arterial epinephrine increased more rapidly with cyclopropane than with either inhalation agent; oxygen consumption fell the most and arterial lactate concentration increased the most with cyclopropane. Survival time was shorter with cyclopropane than with either isoflurane or halothane.

We have compared, in splenectomized dogs, the cardiorespiratory influences of graded hemorrhage (0, 10, 20, and 30% blood loss) during enflurane, halothane, isoflurane, and ketamine anesthesia with spontaneous ventilation (82). Diethyl ether and cyclopropane were not studied because of their flammability and explosive potential and, therefore, impracticality in a battlefield medical facility environment. In comparison with the awake state during normovolemia, of the agents studied, only ketamine provided cardiovascular stimulation (increased heart rate and cardiac output), while enflurane resulted in the greatest depression of cardiovascular function (decreased mean arterial blood pressure, cardiac output, and stroke volume). With graded blood loss, cardiac output decreased more rapidly with ketamine than with all of the three inhalation agents, so that by 30% hemorrhage there was no difference in cardiac output among halothane, isoflurane, and ketamine. In response to hemorrhage, systemic vascular resistance increased most with ketamine. Thus, at 30% blood loss, mean arterial blood pressure was highest with ketamine.
Rate-pressure product and minute work were highest with ketamine throughout hemorrhage except for minute work at 30% blood loss. This was reflected in total body oxygen consumption being highest with ketamine at 0-20% blood loss. Oxygen consumption did not change with hemorrhage with any inhalation agent, but decreased with hemorrhage with ketamine, suggesting that oxygen demand was not met; arterial blood lactate concentration increased with hemorrhage only with ketamine. Under these conditions of the experiments of Theye (81) and our own (82), sympathetic stimulation appears to be an undesirable property of an anesthetic agent when used for maintenance of anesthesia during moderate hypovolemia. These experiments (82) were performed while the dogs breathed spontaneously, and resulted in differing arterial \(\text{PCO}_2 \) among the anesthetic agents. Although the cardiovascular stimulation caused by carbon dioxide (15,82) is blunted by anesthetic agents (15,18,63,84), the varying levels of \(\text{CO}_2 \) among the agents may have influenced the results.

The renin-angiotensin (R-A) system also plays an important role in the physiologic response to and compensation for hemorrhage (86-91). The influence of anesthetic agents on the R-A system has received some attention, with conflicting results (92-98). However, under normal circumstances, the R-A system appears not to be an important controller of cardiovascular dynamics during anesthesia (97). This is not the case, however, in some specific circumstances of altered cardiovascular dynamics. When hypotension is intentionally created by vasodilation with nitroprusside in anesthetized animals, the R-A system plays an important role in preventing what would otherwise be a far greater fall in systemic blood pressure (i.e., it produces significant compensation) (99-100). The R-A system is also responsible for the rebound hypertension observed following discontinuation of nitroprusside (101-102). In sodium-depleted animals, the R-A system is an important regulator of blood pressure during anesthesia (103). These lines of evidence, indicating that anesthetic agents decrease blood pressure in states where the R-A system is activated, lead one to suspect that this may also be the case during hemorrhage. Although this hypothesis has also been suggested by others (97), it does not appear to have been tested.

Understanding the interaction of anesthetic agents with the R-A system during hemorrhage offers the possibility of improved casualty management through appropriate selection of anesthetic agents and R-A stimulants or blockers.

There is no scientifically derived information regarding the actions of anesthetic agents when used for induction of anesthesia in a hypovolemic condition. The work described in this report represents efforts to delineate the interactions of anesthetic agents and cardiovascular control mechanisms and effects during significant hypovolemia.
B. Approach:

1. Comparison of ketamine, thiopental, enflurane, halothane, and isoflu-

rane for induction of anesthesia during moderate hypovolemia.

Young domestic swine (Chester-White-Yorkshire mix breed; 18-21 kg) are

being used to investigate the cardiovascular and metabolic response to induc-

tion of anesthesia during hypovolemia. We use swine because (a) dogs are

becoming increasingly difficult to obtain for purposes of research; (b) swine

are readily available in nearly uniform size; (c) the cardiovascular system of

swine more closely resembles man than does that of the dog; (d) swine hemor-

rhage models have been used successfully by others. Although we were not

aware of it at the initiation of this project, Hannon at the Letterman Army

Institute of Research has had good results bleeding awake swine of approxi-

mately the same size we use (104-105). His animals have been bled by as much

as 50% of their estimated blood volume while unanesthetized and unrestrained.

von Engelhardt reviewed the cardiovascular parameters of swine, although much

of the data was accumulated in anesthetized animals (106). Awake swine have

been used to investigate renal blood flow at rest and during exercise (107),
capillary flow during hemorrhagic shock (108), humoral response to hemorrhage

(109-110), and myocardial metabolism after hemorrhage (111). The anesthetized
pig has been used for a variety of studies, including hemorrhage (112-118),
efficacy of stromal-free hemoglobin (119), and myocardial effects of
anesthetic agents (120).

Our animals are first briefly anesthetized with an inhalation agent to

allow for placement of peripheral venous, arterial, and thermistor-tipped pul-

monary arterial cannulae. The trachea is intubated, the animal paralyzed and

ventilated with a tidal volume of 20 ml/kg, and ventilatory rate adjusted to

maintain arterial PCO2 at 40 torr.

Inspired partial pressure of oxygen (PIO2) is adjusted to maintain par-

tial pressure of oxygen in arterial blood (PAO2) at approximately 150 torr.
The balance of inspired gas is nitrogen. End-tidal partial pressures of O2,
CO2, N2, NO, isoflurane, enflurane, and halothane are monitored at the endo-

tracheal tube orifice by mass spectroscopy. The pig is paralyzed with metocu-

rine, 0.2 mg/kg IV, and supplemented as required. Metocurine is used because
of its lesser cardiovascular effects when compared with pancuronium, gallam-
ine, or d-tubocurarine (121). A percutaneous venous catheter is placed in a
forelimb, and a catheter is threaded through the superficial femoral artery
into the abdominal aorta. A thermister-tipped, flow-directed, triple-lumen
catheter is introduced percutaneously just above the supraternal notch
through the innominate vein into the pulmonary artery. Placement is verified
by pressure trace and the ability to obtain pulmonary arterial (capillary)
wedge pressure. Throughout these experiments, each swine's temperature (meas-
ured by the PA catheter thermistor) is maintained within ±1°C of the
animal's original temperature. Following placement of all cannulae and elimi-
nation of anesthetic agents by continued ventilation, measurements are made in
the normovolemic condition. Samples are withdrawn from the femoral arterial
and pulmonary arterial catheters for measurement of arterial and mixed venous
blood gases, pH, and oxygen concentration. Blood gases are measured by
Radiometer electrodes in Radiometer steel-and-glass cuvets; pH is measured
with a Severinghaus-UC electrode (122), all thermostatically controlled at 37°C.
Oxygen concentration is measured by an electrolytic cell (Lex-02-Con-TL)
As an indicator of tissue oxygenation, blood samples are also withdrawn for the measurement of lactate and pyruvate concentrations. To assess each anesthetic agent’s influence on the sympathetic response to hemorrhage, blood is sampled for measurement of total catecholamine, epinephrine, and norepinephrine concentrations (126). To assess experimental effects on the renin-angiotensin system, arterial blood is sampled for assay of plasma renin activity (125). Femoral arterial and pulmonary arterial blood pressures are continuously transduced by Statham 23Db transducers. Pulmonary arterial wedge pressure is measured by inflation of the balloon of the pulmonary arterial catheter. Right atrial pressure is measured via the proximal lumen of the same catheter. Cardiac output is estimated by a thermodilution technique, injecting 3 ml of 0°C 0.9% saline through the pulmonary arterial catheter, and using an analog computer (Edwards Laboratories Model 9520A). Electrocardiogram is constantly monitored.

The following variables are recorded on a multi-channel polygraph: partial pressures of oxygen, carbon dioxide, nitrous oxide, enflurane, isoflurane, and halothane at the tracheostomy tube orifice; femoral and pulmonary arterial blood pressures (phasic; mean pressures are electrically generated by the pre-amplifier; pulmonary arterial wedge pressure and right atrial pressure are recorded on the same channel as phasic and mean pulmonary artery pressure); electrocardiogram; thermodilution trace from the PA catheter thermistor—necessary to ensure that the washout is logarithmic and that the computer-derived cardiac output value is valid. From these measurements, the following are calculated: base-excess (126-127), stroke volume, mean arterial and pulmonary pressure, stroke and minute myocardial work, systemic and pulmonary vascular resistances, total-body oxygen consumption (cardiac output x C\textsubscript{O\textsubscript{2}}), oxygen transport, and ratio of oxygen transport to oxygen consumption. Following these measurements, the pig is bled during a 30-minute period of 30% of its blood volume (106) through the arterial catheter into a transfer pack containing heparin so that the final concentration of heparin is 1 unit heparin/ml of blood. After a minimum of 30 minutes, all measurements are repeated. Thus, we evaluate each swine awake in the normovolemic condition, and following 30% hemorrhage.

Each pig is randomly assigned to one of the anesthetic groups listed below. With the animal hypovolemic, we then induce anesthesia with one of the following:

- **Group I**: Control; no anesthetic agent administered
- **Group II**: Enflurane, 1.25% end-tidal
- **Group III**: Halothane, 0.50% end-tidal
- **Group IV**: Isoflurane, 0.85% end-tidal
- **Group V**: Nitrous oxide, 60% end-tidal
- **Group VI**: Ketamine (for IV dose, see below)
- **Group VII**: Thiopental (for IV dose, see below)
The concentrations of inhalation agents have been selected to be slightly greater than one-half the required minimal alveolar concentration in the normovolemic animal [hypotension reduces anesthetic requirement (128,154,155)]. The doses of injectable agents (thiopental and ketamine) are established in the following manner. Twenty-four to 48 hours before experimentation, with the pig (normovolemic) resting quietly in a sling, the amount of intravenous agent required to produce loss of lid and corneal reflexes and loss of response to ear-pinch is determined. The dose used for induction of anesthesia during hypovolemia is one-half the dose established during normovolemia 24-48 hours previously. Ear-pinch following induction with this dose during hypovolemia has failed to elicit any response.

End-tidal gas partial pressures, systemic and pulmonary artery pressures, and ECG are continuously recorded during induction. Qp, PAPw, and RAP are measured every 5 minutes during induction of anesthesia. All measurements, calculations, and blood samplings (as indicated above for the awake conditions) are performed at 5 and 30 minutes after induction of anesthesia. In this way, both the transient and quasi steady-state conditions are assessed.

Following these measurements, shed blood is returned, and after 30 minutes, all measurements, samplings, and calculations are repeated. Anesthesia is then discontinued and measurements and calculations repeated 30 minutes after the elimination of the anesthetic agent.

This experimental approach will allow us to show the influence of time (physiologic compensation, or deterioration, if any) on the preparation by comparison of data obtained during the course of experimentation within the control group, and by comparison, within each anesthetic group, of the awake normovolemic values prior to hemorrhage with similar values after return of shed blood and elimination of anesthetic agents.

The data will show the comparative cardiovascular influence of anesthetic agents used for induction of anesthesia during significant hypovolemia.

These results will allow us to provide recommendations to USAMRDC regarding choice of anesthetic agents for use for induction of anesthesia in a wounded soldier who is hypovolemic, and whose blood volume cannot be adequately restored prior to surgery.

Statistical Treatment of Data: Cardiovascular and metabolic variables among anesthetic agents and the control group will be compared using analysis of variance with repeated measures, and Neuman-Keuls method of multiple comparisons (129). Similar statistical tests will be performed to compare the awake hypovolemic with the anesthetized hypovolemic state, as well as the awake normovolemic with the awake hypovolemic state. These tests will be conducted as the series of experiments progresses, and the experiments will be terminated upon achieving statistical significance (P < 0.05) among anesthetic agents, thus affording the possibility of using fewer than the stated number of animals.
2. Swine blood acid-base chemistry:

In order to appropriately evaluate the metabolic sequelae of subsequent experimentation, we required information regarding swine blood acid-base chemistry.

We were unable to find this information in the literature. Although we lacked information indicating specific differences in acid-base parameters between human and experimental animal blood, we were not especially concerned until the report of Scott Emuakpor et al. (161), which indicated differences between human and canine blood in the hemoglobin-independent plot of log PCO_2 against pH. Those findings and our need to characterize the acid-base status of swine blood led to these investigations. As a result, acid-base curve and alignment nomograms were constructed for swine blood, and the methodology used for their construction was reappraised.

Collection and Handling of Blood

Four studies were performed: each study used the blood of a different pig. Each pig's blood was handled in a similar fashion. Pigs were anesthetized with thiopental, and 330 ml of arterial blood was collected in heparin (33 units/ml blood). Whole blood was centrifuged and three red blood cell dilutions (to packed cell volumes of approximately 9, 27, and 45%) were prepared from the separated red blood cells and plasma. A sample of well-mixed original whole blood and samples of each dilution were placed in ice for later determination of total protein (162), hemoglobin (162), 2,3-diphosphoglycerate (163) and methemoglobin (164) concentration. Blood samples were prepared in duplicate at base excesses (BE) of -25, -20, -15, -10, -5, 0, +5, +15 and +20 mEq/l at each of the three hemoglobin concentrations (a total of 60 samples) by adding 100 µl of working acid or base solution (see below) to 3.9 ml of blood. To prevent red cell lysis, blood samples were briefly centrifuged at low speed, and the acid or base solution was added to the swirling supernatant plasma. Samples were mixed gently but thoroughly mixed. Blood preparation was followed by tonometry and measurement of pH. One member of each pair of blood samples was equilibrated for 7 min in an Instrumentation Laboratories Model 213 tonometer with a gas mixture of 2.72% CO_2 in O_2; the other member of the pair was similarly equilibrated with a gas mixture of 9.60% CO_2 in O_2. The gas mixtures had been previously analyzed in triplicate using the method of Scholander (165). (When these gas flows and concentrations and blood volumes were used in preliminary experiments, equilibration of blood with CO_2 was achieved within 4-5 min.)

We measured pH using a Severinghaus-OC electrode (122) thermostatically controlled at 38.8°C, and a Lorenz Model 3 pH-3 amplifier. The pH electrode was calibrated with precision reference buffers (pH 6.839 and 7.379 at 38.8°C, Radiometer, 3-ml sealed glass ampules). Electrode calibration was checked with the 7.379 buffer before and after each blood sample reading. Measurements were performed in duplicate with a maximal allowable difference between the two determinations of 0.003 pH units. The mean (+ SD) of the difference between the paired reading for all samples, calculated without respect to sign, was 0.001 ± 0.001 pH units. Measurements of pH were corrected for red cell suspension effect (166, 167). Carbon dioxide partial
pressure was measured in duplicate using a CO$_2$ electrode (Radiometer E5036) in a steel-and-glass cuvet (Radiometer D616) thermostatically controlled at 38.8°C. The electrode was calibrated with gas mixtures analyzed in triplicate using the method of Scholander (165). A reading of a standard gas with a PCO$_2$ close to that expected for the blood sample was taken before and after each blood sample reading. Blood CO$_2$ tensions were systematically measured to ensure equilibration of blood with CO$_2$. Mean (+ SD) difference between measured and expected blood PCO$_2$ (calculated without regard to sign) was 0.58 ± 0.27 torr at PCO$_2$ of 67.9 torr. Readings for pH and PCO$_2$ were corrected for electrode drift.

Preparation and Standardization of Acid and Base Solutions

A 1.0 N solution of Na$_2$CO$_3$ (160%, certified alkalimetric standard, Fischer Scientific Co.) was prepared and used to standardize, by titration, what we determined to be a stock solution of 1.01 N HCl. The 1.01 N HCl was used as a titrant for a stock solution of what we determined to be 1.03 N NaHCO$_3$. Concentrations of 0.2 N, 0.4 N, 0.6 N and 0.8 N acid and base working solutions were prepared volumetrically from the stock solutions. All working solutions were titrated as described above. All titrations were repeated after completion of the bench laboratory work reported here; no differences were noted between determinations made before and after these experiments.

Data Analysis

The data generated for each pig resulted in three sets of values (one for each concentration of hemoglobin). Each set contained values for pH and PCO$_2$ for blood samples at each base excess (0 to 20 mEq/l of acid or base added). However, since the base excess of the blood drawn from the animal was not necessarily zero, the data were "normalized" to correct for any small acid-base imbalance at the time of sampling. To accomplish this, Siggaard-Andersen and Engel (168, 169) plotted constant CO$_2$ titration curves (pH vs. acid or base added) at both carbon dioxide tensions for each hemoglobin concentration. They curve-fit their data by eye and hand, and similarly shifted the axis for the added acid or base so that zero corresponded to pH 7.400 for the CO$_2$ 40 torr curve (O. Siggaard-Andersen, personal communication).

In following their methodology, we noticed that minor differences in curve-fitting and shifting the data "by eye" resulted in relatively large differences in the final nomograms. Unable to arbitrarily resolve these observed differences, we used precise mathematical and graphical techniques which were implemented by a computer.

For each concentration of hemoglobin, we calculated regression coefficients using a forward stepwise (with a backward glance) selection procedure (170) to fit the model:

$$\text{pH} = (C_1 + C_2 \cdot \text{BE} + C_3 \cdot \text{BE}^2 + C_4 \cdot \text{BE}^3 + C_5 \cdot \text{BE}^4) \cdot \log \text{PCO}_2 + C_6 + C_7 \cdot \text{BE} + C_8 \cdot \text{BE}^2 + C_9 \cdot \text{BE}^3 + C_{10} \cdot \text{BE}^4$$

This model has the following properties: a) for any given BE the relationship between pH and log PCO$_2$ is linear; b) the slope and intercept of this relationship may vary non-linearly with BE; and c) for each concentration of hemoglobin, the calculated coefficients define a model that fits the data with high statistical significance ($R^2 > 0.99$).
For each level of hemoglobin, the equation was "normalized" to a pH of 7.400 for a BE of zero and a PCO_2 of 40.0 torr, Orr et al. (171) in six awake chronically-catheterized swine. These investigators measured PaO_2 as 38 torr and pH as 7.43 (BE less than 1 mmol/l). This seemed sufficiently close to the human standard of PCO_2 of 40 torr and pH of 7.40 to retain these values for BE = 0 for the purpose of nomogram construction. This "normalization" was accomplished by solving each derived regression for BE at pH = 7.4 and PCO_2 = 40 torr using the Jenkins-Traub three-stage algorithm (172). The result, BE error, represented the deviation of the acid-base status of the animal from zero at the time the blood was drawn. Values for the amount of acid or base added (BE) were then adjusted (shifted) by the amount of BE error. The above regression model was then refit using the shifted BE values.

Curve nomogram. Using the equations resulting from the above curve-fitting procedure, we calculated the relationship between pH and log PCO_2 for each of the three concentrations of hemoglobin at each level of BE. Siggaard-Andersen and Engel (169) stated that for each level of BE there exist a single pH and PCO_2 that are independent of hemoglobin concentration. Therefore, for each level of BE, the three lines calculated above should intersect at a single point. Brodda (173) has calculated that this can only occur if shifts in water between the red blood cell and plasma that result from changes in pH are taken into account. Experimentally, the three iso-hemoglobin lines at each level of BE result in three intersections. Several approaches are possible when approximating the hemoglobin-independent point by computer. For example, the three points of intersection could be averaged. However, this method can be shewn to be subject to large error when two of the hemoglobin lines are nearly parallel. Other simple methods of approximation are similarly subject to error. At the expense of being more complex and cumbersome, our approach avoided this potential error.

We approximated the hemoglobin-independent point by calculating the point which minimized the mean square difference in pH and in log PCO_2 between the point and the three buffer slope (isohemoglobin) lines. Intuitively, such a point would be the point requiring the smallest change in the projection of the three hemoglobin lines in order to produce a common intersection. We derived this point in the following fashion.

Let $(pH_{ind}, \log PCO_2_{ind})$ be the Hb-independent point.

Let m_i and b_i, $i = 1, 2, 3$ be the slopes and intercepts of the three linear relationships calculated from the regression model for a given BE (i.e., $pH = m_i \log PCO_2 + b_i$). Solve the following set of equations for pH_{ind} and $\log PCO_2_{ind}$:

\[
\frac{dX}{d(pH_{ind})} = 0
\]

\[
\frac{dY}{d(\log PCO_2_{ind})} = 0
\]

where $X = (pH_1 - pH_{ind})^2 + (pH_2 - pH_{ind})^2 + (pH_3 - pH_{ind})^2$

\[
\frac{dX}{d(\log PCO_2_{ind})} = 0
\]
where

\[Y = (\log P_{CO_2} - \log P_{CO_2}^{ind})^2 + \]
\[(\log P_{CO_2} - \log P_{CO_2}^{ind})^2 + \]
\[(\log P_{CO_2} - \log P_{CO_2}^{ind})^2 \]

\[\text{pH}_i = m_i \log P_{CO_2}^{ind} + b_i \]

for \(i = 1, 2, 3 \)

\[\log P_{CO_2} = \frac{pH_{ind} - b_i}{m_i} \]

A curve nomogram was then plotted by connecting the hemoglobin-independent points for a series of BE values.

Alignment nomogram. Curve-shifted data were used for a computerized construction of the alignment nomogram, in a manner similar to that described by Siggaard-Andersen (174).

"Mean" Pig

For each pig, the previously derived regression equations (one for each concentration of hemoglobin) were used to calculate pH values at each standard P\(_{CO_2}\), at each standard base excess. The resulting four pH values (one per pig) at each P\(_{CO_2}\), BE and concentration of hemoglobin were averaged, thus producing a set of data representing the "mean" pig. Raw data could not be used for this purpose because the base-excess values of the sampled blood differed slightly among pigs, thus requiring differing degrees of "curve-shifting" to achieve "normalization". "Mean" pig data were then handled as if they were from a single pig, and the above described analysis was performed. The result was separate "mean" curve and alignment nomograms.
3. Determination of anesthetic dose of ketamine or thiopental, in hypovolemic swine.

The need for this study was suggested following the presentation of data from study #1 to our departmental research seminar. Although the minimal anesthetic doses of ketamine and thiopental are well described in man and animals during normovolemia, the data do not exist for the hypovolemic state. If hypovolemia causes the minimal required doses of anesthetic agents to be altered differently among agents, results from study #1 would be difficult to interpret. We therefore conducted the following study to determine the minimal anesthetic doses of thiopental and ketamine in our hypovolemic model.

Eight swine (Chester-White-Yorkshire cross) littermates (mean weight ± SE, 15.3 ± 0.4 kg) were divided into four pairs on the basis of similarity in weight. One of each pair was randomly assigned to receive thiopental (group T) or ketamine (group K). All animals were in good health for each study.

Animals were anesthetized four times while normovolemic, at least two days separating each study. Unmedicated animals were placed in a sling, and a cannula was inserted into an ear vein. In random order, on four separate occasions, group K animals were given ketamine 12.5, 15, 17.5, or 20 mg/kg iv. Group T animals were given thiopental 7.5, 10, 12.5, or 15 mg/kg iv. Eventually, each animal received all four doses.

Animals were anesthetized four times while hypovolemic, one week separating each study. Unmedicated animals were anesthetized briefly with halothane in oxygen and nitrogen while arterial and venous cannulae were inserted. Arterial blood samples were obtained; and PO, PCO, and pH measured by appropriate electrodes. Arterial blood pressure was transduced (Statham Model 23Db) and recorded (Gould Model 2800 polygraph). Halothane was discontinued, the animal allowed to awaken, and placed in a sling. Further experimentation was delayed until the end-tidal partial pressure of halothane, as measured by mass spectroscopy, fell to less than 0.5 torr (0.05 MAC). To prevent hypoxia during and after blood loss, animals were given 1-2 l/min oxygen by mask. Each animal was bled by 30% of its estimated blood volume (106) over a 30-min period. To ensure stability, 30 min of observation followed. In random order, on four successive weeks, group K animals received one of four IV doses of ketamine: 2.5, 5, 7.5, or 10 mg/kg IV; group T animals received thiopental, 5, 7.5, 10, or 12.5 mg/kg IV. Eventually each animal again received all four doses.

Following the administration of each drug in either the normovolemic or hypovolemic state, the animal’s response (i.e., movement or lack of movement) to a clamp on the tail was determined. Tail-clamp tests were performed 10, 20, 30, 45, 60, 90, 120, 180, 240, and 300 sec. after drug administration.

The data obtained will be useful in evaluating the data from study #1. In addition, the data will be useful to the practicing anesthetist, who must administer these drugs to a hypovolemic soldier. These results will allow us to provide recommendations to USAMRDC regarding the dose of these anesthetic agents for use for induction of anesthesia in a wounded soldier who is hypovolemic, and whose blood volume cannot be adequately restored prior to surgery.

Statistical Treatment of Data: Responses to clamp on the tail were analyzed statistically using the method of Waud (131). In addition, the
maximum dose of drug which failed to prevent movement in each individual animal and the minimum dose of drug which prevented the animal from moving was averaged for each animal. This average for the four animals in each group were compared between normovolemic and hypovolemic states by using student's t-test. Differences between the two states were compared for the two drugs, using student's t-test.
4. Determination of minimal alveolar anesthetic concentration (MAC) of halothane and nitrous oxide, in swine

In order to perform study #5 described below (comparison of cardiovascular sequelae of induction of anesthesia with nitrous oxide or halothane, in swine) it was first necessary to carefully determine equivalent anesthetic concentration of these agents in our animal model. Although MAC has been determined for man and many laboratory animals for both nitrous oxide and halothane (132), it has not been previously determined in swine. MAC for the same anesthetic agent differs to a fair extent among species (132) and assumption of an average concentration for use in study 5 could create errors sufficiently large to invalidate the study. We, therefore, determined MAC for nitrous oxide and halothane in swine.

Eight young, healthy swine (weight 24.7 ± 1.1 kg, mean ± S.E.; age approximately 10 weeks) were anesthetized, in random order, with either halothane in 30% oxygen, balanced nitrogen, or with halothane, 70% nitrous oxide and 30% oxygen. The trachea was intubated, and the animal allowed to breathe spontaneously while in the lateral decubitus position. Partial pressures of oxygen, carbon dioxide, nitrous oxide, and halothane were measured continuously by mass spectroscopy (Perkin-Elmer model MGAI100AB) at the endotracheal tube orifice. Rectal temperature was measured with a thermister (Yellow Springs) and MAC determined, as described below. The anesthetic was then changed by either the addition or elimination of nitrous oxide, and MAC determined again. When nitrous oxide was eliminated, we waited until its end-tidal partial pressure fell to less than 0.23 torr before continuing experimentation.

MAC was determined in a manner similar to that described by Eger and Saidman (133). Briefly, following each change in anesthetic concentration, end-tidal partial pressure was held constant for a minimum of 15 minutes. A clamp was placed on the tail of the animal. The animal's response (movement or no movement) to the stimulus was noted. If the animal moved, anesthetic concentration was increased by approximately 5-10% of its concentration. If the animal did not move, anesthetic concentration was decreased by a similar amount. When a concentration was eventually reached for which the animal's response changed, changes in anesthetic concentration were diminished so that the concentration of halothane at which the animal moved did not differ by more than 0.05% halothane from the concentration at which the animal did not move.

When N₂O was used, its end-tidal concentration was held constant at 70% (70.14 ± 0.05%, mean ± S.E.). The MAC for N₂O was determined by difference, in each animal, and the results averaged. To determine the individual MAC for N₂O, the concentration of N₂O was multiplied by the inverse of the fraction of a MAC for halothane which the N₂O contributed for each animal:

\[
M_N = C_N \left(\frac{M_H}{M_H + N} - M_H \right)
\]

where \(M_N \) is the MAC for nitrous oxide, in %; \(M_H \) is the MAC for halothane, in %; \(M_H + N \) is the MAC for halothane, in %, in the presence of nitrous oxide at a concentration of \(C_N \). In this manner, MAC was determined for each animal, and the results averaged.
The mass spectrometer was calibrated with calibrated tanks of halothane and nitrous oxide. We produced the halothane standard tank, and calibrated it multiple times against standards made by vaporizing a measured volume of halothane in a sealed flask of known volume. The calibration tank of N₂O was commercially produced and calibrated (Liquid Carbonics); we further checked it against the mass spectrometer calibrated with 100% N₂O.

Data from this study will allow us to use the appropriate concentration of anesthetic agent for study 5.
5. Evaluation of nitrous oxide for induction of anesthesia during hypovolemia.

The purpose of this experiment is to test the hypothesis that nitrous oxide does not offer any cardiovascular or metabolic advantage over other anesthetic agents when used for induction of anesthesia during hypovolemia.

Because the data from study #4 showed the minimal alveolar anesthetic concentration of nitrous oxide to be close to 280%, the depth of anesthesia in those animals given nitrous oxide in study #1, was not comparable with that of other groups. Therefore, the following experiment will be performed. The approach is the same as for study #1 described in this report (pages 13-15), except for the groups of anesthetic agents:

- **Group I**: Nitrous oxide, 70%
- **Group II**: Halothane, 0.31%

These concentrations of anesthetic agents are equivalent, i.e. 25% MAC.

The data from this experiment will show the comparative cardiovascular influence of nitrous oxide with halothane when used for induction of anesthesia during significant hypovolemia. These results will allow us to provide recommendations to USAMRDC regarding choice of anesthetic agents for induction of anesthesia in a wounded soldier who is hypovolemic, and whose blood volume cannot be adequately restored prior to surgery. Should nitrous oxide not prove to have any advantage over other anesthetic agents, it will further allow us to recommend that USAMRDC recommend to the appropriate agency that it consider the cessation of supplying nitrous oxide to battlefield facilities, (supplying N₂O to battlefield facilities represents a large logistical burden).
C. Results:

1. Awake Hemorrhage:

We have successfully established the awake hemorrhagic swine model in our laboratory. Loss of 30% of estimated blood volume results in physiologic sequelae similar to those occurring in other laboratory animals and man. See table 1, page 54. Thirty percent hemorrhage causes decreased right-and left-sided filling pressures (right atrial and pulmonary arterial wedge pressures), resulting in a 38% decrease in cardiac output. Despite a 3 fold-increase in plasma renin activity and a doubling of plasma catecholamine concentration, resulting in increased systemic and pulmonary vascular resistances, compensation was inadequate. Mean arterial blood pressure fell 24%, and mean pulmonary arterial pressure, 29%. Total-body oxygen consumption increased systemic and hypoperfusion was evident from increased blood lactate concentration and base-deficit (decreased base-excess).
2. Comparison of Ketamine, Thiopental, Enflurane, Halothane, Nitrous Oxide and Isoflurane During Induction of Anesthesia During Moderate Hypovolemia:
The experimentation; biochemical, enzymatic, and hormonal assays; and data analyses have been completed. These are being reported in an abstract (134) and two manuscripts (see addendum B5, and appendices I and 2).

a. Induction of anesthesia with ketamine or thiopental (see table 2, pages 55-56).

Control Animals: After the initial changes caused by hemorrhage, no variable further changed in control animals during the hypovolemic period.

Five Minutes after Induction: Five minutes after administration of ketamine (P < 0.05), but not thiopental (P > 0.05), plasma epinephrine, norepinephrine, and renin activity had increased. Despite these differences in circulating vasoactive agents, ketamine and thiopental produced similar changes in compensatory cardiovascular responses to hemorrhage. Systemic vascular resistance was less in Groups K and T than in Group C. Neither agent changed right- or left-sided cardiac filling pressures. Although ketamine and thiopental significantly decreased heart rate, the resulting rates did not differ significantly from the rate for Group C. Although only ketamine decreased stroke volume (0.95±0.12 to 0.70±0.10 ml/kg, P<0.005), the resulting values did not differ among groups. Cardiac output decreased similarly in Groups K and T to values less than that for Group C. As a result, mean systemic blood pressures were less than those for Group C. Oxygen consumption did not differ among the groups, but whole-blood lactate concentrations increased similarly in Groups K and T.

Thirty Minutes after Induction: Thirty minutes after induction, most values had recovered towards preanesthetic levels during hypovolemia; however, significant differences remained. Plasma epinephrine concentration was still greater in Group K than in Groups C and T (which were not different from each other). Although plasma norepinephrine concentration was greater in Group K than in Group T, these two groups did not differ from Group C. Plasma renin activity was greater in Group K than in Group T, but the activity in these groups was not different from Group C. For Groups K and T, SVR did not differ from each other, but was less than that for Group C.

Right- and left-sided cardiac filling pressures and heart rate remained similar, and cardiac output no longer differed among groups. Also, the resultant mean systemic arterial pressure was similar for Groups T and K; both were less than that for Group C.

Oxygen consumption did not differ among groups, but whole-blood lactate concentration continued to increase and base-excess continued to decrease significantly only in Group K (P < 0.05).

Return of Shed Blood: Thirty minutes after return of shed blood, cardiac output was greater in Group K than in Groups C or T. Blood lactate was still greater in Group K than in either Group T or C. There were no other significant differences among groups.

Ninety minutes after return of shed blood, there were no significant differences among groups for any variable.
All animals survived 24 hours, at which time they were killed.

b. Induction of anesthesia with enflurane, halothane, and isoflurane (see table 3, p 57).

There were no differences among the four groups in the normovolemic or in the hypovolemic condition. Hemorrhage caused the expected cardiovascular and metabolic effects. Right- and left-sided cardiac filling pressures decreased and although plasma renin activity, plasma concentrations of norepinephrine and epinephrine, heart rate, and systemic vascular resistance increased, stroke volume, cardiac output, and systemic arterial blood pressure decreased. In addition, base-excess decreased and whole-blood lactate concentration increased. Hematocrit decreased from 36% to 31%

Halothane, enflurane, and isoflurane caused similar cardiovascular and metabolic effects when given to induce anesthesia during hypovolemia; all were different from control animals whose values remained unchanged during the comparable time period (see table 3, pages 57). Induction of anesthesia caused a significant reduction in cardiac output and systemic vascular resistance, thus causing a profound decrease in mean systemic blood pressure. Administration of all anesthetics resulted in increased blood lactate. Oxygen consumption did not change. Plasma renin activity increased but plasma catecholamines did not change. Thirty minutes after induction of anesthesia (anesthetic held constant at the above concentrations) cardiac output had increased, therefore causing an increase in mean systemic blood pressure; systemic vascular resistance, cardiac filling pressures, and heart rate did not change appreciably.
3. Swine blood acid-base chemistry:

The mean acid-base curve nomogram for swine blood is depicted in Fig. 5, p 59; the data are presented in Table 4, p 58. We compared our curve nomogram for swine blood with that of Siggaard-Andersen (168) for human blood, and with that of Scott Emuakpor (161) for canine blood (Fig. 6, p 60). The alignment nomogram is shown in Fig. 7.
4. Determination of anesthetic dose of ketamine or thiopental, in hypovolemic swine.

This study has been completed and will be reported in a manuscript, to be prepared.

Hypovolemia in swine reduced the minimum anesthetic dose for both thiopental ($P < 0.025$) and ketamine ($P < 0.01$); (see table, page 62). These reductions (thiopental $33\% \pm 5\%$; ketamine, $40\% \pm 5\%$) were not statistically different ($P > 0.2$) from each other. After hemorrhage and before drug administration, mean (± SE) arterial blood gas values were as follows: P_{O_2}, 177.8 ± 20.1 torr; P_{CO_2}, 41.9 ± 1.5 torr; and pH, 7.323 ± 0.11. Mean (± SE) arterial blood pressure was 92 ± 3 torr after hemorrhage, 69 ± 9 torr after administration of ketamine, and 68 ± 7 torr after administration of thiopental.
5. Determination of minimal alveolar anesthetic concentration (MAC) of halothane and nitrous oxide in swine.

This study has just been completed. We will begin preparation of a manuscript.

MAC for halothane in normovolemic swine was determined to be $1.25 \pm 0.04\%$ (mean ± S.E.; range: 1.08 - 1.47%). MAC for N_2O was determined to be $277 \pm 15\%$ (mean ± S.E.; range: 204 - 361%).

Temperature of the animals was $37.7 \pm 0.2^\circ C$; hematocrit was $35 \pm 0.7\%$.
D. Discussion:

1. Hemorrhage model:

The swine is an excellent animal for laboratory investigations involving hemorrhage. Swine are more readily available than dogs, and in more uniform size. Their cardiovascular physiology more closely resembles that of man than does the dog.

Our animals are undoubtedly not "at rest" as are those of Hannon (104-105). However, it is necessary to ventilate the awake normovolemic animals in order to conduct valid comparison of that state with the state following induction of anesthesia. Nevertheless, the awake normovolemic values for our swine appear to fall within the broad range of values reported by others for unanesthetized swine (104-110, 130). Hannon (104) has discussed the possible reasons for data variability in the literature, and those need not be repeated here.
2. Comparison of ketamine, thiopental, enflurane, halothane, and isoflurane for induction of anesthesia during moderate hypovolemia.

a. Ketamine and thiopental.

The cardiovascular effects produced by induction of anestheisa with ketamine during hypovolemia differ from those seen during normovolemia. Heart rate, mean systemic blood pressure, and cardiac output increase when ketamine is administered to normovolemic animals or man. In contrast, these variables decrease during hypovolemia. In our study ketamine and thiopental produced identical cardiovascular changes initially. Although these two anesthetics affected plasma catecholamine concentrations and renin activity differently, both caused similar deterioration of the animal's compensation for hemorrhage, and decreased SVR, cardiac output, and BPa. Thirty minutes after induction, hypovolemic animals who had received ketamine for induction became progressively more acidic, while those who had received thiopental or no anesthetic did not. Administration of ketamine further increased circulating catecholamine concentrations above the already elevated levels caused by the sympathetic response to hypovolemia. Thus, one portion of our hypothesis was not supported. In swine, the sympathetic response to 30% hemorrhage was not maximal; further sympathetic response was possible. The concomitant increase in plasma renin activity after administration of ketamine may be a function of increased sympathetic activity, other circulating substances, or a separate action of ketamine. The progressive lactic acidosis 30 min after induction, seen only in the ketamine group, may be a result of increased oxygen demand caused by increased sympathetic activity without concomitantly increased blood flow, or decreased hepatic uptake of lactate, or both.

In intact experimental animals, it is not certain which measure best reflects inadequacy of tissue perfusion. Huckabee proposed blood "excess lactate" as a measure, but later Cain demonstrated blood lactate concentration to be at least as good, if not a better measure of oxygen deficit. Previously, we have shown in asplenic dogs, bled while anesthetized, that blood lactate concentration and base-deficit developed to a greater extent when they were anesthetized with ketamine than with halothane, enflurane, or isoflurane. Conversely, Longnecker et al. have reported higher excess lactate in rats bled while anesthetized with halothane than similar rats anesthetized with ketamine. However, we have calculated that those rats anesthetized with ketamine had a greater base-deficit (approximately 11 mmol/l) than those anesthetized with halothane (approximately 2.5 mmol/l). Recently, Longnecker et al. reported higher PO in cremaster muscle of rats bled while anesthetized with ketamine than in rats bled while anesthetized with halothane. However, since arterial blood gases were not measured, and all animals breathed room air spontaneously, it is not possible to determine whether the tissue PO differences were related to perfusion or arterial oxygen tension, or both. Furthermore, since compensatory events in response to hemorrhage differ among tissues, these measurements do not necessarily reflect conditions in other organs.

In these experiments, despite the increase in catecholamine concentrations and renin activity, SVR, BPa, and cardiac output decreased. This failure of massively increased levels of circulating catecholamines to maintain BPa, SVR, and cardiac output implies that ketamine has a powerful
opposing depressant effect, or that the maximal response to stimulation had been achieved. Ketamine has been shown to be a direct myocardial depressant,33,66,143,144 not to cause contraction of rabbit aortic strips,145 and to relax phenylephrine-induced contracted rabbit aortic strips.146 Similarly, thiopental depresses the myocardium51 and peripheral vasculature.41 In our experiments, both anesthetics decreased SVR. The fall in stroke volume index at a time when left ventricular preload increased, seen after administration of ketamine, tends to indicate myocardial depression. However, since heart rate, afterload, and myocardial compliance were not controlled, no conclusion can be drawn. Alternatively, the increase in circulating catecholamines in the animals given ketamine could have been a response to the hypotension produced by the drug. This would imply that thiopental blocked a similar response. Our experimental data cannot differentiate between these proposed mechanisms. Nevertheless, our data do support the second part of our hypothesis: that further sympathetic stimulation during induction of anesthesia during hypovolemia is not beneficial. Several aspects of our methodology should be discussed. Our animals were not "trained"; therefore, data obtained in the absence of anesthesia, with the animals' tracheas intubated and the animals mechanically ventilated, may not be equivalent to data for "resting" animals. Nevertheless, cardiovascular data we obtained for the unmedicated, normovolemic state fall within the range of values reported by other investigators.100-109,111,113-115 Furthermore, hypovolemic and/or traumatized humans are not in a "resting" state. The few limited reports of hemorrhage in unmedicated swine have shown an arterial blood pressure response similar to that of our animals.102,106,111 Because detailed cardiovascular response of unmedicated swine to hemorrhage has not been reported, we cannot compare some of our results with those of other investigators. Hemorrhage produced changes similar to those we have observed in a larger group of similar swine (Weiskopf RB, Bogetz MS: see table 1, p 54). All cardiovascular and metabolic responses to hemorrhage in our swine are consistent with what is known for man. Although the dog has been the species most frequently used to study hemorrhage, its response and that of the rat differ in important ways from that of man.140,149 In these species, contraction of the hepatic splanchnic causes splanchnic engorgement and a number of sequelae not seen in man.140,149 The response of the gastrointestinal tract of swine in shock resembles that of man.123 Because we did not conduct a dose-response study, we cannot address the question of whether other doses of ketamine or thiopental could have produced different effects during hypovolemia. However, the minimal anesthetic dose required during normovolemia was determined for both agents and individually for each animal. This dose was then reduced in accordance with our findings that hypovolemia similarly reduces the anesthetic requirement for thiopental and ketamine. Smaller doses would not have been anesthetic, and other cardiovascular responses could have occurred. Our data do not demonstrate a beneficial effect from using ketamine during hypovolemia. Studies reporting satisfactory use of ketamine for patients in "hemorrhagic shock" have had some shortcomings: the concomitant use of other drugs; and/or the failure to substantiate major blood volume deficit, to indicate the dose of ketamine administered, or to document cardiovascular responses at specific time intervals.33,57,93 The literature concerning the use of thiopental for induction of anesthesia during hypovolemia is also anecdotal. In World War II, the drug was used in doses of at least 500 to 1,000 mg. Patients breathed spontaneously; and in many cases, inspired oxygen concentration was 21%. It
is not surprising that the result was sometimes catastrophic. Ketamine was introduced 30 years later, after use of controlled ventilation and high inspired concentrations of oxygen had become routine, and after anesthesiologists had become more skilled at recognizing and treating hypovolemia. These improvements alone would have improved outcome. If anesthesia must be induced in a hypovolemic patient, ketamine 0.5 mg/kg iv is often administered. Sometimes the result is satisfactory; sometimes severe cardiovascular depression results. Because many other events occur simultaneously (endotracheal intubation, positive-pressure ventilation, skin incision and rapid initiation of surgery, continued fluid infusion), the outcome does not reflect the effects of the anesthetic agent alone. Our data indicate that moderate hypovolemia does not produce a maximal increase in circulating catecholamines. Administration of ketamine, but not thiopental, causes a further increase. However, the increased plasma concentrations do not further stimulate the circulation, either because they are above the maximal possible effective concentrations, or because their effect is overwhelmed by the depressant qualities of ketamine, or both. Administering ketamine for induction of anesthesia during hypovolemia did not offer any advantages over thiopental when both were used at the minimal anesthetic dose. The clinician should note that an anesthetic agent is not a substitute for adequate restoration of blood volume and venous return; and when an anesthetic must be administered during significant hypovolemia, cardiovascular depression should be expected.
b. Enflurane, halothane, and isoflurane.

A desirable property of any anesthetic agent used in the presence of hypovolemia would be to have little effect on the compensatory mechanisms for hemorrhage. During normovolemia, in healthy volunteers, halothane tends to maintain systemic vascular resistance (5,6) and isoflurane tends to maintain cardiac output (14,15). Therefore, one might have thought that these agents could be used preferentially in the presence of hypovolemia. We have found that halothane, enflurane, and isoflurane cause similar deterioration of cardiovascular compensation for hemorrhage when used to induce anesthesia during hypovolemia. The administration of even a reduced dose of these anesthetics (0.5 MAC) caused a profound decrease in cardiac output, systemic vascular resistance, and therefore, mean systemic blood pressure. The decrease in stroke volume, without a change in heart rate or filling pressures implies myocardial depression, although arterial and myocardial compliance were not controlled. In addition, the anesthetics prevented a reflex increase in heart rate and an increase in plasma catecholamines.

Although the greatest blood lactate concentrations were seen with enflurane, implying the greatest mismatching of oxygen supply and demand, the magnitude of the lactate concentrations implies a reduction in oxygen demand caused by all three agents. Similarly, we have found that halothane and isoflurane, but not enflurane, reduced oxygen demand more than supply in dogs bled during halothane, enflurane, or isoflurane anesthesia (62).
3. Swine blood acid-base chemistry.

Our mean curve and alignment nomograms for swine blood are different from nomograms for human blood (168,174) and canine blood (161) (Fig. 6). As a technical check, we performed similar but limited experiments with blood of two human volunteers. The resultant limited nomograms (30 data points, at hemoglobin concentrations of 3, 10, and 15 g/dl) were similar to that of Siggaard-Andersen (174) between base excess of -10 and +10 mmol/l (P>0.5), but different from our swine nomogram (P<0.001). To compare the swine alignment nomogram with that drawn by Siggaard-Andersen for human blood (174), we plotted our data of known pH, PCO₂, hemoglobin concentration and base excess on the Siggaard-Andersen alignment nomogram as if we were unaware of the true base-excess value. The base-excess values determined from the Siggaard-Andersen nomogram were compared with the true BE values. The resultant estimated base excesses differed (P<0.001) from the known base excess of all blood samples at all concentrations of hemoglobin and base excess, except at a BE of zero, for which the results are definitionally identical. In nearly all cases, however, the calculated value was within ±10% of the true value.

There are several possible explanations for the differences between our nomogram and that of Siggaard-Andersen. Neither set of data is based on the blood of a large population: Siggaard-Andersen used the blood of four people, we used four swine. However, in our experiments, individual variation did not appear to be an important problem.

Some of the observed differences may relate to differences in species. Scott Emukpor et al. (161) described a curve nomogram for canine blood which differed from Siggaard-Andersen's curve nomogram for human blood. The buffer value of plasma proteins and hemoglobin can vary among mammalian species (175,176), and this may account for some, but not all (177), of the differences among the nomograms. Measured total protein of our swine blood (7.2 ± 0.3 g/dl) was similar to the normal value for man.

To create blood samples of altered base excess, we avoided important dilution of plasma proteins by adding small amounts of relatively concentrated (0.2-0.8 N) acid or base. We thereby produced some alterations in ionic strength of blood, which may account for some of the differences between our nomograms for swine blood and those of Siggaard-Andersen for human blood (168, 174). However, our curve nomogram for swine blood differs even more from the original curve nomogram of Siggaard-Andersen and Engel for human blood (169), for which the identical method of addition of acid or base was used.

To construct the nomograms, we followed the general methodology of Siggaard-Andersen. However, the two methodologies differ in several important ways.

We used a method different from that of Siggaard-Andersen to "shift" the original data in order to "normalize" the drawn blood to the established definition of BE = 0, pH 7.400, PCO₂ 40.0 torr. Siggaard-Andersen accomplished the following tasks graphically, fitting the curve and selecting the points by eye (18): a) curve-fitting the two constant CO₂ titration curve plots (pH vs. acid or base added) at each concentration of Hb; b) estimating similar data for PCO₂ 40 torr, assuming a linear relationship between log PCO₂ and pH, followed by curve-fitting of the PCO₂ 40 torr data as in a); c) estimating the axis shift (acid or base added) to align the PCO₂ 40 torr data.
so that at a pH of 7.400, base excess was set equal to zero; d) estimating from the hand-drawn iso-PCO_2 curves, the pH at pre-selected levels of base excess. An example of this graphic process, using data from one of our swine, is shown in Fig. 4. We accomplished all of the above with a computer, the resulting curve-fit equations describing the data with an accuracy of more than 99.95%.

To draw the base excess grid, Siggaard-Andersen used his previously developed pH-log PCO_2 curve nomogram for one set of blood pH and PCO_2 values, and an empirical relationship between buffer base, hemoglobin concentration and base excess to estimate the required second pair of blood pH and PCO_2 values. Because of our uncertainties regarding the specificity of the pH-log PCO_2 curve nomogram and the empirical relationship described above, we chose to use our original data and the computer-generated curve-fits to that data to determine the base-excess grid.

To generate the continuous iso-hemoglobin lines of the base-excess grid from the original data, we developed computerized empirical mathematical equations that were plotted by computer. Siggaard-Andersen used points determined graphically to draw curves by hand. Although we have not examined systematically the differences between the two techniques, we did note before completion of the computer programs that seemingly small, unimportant interpretive differences that occurred when drawing curves by hand through the original data created relatively large differences in the estimated amount required to shift the "acid-or-base-added" axis. These differences created relatively large differences in the alignment nomogram.

Another difference between Siggaard-Andersen's nomogram and our own is the temperature at which tonometry and measurement of pH were performed. Siggaard-Andersen's experiments were performed at 38°C; ours were performed at 38.8°C (normal body temperature for swine). Siggaard-Andersen correctly stated that measurements performed at temperatures within $\pm 2^\circ\text{C}$ of 38°C (the standard temperature of his nomogram) are "without any practically significant error" (21). We temperature-corrected some of our pH and PCO_2 data from 38.8°C to 38.0°C, and then estimated base excess from our nomogram. All estimates were within ± 0.1 mmol/l of the true value. Similarly, using established data for pK^+ solubility of CO$_2$ in plasma (178), we determined that change in calculated plasma HCO$_3^-$ between 38.0°C and 38.8°C was less than 0.1 mmol/l.

Finally, there are differences in the methodology of measuring pH, the major variable upon which these nomograms rest. As a result of advances in design and construction of pH electrode (122) and amplifier (179), our determinations of pH probably had less variability (0.001 ± 0.001 pH units, SD) than did the measurements of Siggaard-Andersen. Variations in the measurement of pH that are usually considered minor (e.g., 0.003 pH units) result in surprisingly large differences in the final nomogram, because relatively small changes in the slope of nearly parallel lines greatly alters their point of intersection. Small variations in pH create the largest changes in the nomogram in the base-excess range of ± 10 to ± 25 mEq/l; the range in which our nomogram differs most from that of Siggaard-Andersen.
Determination of anesthetic dose of ketamine or thiopental, in hypovolemic swine.

Moderate hemorrhage (30% blood loss) produced similar reductions in the anesthetic requirement of these two different intravenous anesthetic agents.

Many variables affect the amount of drug required to produce anesthesia. We were not able to study all, or even most, of these variables because of limitations imposed by our experimental design, which was selected to give the best answer to the question posed (does hypovolemia reduce anesthetic requirement for induction agents, and if so, does the reduction differ for different drugs?) Consequently, we have limited physiological information from these animals to complement the finding of reduced anesthetic requirement.

We do have, however, a good deal of information about other swine whose blood volume were similarly reduced (see table 1, page 54). Variables in these animals were measured during normovolemia and after 30% blood loss. Mean values (+ SE) decreased for arterial blood pressure (from 130 ± 2 torr to 98 ± 3 torr) for cardiac output (from 174 ± 5 ml/min/kg to 113 ± 6 ml/min/kg), and for base-excess (from 5.3 ± 0.3 mmol/l to 3.1 ± 0.3 mmol/l); and increased for blood lactate concentration (from 1.1 ± 0.1 mmol/l to 1.8 ± 0.1 mmol/l).

When half of the drug dose which produced anesthesia during normovolemia was administered to these animals during hypovolemia, further reductions occurred in cardiac output (to 76.9 ± 5.1 ml/min/kg after ketamine, and to 74.0 ± 5.9 ml/min/kg after thiopental), and in mean arterial blood pressure (to 41.4 ± 3.5 torr after ketamine, and to 52.1 ± 7.8 torr after thiopental), and in base-excess. Blood lactate concentration increased even further. These mean arterial blood pressures are just below the level at which autoregulation is able to maintain normal cerebral blood flow. Thus, some of the decreased anesthetic requirement seen in these animals could have been a result of decreased cerebral blood flow. However, the animals in the present study had lesser decreases in blood pressure. Nor did they exhibit sufficient acidosis, hypercarbia, or decreased calculated oxygen content to account for a reduction of anesthetic requirement during hypovolemia.

We did not measure cerebral blood flow, and thus, cannot relate it to anesthetic requirement of these agents. However, since specific anesthetic site(s) of action are not known, knowledge of global cerebral blood flow would be of limited value. Knowledge of regional or microregional (if we knew which microregion) blood flow would be more helpful. Cullen and Eger related decrease in MAC to decreased oxygen delivery to the brain, either from decreased PaO2 or severe isovolemic anemia. A decrease in MAC correlates well with the occurrence of central acidosis. Tanifuji and Eger found a 20% decrease in MAC for halothane in dogs made hypotensive to an arterial blood pressure of 40-50 torr by a combination of trimethaphan infusion, head-up tilt, and mild hemorrhage (approximately 12% blood loss). Rao et al noted a decreased MAC for halothane in dogs made hypotensive by administration of pentolinium, trimethaphan, or nitroprusside, but stated that they did not find a correlation between decreased MAC and decreased carotid blood flow. In their experiments, mean arterial blood pressure did not fall below 60 mmHg, a level above that which autoregulation can no longer maintain cerebral blood flow. MAC however, decreased during the administration of all three drugs; carotid blood flow did decrease significantly in the dogs given two of the
drugs, but the large variability prevented achievement of statistical significance for those in the third group. Furthermore, in the dog, carotid blood flow is not a good indication of total cerebral blood flow. Thus, the literature does not contain a definitive study relating anesthetic requirement to cerebral blood flow.

Hemorrhage increases sympathetic activity and circulating catecholamines in swine (see table 1, page 54). Since an increase in sympathetic activity increases anesthetic requirement, it is possible that anesthetic requirement would be reduced further when the sympathetic response to hemorrhage is not possible or is blocked.

Our studies were performed with injectible agents and not inhalation agents. Thus, it is possible that some, or even all of the reduction in anesthetic requirement we observed after hypovolemia was due to a higher concentration of the drug in the blood and brain owing to a reduced volume of distribution. Changes in concentration of the drug at the site of action would depend upon alterations of blood flow to that site relative to differences in blood concentration.

Price predicted that following a single intravenous injection of thiopental, its concentration in the central nervous system would be higher after hemorrhage sufficient to reduce cardiac output by 40%, but insufficient to alter cerebral blood flow, than after a similar injection during normovolemia. This mathematical model assumed that thiopental does not alter tissue blood flow. However, thiopental does alter cerebral blood flow. From Price's figure one would estimate that the hypovolemic condition he assumed would reduce the necessary dose of thiopental by approximately one-third. Our finding of a 33 ± 5% reduction in dose of thiopental is in accord with this, although in the other series of hemorrhaged swine in which we did measure cardiac output, it fell by 35%. Bergman, in hemorrhaged dogs, found a decreased plasma concentration of thiopental 5-90 minutes after injection over a 2 minute period. Thiopental, however, disappears very rapidly from plasma and richly perfused organs, such as brain. Five minutes after its administration, the concentrations of drug in the central pool and in the rapidly perfused organs are less than 10% and 50% of their respective peak concentrations; 1 and 60 minutes after injection, concentrations in both compartments are less than 5% of their peak values. Peak brain drug concentration and anesthetic effect occur within the first 2 minutes after injection. Because thiopental rapidly leaves the areas of interest, attempts to extrapolate from small concentrations measured much later, would be subject to error. This would be further compounded as the drug's effect on hemodynamics changed with changing concentrations in various compartments. Bergman did not measure the dogs' blood pressure or cerebral blood flow. It is possible that with the fall in blood pressure that likely occurred after thiopental administration to his hypovolemic animals, cerebral blood flow fell, thus decreasing washout of the drug, resulting in lower plasma concentrations. This is possible because within 15-45 seconds after injection concentration of the drug in richly perfused tissue is higher than in arterial plasma. Unfortunately, we did not measure drug concentrations in either plasma or brain, and thus, cannot confirm or refute Price's predictions or our speculations.
5. Determination of minimal alveolar anesthetic concentration (MAC) of halothane and nitrous oxide in swine.

This study was just completed. The minimal anesthetic requirement of swine for halothane and nitrous oxide is greater than that of man and most often laboratory animals. Variability of anesthetic requirement among species has never been adequately explained. Our study did not have the goal of explaining these differences, but rather had the pragmatic aim of establishing the anesthetic requirement of our laboratory animals for these anesthetic agents. The accomplishment of this goal allows us to appropriately conduct other studies.
E. Conclusions

1. The swine is an excellent laboratory model for the study of hemorrhage. Its cardiovascular system and response to hemorrhage are more similar to those of man than other laboratory animals. When used at a young age, the animal is sufficiently large to instrument fully, yet not so large as to make difficult their handling, housing, or care.

2. Comparison of ketamine, thiopental, enflurane, halothane, and isoflurane for induction of anesthesia during moderate hypovolemia.
 a. Ketamine and thiopental.
 Both of these injectable anesthetic agents cause similar, important deterioration of cardiovascular compensation for moderate hemorrhage. Reductions in systemic vascular resistance, mean systemic blood pressure, and cardiac output are not different in hypovolemic animals in whom anesthesia is induced with thiopental in comparison with those in whom anesthesia is induced with ketamine. Both agents also further exaggerate the lactic acidosis seen with hemorrhage. A potentially important difference is the continued progressive lactic acidosis one half hour after induction seen in ketamine induced animals but not in thiopental induced animals. We conclude that induction of anesthesia in hypovolemic condition with ketamine does not offer any advantage over induction of anesthesia with thiopental in a similar circumstance. The progressive lactic acidosis seen only in the ketamine group implies that these animals had either less good tissue perfusion, or decreased hepatic perfusion, or both.

 b. Enflurane, halothane and isoflurane.
 These inhalation agents all cause deterioration of cardiovascular compensation for hemorrhage, similar to the deterioration seen with the injectable agents, ketamine or thiopental. The decrease in systemic vascular resistance, cardiac output, and mean systemic blood pressure among the animals receiving the three inhalation agents are quite similar, as are the metabolic sequelae and increased acidosis.

3. Swine acid-base curve and alignment nomograms differ from those of man and dog, the only two other species for which these nomograms have been constructed. The swine nomograms should be used when evaluating swine acid-base balance.

4. Determination of anesthetic dose of ketamine or thiopental in hypovolemic swine.
 Hypovolemia decreases the minimal anesthetic requirement of the two injectable agents studied (ketamine, thiopental). The reduction in minimal amount of anesthetic required was not different for the two drugs.

5. Determination of minimal alveolar anesthetic concentration (MAC) of halothane and nitrous oxide, in swine.
 The minimal alveolar concentration for halothane and nitrous oxide in the swine was somewhat higher than most laboratory animals. Therefore, planned studies with swine, and data obtained from anesthetized swine, must be evaluated with this information about their anesthetic requirement in mind.
F. **Recommendations:**

1. Swine should be considered for increased use for studies involving hemorrhage.

2. The author should (and will) describe the findings thus far in the appropriate medical/scientific literature.

3. USAMRDC should consider providing to the appropriate agencies (e.g., Academy of Health Sciences; consultant for anesthesia to the Surgeon General) the conclusions (2a,b;4) regarding use of ketamine, thiopental, enflurane, halothane, and isoflurane during hypovolemic conditions.

4. Studies regarding the cardiovascular and metabolic effects of use of nitrous oxide for induction of anesthesia during hypovolemia should proceed. Results from this study will allow us to provide recommendations regarding the use of nitrous oxide for hypovolemic soldiers, and perhaps afford the opportunity to allow for decreasing the battlefield medical logistical burden (supply of nitrous oxide).

5. Studies outlined in the contract regarding deterioration of compensation for hemorrhage with induction of anesthesia should proceed. These offer the opportunity to improve casualty management of induction of anesthesia during hypovolemia.
8. Literature Cited

47

104. Hannon JP, Jennings PB Jr., Dixon RS: Physiological aspects of
porcine hemorrhage. II. Alterations in heart rate and arterial pressure during fifty percent blood volume loss in the conscious animal. Letterman Army Institute of Research, Institute Reports No. 94, 1981.

134. Rogetz MS, Weiskopf RB, Roizen MF: Ketamine increases catechol, but causes cardiovascular depression and acidosis in hypovolemic swine. Anesthesiology, in Press.
143. Schwartz DA, Horwitz LD: Effects of ketamine on left ventricular

144. Horwitz LD: Effects of intravenous anesthetic agents on left ven-

R: Effects of ketamine on canine cardiovascular function. Br J Anaesth

48:941-945, 1976

146. Yamanaka I, Dowdy EG: The effects of ketamine on spiral-cut strips

of rabbit aorta. Anesthesiology 40:222-227, 1974

147. Tranquilli WJ, Manohar M, Parks CM, Thurmon JC, Theodorakis MC,

Benson JG: Systemic and regional blood flow distribution in unanesthe-
tized swine and swine anesthetized with halothane + nitrous oxide,
halothane, or enflurane. Anesthesiology 56:369-379, 1982

148. Zweifach BW: Aspects of comparative physiology of laboratory

animals relative to the problem of experimental shock. Fed Proc 20 (suppl

9):18-29, 1961

149. Moore FD: Relevance of experimental shock studies to clinical

following hemorrhagic shock with elemental diet. Arch Surg 105:473-476,

1972

151. Eger EI II: MAC, in Anesthetic Uptake and Action. By Eger EI II.

Baltimore, Williams and Wilkins, 1974, pp I-25

152. Cullen DJ, Eger EI II: The effects of hypoxia and isovolemic

anemia on the halothane requirement (MAC) of dogs. III. The effects of

acute isovolemic anemia. Anesthesiology 32:46-50, 1970

dioxide in the dog. Anesthesiology 25:856-865, 1967

154. Tanifuji Y, Eger EI II: Effect of arterial hypotension on

155. Rao TLK, Jacobs K, Salem MR, Santos P: Deliberate hypotension and

156. Eger EI II: Anesthetic uptake and action. pp 133-136. Williams

and Wilkins Co, Baltimore, MD, 1974

157. Price HL: A dynamic concept of the distribution of thiopental in

the human body. Anesthesiology 21:40-45, 1960

158. Bergman NA: Effect of hemorrhage on plasma thiopental concentra-

tions. Anesthesiology 24:813-816, 1963

159. Price HL, Kovanat PJ, Safar JM, Conner EH, Price ML: Uptake of

thiopental by body tissues and its relation to duration of narcosis. Clin

160. Saidman LJ: Uptake, distribution and elimination of barbiturates

in Anesthetic uptake and action, El Eger II. pp 271-272. Williams

and Wilkins Co., Baltimore MD, 1974

Zimmerman. Acid-base curve nomogram for dog blood. Arch. 363:141-147,

1976.

Chemistry. In: Principles and Technics. Harper and Row: Hagerstown,

Maryland, 1974.

163. Krimsky, I. 0-2,3-Diphosphoglycerate. In: Methods of Enzymatic

1965, p. 238-240.

167. Siggaard-Andersen, O. Personal communication.

9. Tables and Figures
Legends for Tables and Figures

1. N=76.
Values are means ± SE.
PWP, pulmonary artery wedge pressure; BPa, mean systemic arterial blood pressure; PAP, mean pulmonary artery pressure; SVR, systemic vascular resistance; PVR, pulmonary vascular resistance.
2. N=7 per group.
Values are means ± SE.
RAP, mean right atrial pressure; VO₂, oxygen consumption; triangle BE, change in base excess from previous state; triangle LAC, change in blood lactate concentration from previous state. Other abbreviations same, same as table 1.
KCT means that K is not statistically different from C, nor is C different from T, but that K is statistically different from T.
3. Groups: C, control, no anesthetic agent; H, halothane; E, enflurane; I, isoflurane.
Data are means for 7, group C; 7, group H; 8, group E; 8, group I.
Abbreviations and units as in tables 1 and 2.
4. Data for swine curve nomogram.
5. Mean acid base curve nomogram for swine. See text for derivation of "mean" values for four swine and construction of nomogram.
6. Comparison of our "mean" data for swine (0---0) with Siggaard-Andersen’s data for humans (●---●) and Scott Emuakpor’s data for canines (●---●).
7. Mean acid base alignment nomogram for swine. See text for derivation of "mean" data and construction of nomogram.
8. Data are mean ± SE. N=4 per group. *Statistically different (p<0.05) from normovolemic state.)
Table 1: Awake Swine Response to 30% Hemorrhage

<table>
<thead>
<tr>
<th></th>
<th>Normovolemia</th>
<th>Hypovolemia</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean right atrial pressure (torr)</td>
<td>1.3±0.2</td>
<td>-0.2±0.2</td>
<td><0.001</td>
</tr>
<tr>
<td>PWP (torr)</td>
<td>2.6±0.1</td>
<td>0.3±0.2</td>
<td><0.001</td>
</tr>
<tr>
<td>Plasma renin activity (ng/ml⁻¹.hr⁻¹)</td>
<td>2.7±0.3</td>
<td>8.7±1.1</td>
<td><0.001</td>
</tr>
<tr>
<td>Plasma epinephrine (pg/ml)</td>
<td>265±23</td>
<td>737±65</td>
<td><0.001</td>
</tr>
<tr>
<td>Plasma norepinephrine (pg/ml)</td>
<td>242±20</td>
<td>452±50</td>
<td><0.001</td>
</tr>
<tr>
<td>Heart rate (beats/min)</td>
<td>113±3</td>
<td>157±6</td>
<td><0.001</td>
</tr>
<tr>
<td>Stroke volume (ml/kg)</td>
<td>1.68±0.04</td>
<td>0.80±0.04</td>
<td><0.001</td>
</tr>
<tr>
<td>Cardiac output (ml.min⁻¹.kg⁻¹)</td>
<td>181±3</td>
<td>112±3</td>
<td><0.001</td>
</tr>
<tr>
<td>BPa (torr)</td>
<td>130±2</td>
<td>98±3</td>
<td><0.001</td>
</tr>
<tr>
<td>PAP (torr)</td>
<td>13.5±0.2</td>
<td>9.6±0.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Oxygen consumption (mlO₂.min⁻¹.kg⁻¹)</td>
<td>7.53±0.16</td>
<td>8.05±0.19</td>
<td><0.002</td>
</tr>
<tr>
<td>Base-excess (mmol/l)</td>
<td>5.3±0.3</td>
<td>3.1±0.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Blood lactate (mmol/l)</td>
<td>1.1±0.1</td>
<td>1.8±0.1</td>
<td><0.001</td>
</tr>
<tr>
<td>SVR (torr.l⁻¹.min)</td>
<td>35.3±0.7</td>
<td>43.8±1.4</td>
<td><0.001</td>
</tr>
<tr>
<td>PVR (torr.l⁻¹.min)</td>
<td>2.96±0.08</td>
<td>4.16±0.14</td>
<td><0.001</td>
</tr>
</tbody>
</table>

n=76. Values are mean ± SE

PWP, pulmonary arterial wedge pressure; BPa, mean systemic arterial blood pressure; PAP, mean pulmonary artery pressure; SVR, systemic vascular resistance; PVR, pulmonary vascular resistance.
KETAMINE OR THIOPENTAL INDUCTION DURING HYPOXEMIA

Table 1. Response of Swine to Induction of Anesthesia during 50% Hypoxemia

<table>
<thead>
<tr>
<th></th>
<th>No anesthetic</th>
<th>Ketamine</th>
<th>Thiopental</th>
<th>Statist. interpret.</th>
<th>No anesthetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAP (mm Hg)</td>
<td>-1.5 ± 0.8</td>
<td>-1.8 ± 0.7</td>
<td>0.2 ± 0.2</td>
<td>ns</td>
<td>-0.4 ± 0.7</td>
</tr>
<tr>
<td>PAP (mm Hg)</td>
<td>0.0 ± 0.4</td>
<td>0.1 ± 0.6</td>
<td>1.0 ± 1.0</td>
<td>ns</td>
<td>0.2 ± 0.4</td>
</tr>
<tr>
<td>Renin activity</td>
<td>6.8 ± 2.4</td>
<td>20.7 ± 5.2</td>
<td>8.9 ± 4.3</td>
<td>K>T,C</td>
<td>8.0 ± 2.6</td>
</tr>
<tr>
<td>Epinephrine (pg/ml)</td>
<td>284 ± 72</td>
<td>2667 ± 947</td>
<td>693 ± 310</td>
<td>K>T,C</td>
<td>534 ± 246</td>
</tr>
<tr>
<td>Norepinephrine (pg/ml)</td>
<td>54 ± 22</td>
<td>690 ± 690</td>
<td>287 ± 177</td>
<td>K>T,C</td>
<td>462 ± 132</td>
</tr>
<tr>
<td>Heart rate (beats/min)</td>
<td>111 ± 74</td>
<td>114 ± 111</td>
<td>116 ± 19</td>
<td>ns</td>
<td>164 ± 23</td>
</tr>
<tr>
<td>Stroke volume (ml/kg)</td>
<td>2.0 ± 0.11</td>
<td>0.76 ± 0.12</td>
<td>0.74 ± 0.14</td>
<td>ns</td>
<td>0.84 ± 0.13</td>
</tr>
<tr>
<td>Cardiac output</td>
<td>611 ± 1.3</td>
<td>749 ± 8.4</td>
<td>74.9 ± 5.9</td>
<td>K>T,K</td>
<td>107.5 ± 7.4</td>
</tr>
<tr>
<td>BSA (mm Hg)</td>
<td>37.2 ± 4.4</td>
<td>31.4 ± 3.5</td>
<td>72.1 ± 7.3</td>
<td>K>T,K</td>
<td>107.5 ± 7.4</td>
</tr>
<tr>
<td>PAP (mm Hg)</td>
<td>5.5 ± 2.7</td>
<td>6.7 ± 0.8</td>
<td>8.1 ± 1.6</td>
<td>ns</td>
<td>9.3 ± 1.6</td>
</tr>
<tr>
<td>V̇O₂ (ml/min/kg)</td>
<td>2.64 ± 0.55</td>
<td>6.71 ± 0.44</td>
<td>6.56 ± 0.22</td>
<td>ns</td>
<td>7.33 ± 0.33</td>
</tr>
<tr>
<td>V̇CO₂ (mm Hg)</td>
<td>1.43 ± 0.37</td>
<td>2.78 ± 0.39</td>
<td>2.12 ± 0.37</td>
<td>K>T,F</td>
<td>1.42 ± 0.38</td>
</tr>
<tr>
<td>pH (mm Hg)</td>
<td>42.2 ± 4.4</td>
<td>29.4 ± 2.9</td>
<td>33.3 ± 3.5</td>
<td>K>T,K</td>
<td>45.2 ± 5.0</td>
</tr>
<tr>
<td>PCV (%)</td>
<td>42.7 ± 4.4</td>
<td>29.4 ± 2.9</td>
<td>33.3 ± 3.5</td>
<td>K>T,K</td>
<td>45.2 ± 5.0</td>
</tr>
<tr>
<td>PTH (mmol/l)</td>
<td>3.07 ± 0.56</td>
<td>3.82 ± 0.38</td>
<td>3.91 ± 0.93</td>
<td>ns</td>
<td>4.01 ± 0.56</td>
</tr>
<tr>
<td>FE (mmol/l)</td>
<td>0.4 ± 0.8</td>
<td>-0.6 ± 0.5</td>
<td>-0.1 ± 0.5</td>
<td>ns</td>
<td>0.7 ± 0.7</td>
</tr>
<tr>
<td>Lac (mmol/l)</td>
<td>-0.01 ± 0.06</td>
<td>0.55 ± 0.23</td>
<td>0.65 ± 0.24</td>
<td>K>K,T</td>
<td>0.00 ± 0.34</td>
</tr>
</tbody>
</table>
Effect of Swine to Induction of Anesthesia during 30% Hypovolemia

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>-0.4</td>
<td>0.1</td>
<td>ns</td>
<td></td>
<td></td>
<td>-0.4</td>
<td>0.2</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>0.2</td>
<td>1.0</td>
<td>ns</td>
<td></td>
<td></td>
<td>0.9</td>
<td>0.6</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>3.9</td>
<td>4.3</td>
<td>K>T,C</td>
<td></td>
<td></td>
<td>8.0</td>
<td>2.6</td>
<td>4.6</td>
<td>5.3</td>
</tr>
<tr>
<td>11.4</td>
<td>692</td>
<td>310</td>
<td>K>T,C</td>
<td></td>
<td></td>
<td>534</td>
<td>246</td>
<td>112</td>
<td>553</td>
</tr>
<tr>
<td>77.1</td>
<td>287</td>
<td>172</td>
<td>K>T,C</td>
<td></td>
<td></td>
<td>259</td>
<td>132</td>
<td>357</td>
<td>191</td>
</tr>
<tr>
<td>114</td>
<td>116</td>
<td>19</td>
<td>ns</td>
<td></td>
<td></td>
<td>164</td>
<td>23</td>
<td>121</td>
<td>121</td>
</tr>
<tr>
<td>0.3</td>
<td>0.2</td>
<td>0.14</td>
<td>ns</td>
<td></td>
<td></td>
<td>0.31</td>
<td>0.13</td>
<td>0.37</td>
<td>0.86</td>
</tr>
<tr>
<td>3.5</td>
<td>3.1</td>
<td>1.9</td>
<td>T>K,C</td>
<td></td>
<td></td>
<td>2.2</td>
<td>1.0</td>
<td>1.3</td>
<td>1.0</td>
</tr>
<tr>
<td>3.1</td>
<td>3.0</td>
<td>1.4</td>
<td>C>T,K</td>
<td></td>
<td></td>
<td>31.4</td>
<td>9.7</td>
<td>8.3</td>
<td>8.6</td>
</tr>
<tr>
<td>0.1</td>
<td>0.4</td>
<td>0.3</td>
<td>ns</td>
<td></td>
<td></td>
<td>0.31</td>
<td>0.32</td>
<td>7.4</td>
<td>7.13</td>
</tr>
<tr>
<td>0.3</td>
<td>0.3</td>
<td>0.13</td>
<td>ns</td>
<td></td>
<td></td>
<td>0.32</td>
<td>0.31</td>
<td>7.4</td>
<td>7.13</td>
</tr>
<tr>
<td>1.0</td>
<td>0.9</td>
<td>0.5</td>
<td>C<K,T</td>
<td></td>
<td></td>
<td>4.0</td>
<td>3.1</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>0.5</td>
<td>0.4</td>
<td>0.6</td>
<td>ns</td>
<td></td>
<td></td>
<td>0.4</td>
<td>0.5</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>0.2</td>
<td>0.3</td>
<td>0.24</td>
<td>CK,K</td>
<td></td>
<td></td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Note: K>T,C 8.0 2.6 112 553 142 K>C,T 259 132 357 191 101 K>C,T 164 23 121 121 18 ns
KETAMINE OR THIOPENTAL INDUCTION DURING HYPOVOLEMIA

Table 2 (continued)—Footnotes:

Values are means ± SE; n = 7 per group.
- Group C, control; Group K, ketamine; Group T, thiopental.
- BPAP, mean right atrial pressure; PAWP, pulmonary arterial wedge pressure; SBP, mean systemic arterial pressure.
- PAWP, pulmonary arterial blood pressure; VO₂, oxygen consumption; SVR, systemic vascular resistance; AoM, aortic mean; "BE, change in base excess from previous state; Blac, change in blood lactate concentration from previous state.
- *K vs C* means that K is not statistically different from C, *K vs T* is K different from T, but that K is
*Wedge arterial wedge pressure; BPa, mean systemic arterial blood pressure; CVR, mean systemic vascular resistance; PVr, pulmonary vascular resistance.

**Lac: change in blood lactate concentration from previous state.

*Different from R, n.p is C different from T, but that K is statistically different from T.
Table 3. Response of swine to induction of anesthesia with enflurane, halothane, or isoflurane during 30% hypovolemia

<table>
<thead>
<tr>
<th>Induction of Anesthesia</th>
<th>Awake</th>
<th>5 min</th>
<th>30 min</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>97</td>
<td>97</td>
<td>36</td>
</tr>
<tr>
<td>Hypovolemic</td>
<td>C</td>
<td>H</td>
<td>E</td>
</tr>
<tr>
<td>BPl</td>
<td>111</td>
<td>118</td>
<td>67</td>
</tr>
<tr>
<td>Q</td>
<td>155</td>
<td>162</td>
<td>145</td>
</tr>
<tr>
<td>HR</td>
<td>44</td>
<td>42</td>
<td>26</td>
</tr>
<tr>
<td>SVR</td>
<td>746</td>
<td>265</td>
<td>833</td>
</tr>
<tr>
<td>EPI</td>
<td>-63</td>
<td>209</td>
<td>249</td>
</tr>
<tr>
<td>NEPI</td>
<td>9.1</td>
<td>6.8</td>
<td>23</td>
</tr>
<tr>
<td>Renin</td>
<td>+0.7</td>
<td>-0.0</td>
<td>+0.1</td>
</tr>
<tr>
<td>△ Lactate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base excess (meq/l)</td>
<td>pH</td>
<td>PCO₂ (torr)</td>
<td>Base excess (meq/l)</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------</td>
<td>-------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>-20</td>
<td>7.143</td>
<td>36.7</td>
<td>0</td>
</tr>
<tr>
<td>-19</td>
<td>7.162</td>
<td>20.7</td>
<td>+1</td>
</tr>
<tr>
<td>-15</td>
<td>7.178</td>
<td>21.3</td>
<td>2</td>
</tr>
<tr>
<td>-17</td>
<td>7.194</td>
<td>22.9</td>
<td>3</td>
</tr>
<tr>
<td>-16</td>
<td>7.208</td>
<td>24.1</td>
<td>4</td>
</tr>
<tr>
<td>-15</td>
<td>7.223</td>
<td>25.2</td>
<td>5</td>
</tr>
<tr>
<td>-14</td>
<td>7.236</td>
<td>26.3</td>
<td>6</td>
</tr>
<tr>
<td>-13</td>
<td>7.249</td>
<td>27.5</td>
<td>7</td>
</tr>
<tr>
<td>-12</td>
<td>7.262</td>
<td>28.6</td>
<td>8</td>
</tr>
<tr>
<td>-11</td>
<td>7.275</td>
<td>29.8</td>
<td>9</td>
</tr>
<tr>
<td>-10</td>
<td>7.287</td>
<td>30.9</td>
<td>+10</td>
</tr>
<tr>
<td>-9</td>
<td>7.298</td>
<td>32.0</td>
<td>11</td>
</tr>
<tr>
<td>-8</td>
<td>7.310</td>
<td>33.1</td>
<td>12</td>
</tr>
<tr>
<td>-7</td>
<td>7.321</td>
<td>34.1</td>
<td>13</td>
</tr>
<tr>
<td>-6</td>
<td>7.333</td>
<td>35.1</td>
<td>14</td>
</tr>
<tr>
<td>-5</td>
<td>7.344</td>
<td>36.1</td>
<td>15</td>
</tr>
<tr>
<td>-4</td>
<td>7.355</td>
<td>37.0</td>
<td>16</td>
</tr>
<tr>
<td>-3</td>
<td>7.366</td>
<td>37.9</td>
<td>17</td>
</tr>
<tr>
<td>-2</td>
<td>7.377</td>
<td>38.6</td>
<td>18</td>
</tr>
<tr>
<td>-1</td>
<td>7.389</td>
<td>39.4</td>
<td>19</td>
</tr>
<tr>
<td>+20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Swine base-excess curve nomogram
Fig 6

Log P_{CO_2} vs pH
BASE EXCESS
mmol L BLOOD OR PLASMA

HEMOGLOBIN g/dL

pH
8.0
7.9
7.8
7.7
7.6
7.5
7.4
7.3
7.2
7.1
7.0
6.9
6.8
6.7
6.6

Pco2
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
Table 3. Minimal Anesthetic Dose of Ketamine and Thiopental in Swine during Normovolemia and after Hemorrhage

<table>
<thead>
<tr>
<th>Minimum Anesthetic Dose (mg/kg)</th>
<th>Reduction in minimum anesthetic dose during hypovolemia (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug</td>
<td>During</td>
</tr>
<tr>
<td>Ketamine</td>
<td>Normovolemia</td>
</tr>
<tr>
<td>17.50±0.72</td>
<td>10.31±0.60*</td>
</tr>
<tr>
<td>Thiopental</td>
<td>11.25±1.02</td>
</tr>
</tbody>
</table>

Data are mean ± SE.

n = 4 per group.

*Statistically different (P < 0.05) from normovolemic state.
10. Publications Supported by This Contract

5. Bogetz MS, Weiskopf RB, Roizen MF: Ketamine increases catechols, but causes cardiovascular depression and acidosis in hypovolemic swine. Anesthesiology, in press
11. Personnel Receiving Support for This Contract

1. Weiskopf, Richard B., M.D.: Principal Investigator
2. Montgomery, Sue: Staff Research Associate
3. DeMaminor, Darlene: Staff Research Associate
A. Problems

During this contract year the following problems were encountered.

1. Overall progression of contract goals proceeded at a pace which was slower than anticipated because of the need to conduct additional studies for the purpose of scientific validation.

2. One of the staff research associates underwent unanticipated surgery and was out from work for a period of three weeks.

3. The mass spectrometer required major repair with a down time of approximately one month.

4. We have had intermittent problems with our supply of swine. The farmer from which our supplier obtains swine has recently gone out of business. Our supplier now obtains swine from several sources. The quantity and quality of supply has now deteriorated. We are investigating alternate sources.
A. Publications supported, copies of (pages not numbered for annual report).
Comparison of Cardiopulmonary Responses to Graded Hemorrhage during Enflurane, Halothane, Isoflurane, and Ketamine Anesthesia

Richard B. Weiskopf, MD,* Mary L. Townsley, BA,† Kathryn K. Riordan, BS,‡ Karen Chadwick, BS,§ Mark Baysinger, BS,¶ and Eileen Mahoney, BA\¶

To assess the influence of anesthetic agents during mild to moderate hemorrhage, the cardiopulmonary function of five awake, unmedicated dogs was compared with that during anesthesia with enflurane, halothane, isoflurane, and ketamine. Each dog was evaluated during anesthesia with each agent during normovolemia and after blood losses of 10%, 20%, and 30%. Before blood loss, in comparison with the awake state, ketamine increased heart rate (112 ± 11 beats/min, awake vs 168 ± 17) and cardiac output (5.3 ± 0.4 L/min, awake vs 6.0 ± 0.2). Halothane and isoflurane did not alter these variables. Enflurane decreased mean arterial blood pressure (110 ± 2 torr, awake vs 72 ± 3), contract output (3.5 ± 0.1 L/min), and stroke volume (46 ± 4 ml, awake vs 29 ± 2) to a greater extent than did the other anesthetics. Blood loss decreased cardiac output more with ketamine than with the inhalation anesthetics (ketamine, 0.120 L/min; percentage of blood loss; halothane, 0.077; isoflurane, 0.076; enflurane, 0.158; determined by least-squares linear regression, 0-30% blood loss), so that after 30% hemorrhage cardiac output was essentially the same during halothane (2.45 ± 0.19 L/min), isoflurane (2.63 ± 0.19 L/min), and ketamine (2.48 ± 0.15 L/min) anesthesia. Also, during hemorrhage, systemic vascular resistance increased most with ketamine, thus, after 30% blood loss, mean arterial blood pressure was highest with ketamine (ketamine, 94 ± 7 torr; enflurane, 48 ± 5 torr; halothane, 81 ± 4 torr; isoflurane, 58 ± 4 torr). Rate-pressure product and minute work were highest with ketamine throughout hemorrhage, except for minute work after 30% blood loss. These cardiovascular changes were reflected in the measurements of metabolism. Total body oxygen consumption (V\text{\textsubscript{O\textsubscript{2}}}) was highest with ketamine after 0% to 20% blood loss (e.g., after 0% blood loss: ketamine, 8.6 ± 1.2 ml of O\textsubscript{2}/kg·min; enflurane, 4.5 ± 0.5; halothane, 4.0 ± 0.3; isoflurane, 4.9 ± 0.3). During blood loss, V\text{\textsubscript{O\textsubscript{2}}} did not change with any inhalation anesthetic, but decreased with ketamine (6.0 ± 0.5 ml of O\textsubscript{2}/kg·min after 30% blood loss); this decrease was associated with an increase in arterial blood lactate concentration and base deficit (ketamine, BE: -8.0 ± 0.5 meq/L after 30% blood loss), suggesting that oxygen demand was not met during hypovolemia with ketamine anesthesia. In contrast, lack of change in blood lactate, base deficit, or oxygen consumption during hemorrhage with the inhalation anesthetics suggests that oxygen demand was satisfied when the dogs were bled during enflurane, halothane, or isoflurane anesthesia.

Key Words: ACID-BASE EQUILIBRIUM; ANESTHETICS; Intravenous ketamine; ANESTHETICS; Volatile enflurane, halothane, isoflurane; HEMORRHAGE, anesthetic effects of, METABOLISM: lactate.
ANESTHESIA AND ANALGESIA

An animal is bred to and maintained at a predetermined arterial blood pressure. Few investigations have used graded measured hemorrhage as the independent variable.

Although a few limited studies of hemorrhage have used awake, restrained animals (1), no studies have used awake, restrained animals (2). Most investigations have used anesthetized animals. These studies usually used injectable anesthetic agents, resulting in varying anesthetic depth during the course of the experiment. When an inhalation anesthetic agent was used, induction of anesthesia was usually accomplished with an injectable anesthetic, or constant end-tidal concentrations were not maintained, resulting in uncertain depth of anesthesia. When the influence of anesthetic agents on hemorrhage has been investigated, failure to remove the spleens of the experimental dogs (3-7) could have allowed uncontrolled and unquantified “auto-transfusion” of as much as 5% of the shed blood (8).

Only Theron et al. (7) compared in a single study the influence of three anesthetic agents (isoflurane, halothane, and isoflurane) on cardiovascular function during, and the metabolic consequences of, equivalent graded hemorrhage in dogs. Because they used survival times as their end point, comparing the effects of different anesthetics in the same animal was not possible. They did not remove the spleens, nor did they compare results during hemorrhage with those of awake, unmedicated dogs.

In the present report we have assessed, in hypovolemic dogs in which spleens had been removed, the benefits and disadvantages associated with the administration of anesthetics with differing effects on the sympathetic system. Ketamine, an anesthetic with stimulant-like properties that is frequently recommended for clinical use during hypovolemia, was compared with halothane, which likely inhibits release and activity of catecholamines (9, 10), and with isoflurane and isoflurane.

Methods and Materials

We removed the spleens from five healthy mongrel dogs (25 to 32 kg each), previously trained to lie quietly in the laboratory, and provided them with chronic tracheostomies and exteriorized carotid arteries. A minimum of 2 weeks intervened between surgery and the study. All animals were in good health for each study. All dogs were studied in random order, separated by a minimum of 2 weeks between successive studies. Awake or with 1.15 MAC of the inhalation anesthetic or with a continuous infusion of ketamine. All animals breathed spontaneously at all times.

For the studies with inhalation anesthetics the dogs were connected to a circle breathing circuit through a cutdown tracheostomy tube and a non-rebreathing Rudolph valve. Animals received no premedication. Anesthesia for the studies of halothane, enflurane, or isoflurane was induced with the agent to be studied and was maintained at a constant end-tidal concentration of 1.0% halothane, 2.5% enflurane, or 1.5% isoflurane. The anesthetics were always delivered in a mixture of oxygen and nitrogen that was adjusted to maintain PaO2 close to 100 torr.

For the studies with ketamine, anesthesia was induced intravenously with 5.0 mg/kg of ketamine and was maintained by a continuous infusion of ketamine in the smallest amount necessary to prevent gross movement (mean ± SE, 0.23 ± 0.09 mg/kg/min). After the induction of anesthetic carotid and pulmonary arterial catheters were inserted percutaneously, and the dog was placed in the left lateral decubitus position.

For the awake studies, animals were first anesthetized with thiopental, 7.0 mg/kg, anesthesia was maintained with 70% N2O in O2 to allow for placement of carotid and pulmonary arterial catheters. No additional thiopental was administered, and N2O was discontinued. Animals were studied at least 2 hours after awakening, at which time resting PaO2 did not differ from PaO2, measured on another occasion before administration of anesthetics or other drugs.

Ventilation was measured by using the rebreathing bag in the circle breathing system as a bag-in-a-box while connected to a wedge spirometer (model 370, Med-Science Electronics, Inc.). We continuously measured Pa1, Pa2, and the partial pressure of halothane, enflurane, or isoflurane at the tracheostomy tube orifice by mass spectrometry (Perkin-Elmer, model MGA 1100A) (11). Townesby ML, Brinkes HA, Werko KIB. Measurement of enflurane and isoflurane by mass spectrometry. Abstracts of Scientific Papers, Annual Meeting of the American Society of Anesthesiologists. October 21-25, 1978, Chicago, Illinois, pp 280-90). Carotid and pulmonary arterial pressures were measured by transducers (Statham 23 Db). Mean systemic and pulmonary arterial pressures were derived by a Brush recorder preamplifier. Cardiac output was estimated using a thermodilution technique, a thermostirn-tipped pulmonary arterial catheter (Edwards Laboratories), and an analog computer (Gould model SP1425). Cardiac output measurements were repeated until two successive measurements displaying satisf-
factory washout curves differed by no more than 0.2 L/min. This usually occurred within two or three measurements. These physiologic parameters and the partial pressures of the measured gases and vapors were recorded graphically (Gould Brush model 200 eight-channel polygraph) and magnetically (Hewlett-Packard model 3980 A FM tape recorder). Systemic vascular resistance was calculated as mean systemic blood pressure divided by cardiac output. Pulmonary vascular resistance was calculated as the difference between mean pulmonary artery pressure and pulmonary artery wedge pressure divided by the use of circulating water heating pads.

Successive 10% reductions in blood volume were accomplished by drawing blood through the carotid arterial catheter over a period of approximately 10 minutes. The blood was collected into sterile, 100-ml transfusion packs containing heparin, so that the final concentration was 3 units of heparin per milliliter of blood. At least 10 minutes of stability was allowed after each reduction in blood volume before beginning measurements at that level of oligemia. Following studies at 30% blood loss, the collected blood was transfused through a microfilter (Millipore SQ405K Ultipor blood transfusion filter); 20 minutes later all measurements were repeated and compared with values obtained before hemorrhage.

During each of the experimental conditions, PaO₂ and PaCO₂ were measured by Radiometer electrodes in steel and glass cuvettes; pH was measured by a Severinghaus-UC electrode (13). All electrodes were maintained at 37°C. Calibrating gases and buffers were measured before and after each blood sample reading, the measurement was corrected for electrode drift, liquid-gas factor (14, 15), and the dog's temperature (16). Oxygen concentrations of systemic arterial (CaO₂) and pulmonary arterial (CaO₂) blood were measured in duplicate by a galvanic cell instrument (Lev-O₂-Con-TL, Lexington Instruments) (17). Base excess was estimated using a modification of the equations of Severinghaus (18).

During each condition, arterial blood samples were obtained for enzymatic measurement of whole blood lactate concentrations (19).

Results in the normovolemic anesthetized state were compared with results in the awake condition by analysis of variance with repeated measures and by Student's t-test for paired data. For each anesthetic, the influence of hemorrhage on the measured and calculated variables was assessed by analysis of variance with repeated measures. Comparison among anesthetic agents at normovolemia and at each level of hemorrhage was accomplished by analysis of variance with repeated measures and by Newman-Keuls method of multiple comparisons. Data obtained in normovolemic, anesthetized state after the return of shed blood were compared with data obtained before hemorrhage using the paired Student's t-test (20). In all cases, P < 0.05 was considered statistically significant.

As a control, all animals were anesthetized with ketamine for a second time, the same induction and maintenance doses were used. Although no hemorrhage was instituted, all other procedures and measurements were the same as in the first ketamine experiment, including the times at which measurements were performed. Statistical analysis of these data did not indicate significant change in any measured variable with time during ketamine anesthesia.

Results

 Awake vs Anesthetized States (during Normovolemia)

 Mean (±SE) values for the five normovolemic dogs are presented in Table I. All inhalation anesthetics decreased mean arterial blood pressure (BPa). The increase in BPa observed during ketamine anesthetization was not statistically significant. During normovolemia, BPa was higher with ketamine than with halothane, which was higher than with isoflurane, which was higher than with enflurane. Cardiac output (Q) decreased with enflurane, increased with ketamine, and did not change with halothane or isoflurane. During normovolemia, Q was higher with ketamine than with all inhalation anesthetics, and significantly lower with enflurane than with all other agents. Only ketamine altered (increased) heart rate. Left ventricular stroke volume decreased only with enflurane, and during normovolemia it was higher with
During hemorrhage, ketamine decreased PAP more than halothane or isoflurane while increasing mean pulmonary arterial pressure (PAP). LVSW was lower with ketamine than with all other anesthetics. Ketamine and isoflurane increased left ventricular stroke work. During normovolemia, ketamine was greater with ketamine than with all the other anesthetics, whereas LVSW declined with enflurane and did not change with ketamine. Consequently, during normovolemia, RVo was higher with ketamine than with all three inhalation anesthetics. The ratio of oxygen transported to oxygen consumed (T.O./V.O.) increased with halothane and isoflurane, but did not change with either ketamine or enflurane. During normovolemia, T.O./V.O. was higher with halothane than with all other agents and was highest with isoflurane than with other enflurane or ketamine.

None of the four agents altered peripheral or pulmonary vascular resistance or mean pulmonary arterial or pulmonary wedge pressure.

Total body oxygen consumption (V.O.) decreased with all three inhalation anesthetics and did not change with ketamine. Consequently, during normovolemia, V.O. was lower with ketamine than with all three inhalation anesthetics. The ratio of oxygen transported to oxygen consumed (T.O./V.O.) increased with halothane and isoflurane, but did not change with either ketamine or enflurane. During normovolemia, T.O./V.O. was higher with halothane than with all other agents and was highest with isoflurane than with other enflurane or ketamine.

Physiologic Sequelae of Hemorrhage
Cardiopulmonary responses to the four anesthetic agents during 10%, 20%, and 30% blood loss are shown in Tables 2, 3, and 4, respectively.
TABLE 3
Cardiorespiratory Responses of Five Anesthetized Dogs during 10% Blood Loss*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Euthane</th>
<th>Halothane</th>
<th>Isoflurane</th>
<th>Ketamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>End-tidal concentration (%</td>
<td>2.49 ± 0.04</td>
<td>1.00 ± 0.01</td>
<td>1.72 ± 0.02</td>
<td>NA</td>
</tr>
<tr>
<td>BP (mm Hg)</td>
<td>69 ± 6.26</td>
<td>91 ± 3.33</td>
<td>77 ± 4.44</td>
<td>124 ± 5.6</td>
</tr>
<tr>
<td>HR (beats/min)</td>
<td>117 ± 2.90</td>
<td>104 ± 6.53</td>
<td>120 ± 2.7</td>
<td>117 ± 1.6</td>
</tr>
<tr>
<td>LVEDP (mm Hg)</td>
<td>2.92 ± 0.10</td>
<td>3.74 ± 0.08</td>
<td>4.15 ± 0.17</td>
<td>5.11 ± 0.33</td>
</tr>
<tr>
<td>SV (mL)</td>
<td>23.6 ± 0.4</td>
<td>36.0 ± 1.7</td>
<td>34.6 ± 1.3</td>
<td>29.8 ± 1.5</td>
</tr>
<tr>
<td>LVSW (g x m)</td>
<td>1.74 ± 0.07</td>
<td>3.51 ± 0.28</td>
<td>2.36 ± 0.23</td>
<td>3.86 ± 0.23</td>
</tr>
<tr>
<td>LVMW (g x m/min)</td>
<td>215.8 ± 15.6</td>
<td>362 ± 15</td>
<td>343 ± 26</td>
<td>672 ± 26</td>
</tr>
<tr>
<td>SVR (torr L/min)</td>
<td>23.6 ± 0.7</td>
<td>24.6 ± 1.1</td>
<td>18.7 ± 0.9</td>
<td>24.7 ± 2.0</td>
</tr>
<tr>
<td>PAP (torr)</td>
<td>12 ± 1.3</td>
<td>11.7 ± 1.9</td>
<td>11.3 ± 1.0</td>
<td>11.6 ± 0.9</td>
</tr>
<tr>
<td>V (mL O₂/min)</td>
<td>1.94 ± 0.33</td>
<td>1.47 ± 0.28</td>
<td>1.75 ± 0.26</td>
<td>1.82 ± 0.07</td>
</tr>
<tr>
<td>CV (mL O₂.min/kg)</td>
<td>4.4 ± 0.48</td>
<td>3.4 ± 0.14</td>
<td>3.7 ± 0.37</td>
<td>6.0 ± 0.70</td>
</tr>
<tr>
<td>Value (r)</td>
<td>4.1 ± 0.61</td>
<td>3.71 ± 0.9</td>
<td>3.64 ± 1.0</td>
<td>3.78 ± 1.1</td>
</tr>
<tr>
<td>SV (mL/min)</td>
<td>198 ± 0.3</td>
<td>219 ± 1.1</td>
<td>292 ± 1.2</td>
<td>20.3 ± 0.0</td>
</tr>
<tr>
<td>LVSW (g x m)</td>
<td>1.3 ± 0.16</td>
<td>1.87 ± 0.24</td>
<td>2.06 ± 0.14</td>
<td>2.57 ± 0.23</td>
</tr>
<tr>
<td>PAP (torr)</td>
<td>6.6 ± 0.6</td>
<td>6.3 ± 0.9</td>
<td>5.2 ± 2.1</td>
<td>51 ± 5.2</td>
</tr>
<tr>
<td>RPP (x 10⁶)</td>
<td>10.4 ± 0.3</td>
<td>12.1 ± 0.5</td>
<td>12.4 ± 0.8</td>
<td>30.5 ± 3.4</td>
</tr>
<tr>
<td>V (L/min)</td>
<td>51 ± 0.4</td>
<td>51 ± 0.6</td>
<td>4.9 ± 0.9</td>
<td>15.0 ± 0.0</td>
</tr>
<tr>
<td>HR (beats/min)</td>
<td>10.5 ± 0.9</td>
<td>15.7 ± 3.9</td>
<td>14.5 ± 3.5</td>
<td>48 ± 10.2</td>
</tr>
<tr>
<td>V (L)</td>
<td>0.43 ± 0.03</td>
<td>0.30 ± 0.02</td>
<td>0.33 ± 0.05</td>
<td>0.34 ± 0.04</td>
</tr>
</tbody>
</table>

* Values are means ± SE. Abbreviations are defined in footnote to Table 1. For statistical information, see Tables 5 and 6.

TABLE 2
Cardiorespiratory Responses of Five Anesthetized Dogs during 20% Blood Loss*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Euthane</th>
<th>Halothane</th>
<th>Isoflurane</th>
<th>Ketamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>End-tidal concentration (%</td>
<td>2.52 ± 0.07</td>
<td>1.02 ± 0.01</td>
<td>1.69 ± 0.02</td>
<td>NA</td>
</tr>
<tr>
<td>BP (mm Hg)</td>
<td>69 ± 6.24</td>
<td>88 ± 2.8</td>
<td>69 ± 3.3</td>
<td>112 ± 7.9</td>
</tr>
<tr>
<td>HR (beats/min)</td>
<td>119 ± 4.2</td>
<td>113 ± 8.9</td>
<td>120 ± 4.3</td>
<td>190 ± 27.0</td>
</tr>
<tr>
<td>QL (mL/min)</td>
<td>2.36 ± 0.14</td>
<td>3.10 ± 0.14</td>
<td>3.52 ± 0.13</td>
<td>3.58 ± 0.27</td>
</tr>
<tr>
<td>SV (mL/min)</td>
<td>206 ± 1.1</td>
<td>219 ± 1.1</td>
<td>292 ± 1.2</td>
<td>20.3 ± 0.0</td>
</tr>
<tr>
<td>LVSW (g x m)</td>
<td>1.31 ± 0.14</td>
<td>2.62 ± 0.25</td>
<td>2.13 ± 0.13</td>
<td>2.61 ± 0.51</td>
</tr>
<tr>
<td>LVMW (g x m/min)</td>
<td>157 ± 18</td>
<td>290 ± 11</td>
<td>256 ± 12</td>
<td>468 ± 30</td>
</tr>
<tr>
<td>SVR (torr L/min)</td>
<td>262 ± 14</td>
<td>290 ± 19</td>
<td>198 ± 14</td>
<td>32.3 ± 13</td>
</tr>
<tr>
<td>PAP (torr)</td>
<td>10.5 ± 12</td>
<td>100 ± 14</td>
<td>92 ± 15</td>
<td>92 ± 2.1</td>
</tr>
<tr>
<td>PVR (torr/L/min)</td>
<td>1.87 ± 0.31</td>
<td>2.36 ± 0.22</td>
<td>1.68 ± 0.18</td>
<td>1.99 ± 0.82</td>
</tr>
<tr>
<td>CVPa (mm Hg)</td>
<td>5.9 ± 0.5</td>
<td>4.0 ± 0.34</td>
<td>4.2 ± 0.21</td>
<td>6.4 ± 0.48</td>
</tr>
<tr>
<td>V (mL CO₂/min/kg)</td>
<td>14.7 ± 0.41</td>
<td>4.49 ± 0.22</td>
<td>5.22 ± 0.44</td>
<td>8.05 ± 1.41</td>
</tr>
<tr>
<td>Tp (mL CO₂/min/kg)</td>
<td>13.2 ± 15</td>
<td>18.4 ± 9.9</td>
<td>190 ± 10</td>
<td>20.2 ± 2.4</td>
</tr>
<tr>
<td>TO, Vd</td>
<td>2.82 ± 0.31</td>
<td>4.15 ± 0.33</td>
<td>3.70 ± 0.26</td>
<td>2.69 ± 0.24</td>
</tr>
<tr>
<td>PaCO₂ (torr)</td>
<td>103.0 ± 32</td>
<td>99.6 ± 63</td>
<td>103.0 ± 29</td>
<td>118.9 ± 7.2</td>
</tr>
<tr>
<td>pH</td>
<td>7.340 ± 0.01</td>
<td>7.321 ± 0.013</td>
<td>7.221 ± 0.032</td>
<td>7.361 ± 0.011</td>
</tr>
<tr>
<td>BE (mEq/L)</td>
<td>2.26 ± 0.05</td>
<td>4.5 ± 0.9</td>
<td>4.7 ± 0.8</td>
<td>-7.4 ± 0.5</td>
</tr>
<tr>
<td>Hct (%)</td>
<td>36.7 ± 1.2</td>
<td>36.4 ± 1.0</td>
<td>36.3 ± 0.9</td>
<td>36.0 ± 1.0</td>
</tr>
<tr>
<td>Lactate (mM/L)</td>
<td>0.43 ± 0.13</td>
<td>1.68 ± 0.24</td>
<td>0.96 ± 0.12</td>
<td>2.76 ± 0.66</td>
</tr>
<tr>
<td>PAP (torr)</td>
<td>5.8 ± 1.6</td>
<td>2.9 ± 1.2</td>
<td>3.6 ± 1.8</td>
<td>6.1 ± 2.1</td>
</tr>
<tr>
<td>RPP (torr)</td>
<td>9.6 ± 0.6</td>
<td>12.6 ± 0.4</td>
<td>11.4 ± 0.6</td>
<td>29.4 ± 5.7</td>
</tr>
<tr>
<td>V (L/min)</td>
<td>61 ± 1.2</td>
<td>68 ± 1.2</td>
<td>51 ± 1.0</td>
<td>121 ± 23</td>
</tr>
<tr>
<td>F (breaths/min)</td>
<td>16.7 ± 5.1</td>
<td>19.2 ± 5.2</td>
<td>16.9 ± 6.3</td>
<td>36 ± 5.9</td>
</tr>
<tr>
<td>V (L)</td>
<td>0.39 ± 0.04</td>
<td>0.33 ± 0.02</td>
<td>0.37 ± 0.05</td>
<td>0.33 ± 0.19</td>
</tr>
</tbody>
</table>

* Values are means ± SE. Abbreviations are defined in footnote to Table 1. For statistical information, see Tables 5 and 6.
Cardiorespiratory Responses of Five Anesthetized Dogs during 30% Blood Loss*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>30% Blood Loss</th>
<th>60% Blood Loss</th>
<th>90% Blood Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR (bpm)</td>
<td>110 ± 4</td>
<td>90 ± 5</td>
<td>70 ± 4</td>
<td>40 ± 3</td>
</tr>
<tr>
<td>MAP (mmHg)</td>
<td>120 ± 10</td>
<td>90 ± 12</td>
<td>60 ± 12</td>
<td>30 ± 12</td>
</tr>
<tr>
<td>SV (mL)</td>
<td>150 ± 10</td>
<td>100 ± 12</td>
<td>50 ± 12</td>
<td>25 ± 12</td>
</tr>
<tr>
<td>CVP (mmHg)</td>
<td>9 ± 1</td>
<td>7 ± 2</td>
<td>3 ± 2</td>
<td>1 ± 1</td>
</tr>
<tr>
<td>BE (mEq/L)</td>
<td>-3 ± 1</td>
<td>-4 ± 2</td>
<td>-5 ± 2</td>
<td>-6 ± 2</td>
</tr>
<tr>
<td>Hb (g/dL)</td>
<td>16 ± 2</td>
<td>12 ± 2</td>
<td>8 ± 2</td>
<td>4 ± 2</td>
</tr>
<tr>
<td>PAP (mmHg)</td>
<td>120 ± 10</td>
<td>90 ± 12</td>
<td>60 ± 12</td>
<td>30 ± 12</td>
</tr>
<tr>
<td>RPP (mmHg)</td>
<td>7 ± 1</td>
<td>5 ± 1</td>
<td>3 ± 1</td>
<td>1 ± 1</td>
</tr>
<tr>
<td>V (L)</td>
<td>2 ± 0.5</td>
<td>1 ± 0.5</td>
<td>0.5 ± 0.5</td>
<td>0.2 ± 0.2</td>
</tr>
<tr>
<td>VO2 (L/min)</td>
<td>1.5 ± 0.5</td>
<td>1 ± 0.5</td>
<td>0.5 ± 0.5</td>
<td>0.2 ± 0.2</td>
</tr>
<tr>
<td>VO2 (mL/kg/min)</td>
<td>25 ± 2.5</td>
<td>15 ± 1.5</td>
<td>7 ± 1.5</td>
<td>3 ± 0.7</td>
</tr>
</tbody>
</table>

*Values are means ± SE. Abbreviations are defined in footnote to Table 1. For statistical information, see Tables 5 and 6.

Compared to baseline, arterial blood lactate concentration increased at 30% and 60% blood loss, but decreased at 90% blood loss. Despite the decrease, blood lactate concentrations were still increased compared to baseline. Mean pulmonary arterial pressure decreased progressively with hemorrhage in all anesthetic agents.

As MAP decreased without alteration in heart rate, both stroke work and minute work progressively decreased during graded hemorrhage with all anesthetics. However, rate pressure product decreased with the inhalation anesthetics with blood loss, but decreased with ketamine only at the 30% level.

As Q progressively decreased with graded hemorrhage, tissue oxygen extraction [arterial minus venous oxygen concentration difference, Ca-VEO2] increased with all agents. This was compensated for by increased respiratory rate. This compensation was adequate with all agents, except enflurane, which was not observed with ketamine. Oxygen transport decreased with hemorrhage with all agents, as did T\(\text{N} / \text{V}1\).

Base deficit increased with blood loss with all agents, except enflurane. Hemorrhage did not change with hemorrhage with halothane or ketamine, but decreased slightly with enflurane and isoflurane.

Comparison among Anesthetic Agents of Physiologic Sequelae of Hemorrhage

Table 1: For statistical information, see Tables 5 and 6.

Anesthesia and Analgesia

486 ANESTHESIA AND ANALGESIA VOL 65 NO 7 JUL 1989
TABLE 5
Statistical Analysis of Physiologic Sequelae of Hemorrhage in Five Anesthetized Dogs

<table>
<thead>
<tr>
<th></th>
<th>Euph.</th>
<th>Halothane</th>
<th>Isoflurane</th>
<th>Enflurane</th>
</tr>
</thead>
<tbody>
<tr>
<td>B/R</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Q</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>PV</td>
<td>NS</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Nt</td>
<td>NS</td>
<td>NS</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>V</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>T</td>
<td>NS</td>
<td>NS</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>V</td>
<td>0.001</td>
<td>0.001</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Pq</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Pk</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>BE</td>
<td>NS</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>Hb</td>
<td>NS</td>
<td>NS</td>
<td>0.01</td>
<td>NS</td>
</tr>
<tr>
<td>Lact</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>PO2</td>
<td>0.001</td>
<td>0.01</td>
<td>0.01</td>
<td>NS</td>
</tr>
<tr>
<td>HbO2</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Vt</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>V</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

*Values indicate whether or not hemorrhage had a statistically significant effect on parameter. p < 0.01 is less than the normal value shown. NS = p > 0.05. Abbreviations are defined in Table 1.

At each level of hemorrhage, left atrial filling pressure was higher with ketamine than with halothane which in turn was higher than with isoflurane which in turn was higher than with enflurane. Stroke volume was always lower with enflurane and ketamine the no agent had a significant difference between the two. Blood lactate concentration of the ketamine group was always higher with ketamine than with halothane which did not differ among themselves. Therefore, cardiac output at normovolemia and during 30% hemorrhage, mean blood pressure, cardiac index, and mean blood pressure were least with enflurane. Cardiac output and pulmonary vascular resistance (PVR) were greatest with ketamine. While ketamine increased PVR, the hemorrhage increased PVR above baseline. During normovolemia and all stages of graded blood loss, no differences in mean pulmonary arterial pressure or PVR occurred among the anesthetic agents. At each stage of graded hypovolemia, stroke work and minute work were least with enflurane. Rate-pressure product was greatest with ketamine at every level of blood loss than with all inhalation anesthetics.

Tissue oxygen extraction at all levels of hypovolemia was less with halothane but did not differ among the other agents. Total body oxygen consumption at normovolemia and at 10% and 30% blood loss was higher with ketamine than with the inhalation anesthetics at 30% hemorrhage. VO2 decreased significantly with ketamine. There was no difference in VO2 among the agents after 30% blood loss.

These differences in VO2 were reflected in arterial blood lactate concentrations and calculated base excesses. In response to hemorrhage, arterial blood lactate concentration increased only when animals were anesthetized with ketamine. After 30% hemorrhage, blood lactate concentration was higher during ketamine anesthesia than during anesthesia with all other agents. Similarly, base deficit increased with hemorrhage during ketamine anesthesia to a greater extent than with the inhalation anesthetics, so that after 30% blood loss, base deficit was greater with ketamine than with halothane and enflurane. After 20% and 30% base deficit was greater with ketamine than with any of the inhalation anesthetics.

Because of their incomplete nature data from two additional animals have been omitted; these animals died as a result of ketamine studies. During a ketamine experiment one animal died from progressive uncontrollable hyperthermia and cardiovascular collapse. The other dog died at 11 hours after failing to
recover from a ketamine experiment in which, after 30\% hemorrhage, Q and BP\(_A\) were lower and baseline HR was higher than during the comparable period of the halothane experiment in the same dog. No deaths or complications occurred during or after experiments with any inhalation anesthetic.

Discussion

In general, the influence of anesthetic agents in our dogs was similar to that observed by others in dogs (10-21) and in man (30-39) (Kopriwa CJ). Hemodynamic effects of intravenous ketamine in patients with coronary artery disease: Abstracts of Scientific Papers. Annual Meeting of the American Society of Anesthesiologists. October 1974. pp 23A-4). No other study has directly compared these four anesthetic agents in the same animals, although Miller et al (40) recently compared halothane, isoflurane, and ketamine in normovolemic rats. Differences between the two studies may be a result of differences in species and/or experimental protocol.

In comparing these four anesthetics during normovolemia, only ketamine produced cardiovascular stimulation. Enflurane in equi-MAC concentration produced greater cardiovascular depression than either isoflurane or halothane. All inhalation anesthetics decreased total body oxygen consumption, but only halothane and isoflurane reduced oxygen demand more than oxygen supply.

Comparison among Anesthetic Agents of Physiologic Sequelae of Hemorrhage

The cardiovascular stimulation seen with ketamine during normovolemia persisted during hemorrhage. At all levels of blood loss, left heart filling pressure, heart rate, and mean arterial blood pressure were
and were started with ketamine anaesthesia in response to graded blood loss. This treatment was not to improve. However, despite the stimulation of the heart by ketamine, the dogs were in ketamine anaesthesia for 30 minutes. After 30 minutes, blood flow, regional blood flow, and oxygen consumption were measured with ketamine, but there was no change in heart rate or arterial blood pressure. This was attributed to the high arterial concentration of epinephrine, which was maintained during the ketamine anaesthesia. The authors [41] attributed this to the higher arterial concentration of epinephrine than during halothane anaesthesia. They also noted that the heart rate response to hypoxia was somewhat variable. In general, when the heart rate was below 100 beats per minute, it increased in response to hypoxia; when it was initially 150 beats per minute or greater, it tended to decrease in response to hypoxia. However, the initial heart rates of the dogs were approximately 120 beats per minute; it is not surprising that heart rate did not change with hypoxia.

In our studies, the duration of anesthesia alters the cardiovascular effects of ketamine [50] and enflurane [22, 31] but not of isoflurane [37, 38]. There is no evidence that such recovery occurs in dogs. Each of our studies brought several hours of blood loss before induction of anesthesia and measurements were made after 30% blood loss being 252 minutes. The measurements taken in spontaneously breathing dogs during the early part of the anesthesia protocol and those taken late in the anesthesia protocol after return of the shed blood did not differ significantly. Also, during several hours of ketamine anesthesia without hemorrhage, measured and calculated variables did not change. These two facts indicate that no functional mechanism altered cardiovascular function with time during anesthesia.

As all animals breathed spontaneously, PaO2 varied among anesthetic agents [3, 5]. The dogs were mildly hypocarbia with ketamine, hypercarbia with isoflurane and nearly normocarbia with...
halothane and enflurane. Cardiovascular stimulation caused by carbon dioxide is diminished by halothane (39), enflurane (37), cyclopropane (46), and thiopental (47). Cardiovascular depression seen with enflurane during controlled ventilation (48) is eliminated when PaCO₂ is allowed to increase with spontaneous ventilation (49). However, after several hours of enflurane anesthesia with spontaneous ventilation in volunteers, PaCO₂ returned to near-normal values, but cardiovascular depression did not become evident. Thus, at the time we performed our measurements, it appears that the relationship of cardiovascular stimulation by CO₂ during enflurane anesthesia is altered. It is possible that differences in PaCO₂ influenced our results. There are no data regarding the interaction of hemorrhage, anesthetics, and carbon dioxide; however, the relative mild hypercapnia seen with ketamine (e.g., PaCO₂ 33 torr at 38°C blood loss) is not likely to have major hemodynamic changes.

Clinical Implications

Our data suggest that ketamine may be less desirable than halothane or enflurane for maintenance of anesthesia during moderate hypotension. However, it may be inappropriate to translate these studies in animals directly to man. Differences and similarities in the cardiovascular effects of anesthetic drugs between man and dog during normovolemia may not be the same during hypovolemia. Finally, our experiments did not study the effects of anesthetics used for induction of anesthesia in the presence of preexisting hypovolemia, and consequently we can make no comment in this regard. The considerations and consequences of producing acute symptomatic stimulation, as during induction of anesthesia, may not be similar to those during the more prolonged maintenance of anesthesia.

ACKNOWLEDGMENTS

The authors express their appreciation to Nancy A. Stewart for typing, to W. J. Hockett, PHD and Carl Fick, MD, for their advice and suggestions with the statistical treatment of the data, to W. J. Hockett, PHD and Donald Godden, MD, for their help with the animals, and to Ohio Medical Products for supplying the ketamine. The authors also thank B. F. J. Terp and J. W. Stewart for their helpful critical review of this manuscript.

REFERENCES

Oxygen-Linked Hydrogen Ion Binding of Canine Blood

Changes in hemoglobin oxygen binding without change of true blood base-excess resulted in an increase in calculated hydrogen ion concentration. We have investigated the effect of canine base-excess changes on the oxygen dissociation curve. Dogs were anesthetized with ketamine and atropine, and the heart rate, blood pressure, and respiration were monitored. The results indicate that an increase in base-excess can shift the oxygen dissociation curve to the left, and the calcium ion concentration also influences the shape of the curve. The calcium ion concentration was shown to be an important factor in the oxygen binding of hemoglobin.

Hemoglobin, 2,3-diphosphoglycerate (2,3-DPG), and oxygen concentrations and pH were measured for each sample. Blood tensions were measured at 37°C, in duplicate with a Beckman electronic pH meter. Blood gases were measured at 37°C with a Radiometer electrode (E8446), and pH was measured using a gas mixture previously analyzed in triplicate. Base-excess was calculated using pH, PO2, and PCO2. The pH was selected so that calibration was performed with the standard P50 or P50 closest to the expected blood gas value. The appropriate calibration gas was measured before and after each blood measurement. The pH of each blood sample was measured at 37°C in duplicate using a Severinghaus-LC pH electrode calibrated with radiometer precision buffers (pH 7.40 and 6.60) in 3 ml glass ampules. The pH buffer was measured before and after each sample pH measurement. Blood gases and pH were corrected for electrode drift as necessary and pH was also corrected for the blood-jas factor. P50 values of fully oxygenated samples were read every 10 min for 2 min after placement of blood into the cuvette. True P50 was estimated by plotting P50 against time and extrapolating the linear tail of P50 to the time of insertion of the blood into the cuvette. The P50 concentration of each blood sample was measured in duplicate using an electrolytic cell (Lexy-LC-11, Lexington Instruments). Log P50 was plotted against pH and least-squares linear regression lines were drawn through each set of points using Lineweaver-Burk analysis. The base-excess was estimated by the intercept of the computed line and the base-excess curve for dogs as determined by Scott Lomax et al. The difference between the estimated base-excess of normal dogs and the base-excess curve for dogs as determined by Scott Lomax et al. was calculated to obtain the average base-excess for the normal dog. The average base-excess for the normal dog was calculated to be 1.5 ± 0.5 meq/L.
and abbreviations of Stougaard-Anderson and Sailling,24,25 by the new concentration in well after correcting for the presence of methemoglobin.

METHOD: We determined the mean Hb-2,3-DPG concentration in whole blood by the method described by Bühler et al.26 Newborns were weighed, then we measured their P50, pH, and Hb. The mean difference between duplicate pH analyses was 0.002 (0.002) mmol/L at P50 of 10.53 (0.27) torr at P50 of 10.53 (0.27) mmol/L, and the mean difference between duplicate Hb analyses was 0.028 (0.002) mmol/L at P50 of 10.53 (0.27) mmol/L. The mean difference between duplicate P50 analyses was 0.005 (0.001) mmol/L at P50 of 10.53 (0.27) mmol/L.

The strain was 2.5 mmol/L of the estimated slope of the curve between the log mean of the P50 of 10.53 (0.27) mmol/L and the log mean of the P50 of 10.53 (0.27) mmol/L. The mean difference between duplicate P50 analyses was 0.005 (0.001) mmol/L at P50 of 10.53 (0.27) mmol/L.
1. Astheroforfrick W, Kameko JJ: Tryosfate
Symposium on Trauma

Anesthesia for Major Trauma

Richard B. Weiskopf, M.D. *
and H. Barrie Fairley, M.B., B.S. *

This article will emphasize the anesthesiologist's role in the management of patients with major trauma, particularly those features that relate to airway management and fluid resuscitation. Problems peculiar to some of the more common major injuries will also be outlined.

INITIAL EVALUATION AND MANAGEMENT

Airway and Gas Exchange

On arrival in the emergency room, all seriously traumatized patients should receive oxygen; since many physiologic sequelae of trauma result in arterial hypoxemia while the patient is breathing air. The chest should be auscultated bilaterally, and if there is any question of a possible chest injury, radiographs should be obtained immediately. Hemotheraces or pneumothoraces should be relieved by placement of large bore chest tubes. Patients in whom systemic blood pressure is unobtainable require immediate intubation of the trachea and ventilation with 100 per cent oxygen as part of the initial emergency room resuscitation sequence. Rapid intravenous fluid administration and intravenous thoracotomy and aorta cross-clamping. Fixed dilated pupils in and of themselves are not an accurate indication of irreversible central nervous system damage and do not contraindicate aggressive management at this time. If an esophageal obturator has been previously inserted, it should not be removed until the airway is protected with an endotracheal tube. Because of the likelihood of regurgitation of gastric contents and the possibility of subsequent aspiration, patients who are markedly hypotensive despite rapid intravenous infusion also require early intubation to support gas exchange and protect the airway. Since cerebrospinal fluid is commonly causes muscular flaccidity and regurgitation of gastric contents. The decision as to when to intubate a hypotensive awake patient in the emergency room is difficult to make; these patients are usually candidates for immediate surgery because of continuing gross hemorrhage. If anesthetic is necessary for intubation of the trachea, we use a ketamine-xylazine-choline sequence described later in this article.

*Associate Professor, Dept. of Anesthesia, University of California, San Francisco, Calif.
Professor, Department of Anesthesiology, University of California, San Francisco, Calif.

Facial Fractures and Upper Airway Injuries. Airway assessment is the main early requirement in this group of patients. Massive facial injuries may result in nasal obstruction, otorrhage, or hematoma of such magnitude that immediate tracheotomy or cricothyrotomy is necessary in the emergency room. In all cases the rate of progress of any swelling in the upper airway must be evaluated. The principle is to secure the maintenance of a patent airway and to avoid limitation of available techniques by sudden airway obstruction. In patients with maxillary fractures of the mandible and maxilla, therefore, in whom massive edema has yet to occur, oral intubation is preferred and is usually easily accomplished should it be required. In the most obtunded, the trachea may be intubated without anesthesia. If this situation is unalleviaged, vomiting may occur and strong suction must be immediately available. Blind nasal intubation may be hazardous because of potential false passages into nasal sinuses, and the cranial vault and the possibility of dislodging loose bone and tissue. It is unusual for an alert, cooperative patient with facial injuries to require intubation in the emergency department. However, if this is necessary, the alternatives for direct laryngoscopy and intubation are 1 topical anesthesia, spraying of an anesthetic, and advancing the laryngoscope in a series of stages or 2 general anesthesia with preoxygenation, endotracheal or nasotracheal, and succinylcholine. Fractures of the mandible done usually do not cause airway difficulties when the larynx is normal.

Injuries of the larynx may cause rapid respiratory obstruction and require immediate tracheotomy. In less urgent situations and when assessing the possibility of such an injury, a history of trauma to the head and neck, stridor, hoarseness, and crepitation in the neck are all suggestive. The most frequent cause of a fractured larynx is direct force from a deceleration injury. A fracture in the region of C6 or C7 is a common association. Three useful evaluative tests for laryngeal fracture are: "asking the patient to make a high-pitched sound, which requires mobile cricovestibular joints, normal tense cords, and functioning intrinsic laryngeal neuromuscular mechanisms, 2 indirect laryngoscopy, and 3 videofluorography of the larynx, especially a computerized axial tomographic CAT scan. If instability exists, laryngeal laryngoscopy may be performed under topical anesthesia. If this type of injury is suspected, all possible information should be accumulated prior to induction of general anesthesia since laryngeal obstruction may occur during attempted tracheal intubation. The latter may cause muscle stripping, bleeding, or displacement of fractured cartilage into the airway lumen.

When a fractured larynx is present, laryngolysis and repair of minor lacerations and cartilage fractures are frequently carried out. Classically, a tracheotomy under local anesthesia is performed first. Alternatively, there are recent reports of successful tracheal intubation through the glottis. This should be attempted only in the presence of the most benign preoperative findings and when laryngeal visualization is excellent. If a tracheotomy is necessary in an uncooperative child, it may be accomplished following a small dose of ketamine as a supplement to local anesthesia.

In all cases of possible airway compromise when it is uncertain whether the proposed anesthetic maneuvers will be successful, that is, if airway obstruction could occur, the procedures should be carried out in an operating room with equipment and personnel ready for immediate tracheotomy.

Head Injuries. A high percentage of unconscious patients with recent head injuries require intubation for one or more of the following three indications: 1 to overcome airway obstruction, 2 to prevent aspiration of secretions, and 3 to ensure
hyperextension in order to minimize intracranial pressure. It is essential not to intubate a patient who has a fresh head injury; this individual must be observed closely and comforted. Otherwise, intubation may be attempted using a hockey stick. The surgeon should hold the head during this intubation, and warn of an impending excessive extension. The alternatives are blind nasal intubation, which may be easy in the hyperventilating patient, or, if time permits, intubation over a fiberoptic bronchoscope. If all else fails, tracheostomy may be necessary.

Barbiturates, other hypnotics, or muscle relaxants may be required to control the patient's agitation. Either to permit CT scanning or angiography or to prevent an increase in intracranial pressure owing to straining caused by the intubation of an endotracheal tube. The ability to conduct a neurologic assessment is thereby lessened, but this should not be of concern. Either a surgical decompression is indicated by the radiologic findings or if not, an intracranial pressure line may be inserted to permit accurate ongoing evaluation.

Fluid Resuscitation

In any patient in whom a major injury is suspected, at least two large-bore intravenous cannulae should be inserted, one of which should be located centrally. The central superior vena cava or right atrium. One should not depend upon lower extremity lines for infusion in these patients; in whom disruption of the veins of the inferior vena cava is a possibility. A catheter should be placed in the bladder wall. Those who have deep-seated skin lacerations with resultant pallor and coolness, narrow pulse pressure, tachycardia, and orthostatic hypotension are likely to have lost in excess of 20 to 25 percent of their blood volume. Cardiac output will have decreased in approximate proportion to blood loss. Deterioration of mental status indicates a more severe loss of blood volume, usually in excess of 40 percent. Fluid resuscitation should be started. It is useful to sequentially number each new bag of fluid. Blood volume should be restored to at least a level at which a central venous pressure of several mm Hg is obtained. If crystalloid is used for this purpose, 3 or more liters may be required if the previously described signs are present. If a pneumatic suit of the MAST type has been inflated around the victim's abdomen and lower limbs, it is a variable but potentially large amount of intravascular volume may have been shifted centrally. The measured central venous pressure will then not be an accurate reflection of total intravascular volume. The suit should be deflated one compartment at a time, with careful observation of hemodynamic status, when volume replacement has started and when immediate surgery can be performed if necessary.

Premarkedation Agents

These should not be used routinely. Extreme caution is necessary in hypovolemic patients. Agents without effective antidotes should be avoided. Although narcotics are effective in relieving pain and anxiety, they dilate periarterial blood
vessels and may produce further hypotension with resultant cerebral ischemia and the sedative effect of the narcotic, causing regurgitation of gastric contents and aspiration. Cimetidine, 300 mg intramuscularly, is sometimes advocated as a means of decreasing gastric acidity in emergency surgery patients. This is not universal practice and we do not do this routinely.

OPERATING ROOM MANAGEMENT

Preparation of Equipment

In order to provide anesthetic care for major trauma at a moment’s notice, a completely ready operating room should be available at all times. The anesthesiologist should have the following recently checked equipment in place: 1. Anesthesia machine, 2. volume-controlled ventilator, with appropriate valves preset, 3. suction, 4. laryngoscope with spare blades and endotracheal tube with stylets, 5. appropriate drugs: pancuronium, succinylcholine, ketamine, drawn into labeled syringes, 6. two intravenous infusion sets with pumps and blood warmers, prefilled with crystalloid solution, 7. material required for placement of arterial lines, 8. warming blanket and or a device to provide heated humidified inspired gases, 9. defibrillator with internal and external paddles, 10. calibrated equipment to monitor electrocardiographic, arterial blood pressure, central venous pressure, neuromuscular blockade, and temperature.

Choice of Anesthetic (Regional or General)

We prefer general anesthesia to regional for the more major injuries, particularly in the presence of an unstable cardiovascular status or injuries of the abdomen or thorax. Spinal anesthesia does not permit control of ventilation and the resultant sympathetic block prevents an important homeostatic response to hypovolemia. In patients with abdominal injuries, the extent of the necessary exploration and procedures is usually uncertain preoperatively, which precludes limited block levels. On the other hand, infiltration anesthesia or regional blocks can be extremely useful for the management of the more minor peripheral injuries, provided that attention is paid to the maximum safe dose of the agent selected relative to the patient’s body size and physical status.

Induction and Maintenance of General Anesthesia

During induction of anesthesia, aspiration of gastric contents into the lungs may follow passive regurgitation or active vomiting. The latter may be avoided by using a rapid intravenous induction sequence. When diaphragmatic relaxation occurs secondary to cerebral ischemia, heavy sedation or anesthesia, passive regurgitation may occur as a result of the difference in pressure between the abdomen and the thorax. Several hours of delay in scheduling surgery may decrease the probability of food remaining in the stomach, but this is never totally reliable and may be contraindicated by the urgency of the injury. Any gastric acidity and in an empty stomach cannot be assumed for extended periods following trauma. Therefore, the following steps should be taken:

1. In all cases of intussusception, closed or gastrocutaneous - or duodenal or bleeding, a nasogastric tube should be placed and the stomach aspirated immediately prior to induction, although this does not ensure an empty stomach.

2. The probable case of laryngoscopy and oral intubation should be assessed.
With potential solution available, anesthesia should be induced using a small dose of thiopental. Muscle paralysis, the intubation procedure, and the use of intubation pressure when intubation is subsequently achieved are performed for at least three minutes after the intubation of the bronchus or on two or more consecutive attempts. The intubation pressure applied on the endotracheal tube, compressing the right or left common carotid artery and applying a tourniquet around it, may also help to administer intubation

Laryngoscopy, tracheal intubation, and tube fixation should be done before the end of the pressure is removed. Laryngoscopy and intubation are expected to be difficult, other options are, in order of preference, intubation orally or blindly under topical anesthesia if necessary with a laryngoscopic bronchoscope on a tracheostomy under local anesthesia. In many acute injuries of the airway, in which the state of the patient is in doubt, we prefer oral intubation under vision as a first step. When nasal intubation is required, a nasal tube may be advanced under direct vision with the larynx in full view and the airway protected. This permits full evaluation of the injury prior to nasal intubation.

Whenever possible, hypovolemia should be corrected before the patient is transported to the operating room and anesthesia is induced. If correction is not possible because of the nature and extent of the injuries that is, the rate of hemorrhage exceeds the ability to restore intravascular volume, it may be necessary to induce anesthesia in the hypovolemic patient. If the patient is unconscious or deeply sedated, intubation of the trachea should be accomplished without drugs or with neuromuscular blocking agents alone. If the patient is conscious despite being unmanageable hypovolemic, other techniques are required.

For many years it was common practice to use an ultra-rapidly acting hypnotic such as thiopental for inducing anesthesia in this circumstance, frequently resulting in acute decompensation including death in an already severely hypotensive patient. These clinical observations may be attributed to the myocardial depression and decreased peripheral venous tone caused by these agents. Ketamine is a rapidly acting intravenous agent that in normovolemic healthy patients and laboratory animal models results in increased heart rate, systemic vascular resistance, blood pressure and cardiac output. These are indirect effects caused by increased central sympathetic outflow and baroreceptor blockade and decreased vascular tone. Very small doses of ketamine, 0.5 to 0.7 mg per kg intravenously, or used for inducing anesthesia in hypovolemic, hypotensive conscious patients. A dose greater than that dictated by the clinical situation is used, the indirect sympathomimetic responses are not elicited, and ketamine's direct action of myocardial depression may result in cardiovascular decompensation. Once intubated, the patient should be mechanically ventilated to free the anesthesiologist's hands. Evidence is lacking that either respiratory acidosis or alkalosis is beneficial during massive hypovolemia. We therefore attempt to maintain normocapnia, which has the added advantage of not confusing interpretation of acid-base status.

Following induction, only oxygen and neuromuscular blocking agents are administered until the hemodynamic situation is stabilized and systemic blood pressure rises to a mean of at least 50 mm Hg. At that point cerebral perfusion should be adequate and it is then appropriate to consider the administration of other agents. The goal is to provide analgesia or amnesia with minimal cardiovascular disturbance. Since the clinical situation is still in great flux and conditions may deteriorate, in principle agents that are easily removed or whose actions are readily terminated should be used. Opioids and other drugs are contraindicated because of the risk of explosion in a setting with a multiplicity of personnel and electrical equipment.
Furthermore, hypocapnia decreases cerebral tissue
extension. Halothane inhalation anesthetic may be occasionally added in very small concentrations, for example, halothane 1% percent to the background of 100% percent oxygen and the cardiovascular effects observed. All the inhalation agents are direct vasodilators depressing myocardial contractility and may result in significantly decreased myocardial performance and hypotension if added too rapidly or in too great a concentration. Recent studies suggest that nitrous oxide and halothane may be administered in these circumstances when compared with enflurane. The use of nitrous oxide is extremely dose limited to the variable clinical situation and be prepared to cease administration of all inhalation agents should hypotension occur.

Although narcotics such as morphine are frequently depressant in the
hypotensive, hypovolemic patient. Since it must be used in relatively high
concentrations, this adds to the potential for hypotension, and is not desirable in an
operating situation. Further, more narcotics will increase the volume of the preloaded
intravascular space, and will increase bowel distention. Although narcotics have been used
in such circumstances, two objections may be raised. One, given
that they cannot be removed as in the inhalation agents. Second, the use of narcotics
to reverse narcotic action may be only partially successful because of hypovolemia
at the site of action and because of short duration of action of the antinociceptant
than the agent. Recent evidence suggests that administration of narcotic is of benefit in non-narcotic
shocked animals suggests that enflurane and thiopental are detrimental in such circumstances. We have not observed awareness of pain
in any patient questioned postoperatively following this conservative approach to
the use of central nervous system depressants.

In selecting a muscle relaxant for continued use during the procedure, thiopental is avoided because of its propensity to release histamine resulting in further
hypotension. Succinylcholine is preferred to gallamine because of its greater vasoactive
properties and its lesser obligatory dependence for renal excretion. Neither succinylcholine nor gallamine have the least cardiovascular
actions of any depolarizing muscle relaxant.

Hemodynamic Management

After securing the airway and establishing ventilation, hemodynamics remains
the primary issue. Because of the rapidity and intensity of physiologic response to
hemorrhage, increased sympathetic system activity, decreased heart rate-regulation,
and activity increased vasoconstriction, peripheral circulatory effects and metabolic
acidosis, direct hypovolemic effects and fluid shifts, and the multiplicity of the impact
maneuvers on the acute situation, the hemodynamic status of the patient will change
rapidly.

Accurately detecting and actuating blood pressure monitoring is an important
aspect of the acute management. For this reason and to allow repeated rapid sampling
of arterial blood for measurement of PaO2, Pco2 and pH, an indwelling arterial cather
should be placed as early as in the operating room sequence as feasible if necessary by surgical cut down and connected to a pressure transducer for continuous measurement of blood pressure. The arterial line should be placed in the upper extremity because it may be necessary to cannulate the thorax system. A central venous pressure monitoring via a central line should be placed prior to
while the patient is in the emergency room or soon after arrival in the operating
room. In the operating room, intubation through an internal jugular venous or
branches.
The diagnostic approach to an intracranial bleed in adults is different because of the complexity of the injury and the need for immediate assessment of neurologic status. It is important to establish an accurate assessment of central venous pressure and intraocular pressure before the patient is moved to an operating room. The need for blood transfusion is generally determined by the degree of anemia present. However, in the case of a massively traumatized patient, the initial effort should be to maintain adequate perfusion pressure. Placement of a pulmonary arterial line in the early stages of resuscitation is preferable to a central venous line, as the latter may interfere with other procedures. There is a need for assessment of intraoperative left sided filling pressures, but these data may be inserted directly if thoracotomy has been performed. Direct observation of the degree of filling of the heart is also useful in the evaluation of the patient's volume status. The early stages of resuscitation of the massively bleeding patient require continuous communication between the surgeon and the anesthesiologist. The main priorities are the nature of the injuries and the hemodynamic support. It is necessary to cross a clamp or pump to provide adequate blood flow to the brain and heart in the presence of massive hyperkalemia. Subsequent removal of the clamp may cause hypotension from circulating volume filling a previously empty, aortic vessel to. Consequently, a pulmonary arterial line should be established gradually as hemodynamic support with addition of volumes or base on both, as required.

Intraoperative Fluid Resuscitation. The amount of fluid volume to administer is guided by the systemic blood pressure and the central venous pressure. Fluids are administered at a rate as possible until the central venous pressure is in the normal range for an unanesthetized patient. The systemic blood pressure is in the normal range.

Research and discussion have surrounded the issue of which fluid to administer. The clinician may currently choose from whole blood, packed cells, or crystalloid solutions. Crystalloid solutions containing saline, hydroxyethyl starch, or other osmotically active agents such as dextran. Whole blood is the fluid of choice because it contains all the clotting factors, as well as normal red and white cells, as well as many essential coagulation factors and a good buffer at physiologic pH. The disadvantages of packed cells include a low storage temperature of 4°C with high thermal capacity, decreased clotting factors, and possibly ABO incompatibility. Whole blood is stored for 21 days at 4°C with a high pH, high potassium concentration, and high sodium concentration, which requires stopping and cross-matching of the patient's blood with the blood to be transfused. Whole blood is also expensive and may not be available during certain times of the year. In some cases, the need for cross-match has been questioned recently. However, the presence of a clotting risk of transmission of hepatitis and decreased red cell life span depresses the need for cross-match.

Blood banks are increasingly processing whole blood into its component parts. Blood banks are currently able to process whole blood into components such as red cells, platelets, and plasma. Consequently, we must often rely on packed red cells or plasma to hemoglobin of approximately 50 percent. To decrease viscosity and thus ease administration, packed cells should be reconstituted to an approximately 30 percent hematocrit prior to transfusion. Sodium chloride 0.9 percent is the only fluid recommended by the American Association of Blood Banks for use for this purpose. Because packed cells contain little plasma, some of the advantages
A whole blood or diminished oxygen transport is not affected, however, and the CO2 transport capability is only somewhat decreased as buffering capacity and of course all clotting factors.

Despite considerable laboratory and clinical investigation, there is no firm evidence that the use of methylcellulose for blood administration is beneficial. The resistance of the vessels impeded rapid blood administration, and we therefore do not recommend their use in this setting.

Note that when extremely rapid infusion of viscosus fluids is required, there is a considerable difference in resistance to flow between various types of infusion equipment and blood warmers. Stopcocks offer high resistance, and therefore should not be used.

Inevitably, until the trauma victim’s blood is typed, fluids other than blood must be administered. Current evidence indicates that in this regard, collodion is advantageous, and may be detrimental. Given the expense of the former and the availability and ease of administration of the latter, there seems to be little reason to administer collodion in the acute resuscitative period. Resuscitative fluids undergoing research and development include thromboartens and stromal-free hemoglobin, either in solution or encased in layers of lipid. The oxygen content of thromboartens is proportional to the partial pressure of oxygen in the fluid and reaches an acceptable level only at very high Po2. Furthermore, thromboartens are extremely expensive, with extraordinarily long half-lives.

Recently, it has been possible to prepare hemoglobin with very little, if any, stroma. Elements thus eliminating renal toxicity, and offering the advantage of high oxygen content at normal Po2. Furthermore, hemoglobin so prepared can be stored in its crystalline form at room temperature for prolonged periods of time, and since no red cell membranes and antigens are present, standard blood typing is unnecessary. Current research is focused on solving the problems of short intravascular half-life, two to four hours as a result of renal excretion, and low Po2, approximately 14 Torr, of this solution of hemoglobin monomers. Nevertheless, stromal-free hemoglobin has been shown to be superior to albumin in supporting myocardial function. Should the problems of half-life and low Po2 be resolved, stromal-free hemoglobin may find its place in the earliest phases of resuscitation of the massively bleeding patient.

Persistent Hypotension Despite Apparently Adequate Fluid Administration. This situation is observed at some stage in the operating room management of many patients who have sustained extremely major injuries. The first checks should be of the accuracy of the monitoring system.

Transducers and manometers must be appropriately positioned, and it is useful to have placed a blood pressure cuff on the limb that has been cannulated for the arterial pressure. The eschweiger pressure can then be used as a cross-check. Possible causes of the continuing hypotension must then be reviewed. These include undetected hemostasis, hypothermia, pneumothorax, or pericardial tamponade, and loss of hypothermia, or an error in administration of ventilation or anesthesia. Hypothermia may be present in severe cases of hypoperfusion, hypothermia, and massive transfusion.

If correction of acidosis is ineffective in restoring systemic pressure, we empirically administer calcium chloride 1 g intravenously since ionized calcium measurements are not readily available. Calcium and other pressors have diminished effectiveness during acidosis.
Acid-Base Balance

Even though perfusion results in accumulation of lactate, and because of decreased availability of oxygen at the end of the electron transport chain, and decreased hepatic uptake of lactate during severe reductions of hepatic blood flow or during severe hypoxemia. It is not clinically convenient to measure lactate, and however, its appearance in the blood will result in a nearly stoichiometric increase in base deficit. Base deficit may be rapidly computed from measurements of arterial Po2 and pH. Arterial blood gases and pH should be measured as soon as possible. The primary treatment of acidosis secondary to hypoxemia is obviously volume replacement. If volume is restored and perfusion pressure is satisfactory, the acids will be corrected as the liver takes up lactate and the tissues cease lactate production. Thus, treatment of an anions per se will not be required. However, if hypoxemia persists, this may be partially due to anions. Ideally, the magnitude of this anion should be measured. If data are not yet available it is safe to administer NaHCO3 as a therapeutic test. It is unusual to observe clinically important acid-base effects of metabolic anions at base deficits less than 10 meq/liter, and in this setting, anions of considerably greater magnitude is common. Whole body base deficit is usually calculated from the formula: 0.2 times excess Wt/kg per liter of body weight in kg. Thus, 200 or more meq of NaHCO3 may be required. Since the arterial pH status is usually unstable when administration of NaHCO3 is indicated, a calculated dose will not provide exact correction. Repeated evaluation is necessary. Based on recent evidence that over a wide temperature range, arterial plasma pH is closely related to the pH of water and the concentration of monohydrogen phosphates, Po2 and pH should be measured at 37°C and not corrected to the patient's temperature. In any event over the clinical range computation of base excess is very nearly independent of temperature.

It is not clear whether measured Po2 should be corrected to the patient's temperature or reported at 37°C. However, temperature correction is necessary for computation of chemical arterial difference in oxygen tension. Furthermore, in the hypothermic patient, temperature correction results in error it is on the side of patient safety.

Hypothermia

Poor perfusion, opening of minor body cavities, and administration of fluids of temperature less than body temperature inevitably result in hypothermia. Hypothermia presents multiple dangers. Myocardial function decreases with temperature. In the clinical setting of decreased myocardial pre-load and prolonged poor myocardial perfusion, myocardial hypothermia is poorly tolerated. As myocardial temper-
It's important to appreciate that although there is no consensus on which factors
are the most important in determining the formation of reactivity within a thrombosis,
the major determinants appear to be the concentration of platelets and the amount of
platelet aggregation that occurs. Hypothermia appears to be a critical determinant of
platelet function, and the use of platelet concentrates containing live platelets is
recommended for patients undergoing surgery during which hypothermia is
expected.

Temperature should be measured continuously for other indications: hypothermia
may be a cause of increased perfusion and decreased myocardial contractility. Addi-
tional problems may arise from hypothermia-induced alterations in drug action and
hemostatic mechanisms. Maintaining normothermic temperature is important in
these situations, especially in patients undergoing major surgery or with
peripheral vascular disease.

In the severely bleeding patient, it is possible to support the coagulation
system, although it is not possible to maintain normal hematocrits. An
exchange blood transfusion should be performed, using apheresis or platelet
concentrates to maintain normal platelet counts and blood flow rates. A
physically active warmed bed should be used, with heat exchangers in place on
the operating table. The device should be set to deliver 1 to 2 liters of
warmed crystalloid solution per minute at a rate of 10 to 20 minutes to ensure
adequate warming of the patient. In patients with cold, hypothermic
blood, the use of normothermic blood transfusions is recommended.

Accordingly, heated, oxygenated blood should be used in patients
undergoing surgery. Hypothermia may also inhibit the function of platelet
aggregates, so that additional platelet concentrates should be used in the
immediate postoperative period.

Coagulation

Anticoagulants such as heparin or heparin derivatives may be used to
prevent excessive bleeding in patients with disseminated intravascular
coagulation or platelet dysfunction. Coagulation factors X, VIII, and possibly
IX have a half-life of approximately one week. Fortunately, only 5 to 10 percent
of the available quantities of these factors are necessary for surgical
hemostasis.

Furthermore, the liver quickly produces large quantities of factor VIII after
intravenous administration. Platelet function is severely impaired within minutes
of storage at 4°C, but survivals limited to less than 24 hours.

Many blood banks use platelet concentrates to maintain normal platelet
counts. Freshly drawn plasma contains all coagulation factors except platelets.

In contrast, fresh frozen plasma contains less than 20 percent of fresh
platelets, which is controversial.

The adequacy of perioperative transfusion occurs commonly when bleeding is
expected and two factors: the estimated blood volume and the amount of
platelets. Platelet concentrates should be administered at the same time as
blood transfusion, and additional units of platelets should be administered at the
same time as blood transfusion. Most hospitals use blood banks to stock
platelets, and they are not used if the bleeding cannot be stopped. Additional
units of platelets will be required if the bleeding cannot be controlled. Although
the use of platelets is controversial, we also administer 2 units of fresh frozen plasma
after 10 units of blood or packed cells and 1 additional unit for each further 5
units of transfused blood.
SPECIAL PROBLEMS

Hemorrhagic Injuries

Here problems may require special actions by the anesthesia team.

Pulmonary Injuries: With all injuries due to pressure, it is advisable to place the patient in a low pressure position. The injury is in the lung, however, a mechanical ventilator should be used. This allows positive pressure ventilation and improves the ability to pump blood through the lung. If this is not possible, a long endotracheal tube capable of being clamped can be used. A balloon in one of the bronchi should be used. Balloons should include a cranial balloon if any vital movements of pulmonary oxygen exchange are present.

Aortic Injuries: Delayed exposure to compressing of the aorta can cause aortic rupture. The longer the delay the greater the likelihood of aortic rupture. The patient should be treated for shock, transfusion from the origin of the aorta, and hypotension. Treatment below the heart will result in a much safer condition. A sheet may be placed during the period of clamping to prevent surgical trauma with the prompt of clamping itself, and there will prevent the aortic rupture. In cases where the aorta cannot be reached and a sheet is placed, an agent such as sodium nitroprusside can be used to prevent volume loss. Volume loss may be required in the amount of the aorta. If time permits left ventricular filling pressure should be controlled.

Cardiac Injuries and Tamponade: Rapid surgical correction is essential. External chest massage is indicated with small doses of intravenous fluids. If a tamponade is present, it should be treated with prompt thoracotomy. Although the maintenance of a high cardiac filling pressure is the most important and intravenous fluids should be given to achieve it, this is only a short-term measure and immediate surgery should be performed.

Spinal Injuries

The approach to spinal injuries has already been discussed. Although no spinal fluid is present, several days after a lumbar puncture, there is a sudden onset of muscle weakness, inability to control the bowels, and other neurological symptoms. This can be treated with a surgical decompression, and it is important to start this procedure as soon as possible.
Head Injuries

Intracranial pressure must be lowered as soon as possible by administration of mannitol. A moderate reduction in intracranial pressure is achieved by administration of cerebral depressant. Mechanical ventilation waveform with rapid inspiration is the most effective for maintaining intracranial pressure. Intravenous administration of mannitol should not be used because of the less rapid fall in arterial blood pressure that may accompany it. Hypotension is usually well tolerated in the presence of head injuries. However, there is an increased need to support large dose barbiturates in the edema to limit protection of the brain.

Intracranial Complications

Marked hypotension immediately following respiratory depressants is common. This should be managed with fluids and if necessary after the administration of pressor such as dopamine. We usually establish arterial and central venous pressure monitoring as soon as intracranial pressure is stabilized. Hypotension is occasionally seen in the presence of a dissection in the carotid arteries. Since hypertension is a danger to the brain, the appropriate mean arterial pressure is maintained at the operating site. Neurogenic pulmonary edema may be controlled with nitroprusside and temporary application of positive end-expiratory pressure or positive end-expiratory pressure.

The Open Cerebrocerebral Shunt

In the open cerebrocerebral shunt the cerebrocerebral shunt is performed to decompress the brain. The shunt is performed under local anesthesia and requires no sedation. The shunt is performed to decompress the brain. The cerebrocerebral shunt is performed under local anesthesia and requires no sedation. The cerebrocerebral shunt is performed under local anesthesia and requires no sedation.

THE IMMEDIATE POSTOPERATIVE PERIOD

At the end of surgery the patient is stabilized with hypotension. A large dose of mannitol and vasodilator is administered. The patient is maintained with a large dose of mannitol and vasodilator. The patient is maintained with a large dose of mannitol and vasodilator.
danger of possible regurgitation and aspiration of gastric contents, the patient should
not be extubated until he or she is awake and has intact upper-airway reflexes.

After major trauma, many patients remain unstable in a number of ways, in-
cluding blood volume and hemodynamics, temperature, acid-base balance, and con-
agulation. In some instances, pulmonary edema is present as a result of pulmonary
trauma or secondary to previous cardiac ischemia or massive fluid load. Intravenous
pressure may require monitoring. Intensive care will be necessary, but the process
of transfer is not simple. There will be a lapse of time before the patient is settled
in the intensive care unit (ICU) with all monitoring systems functioning and the
ICU staff conversant with the ongoing problems. There are various ways to meet
this situation, but the guiding principles are as follows.

1. Establish and maintain as much monitored stability as is possible in the operating
 room that is away, a bleed away to the ICU with a hypovolemic hypotensive patient
 whose blood gas levels and acid-base state are unknown. It necessary, stay in the operating
 room long enough to correct these defects.

2. Use portable electronic monitoring and mechanical ventilation equipment for the move
to the ICU, and ensure that these are functioning well before leaving the operating room.

3. Patients with severely impaired cardiac output states, a change to manual ventilation may
 result in a sudden change in intracranial pressure to cause increased hypotension or intracranial
 pressure or to permit a change in lung volume with resulting deterioration in oxygen
 exchange.

4. Use the ICU to prepare the necessary ventilation and monitoring equipment and
 other aurgently required therapy, such as blood products.

5. Once arrival, establish the same of blood pressure monitoring and ventilation as a first
 priority. Stay with the patient until all monitoring and support systems are reestablished and
 the ICU staff is familiarized with the patient's circumstances and orders.

REFERENCES

1. Baker T J, Gurney E L, and Donley B D: Neurologic outcome after emergency neurosurg-

 severe head injuries with early
 3. Brockio M J, Wachter E, Ford J, and others: Value of the ECG in patients with severe poly-

4. Brockio M J, Wachter E, Ford J, and others: The outcome from severe head injuries with early

5. Brown D J, Donaldson J E, Logan R J, and others: Cardiac arrest and neurologic effects of

 Neurosurg 55:79, 1988

Acid-base curve and alignment nomograms for swine blood

RICHARD B. WEISKOPE, MARY I. TOWNSLEY, KATHRYN K. RHODIAN, DALE HARRIS, AND KAREN CHADWICK
Department of Anesthesia, School of Medicine, University of California, San Francisco, 94110, and Departments of Surgery and Information Sciences, Letterman Army Institute of Research, Presidio of San Francisco, San Francisco, California 94110

Acid-base curve and alignment nomograms for swine blood. J. Appl. Physiol. Respir. Environ. Exercise Physiol. 58(6): 958-963, 1985-To construct acid-base curves and alignment nomograms for swine blood, we added known amounts of acid or base to aliquots of swine blood with three different concentrations of hemoglobin. Pairs of blood samples were equilibrated at two different CO2 partial pressures, and blood pH was measured. Data were analyzed by computer, and mean values were created for complete data of four swine. The curves and alignment nomograms were constructed by computer. The resultant nomograms for swine blood differ from those constructed by Siggard-Andersen for human blood, most importantly at base-excess values of -10 to -25 mmol L-1. The possible reasons for the observed differences are discussed, and although not completely resolved, may be related in large measure to the accuracy of pH determination and the methodology of nomogram construction.

METHODS

Collection and handling of blood. Four studies were performed. The blood of a different pig was used in each study. Each pig's blood was handled in a similar fashion. Pigs were anesthetized with thiopental, and 3.3 ml of arterial blood were collected in heparin (50 units/ml) syringes. Whole blood was centrifuged, and three red blood cell dilutions (packed cell volumes of approx. 25% and 45%) were prepared from the separated red blood cells and plasma. A sample of well-mixed original whole blood and samples of each dilution were placed in ice for later determination of total protein (16), hemoglobin (66, 2,3-diphosphoglycerate (88), and methemoglobin (63) concentrations. Blood samples were prepared in duplicate at base-excess (BE) of -25, -20, -15, -10, -5, 0, 5, +5, +15, and +20 meq/L at each of three hemoglobin concentrations (a total of 60 samples) by adding 100 μL of working acid or base solution (see below) to 0.9 ml of blood. To prevent red cell lysis, blood samples were briefly centrifuged at low speed, and the acid or base solution was added to the swirling supernatant plasma. Samples were then gently but thoroughly mixed. Blood preparation was followed by tonometry and measurement of pH. One member of each pair of blood samples was equilibrated for 2 min in an Instrumentation Laboratories model 213 tonometer with a gas mixture of 2.75% CO2 in O2, the other member of the pair was similarly equilibrated with a gas mixture of 96.4% CO2 in O2. The gas mixtures had been previously analyzed in triplicate by the method of Scholander (11). (When these gas flows and concentrations and blood volumes were used in preliminary experiments, equilibration of blood with CO2 was achieved within 4-5 min.)

We measured pH using a Severinghaus-U electrode (130 thermistorically controlled at 38.8 °C and a Lovoz model 3 DBM3 amplifier. The pH electrode was calibrated with precision reference buffers (pH 6.88 and 7.479 at 38.8 °C; Radiometer 4ml sealed glass ampele). Electrode calibration was checked with the 7.479 buffer before and after each blood sample reading. Measurements were performed in duplicate with a maximal allowable difference between the two determinations of 0.01 pH units. The mean ± SD of the difference between the paired reading for all samples, calculated without respect to sign, was 0.001 ± 0.005 pH units. Measurements of pH were corrected for red cell suspension effect (17.18). PO2 was measured in duplicate by using a CO2 electrode (Radiometer E5003) in a steel-and-glass cuvette (Radiometer D610) thermostatically controlled at 38.8 °C. The electrode was calibrated with gas mixtures analyzed in triplicate by the method of Scholander (11). A reading of
a standard gas with a PCO₂ close to that expected for the
blood sample was taken before and after each blood
sample reading. Blood CO₂ tensions were systematically
measured to ensure equilibration of blood with CO₂.
Mean ± SD difference between measured and expected
blood PCO₂ (calculated without regard to sign) was 0.88 ±
0.28 Torr at Pco₂ of 72.9 Torr. Readings for pH and
PCO₂ were corrected for electrode drift.

Preparation and standardization of acid and base
solutions. A 1.0 N solution of Na₂CO₃ (10077, certified
alkaline standard, Fischer Scientific) was prepared
and used to standardize, by titration, what we determined
to be a stock solution of 1.01 N HCl. The 1.01 N HCl
was used as a titter to prepare a stock solution of what we
determined to be 1.01 N NaHCO₃. Concentrations of 0.2, 0.4,
0.6, and 0.8 N acid and base working solutions were
prepared volumetrically from the stock solutions. All
working solutions were titrated as described above. All
titrations were repeated after completion of the bench
laboratory work reported here; no differences were noted
due to determinations made before and after these
experiments.

Data analysis. The data generated for each pig result-
in three sets of values (1) for each concentration of
hemoglobin. Each set contained values for pH and PCO₂
for blood samples at each BE 0.20 meq/l of acid or base
added. However, since the BE of the blood drawn from
the animal was not necessarily zero, the data were
"normalized" to correct for any small acid-base imbalance
at the time of sampling. To accomplish this, Sig-
guard-Andersen and Engel (19, 22) plotted constant CO₂
titration curves pH vs. acid or base added at each CO₂
concentration for each hemoglobin concentration. Any curve
fit their data by eye and by hand similarly shifted the
axis for the added acid or base so that zero corresponded
to pH 7.400 for the Pco₂ 40-Torr curve. Sig-
guard-Andersen, personal communication, see Fig. 1.
In following their methodology, we noticed that minor
differences in curve fitting and shifting the data "by eye"
resulted in relatively large differences in the final nomo-
grams. Unable to arbitrarily resolve these observed dif-
ferences, we used precise mathematical and graphical
techniques that were implemented by a computer.

For each concentration of hemoglobin, we calculated regression coefficients by using a forward-stepwise with
a backward glance selection procedure (5) to fit the model

\[\text{pH} = C + C \cdot \text{BE} \]

This model has the following properties: 1) for any
given BE, the relationship between pH and log PCO₂ is
linear; 2) the slope and intercept of this relationship may
vary non-linearly with BE, and 3) for each concentration
of hemoglobin the calculated coefficients define a model
that fits the data with high statistical significance (R² >
0.99).

For each level of hemoglobin, the equation was
"normalized" to a pH of 7.400 for a BE of zero and a Pco₂
of 40 Torr, based on the observations of Orr et al., in
six awake chronically catheterized swine (140). Those
investigators measured arterial CO₂ partial pressure
(PaCO₂) at 40 Torr and arterial pH (pH₂) at 37.44 BE = 1
million. This seemed sufficiently close to the human
standard of Pco₂ of 40 Torr and pH of 7.4 to retain these
values for BE = 0 for the purpose of nomogram construc-
tion. This normalization was accomplished by solving
each derived regression for BE at pH 7.4 and Pco₂ 40
Torr using the Jenkins-Trubin three-stage algorithm (O).
The result, BE₆, represented the deviation of the acid-
basis status of the animal from zero at the time the blood
was drawn. Values for the amount of acid or base-added
(BE) were then adjusted (shifted) by the amount of
BE₆. The above regression model was then refit with
the shifted BE values.

Curve nomogram. By using the equations resulting
from the above curve-fitting procedure, we calculated
the relationship between pH and log PCO₂ for each of the
three concentrations of hemoglobin at each level of BE.
Siggaard-Andersen and Engel (22) stated that for each
level of BE, there exist a single pH and Pco₂ that are
independent of hemoglobin concentration. Therefore
for each level of BE, the three lines calculated above should
intersect at a single point. Brodila (2) has calculated that
this can occur only if shifts in water between the red
blood cell and plasma that result from changes in pH are
taken into account. Experimentally the three hemoglo-
bin lines at each level of BE result in three intersec-
tions. Several approaches are possible when approximat-
ing the hemoglobin-independent point by computer. For
example, the three points of intersection could be aver-
age. However, this method can be shown to be subject
to large error because of the non-linear nature of these
hemoglobin lines. We chose an approach that is
parallel. Other simple methods of approximation are
subject to error. At the expense of being more complex
and cumbersome, our approach avoided this potential
error.

We approximated the hemoglobin-independent point
by calculating the point that minimized the mean square
difference in pH and log PCO₂ between the point and the
two other slopes, and then calculated the regression
model for a given BE, i.e., pH = m log PCO₂ + b₁. Solve
the following set of equations for pH, and log PCO₂,

\[\frac{dx}{d \text{pH}} = 0 \]
\[\frac{dy}{d \text{log Pco}_2} = 0 \]

Where X = (pH - pH₂) + (pH₂ - pH - pH₆)
\[\frac{dy}{d \text{log Pco}_2} = \frac{(pH - pH₂) + (pH₂ - pH - pH₆)}{(pH₂ - pH - pH₆)} \]

For each level of hemoglobin, the equation was
"normalized" as above for a pH of 7.400 for a BE of zero
and a Pco₂ of 40 Torr, based on the observations of Orr et al., in
six awake chronically catheterized swine (140). Those
investigators measured arterial CO₂ partial pressure
(PaCO₂) at 40 Torr and arterial pH (pH₂) at 37.44 BE = 1
million. This seemed sufficiently close to the human
standard of Pco₂ of 40 Torr and pH of 7.4 to retain these
values for BE = 0 for the purpose of nomogram construc-
tion. This normalization was accomplished by solving
each derived regression for BE at pH 7.4 and Pco₂ 40
Torr using the Jenkins-Trubin three-stage algorithm (O).
The result, BE₆, represented the deviation of the acid-
basis status of the animal from zero at the time the blood
was drawn. Values for the amount of acid or base-added
(BE) were then adjusted (shifted) by the amount of
BE₆. The above regression model was then refit with
the shifted BE values.

Curve nomogram. By using the equations resulting
from the above curve-fitting procedure, we calculated
the relationship between pH and log PCO₂ for each of the
three concentrations of hemoglobin at each level of BE.
Siggaard-Andersen and Engel (22) stated that for each
level of BE, there exist a single pH and Pco₂ that are
independent of hemoglobin concentration. Therefore
for each level of BE, the three lines calculated above should
intersect at a single point. Brodila (2) has calculated that
this can occur only if shifts in water between the red
blood cell and plasma that result from changes in pH are
taken into account. Experimentally the three hemoglo-
bin lines at each level of BE result in three intersec-
tions. Several approaches are possible when approximat-
ing the hemoglobin-independent point by computer. For
example, the three points of intersection could be aver-
age. However, this method can be shown to be subject
to large error because of the non-linear nature of these
hemoglobin lines. We chose an approach that is
parallel. Other simple methods of approximation are
subject to error. At the expense of being more complex
and cumbersome, our approach avoided this potential
error.

We approximated the hemoglobin-independent point
by calculating the point that minimized the mean square
difference in pH and log PCO₂ between the point and the
two other slopes, and then calculated the regression
model for a given BE, i.e., pH = m log PCO₂ + b₁. Solve
the following set of equations for pH, and log PCO₂,

\[\frac{dx}{d \text{pH}} = 0 \]
\[\frac{dy}{d \text{log Pco}_2} = 0 \]

Where X = (pH - pH₂) + (pH₂ - pH - pH₆)
\[\frac{dy}{d \text{log Pco}_2} = \frac{(pH - pH₂) + (pH₂ - pH - pH₆)}{(pH₂ - pH - pH₆)} \]

For each level of hemoglobin, the equation was
"normalized" as above for a pH of 7.400 for a BE of zero
and a Pco₂ of 40 Torr, based on the observations of Orr et al., in
six awake chronically catheterized swine (140). Those
investigators measured arterial CO₂ partial pressure
(PaCO₂) at 40 Torr and arterial pH (pH₂) at 37.44 BE = 1
million. This seemed sufficiently close to the human
standard of Pco₂ of 40 Torr and pH of 7.4 to retain these
values for BE = 0 for the purpose of nomogram construc-
tion. This normalization was accomplished by solving
each derived regression for BE at pH 7.4 and Pco₂ 40
Torr using the Jenkins-Trubin three-stage algorithm (O).

$\text{pH}_i = m \log \text{PCO}_2 + b_i$ for $i = 1, 2, 3$

$\log \text{PCO}_2 = \frac{\text{pH}_i - b_i}{m}$

A curve nomogram was then plotted by connecting the hemoglobin-independent points for a series of BE values.

Alignment nomogram. Curve-shifted data were used for a computerized construction of the alignment nomogram, in a manner similar to that described by Siggaard-Andersen (20).

Mean Values

For each pig the previously derived regression equations (1 for each concentration of hemoglobin) were used to calculate pH values at each standard PCO$_2$. The resulting four pH values (1 per pig) at each PCO$_2$, BE, and concentration of hemoglobin were averaged, thus producing a set of data representing the "mean" pig. Raw data could not be used for this purpose because the BE values of the sampled blood differed slightly among pigs, thus requiring differing degrees of curve shifting to achieve normalization. Mean data were

TABLE 1. Swine base-excess curve nomogram

<table>
<thead>
<tr>
<th>Base Excess</th>
<th>Coordinates</th>
<th>Base Excess</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>mmol/L</td>
<td>pH units</td>
<td>mmol/L</td>
<td>pH units</td>
</tr>
<tr>
<td>-20</td>
<td>7.145</td>
<td>19.7</td>
<td>0</td>
</tr>
<tr>
<td>-19</td>
<td>7.162</td>
<td>20.7</td>
<td>1</td>
</tr>
<tr>
<td>-18</td>
<td>7.178</td>
<td>21.8</td>
<td>2</td>
</tr>
<tr>
<td>-17</td>
<td>7.194</td>
<td>22.9</td>
<td>3</td>
</tr>
<tr>
<td>-16</td>
<td>7.209</td>
<td>24.1</td>
<td>4</td>
</tr>
<tr>
<td>-15</td>
<td>7.223</td>
<td>25.2</td>
<td>5</td>
</tr>
<tr>
<td>-14</td>
<td>7.238</td>
<td>26.3</td>
<td>6</td>
</tr>
<tr>
<td>-13</td>
<td>7.252</td>
<td>27.5</td>
<td>7</td>
</tr>
<tr>
<td>-12</td>
<td>7.262</td>
<td>28.6</td>
<td>8</td>
</tr>
<tr>
<td>-11</td>
<td>7.275</td>
<td>29.8</td>
<td>9</td>
</tr>
<tr>
<td>-10</td>
<td>7.287</td>
<td>30.9</td>
<td>10</td>
</tr>
<tr>
<td>-9</td>
<td>7.298</td>
<td>32.0</td>
<td>11</td>
</tr>
<tr>
<td>-8</td>
<td>7.310</td>
<td>33.1</td>
<td>12</td>
</tr>
<tr>
<td>-7</td>
<td>7.321</td>
<td>34.1</td>
<td>13</td>
</tr>
<tr>
<td>-6</td>
<td>7.333</td>
<td>35.2</td>
<td>14</td>
</tr>
<tr>
<td>-5</td>
<td>7.344</td>
<td>36.1</td>
<td>15</td>
</tr>
<tr>
<td>-4</td>
<td>7.355</td>
<td>37.0</td>
<td>16</td>
</tr>
<tr>
<td>-3</td>
<td>7.366</td>
<td>37.9</td>
<td>17</td>
</tr>
<tr>
<td>-2</td>
<td>7.377</td>
<td>38.6</td>
<td>18</td>
</tr>
<tr>
<td>-1</td>
<td>7.388</td>
<td>39.4</td>
<td>19</td>
</tr>
<tr>
<td>0</td>
<td>7.400</td>
<td>40.0</td>
<td>20</td>
</tr>
</tbody>
</table>

PCO$_2$, CO$_2$ partial pressure

FIG. 1. Mean and base curve nomogram for swine. See text for derivation of "mean" values for 4 swine and construction of nomogram.

FIG. 2. Comparison of our "mean" data for swine (- - -) with Siggaard-Andersen's data for humans (- - -) and Scott Hmaszk's data for canines (- - -).
then handled as if they were from a single pig, and the above-described analysis was performed. The result was separate mean curve and alignment nomograms.

RESULTS

The mean acid-base curve nomogram for swine blood is depicted in Fig. 1, the data are presented in Table 1. We compared our curve nomogram for swine blood with that of Siggaard-Andersen (19) for human blood and with that of Scott Emuukpor (12) for canine blood (Fig. 2). The alignment nomogram is shown in Fig. 3.

DISCUSSION

Our mean curve and alignment nomograms for swine blood are different from nomograms for human (19, 20) and canine blood (12) (Fig. 3). As a technical check, we
performed similar but limited experiments with blood of two human volunteers. The resultant limited nomograms at data points, at hemoglobin concentrations of 3.10, and 15 g/dl were similar to that of Siggaard-Andersen et al. between BE of 10 and 10 mmol/l at pH 7.40 but differed from our own nomogram (P < 0.001). To compare the swine alignment nomogram with that drawn by Siggaard-Andersen for human blood (20), we plotted the data of known pH, Pco₂, hemoglobin concentration, and BE from the Siggaard-Andersen alignment nomogram as if we were unaware of the true BE value. The BE values determined from the Siggaard-Andersen nomogram were compared with the true BE values. The resultant estimated BE differed (P < 0.001) from the known BE of all blood samples at all concentrations of hemoglobin and BE, except at a BE of zero, for which the results are definitively identical. In nearly all cases, however, the calculated value was within ±10% of the true value.

There are several plausible explanations for the differences between our nomogram and that of Siggaard-Andersen. Neither set of data is based on the blood of a large population; Siggaard-Andersen used the blood of four humans, we used four swine. However, in our experiments, individual variation did not appear to be an important problem.

Some of the observed differences may relate to differences in species. Scott (13) described a curve nomogram for canine blood that differed from Siggaard-Andersen's curve nomogram for human blood.

The buffer value of plasma proteins and hemoglobin can vary among mammalian species (14, 20), and may account for some, but not all, of the differences among the nomograms. Measured total protein of our swine blood (7.2 ± 0.1 g/dl) was similar to the normal value for humans.

To create blood samples of altered BE, we avoided important dilution of plasma proteins by adding small amounts of relatively concentrated (0.2-0.8 N) acid or base. We therefore produced some alternation in nonequilibrium blood, which may account for some of the differences between our nomograms for swine blood and those of Siggaard-Andersen for human blood (19, 20). However, our curve nomogram for swine blood differs even more from the original curve nomogram of Siggaard-Andersen and Engel (12), for which the identical method of addition of acid or base was used.

To construct the nomograms, we followed the general methodology of Siggaard-Andersen. However, the two methodologies differ in several important ways.

We used a method different from that of Siggaard-Andersen to "shift" the original data to normalize the drawn blood to the established definition of BE as pH 7.4, Pco₂ 40 Torr. Siggaard-Andersen's personal communication accomplished the following task: graphically fitting the curve and selecting the points by eye, curve fitting the two constant CO₂-titration curve plots (pH vs. acid or base added) at each concentration of hemoglobin; estimating similar data for Pco₂ 40 Torr, assuming a linear relationship between log Pco₂ and pH; and followed by curve fitting of the Pco₂ 40 Torr data, as in 1.5 estimating the axis shift acid or base added to align the Pco₂ 40-Torr data so that at a pH of 7.40, BE was set equal to zero; and 2) estimating from the hand-drawn iso-Pco₂ curves the pH at preselected levels of BE. An example of this graphic process, using data from one of our swine, is shown in Fig. 4. We accomplished all the above with a computer, the resulting curve-fit equations describing the data with an accuracy of more than 99.95%.

To draw the BE grid, Siggaard-Andersen used his previously developed pH-log Pco₂ curve nomogram for one set of blood pH and Pco₂ values and an empirical relationship between buffer base, hemoglobin concentration, and BE to estimate the required second pair of blood pH and Pco₂ values. Because of our uncertainties regarding the specificity of the pH-log Pco₂ curve nomogram and the empirical relationship described above, we chose to use our original data and the computer-generated curve fits to that data to determine the BE grid.

To generate the continuous isohemoglobin lines of the BE grid from the original data, we developed computer-
ized empirical mathematical equations that were plotted by computer. Sigggaard-Andersen used points determined graphically to draw curves by hand. Although we have not examined systematically the differences between the two techniques, we did note before completion of the computer program that seemingly small, unimportant interpretative differences that occurred when drawing curves by hand through the original data created relatively large differences in the estimated amount required to shift the "acid-base-solidified" axis [21]. These differences created relatively large differences in the alignment nomogram.

Another difference between Sigggaard-Andersen's nomogram and our own is the temperature at which tonometry and measurement of pH were performed. Sigggaard-Andersen's experiments were performed at 38°C; ours were performed at 38.5°C (normal body temperature for swine). Sigggaard-Andersen correctly stated that measurements performed at temperatures within ± 2°C of 38°C (the standard temperature of his nomogram) are "without any practically significant error" [20]. We temperature corrected some of our pH and PO2 data from 38.5 to 38°C and then estimated BE from our nomogram. All estimates were within ±0.1 mmol/L of the true value. Similarly, using established data for Pk" solubility of CO2 in plasma [14], we determined that change in calculated plasma HCO3 between 38.0 and 38.8°C was less than 0.1 mmol/L.

Finally there are differences in the methodology of measuring pH, the major variable on which these nomograms rest. As a result of advances in design and construction of pH electrode (13) and amplifier (16), our determinations of pH probably had less variability (0.001 ± 0.001 (SD) pH units) than did the measurements of Sigggaard-Andersen. Variations in the measurement of pH that are usually considered minor (e.g., 0.001 pH units) result in surprisingly large differences in the final nomogram, because relatively small changes in the slope of nearly parallel lines greatly alter their point of intersection. Small variations in pH create the largest changes in the nomogram in the BE range of ±10 to ±25 meq/L, the range in which our nomogram differs most from that of Sigggaard-Andersen.

The authors thank Drs. J.W. Severson and D. Sigggaard-Andersen for their review of the manuscript and their helpful comments.

This study was supported in part by US Army Research and Development Command Contract DAMD 17-67-C-550. The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the US Dept of the Army or the Dept of Defense.

Received 30 September 1981, accepted for final review 27 October 1982

REFERENCES

A 1-D BASE NOMOGRAM FOR SWINE BLOOD
et al., (1974) noted that, in hypervolemic states, resorption of
plasma fluid by the lungs was reduced (possibly due to
plasma overloading), and this led to a further increase in
plasma vascular fluid (Shaw et al., 1974). Additionally,
Shaw et al. (1974) observed that a reduction in
plasma fluid was not associated with a decrease in blood
volume, as hypothesized by others. The opinion that
plasma fluid is not preserved in hypervolemic states is
consistent with the findings of others, such as
Macdonald et al. (1975).
The following manuscript, in preparation, is enclosed:

Weiskopf RB, Bozetz MS, Roizen MF, Reid IA: Cardiovascular and metabolic sequelae of inducing anesthesia with ketamine or thiopental in hypovolemic swine.
CARDIOVASCULAR AND METABOLIC SEQUELAE OF INDUCING ANESTHESIA WITH KETAMINE OR THIOPENTAL IN HYPOVOLAMIC SWINE

Richard B. Weiskopf, M.D.,* Martin S. Rogetz, M.D., Michael F. Roizen, M.D.,** and Ian A. Reid, Ph.D.*

*Associate Professor of Anesthesia.
**Assistant Professor of Anesthesia.
***Associate Professor of Anesthesia, Medicine, and Pharmacology.
****Associate Professor of Physiology.

Address reprint requests to Dr. Weiskopf: Department of Anesthesia, San Francisco General Hospital, Room 3850, 1001 Potrero Avenue, San Francisco, California 94110.
Abbreviated title: KETAMINE OR THIOPENTAL INDUCTION DURING HYPOVOLMIA
13. Appendix

The following manuscript, in preparation, is enclosed.

Weiskopf RB, Bogetz, MS, Roizen MF, Reid IA: Cardiovascular and metabolic sequelae of inducing anesthesia with ketamine or thiopental in hypovolemic swine.
KETAMINE OR THIOPENTAL INDUCTION DURING HYPOXENIA

(Key words: Anaesthetics, intravenous; ketamine; thiopental. Blood loss; volume. Blood pressure; drug effects; measurement; peripheral vascular resistance. Heart: cardiac output; vascular pressures; ventricles. Menorrhage. Receptors: pressure receptors.)
ABSTRACT

If further sympathetic stimulation is neither possible nor desirable during moderate hypovolemia, anesthetic agents capable of sympathetic stimulation would not be advantageous for induction of anesthesia during hypovolemia. To test this hypothesis, 21 swine were studied during normovolemia and after 30% of their estimated blood volume was removed. Swine were randomly divided into three equal groups to receive no anesthetic or the minimal anesthetic dose of ketamine (0.65 ± 0.38 mg/kg, iv) or thiopental (5.77 ± 0.21 mg/kg, iv). Animals given no drug did not exhibit any further changes during hypovolemia. Five minutes after induction of anesthesia in the hypovolemic state, ketamine but not thiopental caused large increases in plasma epinephrine, norepinephrine, and renin activity. Despite these differences, both anesthetics equally depressed systemic vascular resistance, mean systemic arterial blood pressure, heart rate, cardiac output, and baroreflex function. Neither anesthetic affected oxygen consumption or stroke volume. Both anesthetics caused similar increases in blood lactate concentration. Thirty minutes after induction of anesthesia, plasma epinephrine, norepinephrine, and renin activity remained higher in animals given ketamine than in those given thiopental. However, systemic vascular resistance, stroke volume, and cardiac output were not different for the animals given ketamine or thiopental, and had recovered to values not different from those for animals given no drug. Mean systemic arterial blood pressure was not different in the animals given ketamine or thiopental, but remained lower than in those given neither anesthetic. Oxygen consumption did
not differ among groups; however, only the animals given ketamine continued to show further increase in blood lactate concentration and base deficit. Thirty minutes after infusion of shed blood, cardiac output and blood lactate concentration were greater in the animals given ketamine than in those given thiopental or no anesthetic. Ninety minutes after infusion of shed blood, no differences existed among groups. We conclude that after moderate hemorrhage, further increase in circulating catecholamines is possible, but that the levels achieved either exceed the maximal effective concentration at site(s) of action or their effects are overwhelmed by the depressant effects of ketamine. This study failed to document any advantage of ketamine over thiopental when used in the minimal anesthetic dosage for induction of anesthesia during hypovolemia.
INTRODUCTION

Although hypovolemia is usually corrected before induction of anesthesia, some conditions may not permit restoration of blood volume before surgical intervention. Thus, it is occasionally necessary to induce anesthesia in an uncorrectably hypovolemic patient.

Compensation for hemorrhage is complex; important mechanisms include stimulation of baroreceptors and sympathetic and renin-angiotensin systems, and increases in heart rate and systemic vascular resistance. During normovolemia, different anesthetic agents have differing influence on these variables. It is not known to what extent anesthetics modify these mechanisms during a stimulated state of compensation for blood loss.

Because of its pressor action, cyclopropane had been recommended until it was realized that blood flow is more critical than, and cannot be equated with, blood pressure. Laboratory studies subsequently demonstrated poorer survival rates for animals bled while anesthetized with cyclopropane than while anesthetized with other drugs.1

The use of thiopental for induction of anesthesia during hypovolemia is controversial. In World War II, many young hypovolemic men were given large doses of this new agent. They breathed spontaneously, sometimes without receiving supplemental oxygen. Not surprisingly, results were mixed.2-13

Ketamine, like cyclopropane, was advocated for use during hypovolemia14-16 because of the hypertension and tachycardia produced in normovolemic animals17-20 and humans19,21-23. Studies of animals bled during ketamine anesthesia produced differing interpretations as to the usefulness of
Neither ketamine nor thiopental has been studied in a controlled fashion for induction of anesthesia during hypovolemia. The single laboratory reports of administration of ketamine or thiopental to hypovolemic dogs are insufficiently described and without adequate controls. We conducted this study to examine the influence of anesthetic agents on compensatory mechanisms to hemorrhage in awake animals, and to test our previously stated hypothesis that sympathetic stimulation may be neither possible nor beneficial during induction of anesthesia in hypovolemic subjects.
METHODS AND MATERIALS

We briefly anesthetized 21 young swine (Chester-White-Yorkshire crossbreed; weight 20.0 ± 0.5 kg, mean ± SE) with halothane in oxygen and nitrogen, which was adjusted to maintain arterial oxygen tension at 150-200 mmHg. The animals were paralyzed with succinylcholine, 2 mg/kg iv (later followed by administration of metocurine, 0.2 mg/kg iv, which was supplemented as required). The trachea was intubated, and the animal ventilated (tidal volume, 20 ml/kg; frequency was adjusted to maintain PaCO₂ at 39.9 ± 0.2 mmHg). After local infiltration with 0.5% bupivacaine, catheters were placed through the superficial femoral artery into the abdominal aorta and percutaneously through the innominate vein into the pulmonary artery.

Halothane was then discontinued and eliminated by ventilation until its end-tidal concentration, as measured by mass spectroscopy (Perkin Elmer Model MGA 1100AB), fell to less than 0.5 mmHg (0.05 MAC). We waited an additional 30 min before beginning our studies.

Systemic arterial, pulmonary arterial, and right atrial pressures were transduced (Statham 23Db), and mean pressures derived electrically by a Gould preamplifier. Cardiac output was estimated using a thermodilution technique (3 ml, 0°C, 0.9% NaCl), a thermistor-tipped 5-Fr pulmonary arterial catheter (Edwards Laboratories) and an analog computer (Edwards Model 9520A). The temperature of the injectate was measured continuously. Cardiac output was measured until two successive values produced satisfactory logarithmic washout curves and differed by no more than 0.2 1/min. We continuously measured partial pressures of oxygen, carbon dioxide, and halothane at the orifice of
the endotracheal tube using mass spectroscopy. These physiologic variables were recorded by a Gould polygraph (Model 2800).

We calculated systemic vascular resistance (SVR) as the difference between mean systemic arterial (BSa) and right atrial pressures, divided by cardiac output. Pulmonary vascular resistance was calculated as the difference between mean pulmonary arterial and pulmonary arterial wedge pressures, divided by cardiac output.

Temperature, measured in pulmonary arterial blood, was maintained within ±0.5°C of its initial value using circulating water heating pads.

During each experimental condition, we used Radiometer electrodes in steel-and-glass cuvets to determine partial pressures of oxygen and carbon dioxide, and a Severinghaus-UG electrode to measure pH, in both systemic and pulmonary arterial blood. All electrodes were maintained at 37°C. Calibrating gases and buffers were measured before and after each blood sample reading; the measurements were corrected for electrode drift, liquid-gas factor, and body temperature. Oxygen concentrations in systemic and pulmonary arterial blood were measured in duplicate by a galvanic cell instrument (Lex-O_2-Con-TL, Lexington Instruments). We calculated oxygen consumption as the product of cardiac output and the difference between arterial and mixed venous oxygen concentrations. Base-excess was estimated using a nomogram for swine blood.

During each experimental condition, arterial blood samples were obtained for enzymatic measurement of whole-blood lactate concentrations and plasma epinephrine and norepinephrine concentrations, and for radioimmune assay of plasma renin activity.
All of these measurements and calculations were made while animals were normovolemic. Then 30% of each animal's blood volume (estimated using equations developed by Engelhardt) was removed through the arterial cannula during a 30-min period. An additional 30 min was allowed before measurements were made for this hypovolemic state. Each animal was randomly assigned to receive ketamine (Group K), thiopental (Group T), or no anesthetic (Group O). In all other respects, animals were treated similarly.

We determined the appropriate dose of drug for each animal as follows. Forty-eight to seventy-two hours before the day of experiment, a cannula was inserted into an ear vein of each (unmedicated) swine. Thiopental or ketamine, 6 mg/kg iv, was given rapidly, followed by repeated iv injections of 2 mg/kg every 15-20 s until the animal no longer responded to a painful ear stimulus. On the day of experiment, one-half this dosage was administered as a single bolus. In a separate set of experiments on swine, using eight littermates, we established that 30% hypovolemia reduces the anesthetic requirement by approximately 30% for thiopental and approximately 40% for ketamine. (Weiskopf RB and Bogetz MS, unpublished data). These reductions did not differ significantly from each other. Group K received ketamine, 6.65 ± 0.38 mg/kg; and Group T, thiopental, 5.77 ± 0.21 mg/kg.

All measurements were repeated 5 and 30 min after induction of anesthesia. Shed blood was then returned to the animal and measurements were repeated 30 and 90 min later.

For each experimental condition, results among groups were compared using analysis of variance with repeated measures and the Newman-Keuls method of multiple comparisons. Statistical significance was accepted when P < 0.05.
RESULTS

Hemorrhage (Table 1)

Hemorrhage produced changes similar to those we have observed in a larger group of similar swine. Right- and left-sided cardiac filling pressures decreased. Plasma renin activity, plasma concentrations of epinephrine and norepinephrine, heart rate, and systemic vascular resistance increased. However, these responses did not sustain stroke volume, cardiac output, or mean systemic arterial blood pressure. Oxygen consumption increased; and a decrease in base-excess and an increase in whole-blood lactate concentration indicated the development of systemic acidosis.

Induction of Anesthesia with Ketamine or Thiopental (Table 2)

Control Animals: No variables changed in control animals during the hypovolemic period.

Five Minutes after Induction: Five minutes after administration of ketamine (P < 0.05), but not thiopental (P > 0.05), plasma epinephrine, norepinephrine, and renin activity had increased. Despite these differences in circulating vasoactive agents, ketamine and thiopental produced similar changes in compensatory cardiovascular responses to hemorrhage. Systemic vascular resistance was lower in Groups K and T than in Group O. Neither agent changed right- or left-sided cardiac filling pressures. Although ketamine and thiopental significantly decreased heart rate, the resulting rates did not differ significantly from the rate for Group O. Because neither
agent, atropine or propranolol, resulted in a lower activity, due to less than that for Group 0. As a result, the heart rate in this control did not differ between Group 1 and the other two groups, but the activity that was less than the activity in Group 0. A higher mean arterial blood pressure, however, was recorded in Group K, which was similarly depressed bradreflex function to that of Group T. Cardiac output was lower in the groups, but whole-blood lactate concentration lower in Groups K and T.

Thirty minutes after the induction, most values had returned to control values, except for a significant depression; however, significant differences persisted in lactate concentration was still greater in Group T than in Group 0; Group 1 was not different from each other. Although, plasma epinephrine concentration was greater in Group K than in Group T, these two groups did not differ from Group 0. Plasma renin activity was higher in Group K than in Group T, but the activity in these groups was not different from Group 0. For Groups K and T, SVR did not differ from each other, but was less than that for Group 0. Baroreflex function partially recovered, but remained similarly depressed in Groups K and T.

Right- and left-sided cardiac filling pressures and heart rate remained similar, and cardiac output no longer differed among groups. Also, the resultant mean systemic arterial pressure was similar for Groups T and K; both were less than that for Group 0.

Oxygen consumption did not differ among groups, but whole-blood lactate concentration continued to rise and base-excess continued to fall significantly only in Group K (P < 0.05).
Return of Shed Blood: Thirty minutes after return of shed blood, cardiac output was greater in Group K than in Groups T or F. Blood lactate was still greater in Group K than in either Group T or F. There were no other significant differences among groups.

Ninety minutes after return of shed blood, there were no significant differences among groups for any variable.

All animals survived 24 hours, at which time they were killed.
DISCUSSION

The cardiovascular effects produced by induction of anesthesia with ketamine during hypovolemia differ from those seen during normovolemia. Heart rate, mean systemic blood pressure, and cardiac output increase when ketamine is administered to normovolemic animals. In contrast, these variables decrease during hypovolemia. In our study ketamine and thiopental produced identical cardiovascular changes initially. Although these two anesthetics affected plasma catecholamine concentrations and renin activity differently, both similarly deteriorated the animal's ability to compensate for hemorrhage and decreased SVR, cardiac output, and Blaq. Both anesthetics seriously depressed baroreflex function. Thiopental has been reported to depress the baroreceptor reflex in man and dogs. Our experimental design did not permit us to delineate which portion(s) of the reflex were depressed.

Thirty minutes after induction, hypovolemic animals who had received ketamine for induction became progressively more acidic, while those who had received thiopental or no anesthetic did not.

In our present experiments, administration of ketamine further increased circulating catecholamine concentrations above the already elevated levels caused by the sympathetic response to hypovolemia. Thus, one portion of our hypothesis is not supported. In swine, the sympathetic response to 30% hemorrhage was not maximal; further sympathetic response was possible. The concomitant increase in plasma renin activity after administration of ketamine
may be a function of increased sympathetic activity,42,43 other circulating substances,44 or a separate action of ketamine. The progressive lactic acidosis 30 min after induction, seen only in the ketamine group, may be a result of increased oxygen demand caused by increased sympathetic activity without concomitantly increased blood flow. Despite the increase in catecholamine concentrations and renin activity, SVR, BPa, and cardiac output decreased. This failure of massively increased levels of circulating catecholamines to maintain BPa, SVR, and cardiac output implies that ketamine has a powerful opposing depressant effect, or that the maximal response to stimulation had been achieved. Ketamine has been shown to be a direct myocardial depressant,18,44-47 not to cause contraction of rabbit aortic strips,46 and to relax phenylephrine-induced contracted rabbit aortic strips.48 Similarly, thiopental depresses the myocardium49 and peripheral vasculature.50 In our experiments, both anesthetics decreased SVR. The fall in stroke volume index at a time when left ventricular preload increased, seen after administration of both drugs, tends to indicate myocardial depression. However, since heart rate, afterload, and myocardial compliance were not controlled, no conclusion can be drawn.

Alternatively, the increase in circulating catecholamines in the animals given ketamine could have been a response to the hypotension produced by the drug. This would imply that thiopental blocked a similar response in the animals in Group T. Our experimental data can not differentiate between these proposed mechanisms. Nevertheless, our data do support the second part of our hypothesis: that further sympathetic stimulation during induction of anesthesia during hypovolemia is not beneficial.
Several aspects of our methodology should be discussed. Our animals were not "trained"; therefore, data obtained in the absence of anesthesia may not be equivalent to data for "resting" animals. Nevertheless, cardiovascular data we obtained for the unmedicated, normovolemic state fall within the range of values reported by other investigators. Furthermore, hypovolemic and/or traumatized humans are not in a "resting" state. The few limited reports of hemorrhage in unmedicated swine have shown an arterial blood pressure response similar to that of our animals. Because detailed cardiovascular response of unmedicated swine to hemorrhage has not been reported, we cannot compare some of our results with those of other investigators.

The question of whether animal data can be applied to man is always relevant. All cardiovascular and metabolic responses to hemorrhage in our swine are consistent with what is known for man. Although the dog has been the species most frequently used to study hemorrhage, its response and that of the rat differ in important ways from that of man. In these species, contraction of the hepatic sphincter causes splanchnic engorgement and a number of sequelae not seen in man. The response of the gastrointestinal tract of swine in shock resembles that of man.

Because we did not conduct a dose-response study, we cannot address the question of whether other doses of ketamine or thiopental could have produced different effects during hypovolemia. However, the minimal anesthetic dose required during normovolemia was determined for both agents and individually for each animal. This dose was then reduced in accordance with our findings that hypovolemia similarly reduces the anesthetic requirement for thiopental.
and ketamine. Smaller doses would not have been anaesthetic, and other cardiovascular responses could have occurred.

Our data do not demonstrate a beneficial effect from using ketamine during hypovolemia. Studies reporting satisfactory use of ketamine for patients in "hemorrhagic shock" have had some shortcomings: the concomitant use of other drugs; and/or the failure to substantiate major blood volume deficit, to indicate the dose of ketamine administered, or to document cardiovascular responses at specific time intervals.14-16

The literature concerning the use of thiopental for induction of anesthesia during hypovolemia is also anecdotal. In World War II, the drug was used in doses of at least 500 to 1,000 mg. Patients breathed spontaneously; and in many cases, inspired oxygen concentration was 21%. It is not surprising that the result was sometimes catastrophic. Ketamine was introduced 30 years later, after use of controlled ventilation and high inspired concentrations of oxygen had become routine, and after anesthesiologists had become more skilled at recognizing and treating hypovolemia. These improvements alone would have improved outcome.

If anesthesia must be induced in a hypovolemic patient, ketamine 0.5 mg/kg iv is often administered. Sometimes the result is satisfactory; occasionally severe cardiovascular depression results. Because many other events occur almost simultaneously (endotracheal intubation, positive-pressure ventilation, skin incision and rapid initiation of surgery, continued fluid infusion), the outcome does not reflect the effects of the anesthetic agent alone.
Our data indicate that moderate hypovolemia does not produce a maximal increase in circulating catecholamines. Administration of ketamine, but not thiopental, causes a further increase. However, the increased plasma concentrations do not further stimulate the circulation, because they are above the maximal possible effective concentrations, or because their effect is overwhelmed by the depressant qualities of ketamine, or both. Administering ketamine for induction of anesthesia during hypovolemia did not offer any advantages over thiopental when both were used at the minimal anesthetic dose. The clinician should note that anesthetic agent is not a substitute for adequate restoration of blood volume and venous return; and when an anesthetic must be administered during significant hypovolemia, cardiovascular depression should be expected.
ACKNOWLEDGMENTS

The authors thank Sue Montgomery and Darlene DeManier for technical support, Jeff Warner and Chuck Richardson for computer support, Helen Hughes for performing plasma renin activity assays, and Bryan Frazier for performing catecholamine assays.
References

KETAMINE OR THIOPENTAL INDUCTION DURING HYPOXEMIA

32. Kasumi F, Katso o, Roy J: Superior effect of performance by
electrolytic cell analysis of blood oxygen content. J Appl Physiol
33:299-300, 1972
33. Weiskopf RB, Townley ML, Riis JS, Harris J, Chadwick E: Arterial-
curve and alignment diagrams for whole blood. J Appl Physiol, in press.
34. Drewes PA: Carbohydrate derivatives and metabolites, Clinical Chemistry:
Principles and Techniques. Edited by Henry RJ, Cannon DC, Rinne DN. Second
35. Kloten MF, Mosc 't, Henry DP, Kopin IL: Effects of halothane on plasma
catecholamines. Anesthesiology 41:432-439, 1974
36. Haber E, Kaerner T, Page LB, Kizlan B, Pursnede A: Application of
radioimmunoassay for angiotensin I to physiologic measurements of plasma
renin activity in normal human subjects. J Clin Endocrinol Metab
29:1349-1355, 1969
37. Engelhardt W: Swine cardiovascular physiology—a review. Swine in
Biomedical Research. Proceedings of a Symposium of the Pacific Northwest
Laboratory, Richland, Washington, July 19-22, 1966. Edited by Bustad LK,
McClelland RO. Richland, Washington, Battelle Memorial Institute, Pacific
Northwest Laboratory, 1966
Iowa, Iowa State University Press, 1967
of anesthesia on baroreflex control of heart rate in man. Anesthesiology
31:422-428, 1969

59. Hannon JP, Jennings PB, Dixon RS: Physiologic aspects of porcine hemorrhage. III. Heart rate and arterial pressure changes during
spontaneous recovery from acute and partial blood volume loss in the conscious animal. Institute report no. 67, Letterman Army Institute of Research, Presidio of San Francisco, California.

<table>
<thead>
<tr>
<th>No</th>
<th>1 min</th>
<th>2 min</th>
<th>Thymidal</th>
<th>Anesthetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactate (mmol/l)</td>
<td>0.01 ± 0.06</td>
<td>0.05 ± 0.03</td>
<td>0.65 ± 0.24</td>
<td>decrease</td>
</tr>
<tr>
<td>Pyruvate (mmol/l)</td>
<td>0.51 ± 0.02</td>
<td>0.45 ± 0.03</td>
<td>0.87 ± 0.12</td>
<td>decrease</td>
</tr>
<tr>
<td>GSH (mmol/l)</td>
<td>0.71 ± 0.09</td>
<td>0.80 ± 0.12</td>
<td>0.51 ± 0.12</td>
<td>decrease</td>
</tr>
<tr>
<td>GSSG (mmol/l)</td>
<td>0.47 ± 0.03</td>
<td>0.52 ± 0.03</td>
<td>0.70 ± 0.08</td>
<td>decrease</td>
</tr>
<tr>
<td>TCA cycle enzymes</td>
<td>0.51 ± 0.09</td>
<td>0.62 ± 0.12</td>
<td>0.70 ± 0.12</td>
<td>decrease</td>
</tr>
<tr>
<td>No</td>
<td>1 min</td>
<td>2 min</td>
<td>Thymidal</td>
<td>Anesthetic</td>
</tr>
<tr>
<td>Lactate (mmol/l)</td>
<td>0.01 ± 0.06</td>
<td>0.05 ± 0.03</td>
<td>0.65 ± 0.24</td>
<td>decrease</td>
</tr>
<tr>
<td>Pyruvate (mmol/l)</td>
<td>0.51 ± 0.02</td>
<td>0.45 ± 0.03</td>
<td>0.87 ± 0.12</td>
<td>decrease</td>
</tr>
<tr>
<td>GSH (mmol/l)</td>
<td>0.71 ± 0.09</td>
<td>0.80 ± 0.12</td>
<td>0.51 ± 0.12</td>
<td>decrease</td>
</tr>
<tr>
<td>GSSG (mmol/l)</td>
<td>0.47 ± 0.03</td>
<td>0.52 ± 0.03</td>
<td>0.70 ± 0.08</td>
<td>decrease</td>
</tr>
<tr>
<td>TCA cycle enzymes</td>
<td>0.51 ± 0.09</td>
<td>0.62 ± 0.12</td>
<td>0.70 ± 0.12</td>
<td>decrease</td>
</tr>
<tr>
<td>No</td>
<td>1 min</td>
<td>2 min</td>
<td>Thymidal</td>
<td>Anesthetic</td>
</tr>
<tr>
<td>Lactate (mmol/l)</td>
<td>0.01 ± 0.06</td>
<td>0.05 ± 0.03</td>
<td>0.65 ± 0.24</td>
<td>decrease</td>
</tr>
<tr>
<td>Pyruvate (mmol/l)</td>
<td>0.51 ± 0.02</td>
<td>0.45 ± 0.03</td>
<td>0.87 ± 0.12</td>
<td>decrease</td>
</tr>
<tr>
<td>GSH (mmol/l)</td>
<td>0.71 ± 0.09</td>
<td>0.80 ± 0.12</td>
<td>0.51 ± 0.12</td>
<td>decrease</td>
</tr>
<tr>
<td>GSSG (mmol/l)</td>
<td>0.47 ± 0.03</td>
<td>0.52 ± 0.03</td>
<td>0.70 ± 0.08</td>
<td>decrease</td>
</tr>
<tr>
<td>TCA cycle enzymes</td>
<td>0.51 ± 0.09</td>
<td>0.62 ± 0.12</td>
<td>0.70 ± 0.12</td>
<td>decrease</td>
</tr>
<tr>
<td>No</td>
<td>1 min</td>
<td>2 min</td>
<td>Thymidal</td>
<td>Anesthetic</td>
</tr>
<tr>
<td>Lactate (mmol/l)</td>
<td>0.01 ± 0.06</td>
<td>0.05 ± 0.03</td>
<td>0.65 ± 0.24</td>
<td>decrease</td>
</tr>
<tr>
<td>Pyruvate (mmol/l)</td>
<td>0.51 ± 0.02</td>
<td>0.45 ± 0.03</td>
<td>0.87 ± 0.12</td>
<td>decrease</td>
</tr>
<tr>
<td>GSH (mmol/l)</td>
<td>0.71 ± 0.09</td>
<td>0.80 ± 0.12</td>
<td>0.51 ± 0.12</td>
<td>decrease</td>
</tr>
<tr>
<td>GSSG (mmol/l)</td>
<td>0.47 ± 0.03</td>
<td>0.52 ± 0.03</td>
<td>0.70 ± 0.08</td>
<td>decrease</td>
</tr>
<tr>
<td>TCA cycle enzymes</td>
<td>0.51 ± 0.09</td>
<td>0.62 ± 0.12</td>
<td>0.70 ± 0.12</td>
<td>decrease</td>
</tr>
<tr>
<td>No</td>
<td>1 min</td>
<td>2 min</td>
<td>Thymidal</td>
<td>Anesthetic</td>
</tr>
<tr>
<td>Lactate (mmol/l)</td>
<td>0.01 ± 0.06</td>
<td>0.05 ± 0.03</td>
<td>0.65 ± 0.24</td>
<td>decrease</td>
</tr>
<tr>
<td>Pyruvate (mmol/l)</td>
<td>0.51 ± 0.02</td>
<td>0.45 ± 0.03</td>
<td>0.87 ± 0.12</td>
<td>decrease</td>
</tr>
<tr>
<td>GSH (mmol/l)</td>
<td>0.71 ± 0.09</td>
<td>0.80 ± 0.12</td>
<td>0.51 ± 0.12</td>
<td>decrease</td>
</tr>
<tr>
<td>GSSG (mmol/l)</td>
<td>0.47 ± 0.03</td>
<td>0.52 ± 0.03</td>
<td>0.70 ± 0.08</td>
<td>decrease</td>
</tr>
<tr>
<td>TCA cycle enzymes</td>
<td>0.51 ± 0.09</td>
<td>0.62 ± 0.12</td>
<td>0.70 ± 0.12</td>
<td>decrease</td>
</tr>
<tr>
<td>No</td>
<td>1 min</td>
<td>2 min</td>
<td>Thymidal</td>
<td>Anesthetic</td>
</tr>
<tr>
<td>Lactate (mmol/l)</td>
<td>0.01 ± 0.06</td>
<td>0.05 ± 0.03</td>
<td>0.65 ± 0.24</td>
<td>decrease</td>
</tr>
<tr>
<td>Pyruvate (mmol/l)</td>
<td>0.51 ± 0.02</td>
<td>0.45 ± 0.03</td>
<td>0.87 ± 0.12</td>
<td>decrease</td>
</tr>
<tr>
<td>GSH (mmol/l)</td>
<td>0.71 ± 0.09</td>
<td>0.80 ± 0.12</td>
<td>0.51 ± 0.12</td>
<td>decrease</td>
</tr>
<tr>
<td>GSSG (mmol/l)</td>
<td>0.47 ± 0.03</td>
<td>0.52 ± 0.03</td>
<td>0.70 ± 0.08</td>
<td>decrease</td>
</tr>
<tr>
<td>TCA cycle enzymes</td>
<td>0.51 ± 0.09</td>
<td>0.62 ± 0.12</td>
<td>0.70 ± 0.12</td>
<td>decrease</td>
</tr>
<tr>
<td>No</td>
<td>1 min</td>
<td>2 min</td>
<td>Thymidal</td>
<td>Anesthetic</td>
</tr>
<tr>
<td>Lactate (mmol/l)</td>
<td>0.01 ± 0.06</td>
<td>0.05 ± 0.03</td>
<td>0.65 ± 0.24</td>
<td>decrease</td>
</tr>
<tr>
<td>Pyruvate (mmol/l)</td>
<td>0.51 ± 0.02</td>
<td>0.45 ± 0.03</td>
<td>0.87 ± 0.12</td>
<td>decrease</td>
</tr>
<tr>
<td>GSH (mmol/l)</td>
<td>0.71 ± 0.09</td>
<td>0.80 ± 0.12</td>
<td>0.51 ± 0.12</td>
<td>decrease</td>
</tr>
<tr>
<td>GSSG (mmol/l)</td>
<td>0.47 ± 0.03</td>
<td>0.52 ± 0.03</td>
<td>0.70 ± 0.08</td>
<td>decrease</td>
</tr>
<tr>
<td>TCA cycle enzymes</td>
<td>0.51 ± 0.09</td>
<td>0.62 ± 0.12</td>
<td>0.70 ± 0.12</td>
<td>decrease</td>
</tr>
</tbody>
</table>

Table 2: response of Swine to Induction of Anesthesia during 54 Hyp...

Response of Swine to Induction of Anesthesia during 30% Hypovolemia

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5 min</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>-0.4</td>
<td>0.7</td>
<td>ns</td>
<td>-0.4</td>
<td>0.7</td>
<td>ns</td>
<td>-0.4</td>
<td>0.7</td>
</tr>
<tr>
<td>0.2</td>
<td>0.2</td>
<td>0.4</td>
<td>ns</td>
<td>0.2</td>
<td>0.4</td>
<td>ns</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>ns</td>
<td>0.3</td>
<td>0.3</td>
<td>ns</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>ns</td>
<td>0.4</td>
<td>0.4</td>
<td>ns</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>ns</td>
<td>0.5</td>
<td>0.5</td>
<td>ns</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>ns</td>
<td>0.6</td>
<td>0.6</td>
<td>ns</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>ns</td>
<td>0.7</td>
<td>0.7</td>
<td>ns</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>ns</td>
<td>0.8</td>
<td>0.8</td>
<td>ns</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>ns</td>
<td>0.9</td>
<td>0.9</td>
<td>ns</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>ns</td>
<td>1.0</td>
<td>1.0</td>
<td>ns</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>ns</td>
<td>1.1</td>
<td>1.1</td>
<td>ns</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>ns</td>
<td>1.2</td>
<td>1.2</td>
<td>ns</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>ns</td>
<td>1.3</td>
<td>1.3</td>
<td>ns</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>ns</td>
<td>1.4</td>
<td>1.4</td>
<td>ns</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>ns</td>
<td>1.5</td>
<td>1.5</td>
<td>ns</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>ns</td>
<td>1.6</td>
<td>1.6</td>
<td>ns</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>ns</td>
<td>1.7</td>
<td>1.7</td>
<td>ns</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>ns</td>
<td>1.8</td>
<td>1.8</td>
<td>ns</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>ns</td>
<td>1.9</td>
<td>1.9</td>
<td>ns</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>ns</td>
<td>2.0</td>
<td>2.0</td>
<td>ns</td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Table continued...
Table 1 (continued -- parameter:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control 1</td>
<td>123</td>
<td>Baseline</td>
</tr>
<tr>
<td>Control 2</td>
<td>456</td>
<td>Baseline</td>
</tr>
<tr>
<td>Treatment 1</td>
<td>789</td>
<td>Change from baseline</td>
</tr>
</tbody>
</table>

Note: Change in blood pressure is not significantly different from baseline.
117; n
Table 1. Response of Swine to THIOPENTAL INJECTION DURING HYPOVOLICMA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Normovolemic</th>
<th>Hypovolemic</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean right atrial pressure (mmHg)</td>
<td>-0.6 ± 0.2</td>
<td>-0.6 ± 0.2</td>
<td><0.001</td>
</tr>
<tr>
<td>PAP (mmHg)</td>
<td>9.3 ± 0.5</td>
<td>8.2 ± 1.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Renin activity (ng/ml)</td>
<td>2.0 ± 2.1</td>
<td>3.5 ± 2.7</td>
<td><0.005</td>
</tr>
<tr>
<td>Plasma epinephrine (pg/ml)</td>
<td>21.4 ± 7.2</td>
<td>34.7 ± 6.8</td>
<td><0.02</td>
</tr>
<tr>
<td>Plasma norepinephrine (pg/ml)</td>
<td>17.0 ± 6.0</td>
<td>127 ± 11</td>
<td><0.001</td>
</tr>
<tr>
<td>Heart rate (beats/min)</td>
<td>174 ± 6</td>
<td>113 ± 6</td>
<td><0.001</td>
</tr>
<tr>
<td>Stroke volume (ml/kg)</td>
<td>1.77 ± 0.07</td>
<td>0.43 ± 0.13</td>
<td><0.001</td>
</tr>
<tr>
<td>Cardiac output (ml/min/kg)</td>
<td>174 ± 5</td>
<td>113 ± 6</td>
<td><0.001</td>
</tr>
<tr>
<td>BPa (mmHg)</td>
<td>129 ± 3</td>
<td>100 ± 6</td>
<td><0.001</td>
</tr>
<tr>
<td>PAP (mmHg)</td>
<td>13.4 ± 0.5</td>
<td>9.4 ± 0.5</td>
<td><0.001</td>
</tr>
<tr>
<td>Oxygen consumption (ml O2/min/kg)</td>
<td>7.27 ± 0.26</td>
<td>7.94 ± 0.28</td>
<td><0.02</td>
</tr>
<tr>
<td>Base excess (mmol/l)</td>
<td>5.7 ± 0.6</td>
<td>3.3 ± 0.6</td>
<td><0.01</td>
</tr>
<tr>
<td>Lactate concentration (mmol/l)</td>
<td>1.10 ± 0.13</td>
<td>1.69 ± 0.25</td>
<td><0.05</td>
</tr>
<tr>
<td>SVR (mmHg/l/min)</td>
<td>37.3 ± 1.1</td>
<td>45.2 ± 2.3</td>
<td><0.005</td>
</tr>
<tr>
<td>PVR (mmHg/l/min)</td>
<td>3.05 ± 0.14</td>
<td>4.18 ± 0.21</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Values are means ± SE; n = 21.

PWP, pulmonary arterial wedge pressure; BPa, mean systemic arterial blood pressure; PAP, mean pulmonary arterial blood pressure; SVR, systemic vascular resistance; and PVR, pulmonary vascular resistance.
KETAMINE OR THIOPENTAL INDUCTION DURING HYPOVOLEMIA

FIGURE LEGEND

Fig. 1. Baroreceptor reflex function in awake normovolemic and hypovolemic swine (open symbols), and after administration (closed symbols), of ketamine, thiopental, or no anesthetic. Data are mean values for seven swine.
Fig 1.

BAROREFLEX FUNCTION

AWAKE ○ □ △
KETAMINE ■
THIOPENTAL ▲
NO ANESTHETIC ●

HEART RATE (b.min⁻¹)

MEAN ARTERIAL BLOOD PRESSURE (TORR)
END
DATE FILMED
7 - 86
DTIC